JP2013157258A - Light source device, and display device - Google Patents

Light source device, and display device Download PDF

Info

Publication number
JP2013157258A
JP2013157258A JP2012018091A JP2012018091A JP2013157258A JP 2013157258 A JP2013157258 A JP 2013157258A JP 2012018091 A JP2012018091 A JP 2012018091A JP 2012018091 A JP2012018091 A JP 2012018091A JP 2013157258 A JP2013157258 A JP 2013157258A
Authority
JP
Japan
Prior art keywords
light source
light
lens
source device
led light
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2012018091A
Other languages
Japanese (ja)
Inventor
Shingo Yasuda
真吾 安田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Canon Inc
Original Assignee
Canon Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Canon Inc filed Critical Canon Inc
Priority to JP2012018091A priority Critical patent/JP2013157258A/en
Publication of JP2013157258A publication Critical patent/JP2013157258A/en
Pending legal-status Critical Current

Links

Abstract

PROBLEM TO BE SOLVED: To efficiently utilize light of a plurality of light sources while retaining uniformity of in-plane luminance of a light source device.SOLUTION: A backlight device arranged on a rear side of a display panel is provided with a plurality of LED light sources 101a arranged on a plane, a BL (backlight) case to form a diffusion space, and a reflection diffusion sheet 102. The reflection diffusion sheet 102 is an optical member which reflects and diffuses light of the LED light sources 101a by a bottom part 102b having through holes 102a corresponding to the plurality of LED light sources 101a and a side wall part 102c formed extending from the bottom part. A lens 103 is a light refraction means which diffuses and irradiates a part of light from the plurality of LED light sources 101a toward the side wall part 102c of the reflection diffusion sheet 102. A light-emitting region consists of a first region where the lens 103 is arranged for the LED light source 101a and a second region where the lens 103 is not arranged. The second region is located between the first region and the side wall part 102c of the reflection diffusion sheet 102.

Description

本発明は、光源装置の面内輝度の均一性向上に関するものである。   The present invention relates to improvement in uniformity of in-plane luminance of a light source device.

面光源装置を備えた表示装置の一例として、液晶表示装置は表示パネルの背面に配置されて光を照射するバックライト(以下、BLとも記すf装置を備える。TV(テレビジョン)装置や業務用表示装置に使用する直下型BL装置の光源は、冷陰極管(CCFL)に代わって発光ダイオード(LED)が主流となりつつある。これは、装置の長寿命化や廃棄リサイクル処理の容易化のためである。光源の光をさらに効率的に利用するため、パネルメーカーは液晶配向技術やカラーフィルタ構造の改善などにより、光源からの光のうち表示パネルを透過する光の割合を示す光透過率の向上に取り組んでいる。近年の液晶TV装置に用いる液晶パネルの光透過率は、その駆動方式によっても異なるが概ね5−10%程度であり、水平画素数4,000×垂直画素数2,000以上の高精細な液晶パネルでは約2−4%程度に過ぎない。   As an example of a display device provided with a surface light source device, a liquid crystal display device is provided with a backlight (hereinafter also referred to as BL, which is arranged on the back surface of the display panel). Light sources of light emitting diodes (LEDs) are becoming the mainstream instead of cold cathode fluorescent lamps (CCFLs) as the light source for direct-type BL devices used in display devices, in order to increase the life of the devices and facilitate the disposal and recycling process. In order to make more efficient use of light from the light source, panel manufacturers have improved the light transmittance, which indicates the proportion of light from the light source that passes through the display panel by improving the liquid crystal alignment technology and color filter structure. The light transmittance of a liquid crystal panel used in a recent liquid crystal TV device is approximately 5 to 10% although it varies depending on the driving method, and the number of horizontal pixels is 4,000. In a high-definition liquid crystal panel having 0 × vertical pixels of 2,000 or more, it is only about 2-4%.

図7のBL装置700において、複数のLED光源702aが実装された光源基板702はBLケース701の底面部に配置され、LED光源702aは反射拡散シート703の形成した貫通穴部703aから拡散板704に向けて光を照射する。光利用効率を高めるため、表示パネルとBL装置との間には、以下の光学部材が光源側から順に配置される。
・光源からの光を拡散させる拡散板704と拡散シート705。
・表示面の正面から見た輝度値やコントラスト値を向上させるプリズムシート706。
・光源の光がパネル下面の偏光板に吸収されないようにして再利用を図り、光利用効率を高める偏光反射シート707。
In the BL apparatus 700 of FIG. 7, a light source substrate 702 on which a plurality of LED light sources 702a are mounted is disposed on the bottom surface of the BL case 701, and the LED light source 702a is diffused from a through-hole portion 703a formed by a reflective diffusion sheet 703. Irradiate light toward In order to increase the light use efficiency, the following optical members are arranged in order from the light source side between the display panel and the BL device.
A diffusion plate 704 and a diffusion sheet 705 that diffuse light from the light source.
A prism sheet 706 that improves luminance values and contrast values viewed from the front of the display surface.
A polarizing reflection sheet 707 that is reused so that the light from the light source is not absorbed by the polarizing plate on the lower surface of the panel, thereby improving the light use efficiency.

これらの光学シート群と、略箱形状のBLケース701内に配置されるBL光源との空間距離は、表示面内の輝度均一化のため、点光源であるLED光源同士の実装間隔とほぼ同等か、またはそれ以上の距離を有する。LED光源の光を前記空間距離にて充分に反射拡散させるための拡散シート705はBL装置のケース内壁に沿って設置される。直下型BL装置の厚みは、表示装置本体の薄型化に直接影響するため、LED光源数を増やして光源同士の実装間隔を狭めれば、空間距離を小さくできる。しかし、コスト削減の観点からは、LED光源は少ない方が有利である。
特許文献1では、各種光学シートを用いつつLED光源の頂部と対向してその光の一部を水平方向へ拡散させるレンズを実装し、BL装置の薄型化とLED光源数の削減を可能にする技術が開示されている。
The spatial distance between these optical sheet groups and the BL light source disposed in the substantially box-shaped BL case 701 is substantially equal to the mounting interval between the LED light sources that are point light sources in order to make the luminance uniform in the display surface. Or have a distance of more. A diffusion sheet 705 for sufficiently reflecting and diffusing the light from the LED light source at the spatial distance is installed along the inner wall of the case of the BL device. Since the thickness of the direct type BL device directly affects the thinning of the display device main body, the spatial distance can be reduced by increasing the number of LED light sources and reducing the mounting interval between the light sources. However, fewer LED light sources are advantageous from the viewpoint of cost reduction.
In Patent Document 1, a lens that diffuses part of the light in the horizontal direction is mounted facing the top of the LED light source while using various optical sheets, thereby enabling a reduction in the thickness of the BL device and the reduction in the number of LED light sources. Technology is disclosed.

特許第4621799号公報Japanese Patent No. 4621799

従来のBL装置ではLED光源の光が充分に利用されていないという課題があった。例えば、プリズムシートを用いることにより表示エリアの正面から見た輝度を上昇させることは可能であるが、プリズムシートを用いない場合に比べて表示エリア周縁部の輝度値が中央部に比べて低下することがあった。   The conventional BL apparatus has a problem that the light from the LED light source is not sufficiently utilized. For example, it is possible to increase the luminance viewed from the front of the display area by using a prism sheet, but the luminance value at the periphery of the display area is lower than that at the center compared to the case where no prism sheet is used. There was a thing.

図6は、従来のBL装置の面内輝度分布と相対輝度値を例示する。図6(A)は、光源基板に実装されたLED光源からの光を、拡散板および拡散シートを通して測定した場合の面内輝度分布を正面から示す。図6(B)は、図6(A)の破断線A−Aにおける相対輝度を例示し、横軸に位置をとり、縦軸に相対輝度を示す。また、図6(C)は、拡散板および拡散シートに加えて、プリズムシートを通して測定した面内輝度分布を正面から示す。図6(D)は、図6(C)の破断線C−Cにおける相対輝度を例示し、横軸に位置をとり、縦軸に相対輝度を示す。図6(B)と図6(D)との対比から分かるように、光源からの光がプリズムシートを通る前の状態を示す図6(B)では、表示エリア周縁部の相対輝度が中央部に比べて低下するものの、その値は約5%程度の低下にとどまっている。他方、光源からの光がプリズムシートを透過した後の状態を示す図6(D)では、表示エリア周縁部の相対輝度が中央部に比べて約15%程度まで低下している。
本発明の目的は、光源装置の面内輝度の均一性を保ちつつ、複数の光源の光を効率的に利用することである。
FIG. 6 illustrates an in-plane luminance distribution and a relative luminance value of a conventional BL device. FIG. 6A shows an in-plane luminance distribution from the front when the light from the LED light source mounted on the light source substrate is measured through the diffusion plate and the diffusion sheet. FIG. 6B illustrates the relative luminance along the broken line AA in FIG. 6A, with the horizontal axis indicating the position and the vertical axis indicating the relative luminance. FIG. 6C shows the in-plane luminance distribution measured through the prism sheet in addition to the diffusion plate and diffusion sheet from the front. FIG. 6D illustrates the relative luminance along the broken line CC in FIG. 6C, where the horizontal axis indicates the position and the vertical axis indicates the relative luminance. As can be seen from the comparison between FIG. 6B and FIG. 6D, in FIG. 6B showing the state before the light from the light source passes through the prism sheet, the relative luminance at the peripheral edge of the display area is at the center. However, the value is only about 5%. On the other hand, in FIG. 6D, which shows the state after the light from the light source has passed through the prism sheet, the relative luminance at the periphery of the display area is reduced to about 15% compared to the center.
An object of the present invention is to efficiently use light from a plurality of light sources while maintaining uniformity of in-plane luminance of the light source device.

上記課題を解決するために、本発明に係る装置は、面光源部を備えた光源装置であって、前記面光源部は、平面上に配置された複数の光源と、前記複数の光源に対応した貫通穴部を有する底面部と、該底面部から延設された側壁部によって前記光源の光を反射拡散させる反射拡散手段と、前記複数の光源による光の一部を前記反射拡散手段の側壁部に向けて拡散照射させる光屈折手段を備え、前記複数の光源のうち前記光屈折手段を配置した第1領域、および該第1領域と前記反射拡散手段の側壁部との間に位置する光源に前記光屈折手段を配置していない第2領域を有する。   In order to solve the above-described problems, an apparatus according to the present invention is a light source device including a surface light source unit, and the surface light source unit corresponds to a plurality of light sources arranged on a plane and the plurality of light sources. A bottom surface portion having a through hole portion, a reflection diffusion means for reflecting and diffusing the light of the light source by a side wall portion extending from the bottom surface portion, and a side wall of the reflection diffusion means for a part of the light from the plurality of light sources A light refracting means for diffusing and irradiating the light source, and a light source positioned between the first region of the plurality of light sources and the side wall portion of the reflection diffusing means. The second region where the light refracting means is not disposed.

本発明によれば、光源装置の面内輝度の均一性を保ちつつ、複数の光源の光を効率的に利用することができる。   According to the present invention, it is possible to efficiently use light from a plurality of light sources while maintaining uniformity of in-plane luminance of the light source device.

本発明の第1実施形態に係る表示装置のBL装置の構成例を示す図である。It is a figure which shows the structural example of BL apparatus of the display apparatus which concerns on 1st Embodiment of this invention. 光源単体の場合と光源にレンズを配置した場合の相対輝度分布を例示する図である。It is a figure which illustrates the relative luminance distribution at the time of arrange | positioning the lens in the case of a single light source, and a light source. 光源にレンズを配置したBL装置の輝度分布と相対輝度値を例示する図である。It is a figure which illustrates the luminance distribution and relative luminance value of BL apparatus which has arrange | positioned the lens to the light source. 本発明の第2実施形態に係る表示装置のBL装置の構成例を示す図である。It is a figure which shows the structural example of BL apparatus of the display apparatus which concerns on 2nd Embodiment of this invention. 各種光学シートを用いた場合のBL装置内部での光拡散を説明する模式図である。It is a schematic diagram explaining the light diffusion inside BL apparatus at the time of using various optical sheets. 従来例のBL装置の輝度分布と相対輝度値を例示した図である。It is the figure which illustrated the luminance distribution and relative luminance value of the BL apparatus of a prior art example. 従来例の構成を示す分解斜視図である。It is a disassembled perspective view which shows the structure of a prior art example.

以下、添付図面を参照して本発明の各実施形態を説明する。本発明に係る光源装置は、面光源部を有する照明装置や表示装置などの各種装置に幅広く適用可能である。例えば、表示装置の場合、表示パネルおよび光源装置を含む構成と、光源装置の発光制御により表示を行う構成がある。
本発明の各実施形態に示す表示装置は、表示パネルと、該表示パネルを背面から照射する面光源装置であるBL装置を備える。なお、以下では表示パネルとして液晶表示装置を例示し、BL装置の光源として発光素子LEDを例示するが、カラーフィルタ方式の有機EL(有機EL発光素子とカラーフィルタを用いた方式)等、各種の表示パネルや光源素子を使用可能である。
Hereinafter, embodiments of the present invention will be described with reference to the accompanying drawings. The light source device according to the present invention can be widely applied to various devices such as an illumination device and a display device having a surface light source unit. For example, in the case of a display device, there are a configuration including a display panel and a light source device, and a configuration in which display is performed by light emission control of the light source device.
The display device shown in each embodiment of the present invention includes a display panel and a BL device that is a surface light source device that irradiates the display panel from the back. In the following, a liquid crystal display device will be exemplified as a display panel, and a light emitting element LED will be exemplified as a light source of a BL device. However, various types such as a color filter type organic EL (a method using an organic EL light emitting element and a color filter), A display panel or a light source element can be used.

[第1実施形態]
図1−3を用いて本発明の第1実施形態を説明する。
図1(A)は本実施形態に係る直下型BL装置の平面図であり、LED光源101aの配置を示すために、図1(B)の拡散板104を取り除いた状態を示す。また、図1(A)の破線Bは、液晶表示装置の画像表示エリア端を示している。図1(B)は、図1(A)の破断線A―Aにおける断面図である。図1(C)はLED光源101aに対して光屈折手段として配置されるレンズ103の詳細図である。左側に底面図、中央に断面図、右側に正面図を示しており、Hはレンズ103の厚み、Dは外径を表す。なお、表示パネルや、BL装置のケース部材(BLケース)、反射拡散シート以外の光学部材については図7に示した従来の構成と同様であるため、それらの詳細な説明を省略する。
[First Embodiment]
A first embodiment of the present invention will be described with reference to FIGS.
FIG. 1A is a plan view of the direct type BL device according to the present embodiment, and shows a state in which the diffusion plate 104 of FIG. 1B is removed to show the arrangement of the LED light sources 101a. A broken line B in FIG. 1A indicates an image display area end of the liquid crystal display device. FIG. 1B is a cross-sectional view taken along the line AA in FIG. FIG. 1C is a detailed view of the lens 103 arranged as a light refracting unit with respect to the LED light source 101a. A bottom view is shown on the left side, a sectional view is shown in the center, and a front view is shown on the right side, where H is the thickness of the lens 103 and D is the outer diameter. Note that the display panel, the case member (BL case) of the BL device, and the optical members other than the reflection diffusion sheet are the same as those in the conventional configuration shown in FIG.

光源基板101は、図示しない箱形状のBLケースの底面部に配置され、複数のLED光源101aが格子状に実装されており、LED光源101aの実装面側に反射拡散シート102が配置されている。反射拡散シート102は拡散板104とともにLED光源101aの光を反射して拡散させる反射拡散手段を構成する。反射拡散シート102には、各々のLED光源101aが挿入される貫通穴部102aが形成されている。貫通穴部102aを通してLED光源101aは拡散空間、つまりBLケースの内面に配置された反射拡散シート102と拡散板104によって形成される空間内に位置している。LED光源101aは、図1(A)に示すとおり、光源基板101の実装面上にて縦方向に8行、横方向に12列の格子状に配列されている。またレンズ103は、8行12列の各LED光源101aに対応する箇所のうち、画像表示エリアの周縁部と四隅部を除く領域に配置されている。つまり、複数のLED光源101aのうち、第1領域にはレンズ103が配置されており、第1領域と反射拡散シート102の側壁部102cとの間に位置する第2領域のLED光源101aにはレンズ103が配置されていない。図1(A)の例では、画像表示エリアの周縁部に位置する36個と、その内側の四隅にそれぞれ位置する4個を除いた、56個のLED光源101aにレンズ103がそれぞれ配置されている。   The light source substrate 101 is disposed on the bottom surface of a box-shaped BL case (not shown), a plurality of LED light sources 101a are mounted in a lattice shape, and the reflection diffusion sheet 102 is disposed on the mounting surface side of the LED light sources 101a. . The reflection diffusion sheet 102 and the diffusion plate 104 constitute reflection diffusion means for reflecting and diffusing the light from the LED light source 101a. The reflection diffusion sheet 102 has through holes 102a into which the respective LED light sources 101a are inserted. The LED light source 101a is located in the diffusion space, that is, the space formed by the reflection diffusion sheet 102 and the diffusion plate 104 disposed on the inner surface of the BL case through the through hole 102a. As shown in FIG. 1A, the LED light sources 101a are arranged in a lattice pattern of 8 rows in the vertical direction and 12 columns in the horizontal direction on the mounting surface of the light source substrate 101. Moreover, the lens 103 is arrange | positioned in the area | region except the peripheral part and four corners of an image display area among the locations corresponding to each LED light source 101a of 8 rows 12 columns. In other words, among the plurality of LED light sources 101a, the lens 103 is disposed in the first region, and the LED light source 101a in the second region located between the first region and the side wall portion 102c of the reflection diffusion sheet 102 includes The lens 103 is not disposed. In the example of FIG. 1A, the lenses 103 are arranged on 56 LED light sources 101a, excluding 36 located on the peripheral edge of the image display area and 4 located on the inner four corners. Yes.

図1(B)にレンズ103の詳細配置を示す。レンズ103はLED光源101aに対して配置されており、LED光源101aの頂部と対向し、且つレンズ103の底面に形成した凹部にLED光源101aが収納される。レンズ103は熱可塑性材料を用いて成型された、アクリル樹脂(PMMA)などの光透過性部材からなる。これは高い光透過率に加えて屈折率も1.49と高く、レンズ103の断面形状を工夫することによってLED光源101aの光を任意の方向へ屈折させるのに好適である。レンズ103の形状例を、図1(C)に示す。レンズ103は、中心軸103cを回転中心として360度回転させて得られる肉厚の対称形状を成し、外径DがΦ10−20(mm)であって、厚みHは10(mm)程度である。LED光源101aの光がレンズ103から出射する曲面の中央はその周囲から窪んだ凹面に形成されている。つまり、レンズ天面の凹部103bは中央部(図2の位置0(mm)参照)における局所的な輝度を抑制する役目をもつ。また底面の周縁部からは、直径1mm、長さ2mm程度の円柱状のレンズ脚部103aが、LED基板101に向かって少なくとも3本延設されている。レンズ脚部103aは、レンズ103の中心軸103cがLED光源101aの発光分布の中心軸と一致するように、LED基板101に対して紫外線硬化接着剤などで固定される。   FIG. 1B shows a detailed arrangement of the lens 103. The lens 103 is disposed with respect to the LED light source 101 a, and the LED light source 101 a is accommodated in a concave portion formed on the bottom surface of the lens 103 so as to face the top of the LED light source 101 a. The lens 103 is made of a light transmissive member such as acrylic resin (PMMA) molded using a thermoplastic material. This has a high refractive index of 1.49 in addition to a high light transmittance, and is suitable for refracting the light from the LED light source 101a in an arbitrary direction by devising the cross-sectional shape of the lens 103. An example of the shape of the lens 103 is shown in FIG. The lens 103 has a symmetrical shape obtained by rotating 360 degrees about the central axis 103c, the outer diameter D is Φ10-20 (mm), and the thickness H is about 10 (mm). is there. The center of the curved surface from which the light from the LED light source 101a is emitted from the lens 103 is formed as a concave surface that is recessed from its periphery. That is, the concave portion 103b on the top surface of the lens serves to suppress local luminance at the central portion (see position 0 (mm) in FIG. 2). Further, at least three cylindrical lens leg portions 103 a having a diameter of about 1 mm and a length of about 2 mm are extended from the peripheral portion of the bottom surface toward the LED substrate 101. The lens leg 103a is fixed to the LED substrate 101 with an ultraviolet curing adhesive or the like so that the central axis 103c of the lens 103 coincides with the central axis of the light emission distribution of the LED light source 101a.

図2は、LED光源101a単体を配置した基準位置を0(mm)とし、LED光源101aから光の進行方向に約50(mm)程度離れた平面上における輝度分布例を示す。横軸はLED光源101aの光軸に直交する方向の位置(単位:mm)を示し、縦軸は相対輝度を示す。
図2の破線(A)は、LED光源101aにレンズ103を配置しない場合の輝度分布を示し、実線(B)はLED光源101aの直上にレンズ103を配置した場合の輝度分布を示す。図2から分かるように、LED光源101aが配置された位置0(mm)の直上が最も輝度が高く、位置0(mm)から離れるにつれて輝度が次第に低下していく。
破線(A)と実線(B)に示す相対輝度分布を比較すると、破線(A)に示す分布では、LED光源101aの直上である0(mm)での輝度を1とした場合、±150(mm)の位置での相対輝度は約0.1(約10%)である。一方、実線(B)に示す分布では、LED光源101aの直上である0(mm)での輝度が0.77であり、±150(mm)の位置での輝度は約0.20であり、中心部に対して相対的に約26(%)の輝度を保っている。(C)斜線領域1は、破線(A)の方が実線(B)よりも相対輝度の高い範囲を表し、(D)斜線領域2は、実線(B)の方が破線(A)よりも相対輝度の高い範囲を表している。つまり、このことは、1つのLED光源101aからの光量は一定であることを考慮すると、レンズ103によって(C)斜線領域1に示す分布が(D)斜線領域2の分布となって、横軸方向(水平方向)に屈折拡散されたことを示している。
FIG. 2 shows an example of luminance distribution on a plane that is about 50 (mm) away from the LED light source 101a in the light traveling direction, where the reference position where the LED light source 101a is arranged is 0 (mm). The horizontal axis indicates the position (unit: mm) in the direction orthogonal to the optical axis of the LED light source 101a, and the vertical axis indicates the relative luminance.
The broken line (A) in FIG. 2 indicates the luminance distribution when the lens 103 is not disposed on the LED light source 101a, and the solid line (B) indicates the luminance distribution when the lens 103 is disposed immediately above the LED light source 101a. As can be seen from FIG. 2, the luminance is highest immediately above the position 0 (mm) where the LED light source 101a is disposed, and the luminance gradually decreases as the distance from the position 0 (mm) increases.
When the relative luminance distributions indicated by the broken line (A) and the solid line (B) are compared, in the distribution indicated by the broken line (A), when the luminance at 0 (mm) immediately above the LED light source 101a is 1, ± 150 ( mm) is about 0.1 (about 10%). On the other hand, in the distribution shown by the solid line (B), the luminance at 0 (mm) immediately above the LED light source 101a is 0.77, and the luminance at the position of ± 150 (mm) is about 0.20. The brightness of about 26 (%) is maintained relative to the central portion. (C) The hatched area 1 represents a range in which the broken line (A) has a higher relative luminance than the solid line (B), and (D) the hatched area 2 has a solid line (B) in the direction of the broken line (A). It represents a range with high relative luminance. That is, in consideration of the fact that the amount of light from one LED light source 101a is constant, the distribution shown in (C) hatched region 1 by the lens 103 becomes the distribution of (D) hatched region 2, and the horizontal axis It shows that the light is refracted and diffused in the direction (horizontal direction).

レンズ103のもつ光学作用について、図1(B)を参照して説明する。レンズ103は、表示エリア中央部のLED光源101aの光を、表示エリア周縁部に分配する働きをもつ。すなわち、LED光源101aの光の一部Ldは、レンズ103を透過して拡散板104に向けて出射する。また、他の光の一部Lfはレンズ103の作用によって略水平方向へ拡散され、反射拡散シート102の底面部102bから延設された側壁部102cに向かって照射される。この光は、反射拡散シート102の側壁部102cや底面部102bで反射拡散を繰り返した後、拡散板104から面光源の光として出射する。他方、レンズ103が配置されていないLED光源101bの光は、図2の破線(A)の相対輝度分布で示される。その光の大部分はLED光源101bの直上の拡散板104に向けて照射される。   The optical action of the lens 103 will be described with reference to FIG. The lens 103 has a function of distributing the light from the LED light source 101a at the center of the display area to the periphery of the display area. That is, part of the light Ld from the LED light source 101 a passes through the lens 103 and exits toward the diffusion plate 104. Further, a part of the other light Lf is diffused in the substantially horizontal direction by the action of the lens 103, and is irradiated toward the side wall portion 102 c extending from the bottom surface portion 102 b of the reflection diffusion sheet 102. This light is repeatedly reflected and diffused at the side wall portion 102c and the bottom surface portion 102b of the reflection diffusion sheet 102, and then emitted from the diffusion plate 104 as light of a surface light source. On the other hand, the light from the LED light source 101b in which the lens 103 is not disposed is indicated by a relative luminance distribution indicated by a broken line (A) in FIG. Most of the light is irradiated toward the diffusion plate 104 immediately above the LED light source 101b.

図3は、本実施形態における輝度分布と相対輝度の測定例を示す。測定系としては、発光領域が約650(mm)×400(mm)であり、LED数は512個、拡散距離は28.5(mm)、レンズ直径DはΦ15.5(mm)である。図3(A)は、厚さ2(mm)の乳白拡散板を使用し、厚さ約0.2(mm)の反射拡散シートを通して面内輝度分布計で測定した面内輝度分布図である。図3(B)は、図3(A)の破断線A―Aにおける相対輝度値を示すグラフであり、横軸に位置(単位:mm)を示し、縦軸に相対輝度を示す。また図3(C)は、厚さ2(mm)の乳白拡散板と、厚さ約0.2(mm)の反射拡散シートと、厚さ約0.3(mm)のプリズムシートをこの順に重ねて面内輝度分布計で測定した面内輝度分布図である。図3(D)は、図3(C)の破断線C―Cにおける相対輝度値を示し、横軸に位置(単位:mm)を示し、縦軸に相対輝度を示す。   FIG. 3 shows an example of measurement of luminance distribution and relative luminance in the present embodiment. As a measurement system, the light emitting area is about 650 (mm) × 400 (mm), the number of LEDs is 512, the diffusion distance is 28.5 (mm), and the lens diameter D is Φ15.5 (mm). FIG. 3A is an in-plane luminance distribution diagram measured with an in-plane luminance distribution meter through a reflective diffusion sheet having a thickness of about 0.2 (mm) using a milky white diffusion plate having a thickness of 2 (mm). . FIG. 3B is a graph showing the relative luminance value along the broken line AA in FIG. 3A, where the horizontal axis indicates the position (unit: mm), and the vertical axis indicates the relative luminance. FIG. 3C shows a milk diffusion plate having a thickness of 2 (mm), a reflective diffusion sheet having a thickness of about 0.2 (mm), and a prism sheet having a thickness of about 0.3 (mm) in this order. It is an in-plane luminance distribution diagram measured with an in-plane luminance distribution meter. FIG. 3D shows the relative luminance value along the broken line CC in FIG. 3C, the horizontal axis shows the position (unit: mm), and the vertical axis shows the relative luminance.

図3(B)に示すように、表示エリア周縁部においては、レンズ103の作用によりLED光源による光の一部が水平方向に拡散され、反射拡散シートの側壁部に照射されることにより、表示エリア周縁部の相対輝度が約3%上昇している。この結果は、従来例に係る図6(B)のグラフとの対比からも顕著な効果であることが分かる。
また、プリズムシートを積載した場合においても、図3(D)に示すように、表示エリア周縁部の相対輝度の低下を約5%に抑えられることが判明した。これは、従来例に係る図6(D)のグラフに示した相対輝度の低下率15%に比べて顕著な効果である。従来例における周縁部の輝度低下原因について、図5を用いて説明する。図5(A)は反射拡散シート703と拡散板704で形成される空間内にLED光源702aを配置した構成を示す。図5(B)は、図5(A)の構成に加えて、拡散板704に拡散シート705とプリズムシート706を積層した例を示す。
As shown in FIG. 3 (B), in the peripheral area of the display area, a part of the light from the LED light source is diffused in the horizontal direction by the action of the lens 103 and irradiated to the side wall of the reflection diffusion sheet, thereby displaying the display. The relative luminance at the periphery of the area is increased by about 3%. It can be seen that this result is a remarkable effect from the comparison with the graph of FIG.
Further, it was found that even when the prism sheets are stacked, as shown in FIG. 3D, the decrease in the relative luminance at the periphery of the display area can be suppressed to about 5%. This is a remarkable effect as compared to the relative luminance decrease rate of 15% shown in the graph of FIG. The cause of the luminance reduction in the peripheral portion in the conventional example will be described with reference to FIG. FIG. 5A shows a configuration in which the LED light source 702a is arranged in a space formed by the reflection diffusion sheet 703 and the diffusion plate 704. FIG. FIG. 5B shows an example in which a diffusion sheet 705 and a prism sheet 706 are stacked on a diffusion plate 704 in addition to the structure of FIG.

図5(A)において拡散板704上の点704aにおける輝度分布704bは、広い角度範囲を持ち、略箱形状をした反射拡散シート703の側壁部に向かって照射される光の成分も多く、表示エリアの周縁部まで光源の光が拡散する。それに対し、図5(B)においてプリズムシート706上の発光点706aにおける輝度分布706bは、狭い角度範囲となる。LED光源702aの光は表示エリア正面方向に向かって導出されるので、反射拡散シート703の側壁部に照射される光の成分は少なくなり、表示エリア周縁部の輝度が低下する。表示面内の輝度を均一に保つため、表示エリア周縁部に実装されたLEDの輝度値を、表示エリア中央部のLEDに比べて高い値に制御することが行われる。LEDの輝度値は、主にパルス幅変調(Pulse Width Modulation)により、入力信号(DCレベル)の大きさに応じてパルス幅のデューティー比(パルス周期における高値区間と低値区間の比)を変更することで制御される。その一例として、表示エリア中央部におけるLEDへの入力信号の相対値を1.0とすると、表示エリア周縁部におけるLEDへの入力信号は1.5程度まで上げる必要がある。つまり表示面内の輝度均一性を保つための条件にて、表示エリア中央部におけるLEDには、表示エリア周縁部におけるLEDに比べて(1.0/1.5)≒0.67倍程度までしか入力できず、LEDの光を効率的に利用できない。   In FIG. 5A, a luminance distribution 704b at a point 704a on the diffusion plate 704 has a wide angle range, and there are many components of light irradiated toward the side wall portion of the substantially box-shaped reflective diffusion sheet 703. Light from the light source diffuses to the periphery of the area. On the other hand, the luminance distribution 706b at the light emitting point 706a on the prism sheet 706 in FIG. 5B has a narrow angle range. Since the light from the LED light source 702a is derived toward the front side of the display area, the light component applied to the side wall portion of the reflection diffusion sheet 703 is reduced, and the luminance at the periphery of the display area is reduced. In order to keep the luminance in the display surface uniform, the luminance value of the LED mounted on the peripheral edge of the display area is controlled to a higher value than the LED in the central portion of the display area. The brightness value of the LED is changed mainly by pulse width modulation (Pulse Width Modulation), and the duty ratio of the pulse width (ratio between the high value interval and the low value interval in the pulse period) is changed according to the magnitude of the input signal (DC level). It is controlled by doing. As an example, if the relative value of the input signal to the LED at the center of the display area is 1.0, the input signal to the LED at the periphery of the display area needs to be increased to about 1.5. In other words, under the condition for maintaining the luminance uniformity within the display surface, the LED in the central area of the display area is (1.0 / 1.5) ≈0.67 times as large as the LED in the peripheral area of the display area. However, the light from the LED cannot be used efficiently.

本実施形態では、表示エリア中央部を含む範囲のLED光源101aに対し、屈折作用をもつレンズ103を配置することで前記の問題を解決できる。すなわち、レンズ103の作用により、LED光源101aの光の一部が拡散され、表示エリア周縁部に配分されるので、面内輝度の均一化を図ることができる。
なお、本実施形態では光源装置の表示装置への適用において、LED光源101aを格子状に配列した例を示したが、このような配置に限定されることはない。例えば、LED光源101a同士を直線で結んだ形状が正三角形の繰り返し配置になる60°千鳥格子状配置や、LED光源101a同士を直線で結んだ形状が直角二等辺三角形の繰り返し配置になる45°千鳥格子状配置であっても構わない。また、レンズ103については凹部103bを有さない曲面状であってもよく、複数のレンズ群をまとめて1つの光学部材として形成してもよい。
In the present embodiment, the above problem can be solved by disposing the lens 103 having a refractive action on the LED light source 101a in the range including the center of the display area. That is, part of the light from the LED light source 101a is diffused and distributed to the peripheral edge of the display area by the action of the lens 103, so that in-plane luminance can be made uniform.
In the present embodiment, the example in which the LED light sources 101a are arranged in a grid pattern is shown in the application of the light source device to the display device, but the present invention is not limited to such an arrangement. For example, a 60 ° staggered arrangement in which the LED light sources 101a are connected in a straight line is a regular triangular arrangement, and a shape in which the LED light sources 101a are connected in a straight line is an isosceles right triangle 45. ° A staggered arrangement may be used. Further, the lens 103 may have a curved surface without the concave portion 103b, and a plurality of lens groups may be formed as one optical member.

[第2実施形態]
次に、図4を用いて本発明の第2実施形態を説明する。本実施形態では第1領域において複数種のレンズを使用した構成を例示する。以下、第1実施形態の場合と同様の構成要素については既に使用した符号を用いることにより、それらの詳細な説明を省略し、主に相違点を説明する。
図4(A)は本実施形態に係る直下型BL装置の平面図であり、LED光源101aの配置を示すために図4(B)の拡散板104を取り除いた状態を示す。図4(B)は、図4(A)の破断線A―Aにおける断面図である。
図4(A)に示すLED光源301は、縦8行×横12列の格子状に配列されている。それらのうち、画像表示エリアの中央部から周縁部にかけて、屈折率または屈折度が異なるレンズ302、303、304がそれぞれ配置されている。各レンズの屈折率は中央部に位置するものほど高く、周縁部に近いものほど低い。つまり、各レンズの屈折率をn(302)、n(303)、n(304)とすると、「n(302)>n(303)>n(304)」の関係がある。詳細には、中央部にレンズ302が縦2行×横6の列合計12個、それらの周囲を取り囲むようにしてレンズ303が合計20個、さらにそれらを取り囲むようにレンズ304が合計28個配置されている。反射拡散シート102の側壁部102cに近い周縁部の第2領域にあるLED光源にはレンズが設けられていない。
図4(B)には、LED光源301a、301b、301cと、レンズ303、304を示しており、LED光源301aに配置したレンズ303の形状は、第1実施形態にて説明したレンズ103の形状と同様に出射面側に凹部を有する。LED光源301bに配置したレンズ304の形状は、凹部のないドーム状である。周縁寄りに位置するLED光源301cについてはレンズが配置されていない。なお、図4(B)ではレンズ302を省略しているが、その形状は任意であり、仕様に応じた配光分布が得られるように設計される。
[Second Embodiment]
Next, a second embodiment of the present invention will be described with reference to FIG. In the present embodiment, a configuration using a plurality of types of lenses in the first region is illustrated. Hereinafter, by using the same reference numerals as those used in the first embodiment, detailed descriptions thereof will be omitted, and differences will be mainly described.
FIG. 4A is a plan view of the direct type BL apparatus according to the present embodiment, and shows a state in which the diffusion plate 104 of FIG. 4B is removed to show the arrangement of the LED light sources 101a. FIG. 4B is a cross-sectional view taken along the broken line AA in FIG.
The LED light sources 301 shown in FIG. 4A are arranged in a grid of 8 rows × 12 columns. Among them, lenses 302, 303, and 304 having different refractive indexes or refractive indexes are respectively arranged from the central portion to the peripheral portion of the image display area. The refractive index of each lens is higher as it is located at the center, and lower as it is closer to the periphery. That is, when the refractive indexes of the respective lenses are n (302), n (303), and n (304), there is a relationship of “n (302)> n (303)> n (304)”. More specifically, a total of 12 lenses 302 in a vertical row × 6 horizontal columns are arranged in the central portion, 20 lenses 303 are arranged so as to surround them, and 28 lenses 304 are arranged so as to surround them. Has been. The LED light source in the second region near the side wall 102c of the reflection diffusion sheet 102 is not provided with a lens.
FIG. 4B shows LED light sources 301a, 301b, and 301c and lenses 303 and 304. The shape of the lens 303 arranged in the LED light source 301a is the shape of the lens 103 described in the first embodiment. Similar to the above, a recess is provided on the exit surface side. The shape of the lens 304 disposed in the LED light source 301b is a dome shape without a recess. No lens is arranged for the LED light source 301c located near the periphery. In FIG. 4B, the lens 302 is omitted, but the shape is arbitrary, and the lens 302 is designed to obtain a light distribution according to the specification.

以上の配置のもとで、図4(B)に示すようにLED光源301aの光の一部Lfはレンズ303で屈折し、反射拡散シート102の側壁部102cに向けて拡散照射され、拡散板104の周縁部に導光される。またLED光源301bの光の一部Lgはレンズ304で屈折し、拡散板104の周縁部に導光される。LED光源301cの光の大部分は拡散板104に直接導光され、これらの光が拡散板104から面光源の光として出射する。
第2実施形態によれば、表示エリアの中央部から周縁部にかけてレンズの屈折率または屈折度を変更することで面内輝度の均一化を図ることができる。
なお、前記実施形態に示した光屈折手段としては、発光素子に対して別体のレンズを設置する例を挙げた。しかし、このような形態に限定されることなく、LED光源とレンズとを一体化させた構成でもよい。例えば、図4(C)は、基板305に実装されたLED素子306を、エポキシ樹脂などで形成した封入部307に封じ込め、これに一体化して形成したドーム状のレンズ部308を光屈折手段として用いる構成を示す。電極部309への給電によってLED素子306が発する光の一部は封入部307を介してレンズ部308で屈折して外部に出射する。また複数のLED素子とそれらの封入部およびレンズ部を一体化した構成でもよい。
Under the above arrangement, as shown in FIG. 4B, part of the light Lf of the LED light source 301a is refracted by the lens 303 and diffused and irradiated toward the side wall portion 102c of the reflection diffusion sheet 102. The light is guided to the peripheral edge of 104. A part of the light Lg from the LED light source 301 b is refracted by the lens 304 and guided to the peripheral edge of the diffusion plate 104. Most of the light from the LED light source 301c is directly guided to the diffusion plate 104, and the light is emitted from the diffusion plate 104 as light of the surface light source.
According to the second embodiment, the in-plane luminance can be made uniform by changing the refractive index or the refractive index of the lens from the central portion to the peripheral portion of the display area.
As an example of the light refracting means shown in the above embodiment, a separate lens is provided for the light emitting element. However, the configuration is not limited to such a form, and the LED light source and the lens may be integrated. For example, in FIG. 4C, the LED element 306 mounted on the substrate 305 is encapsulated in an encapsulating portion 307 formed of epoxy resin or the like, and a dome-shaped lens portion 308 formed integrally therewith is used as a light refracting means. The structure used is shown. Part of the light emitted from the LED element 306 by feeding power to the electrode unit 309 is refracted by the lens unit 308 via the enclosing unit 307 and is emitted to the outside. Moreover, the structure which integrated the some LED element, those enclosure parts, and the lens part may be sufficient.

101a,101b LED光源
102 反射拡散シート
102a 貫通穴部
102b 底面部
102c 側壁部
103 レンズ
103b 凹部
104 拡散板
301a,301b,301c LED光源
302,303,304 レンズ
306 LED素子
307 封入部
308 レンズ部
101a, 101b LED light source 102 Reflection diffusion sheet 102a Through hole portion 102b Bottom surface portion 102c Side wall portion 103 Lens 103b Recessed portion 104 Diffusion plate 301a, 301b, 301c LED light source 302, 303, 304 Lens 306 LED element 307 Encapsulating portion 308 Lens portion

Claims (7)

面光源部を備えた光源装置であって、
前記面光源部は、
平面上に配置された複数の光源と、
前記複数の光源に対応した貫通穴部を有する底面部と、該底面部から延設された側壁部によって前記光源の光を反射拡散させる反射拡散手段と、
前記複数の光源による光の一部を前記反射拡散手段の側壁部に向けて拡散照射させる光屈折手段を備え、
前記複数の光源のうち前記光屈折手段を配置した第1領域、および該第1領域と前記反射拡散手段の側壁部との間に位置する光源に前記光屈折手段を配置していない第2領域を有することを特徴とする光源装置。
A light source device including a surface light source unit,
The surface light source unit is
A plurality of light sources arranged on a plane;
A bottom surface portion having through-hole portions corresponding to the plurality of light sources, and a reflection diffusing means for reflecting and diffusing the light of the light source by a side wall portion extending from the bottom surface portion;
A light refracting means for diffusing and irradiating a part of light from the plurality of light sources toward a side wall portion of the reflection diffusing means;
Of the plurality of light sources, a first region in which the light refracting unit is disposed, and a second region in which the light refracting unit is not disposed in a light source positioned between the first region and the side wall portion of the reflection diffusing unit. A light source device comprising:
底面部および側壁部を有するケース部材を備え、
前記反射拡散手段は、前記ケース部材の底面部と側壁部の内側に沿って配置された反射拡散シートを有することを特徴とする請求項1に記載の光源装置。
A case member having a bottom surface portion and a side wall portion;
2. The light source device according to claim 1, wherein the reflection diffusing unit includes a reflection diffusing sheet disposed along an inner side of a bottom surface portion and a side wall portion of the case member.
前記光屈折手段は複数のレンズで構成され、前記第2領域から離れて位置するレンズは、前記第2領域に近いレンズに比べて屈折率が高いことを特徴とする請求項1または2に記載の光源装置。   The said light refracting means is comprised with several lenses, and the refractive index of the lens located away from the said 2nd area | region is high compared with the lens near the said 2nd area | region. Light source device. 前記レンズは、前記光源からの光が出射する面の中央に凹部を有することを特徴とする請求項3に記載の光源装置。   The light source device according to claim 3, wherein the lens has a concave portion at a center of a surface from which light from the light source is emitted. 前記複数の光源または光屈折手段を、格子状または千鳥格子状に配列したことを特徴とする請求項1ないし4のいずれか1項に記載の光源装置。   5. The light source device according to claim 1, wherein the plurality of light sources or light refraction means are arranged in a lattice shape or a staggered lattice shape. 発光素子を封入した封入部と、該封入部と一体に形成したレンズ部を有することを特徴とする請求項5に記載の光源装置。   The light source device according to claim 5, further comprising: an enclosing portion enclosing the light emitting element; and a lens portion formed integrally with the enclosing portion. 請求項1から6のいずれか1項に記載の光源装置と、
前記光源装置の面光源部により背面から照射される表示パネルと、を備えたことを特徴とする表示装置。

The light source device according to any one of claims 1 to 6,
And a display panel irradiated from the back by the surface light source unit of the light source device.

JP2012018091A 2012-01-31 2012-01-31 Light source device, and display device Pending JP2013157258A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2012018091A JP2013157258A (en) 2012-01-31 2012-01-31 Light source device, and display device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2012018091A JP2013157258A (en) 2012-01-31 2012-01-31 Light source device, and display device

Publications (1)

Publication Number Publication Date
JP2013157258A true JP2013157258A (en) 2013-08-15

Family

ID=49052220

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2012018091A Pending JP2013157258A (en) 2012-01-31 2012-01-31 Light source device, and display device

Country Status (1)

Country Link
JP (1) JP2013157258A (en)

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR101476214B1 (en) * 2014-02-11 2014-12-24 엘지전자 주식회사 Lighting apparatus
CN104566212A (en) * 2013-10-29 2015-04-29 鸿富锦精密工业(深圳)有限公司 Lens
JP2015181133A (en) * 2015-07-07 2015-10-15 岩崎電気株式会社 Light emitting module and lighting fixture
KR20160060852A (en) * 2014-11-20 2016-05-31 엘지디스플레이 주식회사 Backlight unit and liquid crystal display device having the same
WO2018061407A1 (en) * 2016-09-30 2018-04-05 シャープ株式会社 Light source and backlight device
US10168024B2 (en) 2015-01-05 2019-01-01 Philips Lighting Holding B.V. Lighting panel adapted for improved uniformity of light output
US11927795B2 (en) 2021-10-29 2024-03-12 Nichia Corporation Planar light source including a plurality of light-emitting units

Cited By (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN104566212A (en) * 2013-10-29 2015-04-29 鸿富锦精密工业(深圳)有限公司 Lens
KR101476214B1 (en) * 2014-02-11 2014-12-24 엘지전자 주식회사 Lighting apparatus
KR20160060852A (en) * 2014-11-20 2016-05-31 엘지디스플레이 주식회사 Backlight unit and liquid crystal display device having the same
KR102186775B1 (en) * 2014-11-20 2020-12-07 엘지디스플레이 주식회사 Backlight unit and liquid crystal display device having the same
US10168024B2 (en) 2015-01-05 2019-01-01 Philips Lighting Holding B.V. Lighting panel adapted for improved uniformity of light output
JP2015181133A (en) * 2015-07-07 2015-10-15 岩崎電気株式会社 Light emitting module and lighting fixture
WO2018061407A1 (en) * 2016-09-30 2018-04-05 シャープ株式会社 Light source and backlight device
US11927795B2 (en) 2021-10-29 2024-03-12 Nichia Corporation Planar light source including a plurality of light-emitting units
JP7461603B2 (en) 2021-10-29 2024-04-04 日亜化学工業株式会社 Surface Light Source

Similar Documents

Publication Publication Date Title
JP6634611B2 (en) Backlight device and liquid crystal display device
CN104930399B (en) Surface light emitting device and liquid crystal display device
EP3318792B1 (en) Backlight device and liquid-crystal display device
TWI684048B (en) Direct view display device and light unit for direct view display device
TWI467118B (en) A light emitting device, a lighting device, and a display device
JP2013157258A (en) Light source device, and display device
US20180172221A1 (en) Led lens for backlight unit
US9933561B2 (en) Liquid crystal display and backlight module thereof
JP5071675B2 (en) Illumination device and display device
US20160003442A1 (en) Lens for light-emitting diode, backlight unit and display device including same
JP2007086784A (en) Optical plate, method of manufacturing the same and display device having the same
JP3187635U (en) Thin direct type LED backlight module
KR102266737B1 (en) lens,light emitting apparatus including the lens, and backlight unit including the apparatus
JP2013038136A (en) Light-emitting device and display device
JP5386551B2 (en) Light emitting device, display device, and reflecting member design method
JP2012204336A (en) Illumination device and display device
US20220179128A1 (en) Light Source Lens, Illumination Unit, And Display Unit
JP2009176512A (en) Surface light source device and image display apparatus
JP2012248769A (en) Light-emitting device and display device
WO2013061866A1 (en) Illumination device, and display device provided therewith
KR20120030908A (en) Structure of backlight plate
JP2010108601A (en) Planar light source and liquid crystal display
WO2016175111A1 (en) Direct-type backlight device and liquid crystal display device
WO2013015000A1 (en) Light-emitting device and display device
TW201303220A (en) Lighting apparatus, backlight module and display apparatus