JP2013157400A - Semiconductor device and method for manufacturing the same - Google Patents

Semiconductor device and method for manufacturing the same Download PDF

Info

Publication number
JP2013157400A
JP2013157400A JP2012015541A JP2012015541A JP2013157400A JP 2013157400 A JP2013157400 A JP 2013157400A JP 2012015541 A JP2012015541 A JP 2012015541A JP 2012015541 A JP2012015541 A JP 2012015541A JP 2013157400 A JP2013157400 A JP 2013157400A
Authority
JP
Japan
Prior art keywords
semiconductor element
power semiconductor
semiconductor device
coupling agent
reactive group
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2012015541A
Other languages
Japanese (ja)
Inventor
Shiori Idaka
志織 井高
Kei Yamamoto
圭 山本
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Electric Corp
Original Assignee
Mitsubishi Electric Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Electric Corp filed Critical Mitsubishi Electric Corp
Priority to JP2012015541A priority Critical patent/JP2013157400A/en
Publication of JP2013157400A publication Critical patent/JP2013157400A/en
Pending legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L24/00Arrangements for connecting or disconnecting semiconductor or solid-state bodies; Methods or apparatus related thereto
    • H01L24/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L24/26Layer connectors, e.g. plate connectors, solder or adhesive layers; Manufacturing methods related thereto
    • H01L24/31Structure, shape, material or disposition of the layer connectors after the connecting process
    • H01L24/33Structure, shape, material or disposition of the layer connectors after the connecting process of a plurality of layer connectors
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/42Wire connectors; Manufacturing methods related thereto
    • H01L2224/47Structure, shape, material or disposition of the wire connectors after the connecting process
    • H01L2224/48Structure, shape, material or disposition of the wire connectors after the connecting process of an individual wire connector
    • H01L2224/4805Shape
    • H01L2224/4809Loop shape
    • H01L2224/48091Arched
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/42Wire connectors; Manufacturing methods related thereto
    • H01L2224/47Structure, shape, material or disposition of the wire connectors after the connecting process
    • H01L2224/48Structure, shape, material or disposition of the wire connectors after the connecting process of an individual wire connector
    • H01L2224/481Disposition
    • H01L2224/48151Connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive
    • H01L2224/48221Connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive the body and the item being stacked
    • H01L2224/48245Connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive the body and the item being stacked the item being metallic
    • H01L2224/48247Connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive the body and the item being stacked the item being metallic connecting the wire to a bond pad of the item
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/42Wire connectors; Manufacturing methods related thereto
    • H01L2224/47Structure, shape, material or disposition of the wire connectors after the connecting process
    • H01L2224/48Structure, shape, material or disposition of the wire connectors after the connecting process of an individual wire connector
    • H01L2224/484Connecting portions
    • H01L2224/4847Connecting portions the connecting portion on the bonding area of the semiconductor or solid-state body being a wedge bond
    • H01L2224/48472Connecting portions the connecting portion on the bonding area of the semiconductor or solid-state body being a wedge bond the other connecting portion not on the bonding area also being a wedge bond, i.e. wedge-to-wedge
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/73Means for bonding being of different types provided for in two or more of groups H01L2224/10, H01L2224/18, H01L2224/26, H01L2224/34, H01L2224/42, H01L2224/50, H01L2224/63, H01L2224/71
    • H01L2224/732Location after the connecting process
    • H01L2224/73251Location after the connecting process on different surfaces
    • H01L2224/73265Layer and wire connectors
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/15Details of package parts other than the semiconductor or other solid state devices to be connected
    • H01L2924/181Encapsulation

Abstract

PROBLEM TO BE SOLVED: To obtain a semiconductor device which, even when using a compound semiconductor element operable at a high temperature, is capable of securing adhesion between the semiconductor element and a mold resin.SOLUTION: The semiconductor device is formed by sealing, with a sealing resin, a mounting body in which a semiconductor element is mounted on a metal member. The surface of the semiconductor element 1 is hydrophilic. A coupling agent 9 having a first reactive group to be bonded to an inorganic material and a second reactive group to be bonded to an organic material is interposed at an interface between the semiconductor element 1 and the sealing resin 8.

Description

この発明は、半導体素子を樹脂で封止して形成される半導体装置およびその製造方法に関するものである。   The present invention relates to a semiconductor device formed by sealing a semiconductor element with a resin and a manufacturing method thereof.

半導体装置(以下、パワーモジュールと称す)は、電源(電力)の制御や供給を行う半導体素子(以下、パワー半導体素子と称す)を樹脂で封止して電気的な絶縁を確保する。従来からこの種のパワーモジュールとしては、金属体およびこの金属体にシリコン(Si)製パワー半導体素子などの電子素子を搭載してなる実装体を、モールド樹脂で封止したものが利用されている(例えば、特許文献1参照)。モールド樹脂としては、エポキシ樹脂、硬化剤および無機質充填材を主成分とするエポキシ樹脂組成物が用いられる。シリコン(Si)製パワー半導体素子とモールド樹脂との密着性が低いと、モールド樹脂による実装体の封止が不十分となり信頼性を確保できなくなる。そのため、シリコン(Si)製パワー半導体素子とモールド樹脂との密着性向上の手段として、カップリング剤の使用が知られている(例えば、特許文献2参照)。   In a semiconductor device (hereinafter referred to as a power module), a semiconductor element (hereinafter referred to as a power semiconductor element) that controls and supplies power (power) is sealed with resin to ensure electrical insulation. Conventionally, as this type of power module, a metal body and a mounting body in which an electronic element such as a power semiconductor element made of silicon (Si) is mounted on the metal body is sealed with a mold resin. (For example, refer to Patent Document 1). As mold resin, the epoxy resin composition which has an epoxy resin, a hardening | curing agent, and an inorganic filler as a main component is used. If the adhesion between the power semiconductor element made of silicon (Si) and the mold resin is low, the mounting body is not sufficiently sealed with the mold resin, and the reliability cannot be ensured. Therefore, the use of a coupling agent is known as a means for improving the adhesion between the silicon (Si) power semiconductor element and the mold resin (see, for example, Patent Document 2).

一般的に、カップリング剤として用いられるシリコーン系カップリング剤(例えば、シランカップリング剤)は、一分子中に第一の反応基としてアルコキシシラン部位と第二の反応基として有機官能基とを併せもつ有機ケイ素化合物である。第一の反応基であるアルコキシシラン部位は、水分の存在下で加水分解してシラノール基を生成し、実装体表面の水酸基との水素結合を介して実装体表面に移行し、さらに脱水縮合反応により無機物表面と強固な共有結合する。一方、第二の反応基である有機官能基は使用するモールド樹脂成分に応じて様々な官能基が選択でき、樹脂成分と化学的に結合する。この2種類の反応によりカップリング剤を介して実装体とモールド樹脂との結合が得られる。   Generally, a silicone-based coupling agent (for example, a silane coupling agent) used as a coupling agent has an alkoxysilane moiety as a first reactive group and an organic functional group as a second reactive group in one molecule. It is an organosilicon compound. The alkoxysilane site, which is the first reactive group, is hydrolyzed in the presence of moisture to produce a silanol group, which is transferred to the surface of the mounting body through a hydrogen bond with a hydroxyl group on the surface of the mounting body, and then a dehydration condensation reaction. Due to this, a strong covalent bond is formed with the inorganic surface. On the other hand, as the organic functional group which is the second reactive group, various functional groups can be selected according to the mold resin component to be used, and chemically bond with the resin component. By these two types of reactions, the mounting body and the mold resin can be bonded via the coupling agent.

また、シランカップリング処理は、シランカップリング剤を水や有機溶剤に溶かして十分に加水分解させた水溶液を調整し、これを実装体表面にスプレー、浸漬などの方法で塗布した後で乾燥して実装体表面に固着させるとともに、有機官能基を実装体表面の外に配向させる。その後、モールド樹脂で封止する際に樹脂成分と有機官能基とを化学的に結合させてなる。また、モールド樹脂中にシランカップリング剤を混入し、実装体表面の吸着水を利用してシラノール基との反応を生じさせる方法もとられる。金属体およびシリコン(Si)製パワー半導体素子の表面には自然酸化膜が形成されているため親水性が高く、カップリング処理により実装体表面で効果的に作用する。   In addition, the silane coupling treatment is performed by preparing an aqueous solution in which a silane coupling agent is dissolved in water or an organic solvent and fully hydrolyzed, and applying the solution to the surface of the mounting body by spraying or dipping, followed by drying. Then, the organic functional group is oriented to the outside of the surface of the mounting body. Then, when sealing with mold resin, a resin component and an organic functional group are chemically combined. In addition, a method in which a silane coupling agent is mixed in the mold resin and a reaction with a silanol group is caused by using adsorbed water on the surface of the mounting body. Since a natural oxide film is formed on the surfaces of the metal body and the silicon (Si) power semiconductor element, it has high hydrophilicity and acts effectively on the surface of the mounting body by the coupling treatment.

特開平9−129822(第6頁、第1図)JP-A-9-129822 (page 6, FIG. 1) 特開平9−221580(第2−4頁)JP-A-9-221580 (page 2-4)

従来のパワー半導体装置では、パワー半導体素子とモールド樹脂との密着性を強化するために、カップリング剤が用いられている。ところで、従来のシリコン(Si)製パワー半導体素子に比べて、低損失、高耐圧、高温動作が可能な化合物半導体素子のパワーモジュールへの適用が進められている。化合物半導体素子、たとえばパワーモジュールへの適用が検討されている炭化ケイ素(SiC)製パワー半導体素子は、従来のシリコン(Si)製パワー半導体素子に比べて損失が小さく高温動作が可能であり、使用環境において生じる温度変化の増大が想定される。このとき、エポキシ樹脂と化合物半導体素子、あるいはエポキシ樹脂と金属体の熱膨張係数の差によって各界面に発生するひずみが増加し、この部分での剥離発生・進行によって電気的絶縁信頼性が損なわれる。さらに、炭化ケイ素(SiC)や窒化ガリウム(GaN)など化合物半導体素子は、その表面が疎水性を示す場合が多く、水を介した反応が生じにくい性質がある。そのため、表面が疎水性を示し、高温動作が可能な化合物半導体においては、パワー半導体素子とモールド樹脂との密着性強化のためにカップリング剤を用いても、高温動作環境に耐えうる密着性を得ることが難しいという問題点があった。   In a conventional power semiconductor device, a coupling agent is used to enhance the adhesion between the power semiconductor element and the mold resin. By the way, compared with the conventional power semiconductor element made from silicon (Si), the application to the power module of the compound semiconductor element in which a low loss, a high pressure | voltage resistant, and high temperature operation | movement is advanced. Power semiconductor elements made of silicon carbide (SiC), which are considered to be applied to compound semiconductor elements, for example, power modules, can be operated at higher temperatures with lower losses than conventional silicon (Si) power semiconductor elements. An increase in temperature change occurring in the environment is assumed. At this time, the strain generated at each interface increases due to the difference in thermal expansion coefficient between the epoxy resin and the compound semiconductor element, or between the epoxy resin and the metal body, and the electrical insulation reliability is impaired due to the occurrence and progress of peeling at this portion. . Furthermore, compound semiconductor elements such as silicon carbide (SiC) and gallium nitride (GaN) often have a hydrophobic surface, and have a property that reaction through water hardly occurs. Therefore, in compound semiconductors that have hydrophobic surfaces and are capable of high-temperature operation, even if a coupling agent is used to enhance the adhesion between the power semiconductor element and the mold resin, the adhesion can withstand high-temperature operating environments. There was a problem that it was difficult to obtain.

この発明は、上述のような課題を解決するためになされたもので、高温動作可能な化合物半導体素子をパワー半導体素子として用いた場合においても、パワー半導体素子とモールド樹脂との密着性を向上させることができる半導体装置を得るものである。   The present invention has been made to solve the above-described problems, and improves the adhesion between the power semiconductor element and the mold resin even when a compound semiconductor element capable of operating at high temperature is used as the power semiconductor element. A semiconductor device that can be obtained is obtained.

この発明に係る半導体装置においては、金属部材に半導体素子を搭載した実装体を封止樹脂によって封止して形成した半導体装置であって、前記半導体素子の表面が親水性であり、前記半導体素子と前記封止樹脂との界面に、無機材料に結合する第一の反応基と有機材料に結合する第二の反応基とを有するカップリング剤が介在することを特徴とする半導体装置。   The semiconductor device according to the present invention is a semiconductor device formed by sealing a mounting body in which a semiconductor element is mounted on a metal member with a sealing resin, the surface of the semiconductor element being hydrophilic, and the semiconductor element A semiconductor device, wherein a coupling agent having a first reactive group bonded to an inorganic material and a second reactive group bonded to an organic material is interposed at an interface between the sealing resin and the sealing resin.

この発明は、半導体素子の表面が親水性であり、半導体素子と封止樹脂との界面に、無機材料に結合する第一の反応基と有機材料に結合する第二の反応基とを有するカップリング剤が介在するので、高温動作可能な化合物半導体素子をパワー半導体素子として用いた場合においても、パワー半導体素子とモールド樹脂との密着性を向上させることが可能となる。   The present invention provides a cup having a hydrophilic surface on a surface of a semiconductor element and a first reactive group bonded to an inorganic material and a second reactive group bonded to an organic material at an interface between the semiconductor element and the sealing resin. Since the ring agent is present, the adhesion between the power semiconductor element and the mold resin can be improved even when a compound semiconductor element capable of operating at high temperature is used as the power semiconductor element.

この発明の実施の形態1におけるパワー半導体装置の断面概略図である。1 is a schematic cross-sectional view of a power semiconductor device according to a first embodiment of the present invention. この発明の実施の形態1におけるパワー半導体装置の製造工程を示すフロー図である。It is a flowchart which shows the manufacturing process of the power semiconductor device in Embodiment 1 of this invention. この発明の実施の形態1におけるパワー半導体素子とモールド樹脂間の密着強度の測定結果を示す図である。It is a figure which shows the measurement result of the adhesive strength between the power semiconductor element and mold resin in Embodiment 1 of this invention. この発明の実施の形態2におけるパワー半導体装置の断面概略図である。It is the cross-sectional schematic of the power semiconductor device in Embodiment 2 of this invention. この発明の実施の形態2におけるパワー半導体装置の製造工程を示すフロー図である。It is a flowchart which shows the manufacturing process of the power semiconductor device in Embodiment 2 of this invention. この発明の実施の形態3におけるパワー半導体装置の断面概略図である。It is a cross-sectional schematic diagram of the power semiconductor device in Embodiment 3 of this invention. この発明の実施の形態3におけるパワー半導体装置の製造工程を示すフロー図である。It is a flowchart which shows the manufacturing process of the power semiconductor device in Embodiment 3 of this invention.

実施の形態1.
図1は、本発明の実施の形態1におけるパワー半導体装置の断面概略図である。図1に示すように、半導体装置であるパワー半導体装置10は、半導体素子であるパワー半導体素子1、接合材2,4、金属体3、ボンディングワイヤ5、金属製リード6a,6b、実装体7、モールド樹脂8、カップリング剤9で構成されている。
Embodiment 1 FIG.
FIG. 1 is a schematic cross-sectional view of a power semiconductor device according to Embodiment 1 of the present invention. As shown in FIG. 1, a power semiconductor device 10 that is a semiconductor device includes a power semiconductor element 1 that is a semiconductor element, bonding materials 2 and 4, a metal body 3, a bonding wire 5, metal leads 6 a and 6 b, and a mounting body 7. , Mold resin 8 and coupling agent 9.

パワー半導体素子1は、たとえば炭化ケイ素(SiC)や窒化ガリウム(GaN)などの化合物半導体よりなるもので、公知の半導体プロセスによりウエハ上にデバイスが形成されたものであり、金属体3は銅(Cu)、ニッケル(Ni)、鉄(Fe)などの金属からなる板形状のものであり、接合材2,4はハンダや導電性接着剤など導電性接合材料のほか、樹脂接着剤などが挙げられる。金属製リード6a,6bは銅(Cu)、ニッケル(Ni)、鉄(Fe)などの金属からなり、ボンディングワイヤ5はアルミニウム(Al)、金(Au)、銅(Cu)などが使用できる。封止樹脂は、金属体3にパワー半導体素子1を搭載した実装体7の全体を覆い封止するためのものである。封止樹脂であるモールド樹脂8はエポキシ樹脂、硬化剤および無機質充填材を主成分とするエポキシ樹脂組成物のほか、一般的な樹脂封止材が使用できる。   The power semiconductor element 1 is made of a compound semiconductor such as silicon carbide (SiC) or gallium nitride (GaN), and a device is formed on a wafer by a known semiconductor process. The metal body 3 is made of copper ( Cu), nickel (Ni), iron (Fe) and other plate-shaped materials, and the bonding materials 2 and 4 include conductive bonding materials such as solder and conductive adhesive, and resin adhesives. It is done. The metal leads 6a and 6b are made of metal such as copper (Cu), nickel (Ni), iron (Fe), and the bonding wire 5 can be made of aluminum (Al), gold (Au), copper (Cu), or the like. The sealing resin is for covering and sealing the entire mounting body 7 in which the power semiconductor element 1 is mounted on the metal body 3. As the mold resin 8 which is a sealing resin, a general resin sealing material can be used in addition to an epoxy resin composition mainly composed of an epoxy resin, a curing agent and an inorganic filler.

また、パワー半導体素子1の表面は、親水化処理により親水性にする。この親水化処理を行うのが親水化工程(親水化する工程)である。パワー半導体素子1の親水化処理を施した表面とモールド樹脂8のパワー半導体素子1と対向する面とにより形成される界面には、無機材料に結合する第一の反応基と有機材料に結合する第二の反応基とを有するカップリング剤9があり、このカップリング剤9が介在した状態で、パワー半導体素子1はモールド樹脂8により樹脂封止される。このカップリング剤9をパワー半導体素子1表面に形成するのが、カップリング剤9を塗布する工程であるカップリング工程であり、モールド樹脂8によりパワー半導体素子1を搭載した実装体7を樹脂封止するのが封止する工程である封止工程である。   Further, the surface of the power semiconductor element 1 is made hydrophilic by a hydrophilic treatment. This hydrophilic treatment is performed in a hydrophilic step (hydrophilization step). The interface formed by the hydrophilic surface of the power semiconductor element 1 and the surface of the mold resin 8 facing the power semiconductor element 1 is bonded to the first reactive group bonded to the inorganic material and the organic material. There is a coupling agent 9 having a second reactive group, and the power semiconductor element 1 is resin-sealed with a mold resin 8 with the coupling agent 9 interposed. The coupling agent 9 is formed on the surface of the power semiconductor element 1 in a coupling step, which is a step of applying the coupling agent 9. The mounting body 7 on which the power semiconductor element 1 is mounted is molded by resin molding. It is the sealing process that is the process of sealing that stops.

図2は、本実施の形態によるパワー半導体装置の製造工程を示すフロー図である。まず始めに、ダイシング工程において、多数のパワー半導体素子1が形成されたウエハをダイシングテープに固着し、ダイシングして個片化する。次に、ピックアップ工程において、個片化されたパワー半導体素子1をピックアップする。次に、ダイボンド工程において、ピックアップしたパワー半導体素子1は接合材2を介して金属体3に搭載する。次に、配線工程において、パワー半導体素子1の金属体3と逆側の主面を、接合材4により直接金属リード6bの一端と、あるいはボンディングワイヤ5を介して金属製リード6aの一端と電気的に接続して実装体7を形成する。ボンディングワイヤ5の接続方法としては、アルミのスティッチボンドのほか、金(Au)や銅(Cu)のボールボンディングなどの公知のワイヤボンディング工程が利用できる。   FIG. 2 is a flowchart showing a manufacturing process of the power semiconductor device according to the present embodiment. First, in a dicing process, a wafer on which a large number of power semiconductor elements 1 are formed is fixed to a dicing tape and diced into individual pieces. Next, in the pickup process, the separated power semiconductor elements 1 are picked up. Next, in the die bonding process, the picked-up power semiconductor element 1 is mounted on the metal body 3 via the bonding material 2. Next, in the wiring process, the main surface opposite to the metal body 3 of the power semiconductor element 1 is electrically connected to one end of the metal lead 6 b directly by the bonding material 4 or one end of the metal lead 6 a via the bonding wire 5. Are connected to form the mounting body 7. As a method for connecting the bonding wires 5, a known wire bonding process such as gold (Au) or copper (Cu) ball bonding can be used in addition to aluminum stitch bonding.

実装体7形成後に、親水化工程において、パワー半導体素子1の表面を親水化し、カップリング工程において、親水化処理したパワー半導体素子1表面にカップリング剤9を塗布する。次に、乾燥工程において、カップリング処理した実装体7を乾燥させる。その後、樹脂封止工程において、トランスファモールドや液状注型などのモールド工法によって、実装体7をモールド樹脂8で覆う。つまり、実装体7は本実施の形態のパワー半導体装置10において、カップリング剤9を介してモールド樹脂8の内部に封止される。そして、キュア工程において、モールド樹脂8を硬化してパワー半導体装置10を得る。なお、金属製リード6a,6bの他端はモールド樹脂8から外部へ突出しており、パワー半導体装置10を外部と電気的に接続できるようになっている。   After the mounting body 7 is formed, the surface of the power semiconductor element 1 is hydrophilized in the hydrophilization process, and the coupling agent 9 is applied to the surface of the power semiconductor element 1 subjected to the hydrophilization treatment in the coupling process. Next, in the drying process, the mounted body 7 subjected to the coupling process is dried. Thereafter, in the resin sealing step, the mounting body 7 is covered with the mold resin 8 by a molding method such as transfer molding or liquid casting. That is, the mounting body 7 is sealed inside the mold resin 8 via the coupling agent 9 in the power semiconductor device 10 of the present embodiment. In the curing step, the mold resin 8 is cured to obtain the power semiconductor device 10. The other ends of the metal leads 6a and 6b protrude from the mold resin 8 to the outside so that the power semiconductor device 10 can be electrically connected to the outside.

パワー半導体素子1の表面を親水化する方法として、アルカリ溶液処理、熱(火炎)処理、フッ素化処理、紫外線照射、電子線照射、低圧プラズマ、常圧プラズマ、コロナ放電、ブラスト、スパッタ成膜などが挙げられる。処理は単一であっても、2種類以上を複合したものであってもよく、処理後にオゾン、水系溶媒、水蒸気、水素など親水基を導入しやすい雰囲気に晒してもよい。   As a method for hydrophilizing the surface of the power semiconductor element 1, alkaline solution treatment, heat (flame) treatment, fluorination treatment, ultraviolet irradiation, electron beam irradiation, low pressure plasma, atmospheric pressure plasma, corona discharge, blasting, sputtering film formation, etc. Is mentioned. The treatment may be a single treatment or a combination of two or more treatments, and may be exposed to an atmosphere in which hydrophilic groups such as ozone, aqueous solvent, water vapor, and hydrogen are easily introduced after the treatment.

また、カップリング剤9としては、シリコーン系カップリング剤のほかアルミ系、チタン系など一分子中に第一の反応基として加水分解により無機物と結合する部位と第二の反応基として有機官能基とを併せもつ化合物が利用でき、モールド樹脂8に応じて有機官能基を自由に選択できる。このカップリング剤を予め、水やアルコールなどからなる水系溶媒中で加水分解させた水溶液を塗布、スプレー、浸漬により、実装体7表面に付着させ、乾燥することで、実装体7表面に定着させることができる。カップリング剤中には、無機材料に結合する第一の反応基と有機材料に結合する第二の反応基があり、第一の反応基が化合物半導体表面と第二の反応基が封止樹脂と結合することで、それぞれの界面での密着性を向上させることができる。さらに、本発明のようにパワー半導体素子1の表面に親水化処理を施すことにより、親水性となった化合物半導体素子表面と無機材料に結合する第一の反応基との反応が生じやすくなり、その結果、密着性を大幅に向上させることができる。   In addition to the silicone coupling agent, the coupling agent 9 includes an aluminum functional group, a titanium functional group, etc. as a first reactive group in one molecule, such as aluminum and titanium, and an organic functional group as the second reactive group. And an organic functional group can be freely selected according to the mold resin 8. An aqueous solution obtained by previously hydrolyzing this coupling agent in an aqueous solvent such as water or alcohol is applied, sprayed, or dipped to adhere to the surface of the mounting body 7 and dried to fix it on the surface of the mounting body 7. be able to. In the coupling agent, there are a first reactive group that bonds to the inorganic material and a second reactive group that bonds to the organic material. The first reactive group is the compound semiconductor surface and the second reactive group is the sealing resin. Bonding with can improve the adhesion at each interface. Furthermore, by applying a hydrophilic treatment to the surface of the power semiconductor element 1 as in the present invention, a reaction between the surface of the compound semiconductor element that has become hydrophilic and the first reactive group bonded to the inorganic material is likely to occur. As a result, the adhesion can be greatly improved.

以下、本実施の形態によるパワー半導体装置において、パワー半導体素子1の表面とモールド樹脂8とのモールド樹脂密着強度の測定結果を説明し、パワー半導体素子1の表面とモールド樹脂8との密着性向上の効果を明らかにする。図3に、表面処理条件別に測定したパワー半導体素子1とモールド樹脂8との常温における密着強度の測定結果を示す。図3において、横軸は表面処理条件で、縦軸はモールド樹脂密着強度(単位%)である。ここで、モールド樹脂密着強度は未処理の場合の値を100%としたときの相対値を用いている。   Hereinafter, in the power semiconductor device according to the present embodiment, the measurement result of the mold resin adhesion strength between the surface of the power semiconductor element 1 and the mold resin 8 will be described, and the adhesion between the surface of the power semiconductor element 1 and the mold resin 8 will be improved. To clarify the effect of FIG. 3 shows the measurement results of the adhesion strength at normal temperature between the power semiconductor element 1 and the mold resin 8 measured according to the surface treatment conditions. In FIG. 3, the horizontal axis represents the surface treatment conditions, and the vertical axis represents the mold resin adhesion strength (unit%). Here, the mold resin adhesion strength uses a relative value when the value of the untreated case is 100%.

表面処理条件は、パワー半導体素子1として炭化ケイ素(SiC)素子の表面に、(a)表面処理をしない場合である未処理、(b)親水化処理のみした場合、(c)カップリング処理のみした場合、(d)親水化処理後にカップリング処理した場合の4条件である。親水化処理条件は、実装体7の素子表面に大気中で低圧水銀ランプ(波長254、185nm)を10分間照射した。カップリング処理は、信越シリコーン(株)社製シランカップリング剤KBE603(N−2−アミノエチル−3−アミノプロピルトリメトキシシラン)を0.5wt%酢酸水溶液に1.0wt%滴下し、よく攪拌した処理液中に実装体7を浸漬し、引き上げた実装体7表面からエアブローで過剰な処理液を除去し、110℃のオーブン中で5分間乾燥した。モールド樹脂は日立化成工業(株)製CEL−4650を用いた。   The surface treatment conditions are as follows: (a) untreated when the surface treatment is not performed on the surface of the silicon carbide (SiC) element as the power semiconductor element 1, (b) when only the hydrophilization treatment is performed, and (c) only the coupling treatment. In this case, (d) four conditions are obtained when the coupling treatment is performed after the hydrophilic treatment. As the hydrophilization treatment conditions, the element surface of the mounting body 7 was irradiated with a low-pressure mercury lamp (wavelength 254, 185 nm) for 10 minutes in the air. The coupling treatment was performed by adding 1.0 wt% of a silane coupling agent KBE603 (N-2-aminoethyl-3-aminopropyltrimethoxysilane) manufactured by Shin-Etsu Silicone Co., Ltd. to a 0.5 wt% acetic acid aqueous solution and stirring well. The mounting body 7 was immersed in the processed liquid, and the excess processing liquid was removed from the surface of the pulled-up mounting body 7 by air blowing, and dried in an oven at 110 ° C. for 5 minutes. Hitachi Chemical Co., Ltd. CEL-4650 was used as the mold resin.

密着力評価は、素子表面に直径3mmのプリンカップ形状に、トランスファモールド装置で成形したものを、プッシュプルテスタ(アイコーエンジニアリング株式会社製RX−20)を用いて1mm/secの定速で横荷重をかけ、せん断破壊したときの強度を測定した。   For evaluation of adhesion force, a 3 mm diameter pudding cup shape formed on the surface of the element using a transfer mold device was used, and a lateral load was applied at a constant speed of 1 mm / sec using a push-pull tester (RX-20 manufactured by Aiko Engineering Co., Ltd.). And the strength when sheared was measured.

図3より、(b)親水化処理のみ、(c)カップリング処理のみの場合の条件では、(a)未処理の場合に比べて、ほとんど密着力に変化が見られないのに対して、(d)親水化処理後にカップリング処理することで密着力が(a)未処理の場合に対して約3倍となる効果が得られた。   From FIG. 3, (b) only the hydrophilization treatment, (c) in the case of only the coupling treatment, compared with (a) untreated, almost no change in the adhesion force, (D) By performing the coupling treatment after the hydrophilization treatment, an effect that the adhesion force is about three times that of the case of (a) untreated is obtained.

以上のように、カップリング処理を実施する前に、パワー半導体素子1の表面を親水化処理により親水性にすることで、パワー半導体素子1とモールド樹脂8との密着性にすぐれた信頼性の高い半導体装置を得ることができる。このため、高温動作時においても、パワー半導体素子とモールド樹脂との密着性を向上させることが可能となる。また、電気的絶縁信頼性を向上させることができる。   As described above, the surface of the power semiconductor element 1 is made hydrophilic by the hydrophilic treatment before the coupling process is performed, so that the adhesion between the power semiconductor element 1 and the mold resin 8 is excellent. A high semiconductor device can be obtained. For this reason, it is possible to improve the adhesion between the power semiconductor element and the mold resin even during high temperature operation. Moreover, electrical insulation reliability can be improved.

実施の形態2.
図4は、本発明の実施の形態2におけるパワー半導体装置の断面概略図である。図4に示すように、実装体7形成前に、パワー半導体素子1をダイシングテープに貼り付けたまま、予め親水化処理およびカップリング処理を行った点が実施の形態1と異なる。
Embodiment 2. FIG.
FIG. 4 is a schematic cross-sectional view of the power semiconductor device according to the second embodiment of the present invention. As shown in FIG. 4, the present embodiment is different from the first embodiment in that before the mounting body 7 is formed, the hydrophilic treatment and the coupling treatment are performed in advance while the power semiconductor element 1 is attached to the dicing tape.

図5は、本実施の形態におけるパワー半導体装置の製造工程を示すフロー図である。まず始めに、ダイシング工程において、多数のパワー半導体素子1が形成されたウエハをダイシングテープに固着し、ダイシングして個片化する。次に、ダイシング処理で個片化したものを、ダイシングテープに貼り付けたまま、親水化工程において、パワー半導体素子1の表面を親水化処理により親水化する。次に、カップリング工程において、親水化処理したパワー半導体素子1表面にカップリング剤9を塗布する。次に、乾燥工程において、ダイシングテープに貼り付けたままカップリング処理したパワー半導体素子1を乾燥させる。次に、ピックアップ工程において、乾燥したパワー半導体素子1をピックアップする。次に、ダイボンド工程において、ピックアップしたパワー半導体素子1は接合材2を介して金属体3に搭載する。次に、配線工程において、パワー半導体素子1の金属体3と逆側の主面を、接合材4により直接金属リード6bの一端と、あるいはボンディングワイヤ5を介して金属製リード6aの一端と電気的に接続して実装体7を形成する。ボンディングワイヤ5の接続方法としては、アルミのスティッチボンドのほか、金(Au)や銅(Cu)のボールボンディングなどの公知のワイヤボンディング工程が利用できる。   FIG. 5 is a flowchart showing a manufacturing process of the power semiconductor device in the present embodiment. First, in a dicing process, a wafer on which a large number of power semiconductor elements 1 are formed is fixed to a dicing tape and diced into individual pieces. Next, the surface of the power semiconductor element 1 is hydrophilized by a hydrophilization process in the hydrophilization process while the pieces separated by the dicing process are attached to the dicing tape. Next, in the coupling step, the coupling agent 9 is applied to the surface of the power semiconductor element 1 subjected to the hydrophilic treatment. Next, in the drying step, the power semiconductor element 1 subjected to the coupling process while being attached to the dicing tape is dried. Next, in the pickup step, the dried power semiconductor element 1 is picked up. Next, in the die bonding process, the picked-up power semiconductor element 1 is mounted on the metal body 3 via the bonding material 2. Next, in the wiring process, the main surface opposite to the metal body 3 of the power semiconductor element 1 is electrically connected to one end of the metal lead 6 b directly by the bonding material 4 or one end of the metal lead 6 a via the bonding wire 5. Are connected to form the mounting body 7. As a method for connecting the bonding wires 5, a known wire bonding process such as gold (Au) or copper (Cu) ball bonding can be used in addition to aluminum stitch bonding.

実装体7形成後に、樹脂封止工程において、トランスファモールドや液状注型などのモールド工法によって、実装体7をモールド樹脂8で覆う。つまり、実装体7は本実施の形態のパワー半導体装置10において、カップリング剤9を介してモールド樹脂8の内部に封止される。キュア工程において、モールド樹脂8を硬化してパワー半導体装置10を得る。なお、金属製リード6a,6bの他端はモールド樹脂8から外部へ突出しており、パワー半導体装置10を外部と電気的に接続できるようになっている。このように、パワー半導体素子1をダイシングテープに貼り付けたまま、親水化処理およびカップリング処理を行った点が実施の形態1と異なる。親水化およびカップリング処理の条件は実施の形態1と同様の方法で行い、カップリング剤は信越シリコーン(株)社製シランカップリング剤KBM303(2−(3,4−エポキシシクロヘキシル)エチルトリメトキシシラン)を用いた。   After the mounting body 7 is formed, the mounting body 7 is covered with a mold resin 8 by a molding method such as transfer molding or liquid casting in a resin sealing process. That is, the mounting body 7 is sealed inside the mold resin 8 via the coupling agent 9 in the power semiconductor device 10 of the present embodiment. In the curing step, the mold resin 8 is cured to obtain the power semiconductor device 10. The other ends of the metal leads 6a and 6b protrude from the mold resin 8 to the outside so that the power semiconductor device 10 can be electrically connected to the outside. Thus, the point which performed the hydrophilization process and the coupling process with the power semiconductor element 1 affixed on the dicing tape differs from Embodiment 1. FIG. The conditions for hydrophilization and coupling treatment were performed in the same manner as in Embodiment 1, and the coupling agent was a silane coupling agent KBM303 (2- (3,4-epoxycyclohexyl) ethyltrimethoxy manufactured by Shin-Etsu Silicone Co., Ltd.). Silane) was used.

以上のように、カップリング処理を実施する前に、パワー半導体素子1表面を親水化処理により親水性にすることで、パワー半導体素子1とモールド樹脂8との密着性にすぐれた信頼性の高い半導体装置を得ることができる。また、予めパワー半導体素子1に対してカップリング処理を行うことで、使用するカップリング剤をパワー半導体素子1用に調整することも可能となり、モールド樹脂8との密着性をより強化することが可能となる。さらに、パワー半導体素子1に対してのみ、カップリング処理を行うことで、カップリング剤の使用量の削減もできる。   As described above, the surface of the power semiconductor element 1 is made hydrophilic by the hydrophilic treatment before the coupling process is performed, so that the adhesion between the power semiconductor element 1 and the mold resin 8 is excellent and highly reliable. A semiconductor device can be obtained. In addition, by performing a coupling process on the power semiconductor element 1 in advance, it becomes possible to adjust the coupling agent to be used for the power semiconductor element 1 and to further enhance the adhesion with the mold resin 8. It becomes possible. Furthermore, the amount of coupling agent used can be reduced by performing the coupling process only on the power semiconductor element 1.

実施の形態3.
本実施の形態3におけるパワー半導体装置の断面概略図は図4に示したものと同じである。ただし、ここでは、カップリング剤として、シランカップリング剤KBM303原液を、親水化したパワー半導体素子1側面に選択的に付着させ、300℃以上で硬化させてシロキサン膜とした。このように、カップリング剤として、シランカップリング剤KBM3030原液を用いカップリング処理後に300℃以上の熱処理を実施し、カップリング剤をシロキサン膜としたところが実施の形態1と異なる。
Embodiment 3 FIG.
The cross-sectional schematic diagram of the power semiconductor device in the third embodiment is the same as that shown in FIG. However, here, as a coupling agent, a silane coupling agent KBM303 stock solution was selectively attached to the side surface of the hydrophilic power semiconductor element 1 and cured at 300 ° C. or higher to form a siloxane film. Thus, the difference from Embodiment 1 is that the silane coupling agent KBM3030 stock solution is used as the coupling agent and the heat treatment at 300 ° C. or higher is performed after the coupling treatment, and the coupling agent is a siloxane film.

以上のように、カップリング処理を実施する前に、パワー半導体素子1の表面を親水化処理により親水性にすることで、パワー半導体素子1とモールド樹脂8との密着性にすぐれた信頼性の高い半導体装置を得ることができる。また、カップリング処理後熱処理を行うことでカップリング処理後の効果持続時間が実施の形態2に比べて2倍に延長することができ、プロセス管理時間のマージンが拡がり生産性に優れる。   As described above, the surface of the power semiconductor element 1 is made hydrophilic by the hydrophilic treatment before the coupling process is performed, so that the adhesion between the power semiconductor element 1 and the mold resin 8 is excellent. A high semiconductor device can be obtained. Further, by performing the heat treatment after the coupling treatment, the effect duration after the coupling treatment can be extended twice as compared with the second embodiment, the margin of the process management time is widened, and the productivity is excellent.

実施の形態4.
図6は、本実施の形態によるパワー半導体装置の断面概略図である。図6に示すように、カップリング剤9を予め添加したモールド樹脂11を用いて、パワー半導体素子1の表面を親水化した実装体7を封止する。このようにして、パワー半導体装置20が形成される。
Embodiment 4 FIG.
FIG. 6 is a schematic cross-sectional view of the power semiconductor device according to the present embodiment. As shown in FIG. 6, the mounting body 7 in which the surface of the power semiconductor element 1 is hydrophilized is sealed using a mold resin 11 to which a coupling agent 9 has been added in advance. In this way, the power semiconductor device 20 is formed.

図7は、本実施の形態によるパワー半導体装置の製造工程を示すフロー図である。図7に示すように、カップリング剤をモールド樹脂11中に添加することで、カップリング処理工程を省略できることが実施の形態1と異なる。   FIG. 7 is a flowchart showing manufacturing steps of the power semiconductor device according to the present embodiment. As shown in FIG. 7, it is different from Embodiment 1 that the coupling treatment step can be omitted by adding a coupling agent into the mold resin 11.

以上のように、カップリング剤9をモールド樹脂8中に添加したモールド樹脂11を用いることで、カップリング処理を省略することが可能で、実施の形態1と同様に密着力を向上することが可能である。また、カップリング処理を実施する前に、パワー半導体素子1表面を親水化処理により親水性にすることで、パワー半導体素子1とモールド樹脂11との密着性にすぐれた信頼性の高い半導体装置を得ることができる。   As described above, by using the mold resin 11 in which the coupling agent 9 is added to the mold resin 8, the coupling process can be omitted, and the adhesion can be improved as in the first embodiment. Is possible. In addition, a highly reliable semiconductor device having excellent adhesion between the power semiconductor element 1 and the mold resin 11 is obtained by making the surface of the power semiconductor element 1 hydrophilic by performing a hydrophilic treatment before the coupling process. Can be obtained.

1 パワー半導体素子、2,4 接合材、3 金属体、5 ボンディングワイヤ、6a,6b 金属製リード、7 実装体、8 モールド樹脂、9 カップリング剤、10,20 パワー半導体装置、11 カップリング剤を添加したモールド樹脂。   DESCRIPTION OF SYMBOLS 1 Power semiconductor element, 2, 4 Bonding material, 3 Metal body, 5 Bonding wire, 6a, 6b Metal lead, 7 Mounting body, 8 Mold resin, 9 Coupling agent, 10, 20 Power semiconductor device, 11 Coupling agent Mold resin added.

Claims (8)

金属部材に半導体素子を搭載した実装体を封止樹脂によって封止して形成した半導体装置であって、
前記半導体素子の表面が親水性であり、前記半導体素子と前記封止樹脂との界面に、無機材料に結合する第一の反応基と有機材料に結合する第二の反応基とを有するカップリング剤が介在することを特徴とする半導体装置。
A semiconductor device formed by sealing a mounting body in which a semiconductor element is mounted on a metal member with a sealing resin,
A coupling in which the surface of the semiconductor element is hydrophilic and has a first reactive group bonded to an inorganic material and a second reactive group bonded to an organic material at an interface between the semiconductor element and the sealing resin. A semiconductor device comprising an agent.
金属部材に半導体素子を搭載した実装体を封止樹脂によって封止して形成した半導体装置であって、
前記半導体素子の表面が親水性であり、前記封止樹脂には、無機材料に結合する第一の反応基と有機材料に結合する第二の反応基とを有するカップリング剤を添加されることを特徴とする半導体装置。
A semiconductor device formed by sealing a mounting body in which a semiconductor element is mounted on a metal member with a sealing resin,
The surface of the semiconductor element is hydrophilic, and a coupling agent having a first reactive group bonded to an inorganic material and a second reactive group bonded to an organic material is added to the sealing resin. A semiconductor device characterized by the above.
前記半導体素子は、化合物半導体で形成されていることを特徴とする請求項1または請求項2記載の半導体装置。 The semiconductor device according to claim 1, wherein the semiconductor element is formed of a compound semiconductor. 前記化合物半導体は、炭化ケイ素または窒化ガリウムであることを特徴とする請求項3記載の半導体装置。 4. The semiconductor device according to claim 3, wherein the compound semiconductor is silicon carbide or gallium nitride. 金属部材に半導体素子を搭載した実装体を封止樹脂によって封止して形成した半導体装置の製造方法であって、
前記半導体素子の表面を親水化する工程と、
前記親水化した表面に、無機材料に結合する第一の反応基と有機材料に結合する第二の反応基とを有するカップリング剤を塗布する工程と、
前記カップリング剤塗布後に、前記半導体素子を前記封止樹脂によって封止する工程とを備えることを特徴とする半導体素子の製造方法。
A manufacturing method of a semiconductor device formed by sealing a mounting body in which a semiconductor element is mounted on a metal member with a sealing resin,
Hydrophilizing the surface of the semiconductor element;
Applying a coupling agent having a first reactive group bonded to an inorganic material and a second reactive group bonded to an organic material to the hydrophilic surface;
And a step of sealing the semiconductor element with the sealing resin after applying the coupling agent.
金属部材に半導体素子を搭載した実装体を封止樹脂によって封止して形成した半導体装置の製造方法であって、
前記半導体素子の表面を親水化する工程と、
前記半導体素子を、無機材料に結合する第一の反応基と有機材料に結合する第二の反応基とを有するカップリング剤を添加した前記封止樹脂によって封止する工程とを備えることを特徴とする半導体素子の製造方法。
A manufacturing method of a semiconductor device formed by sealing a mounting body in which a semiconductor element is mounted on a metal member with a sealing resin,
Hydrophilizing the surface of the semiconductor element;
Sealing the semiconductor element with the sealing resin to which a coupling agent having a first reactive group bonded to an inorganic material and a second reactive group bonded to an organic material is added. A method for manufacturing a semiconductor device.
前記半導体素子は、化合物半導体で形成されていることを特徴とする請求項5または請求項6記載の半導体装置の製造方法。 7. The method of manufacturing a semiconductor device according to claim 5, wherein the semiconductor element is formed of a compound semiconductor. 前記化合物半導体は、炭化ケイ素または窒化ガリウムであることを特徴とする請求項7記載の半導体装置の製造方法。 8. The method of manufacturing a semiconductor device according to claim 7, wherein the compound semiconductor is silicon carbide or gallium nitride.
JP2012015541A 2012-01-27 2012-01-27 Semiconductor device and method for manufacturing the same Pending JP2013157400A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2012015541A JP2013157400A (en) 2012-01-27 2012-01-27 Semiconductor device and method for manufacturing the same

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2012015541A JP2013157400A (en) 2012-01-27 2012-01-27 Semiconductor device and method for manufacturing the same

Publications (1)

Publication Number Publication Date
JP2013157400A true JP2013157400A (en) 2013-08-15

Family

ID=49052317

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2012015541A Pending JP2013157400A (en) 2012-01-27 2012-01-27 Semiconductor device and method for manufacturing the same

Country Status (1)

Country Link
JP (1) JP2013157400A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2018037639A (en) * 2016-08-31 2018-03-08 株式会社東芝 Semiconductor package and semiconductor package manufacturing method
EP4293715A1 (en) * 2022-06-15 2023-12-20 Nexperia B.V. A method for manufacturing a semiconductor package assembly as well as such semiconductor package assembly

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS62111453A (en) * 1985-11-11 1987-05-22 Hitachi Ltd Semiconductor device
JPH0745756A (en) * 1993-07-30 1995-02-14 Asahi Glass Co Ltd Manufacture of semiconductor
JP2006253398A (en) * 2005-03-10 2006-09-21 Shin Etsu Chem Co Ltd Manufacturing method of semiconductor device
JP2007266562A (en) * 2006-03-03 2007-10-11 Matsushita Electric Ind Co Ltd Wiring member, metal part with resin and resin-sealed semiconductor device, and method of manufacturing the same
JP2008172172A (en) * 2007-01-15 2008-07-24 Denso Corp Electronic controller and method of manufacturing the same
JP2009182159A (en) * 2008-01-31 2009-08-13 Hitachi Ltd Metal/resin adhesion structure and resin sealed semiconductor device, and its production process

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS62111453A (en) * 1985-11-11 1987-05-22 Hitachi Ltd Semiconductor device
JPH0745756A (en) * 1993-07-30 1995-02-14 Asahi Glass Co Ltd Manufacture of semiconductor
JP2006253398A (en) * 2005-03-10 2006-09-21 Shin Etsu Chem Co Ltd Manufacturing method of semiconductor device
JP2007266562A (en) * 2006-03-03 2007-10-11 Matsushita Electric Ind Co Ltd Wiring member, metal part with resin and resin-sealed semiconductor device, and method of manufacturing the same
JP2008172172A (en) * 2007-01-15 2008-07-24 Denso Corp Electronic controller and method of manufacturing the same
JP2009182159A (en) * 2008-01-31 2009-08-13 Hitachi Ltd Metal/resin adhesion structure and resin sealed semiconductor device, and its production process

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2018037639A (en) * 2016-08-31 2018-03-08 株式会社東芝 Semiconductor package and semiconductor package manufacturing method
EP4293715A1 (en) * 2022-06-15 2023-12-20 Nexperia B.V. A method for manufacturing a semiconductor package assembly as well as such semiconductor package assembly

Similar Documents

Publication Publication Date Title
JP2712618B2 (en) Resin-sealed semiconductor device
US5693565A (en) Semiconductor chips suitable for known good die testing
TWI467760B (en) Semiconductor device and method for producing the same, and power supply
KR20190086652A (en) Package with roughened encapsulated surface for promoting adhesion
CN104465533B (en) Autoadhesion bare die
US9136244B2 (en) Semiconductor package having a metal member and a resin mold, which are bonded to a silane coupling agent and an intermediate layer of an oxide film
US20200043876A1 (en) Adhesion Enhancing Structures for a Package
KR0157844B1 (en) Semiconductor device sealed with resin and the method of producing the same
TWI225886B (en) Adhesive and semiconductor devices
JP2013157400A (en) Semiconductor device and method for manufacturing the same
JP4002736B2 (en) Mask sheet for assembling semiconductor device and assembling method of semiconductor device
JP2017152603A (en) Power semiconductor module and manufacturing method of the same
US20170294395A1 (en) Semiconductor device that includes a molecular bonding layer for bonding elements
US20100119759A1 (en) Adhesive film for producing semiconductor device
JPH0826707A (en) Aluminum nitride powder
US9548262B2 (en) Method of manufacturing semiconductor package and semiconductor package
CN108573935B (en) Semiconductor device and method for manufacturing the same
JP2007129016A (en) Adhesive sheet for manufacturing semiconductor device
US10163765B2 (en) Semiconductor device that includes a molecular bonding layer for bonding of elements
JP2018046192A (en) Manufacturing method of resin sealed power module
JP2024000325A (en) Semiconductor device
CN113130422B (en) Power module and preparation method thereof
JPH07315813A (en) Aluminum nitride powder
JP2674670B2 (en) Method for manufacturing semiconductor device
JPH09199518A (en) Semiconductor device

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20131017

RD01 Notification of change of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7421

Effective date: 20140326

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20140709

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20140715

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20141202