WO2013015000A1 - Light-emitting device and display device - Google Patents

Light-emitting device and display device Download PDF

Info

Publication number
WO2013015000A1
WO2013015000A1 PCT/JP2012/063054 JP2012063054W WO2013015000A1 WO 2013015000 A1 WO2013015000 A1 WO 2013015000A1 JP 2012063054 W JP2012063054 W JP 2012063054W WO 2013015000 A1 WO2013015000 A1 WO 2013015000A1
Authority
WO
WIPO (PCT)
Prior art keywords
light
light emitting
emitting device
led chip
interval
Prior art date
Application number
PCT/JP2012/063054
Other languages
French (fr)
Japanese (ja)
Inventor
小野 泰宏
増田 麻言
大久保 憲造
伸弘 白井
伊藤 哲嗣
孝澄 和田
Original Assignee
シャープ株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by シャープ株式会社 filed Critical シャープ株式会社
Publication of WO2013015000A1 publication Critical patent/WO2013015000A1/en

Links

Images

Classifications

    • GPHYSICS
    • G02OPTICS
    • G02FOPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
    • G02F1/00Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics
    • G02F1/01Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour 
    • G02F1/13Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour  based on liquid crystals, e.g. single liquid crystal display cells
    • G02F1/133Constructional arrangements; Operation of liquid crystal cells; Circuit arrangements
    • G02F1/1333Constructional arrangements; Manufacturing methods
    • G02F1/1335Structural association of cells with optical devices, e.g. polarisers or reflectors
    • G02F1/1336Illuminating devices
    • G02F1/133602Direct backlight
    • G02F1/133603Direct backlight with LEDs
    • GPHYSICS
    • G02OPTICS
    • G02FOPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
    • G02F1/00Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics
    • G02F1/01Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour 
    • G02F1/13Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour  based on liquid crystals, e.g. single liquid crystal display cells
    • G02F1/133Constructional arrangements; Operation of liquid crystal cells; Circuit arrangements
    • G02F1/1333Constructional arrangements; Manufacturing methods
    • G02F1/1335Structural association of cells with optical devices, e.g. polarisers or reflectors
    • G02F1/1336Illuminating devices
    • G02F1/133602Direct backlight
    • G02F1/133606Direct backlight including a specially adapted diffusing, scattering or light controlling members
    • G02F1/133607Direct backlight including a specially adapted diffusing, scattering or light controlling members the light controlling member including light directing or refracting elements, e.g. prisms or lenses
    • GPHYSICS
    • G02OPTICS
    • G02FOPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
    • G02F1/00Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics
    • G02F1/01Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour 
    • G02F1/13Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour  based on liquid crystals, e.g. single liquid crystal display cells
    • G02F1/133Constructional arrangements; Operation of liquid crystal cells; Circuit arrangements
    • G02F1/1333Constructional arrangements; Manufacturing methods
    • G02F1/1335Structural association of cells with optical devices, e.g. polarisers or reflectors
    • G02F1/1336Illuminating devices
    • G02F1/133628Illuminating devices with cooling means
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/42Wire connectors; Manufacturing methods related thereto
    • H01L2224/47Structure, shape, material or disposition of the wire connectors after the connecting process
    • H01L2224/48Structure, shape, material or disposition of the wire connectors after the connecting process of an individual wire connector
    • H01L2224/4805Shape
    • H01L2224/4809Loop shape
    • H01L2224/48091Arched
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/73Means for bonding being of different types provided for in two or more of groups H01L2224/10, H01L2224/18, H01L2224/26, H01L2224/34, H01L2224/42, H01L2224/50, H01L2224/63, H01L2224/71
    • H01L2224/732Location after the connecting process
    • H01L2224/73251Location after the connecting process on different surfaces
    • H01L2224/73265Layer and wire connectors
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L25/00Assemblies consisting of a plurality of individual semiconductor or other solid state devices ; Multistep manufacturing processes thereof
    • H01L25/03Assemblies consisting of a plurality of individual semiconductor or other solid state devices ; Multistep manufacturing processes thereof all the devices being of a type provided for in the same subgroup of groups H01L27/00 - H01L33/00, or in a single subclass of H10K, H10N, e.g. assemblies of rectifier diodes
    • H01L25/04Assemblies consisting of a plurality of individual semiconductor or other solid state devices ; Multistep manufacturing processes thereof all the devices being of a type provided for in the same subgroup of groups H01L27/00 - H01L33/00, or in a single subclass of H10K, H10N, e.g. assemblies of rectifier diodes the devices not having separate containers
    • H01L25/075Assemblies consisting of a plurality of individual semiconductor or other solid state devices ; Multistep manufacturing processes thereof all the devices being of a type provided for in the same subgroup of groups H01L27/00 - H01L33/00, or in a single subclass of H10K, H10N, e.g. assemblies of rectifier diodes the devices not having separate containers the devices being of a type provided for in group H01L33/00
    • H01L25/0753Assemblies consisting of a plurality of individual semiconductor or other solid state devices ; Multistep manufacturing processes thereof all the devices being of a type provided for in the same subgroup of groups H01L27/00 - H01L33/00, or in a single subclass of H10K, H10N, e.g. assemblies of rectifier diodes the devices not having separate containers the devices being of a type provided for in group H01L33/00 the devices being arranged next to each other

Definitions

  • the present invention relates to a light emitting device provided in a backlight unit that irradiates light on the back surface of a display panel, and a display device including the light emitting device.
  • liquid crystal is sealed between two transparent substrates, and when a voltage is applied, the orientation of the liquid crystal molecules is changed and the light transmittance is changed to optically display a predetermined image or the like. Is done.
  • the liquid crystal itself is not a light emitter.
  • the back side of a transmissive display panel is irradiated with light using a cold cathode tube (CCFL), a light emitting diode (LED) as a light source, or the like.
  • CCFL cold cathode tube
  • LED light emitting diode
  • a backlight unit is provided.
  • light sources such as cold-cathode tubes and LEDs are arranged on the bottom surface to emit light
  • light sources such as cold-cathode tubes and LEDs are arranged on the edge of a transparent plate called a light guide plate.
  • a transparent plate called a light guide plate.
  • LEDs have excellent characteristics such as low power consumption, long life, and reduced environmental load by not using mercury, but they are expensive in price and white LEDs are indispensable until blue LEDs are invented.
  • the use of the backlight unit as a light source was delayed due to the absence of the light source and the strong directivity.
  • high color rendering high-intensity white LEDs for lighting applications have been rapidly spread, and the LEDs have become cheaper along with them. Therefore, as a light source of a backlight unit, a transition from a cold cathode tube to an LED has been made. Is progressing.
  • the edge light type is more effective than the direct type from the viewpoint of irradiating light so that the brightness of the surface of the display panel is uniform in the surface direction.
  • the edge light type backlight unit has a problem that heat generated by the light source is concentrated due to the light source being concentrated on the edge portion of the light guide plate, and the bezel portion of the display panel is enlarged. Arise.
  • the edge light type backlight unit has a great restriction on partial dimming control (local dimming), which is attracting attention as a control method capable of improving the quality and power saving of a display image. There is a problem that it is not possible to control a small divided area where high quality and power saving can be achieved.
  • a display panel is divided into a plurality of rectangular areas, and a plurality of light source units corresponding to the respective rectangular areas are connected so that dimming control can be performed for each of the divided rectangular areas.
  • a backlight unit is disclosed.
  • each light source unit has a rectangular frame formed in a size corresponding to a rectangular area of the display panel, and a light emitting surface at the center of the bottom of the rectangular frame.
  • the light-emitting element is configured to include an upward-facing light-emitting element, and a light-guide reflector that is disposed directly above the light-emitting element and has an inverted conical shape with the apex facing downward.
  • an object of the present invention is to provide a light emitting device used in a backlight unit of a display device including a display panel, which can efficiently dissipate heat without stagnation of heat in the device, and the light emitting device.
  • a display device is provided.
  • the present invention includes a casing composed of a frame part and a rectangular plate-shaped bottom part surrounded by the frame part, A plurality of rectangular plate-like substrates arranged at the bottom with a first interval in the first direction and a second interval in a second direction orthogonal to the first direction; A plurality of light emitting elements that emit light and are arranged at equal intervals in the second direction on each of the substrates; A plurality of reflections provided on each substrate so as to surround each of the plurality of light emitting elements disposed on each substrate, extending toward both sides in the first direction of each substrate, and having a polygonal outer peripheral shape.
  • a light emitting device including the member.
  • the end surfaces of the respective end portions of the respective substrates facing each other with a second interval are formed so as to be separated from each other in the direction from one side portion in the first direction of the substrate toward the other side portion. It is preferable.
  • the end surfaces of the respective end portions of the respective substrates facing each other with a second interval be curved in a convex shape in a direction approaching each other.
  • a drive signal input unit for inputting a drive signal to each light emitting element disposed on each substrate is provided at one end portion in the second direction of each substrate.
  • At least some of the substrates that form a pair with a second interval in the second direction have opposite end portions on both sides of the center portion in the second direction of the bottom portion. It is preferable that it arrange
  • each reflecting member surrounding each light emitting element disposed at a position closest to each end facing each other with a second interval between each substrate has each side facing each other separated from each substrate. And are preferably formed so as to be raised and continuous with each other.
  • the present invention also provides a display panel, A display device comprising: the light emitting device that irradiates light on a back surface of the display panel.
  • the light-emitting device includes a plurality of rectangular plate-like substrates disposed at the bottom of the housing, a plurality of light-emitting elements arranged in alignment on each substrate, and each substrate surrounding each light-emitting element. And a plurality of reflecting members provided on the top.
  • the plurality of substrates are arranged at the bottom of the housing with a first interval in the first direction and a second interval in a second direction orthogonal to the first direction.
  • Each light emitting element is arrange
  • Each reflecting member extends to both sides in the first direction of each substrate, and the outer peripheral shape is a polygonal shape.
  • the heat generated when the light emitting element emits light exists in the vicinity of the light emitting element such as air existing between the reflecting member extending from both sides in the first direction of each substrate and the bottom of the housing. Warm up the air.
  • each substrate interposed between the bottom of the housing and the reflecting member has a first interval in the first direction and a second interval in the second direction orthogonal to the first direction. Since the opening is disposed at the bottom of the casing, the heated air existing between the bottom of the casing and the reflecting member faces each other of the substrates spaced apart from each other with a first interval in the first direction.
  • a space formed between the side portions hereinafter referred to as “first heat dissipation space” and each end portion of the substrates that are spaced apart from each other with a second interval in the second direction.
  • Flow hereinafter referred to as “second heat radiation space” without staying. Therefore, heat can be efficiently radiated without heat remaining in the light emitting device.
  • the end surfaces of the end portions facing each other with a second interval between the substrates are formed so as to be separated from each other in the direction from the one side portion in the first direction of the substrate to the other side portion.
  • the end surfaces of the end portions facing each other with a second interval between the substrates are formed to be curved in a convex shape in directions close to each other.
  • each substrate in the second direction specifically, each of the substrates spaced apart from each other in the second direction with a second interval is opposed to each other with a second interval.
  • a drive signal input unit for inputting a drive signal to each light emitting element arranged on each substrate is provided at the opposite end. Accordingly, since the drive signal input unit is not provided in the second heat radiation space for radiating the heat in the apparatus, the airflow in the second heat radiation space can be made smooth.
  • the substrates that are separated from each other with a second interval in the second direction are opposed to each other at the end portions that face each other at the center in the second direction at the bottom of the housing. It arrange
  • the second heat radiating space is formed at the center in the second direction of the bottom portion of the housing, so that the warming that exists between the bottom portion of the housing and the reflecting member is heated. The air flowing in the center in the second direction at the bottom of the housing can radiate heat in the light emitting device.
  • the shape corresponds to the central portion of the bottom portion of the housing set to a shape and size corresponding to the display panel.
  • the emission intensity of the region is increased.
  • heat tends to stay in the central portion of the bottom portion of the housing.
  • the heat can be efficiently obtained. It can dissipate heat.
  • each reflecting member surrounding each light emitting element disposed at a position closest to each end facing each other with a second interval between each substrate has each side facing each other separated from each substrate. And are formed so as to be continuous with each other.
  • the protruding portion of the reflecting member that protrudes away from each substrate is positioned in the vicinity of the opposing ends of each substrate that is spaced apart from each other by the second interval in the second direction. Will do.
  • the space formed by the raised portions separated from the respective substrates of the reflecting member is also included in the second heat radiation space. Therefore, since the flow of the airflow in the second heat radiation space can be made smooth, it is possible to more effectively suppress heat from staying in the light emitting device, and heat can be efficiently radiated.
  • the display device includes the light-emitting device according to the present invention, which can efficiently dissipate heat without stagnation in the device, so that a high-quality image can be displayed over a long period of time. Can be displayed.
  • FIG. 2 is a diagram schematically showing a cross section of the liquid crystal display device when cut along a cutting plane line AA in FIG. It is a figure which shows a base and an LED chip. It is a figure which shows a base and an LED chip. It is a figure which shows a base and an LED chip. It is a figure which shows the LED chip and base mounted in the printed circuit board. It is a figure which shows the positional relationship of the LED chip and lens which were supported by the base.
  • FIG. 6 is an exploded perspective view showing, in an enlarged manner, a configuration in the vicinity of each end of the printed circuit boards that are spaced apart from each other with a second interval I2 in the second direction X2 in the backlight unit. It is a perspective view which expands and shows the structure of the edge part vicinity which mutually opposes each printed circuit board which leaves
  • FIG. 1 is an exploded perspective view showing a configuration of a liquid crystal display device 100 according to an embodiment of the present invention.
  • FIG. 2 is a diagram schematically showing a cross section of the liquid crystal display device 100 taken along the cutting plane line AA in FIG.
  • the liquid crystal display device 100 which is a display device of the present invention is a device that displays an image on a display screen by outputting image information in a television receiver or a personal computer.
  • the display screen is formed by a liquid crystal panel 2 that is a transmissive display panel having liquid crystal elements, and the liquid crystal panel 2 is formed in a rectangular flat plate shape.
  • two surfaces in the thickness direction are a front surface 21 and a back surface 22.
  • the liquid crystal display device 100 displays an image so as to be visible when viewed from the front surface 21 toward the rear surface 22.
  • the liquid crystal display device 100 includes a liquid crystal panel 2 and a backlight unit 1 that includes a plurality of light emitting units 11 and is a light emitting device according to the present invention.
  • the liquid crystal panel 2 is supported by the side wall portion 132 in parallel with the bottom surface 131a of the bottom portion 131 of the frame member 13 which is a casing including the frame portion and the bottom portion 131 surrounded by the frame portion.
  • the liquid crystal panel 2 includes two substrates and is formed in a rectangular plate shape when viewed from the thickness direction.
  • the liquid crystal panel 2 includes a switching element such as a TFT (Thin Film Transistor), and liquid crystal is injected into a gap between the two substrates.
  • TFT Thin Film Transistor
  • the liquid crystal panel 2 exhibits a display function when light from the backlight unit 1 disposed on the back surface 22 side is irradiated as a backlight.
  • the two substrates are provided with drivers (source drivers) for driving the pixels in the liquid crystal panel 2, various elements, and wirings.
  • a diffusion plate 3 is disposed between the liquid crystal panel 2 and the backlight unit 1 in parallel with the liquid crystal panel 2.
  • This diffusion plate 3 becomes an irradiated body.
  • a prism sheet (not shown) may be disposed between the liquid crystal panel 2 and the diffusion plate 3.
  • the diffusion plate 3 prevents the luminance from being locally biased by diffusing the light emitted from the backlight unit 1 in the surface direction.
  • the prism sheet directs the traveling direction of the light reaching from the back surface 22 side through the diffusion plate 3 to the front surface 21 side.
  • the traveling direction of light includes a lot of components in the surface direction as vector components.
  • the prism sheet converts the traveling direction of light containing a lot of vector components in the surface direction into the traveling direction of light containing many components in the thickness direction.
  • the prism sheet is formed with a large number of lens or prism-shaped portions arranged in the plane direction, thereby reducing the diffusion of light traveling in the thickness direction. Therefore, the luminance can be increased in the display by the liquid crystal display device 100.
  • the backlight unit 1 is a direct type backlight device that irradiates the liquid crystal panel 2 with light from the back surface 22 side.
  • the backlight unit 1 includes a plurality of light emitting units 11 that irradiate light to the liquid crystal panel 2 through the diffusion plate 3, a plurality of printed circuit boards 12, and a frame member 13.
  • the frame member 13 is a basic structure of the backlight unit 1, and has a rectangular flat plate-shaped bottom portion 131 that faces the liquid crystal panel 2 at a predetermined interval, and a side wall portion 132 that continues to the bottom portion 131 and rises from the bottom portion 131. Consists of.
  • the bottom 131 is formed in a rectangular shape when viewed from the thickness direction, and its size is slightly larger than that of the liquid crystal panel 2.
  • the side wall part 132 is formed to rise from the two end parts forming the short side of the bottom part 131 and the two end parts forming the long side to the front surface 21 side of the liquid crystal panel 2. As a result, four flat side wall portions 132 are formed around the bottom portion 131.
  • the printed circuit board 12 is fixed to the bottom 131 of the frame member 13.
  • the printed circuit board 12 is, for example, a substrate made of glass epoxy having conductive layers formed on both sides.
  • each printed circuit board 12 is formed in a rectangular plate shape, and its long side (longitudinal direction) is parallel to the long side direction of the bottom part 131, and the short side (width direction) is the short side direction of the bottom part 131. It arranges in the bottom part 131 so that it may become parallel.
  • the plurality of printed circuit boards 12 have a first direction I1 in the first direction X1 and a second direction orthogonal to the first direction X1. It is arranged on the bottom 131 of the frame member 13 with a second interval I2 from X2.
  • the first direction X1 is parallel to the short side direction of the bottom 131 of the frame member 13, and the second direction X2 is parallel to the long side of the bottom 131.
  • a plurality of light emitting portions 11 are provided at equal intervals in a direction parallel to the second direction X2.
  • the plurality of light emitting units 11 irradiate the liquid crystal panel 2 with light through the diffusion plate 3.
  • a plurality of printed circuit boards 12 provided with a plurality of light emitting units 11 are disposed so as to face the entire back surface 22 of the liquid crystal panel 2 through the diffusion plate 3 with the plurality of light emitting units 11 as one group.
  • the light emitting units 11 are provided in a matrix.
  • Each light emitting unit 11 is formed in a square shape when viewed from the side of the diffuser plate 3 that is an object to be irradiated, that is, when viewed from a direction perpendicular to the bottom 131 of the frame member 13, and on the liquid crystal panel 2 side of the diffuser plate 3.
  • the luminance on the surface is defined to be 5000 cd / m 2, and the length of one side is, for example, 55 mm.
  • Each of the plurality of light emitting units 11 includes a light emitting diode (LED) chip 111a that is a light emitting element, a base 111 that supports the LED chip 111a, a lens 112 that is an optical member, and a reflecting member 113.
  • LED light emitting diode
  • 3A to 3C are diagrams showing the base 111 and the LED chip 111a.
  • 3A is a plan view
  • FIG. 3B is a front view
  • FIG. 3C is a bottom view.
  • the base 111 is a member for supporting the LED chip 111a and is made of resin.
  • the base 111 has a square support surface for supporting the LED chip 111a, and the length L1 of one side of the square is, for example, 3 mm. Moreover, the height of the base 111 is 1 mm, for example.
  • the base 111 includes a base body 111g made of ceramics and two electrodes 111c provided on the base body 111g.
  • An adhesive member 111f fixes the base body 111g serving as a support surface to the center of the upper surface.
  • the two electrodes 111c are spaced apart from each other, and are respectively provided over the top surface, the side surface, and the bottom surface of the base body 111g.
  • Two terminals (not shown) of the LED chip 111a and the two electrodes 111c are connected by two bonding wires 111d, respectively.
  • the LED chip 111a and the bonding wire 111d are sealed with a transparent resin 111e such as silicon resin.
  • FIG. 4 is a diagram showing the LED chip 111a and the base 111 mounted on the printed circuit board 12.
  • the LED chip 111 a is mounted on the printed circuit board 12 via the base 111 and emits light in a direction away from the printed circuit board 12.
  • the LED chip 111 a is located at the center of the base 111 when the light emitting unit 11 is viewed in plan from the diffuser plate 3 side, that is, when viewed from a direction perpendicular to the bottom 131 of the frame member 13.
  • the light emission control by the LED chips 111 a can be controlled independently of each other.
  • the backlight unit 1 can perform partial dimming control (local dimming).
  • solder is respectively applied to the two connection terminal portions 121 of the conductive layer pattern included in the printed circuit board 12, and the base body is attached to the solder.
  • the base 111 and the LED chip 111a fixed to the base 111 are placed on the printed circuit board 12 by, for example, an automatic machine (not shown) so that the two electrodes 111c provided on the bottom surface of 111g match each other.
  • the printed circuit board 12 on which the base 111 and the LED chip 111a fixed to the base 111 are placed is sent to a reflow tank that irradiates infrared rays, and the solder is heated to about 260 ° C. And are soldered.
  • the LED chips 111a provided in each of the plurality of light emitting units 11 are arranged in a matrix when the light emitting unit 11 is viewed in plan view from the diffusion plate 3 side, that is, when viewed from a direction perpendicular to the bottom 131 of the frame member 13.
  • the distance between the LED chips 111a that are arranged and adjacent to each other is the same in both the row direction and the column direction.
  • FIG. 5 is a diagram showing a positional relationship between the LED chip 111a supported on the base 111 and the lens 112. As shown in FIG.
  • the lens 112 is provided in contact with the LED chip 111a by insert molding so as to cover the base 111 supporting the LED chip 111a, and reflects or refracts light emitted from the LED chip 111a in a plurality of directions. That is, the lens 112 diffuses light.
  • the lens 112 is a transparent lens, and is made of, for example, silicon resin or acrylic resin.
  • the upper surface 112a which is a surface facing the liquid crystal panel 2 through the diffusion plate 3, is curved with a recess in the center, and the side surface 112b is in a substantially cylindrical shape parallel to the optical axis S of the LED chip 111a.
  • the diameter L2 in the cross section formed and orthogonal to the optical axis S is, for example, 10 mm, extends outward with respect to the base 111, and is lateral to the base 111 (perpendicular to the support surface of the base 111.
  • the four surfaces are provided so as to cover at least a part thereof.
  • the lens 112 is larger than the base 111 in the direction orthogonal to the optical axis S of the LED chip 111a (the diameter L2 of the lens 112 is larger than the length L1 of one side of the support surface of the base 111).
  • the lens 112 is provided so as to extend outward with respect to the base 111, so that the light emitted from the LED chip 111a can be diffused by the lens 112 over a wide range.
  • the height H1 of the lens 112 is 4.5 mm, for example, and is smaller than the diameter L2.
  • the lens 112 has a length (diameter L2) in a direction orthogonal to the optical axis S of the LED chip 111a larger than the height H1. The light incident on the lens 112 is diffused in the direction intersecting the optical axis S inside the lens 112.
  • the reason why the diameter L2 is set to be larger than the height H1 is to make the backlight unit 1 thin and to uniformly irradiate the liquid crystal panel 2.
  • uneven illuminance tends to occur on the back surface 22 of the liquid crystal panel 2, and as a result, uneven brightness tends to occur on the front surface 21 of the liquid crystal panel 2.
  • the distance between the adjacent LEDs 111a is long, the area between the adjacent LED chips 111a on the back surface 22 of the liquid crystal panel 2 is far from the LED chip 111a, and the amount of irradiation light is reduced. Irradiance unevenness (brightness unevenness) is likely to occur between the region adjacent to the LED chip 111a.
  • the lens 112 In order to irradiate the light emitted from the LED chip 111a to a region far from the LED chip 111a via the lens 112, it is necessary to increase the diameter L2 of the lens 112 to some extent.
  • the lens 112 By making the diameter L2 of the light source larger than the height H1, the backlight unit 1 can be made thinner and the liquid crystal panel 2 can be uniformly irradiated with light.
  • the diameter L2 of the lens 112 is made smaller than the height H1 of the lens 112, not only thinning and uniform irradiation become difficult, but also an insert for integrally molding the lens 112 and the LED chip 111a. In molding, there is a problem that the balance tends to be poor. Further, when soldering an integrally molded product including the LED chip 111a and the base 111b and the insert-molded lens 112 to the printed circuit board 12, the balance is easily lost, and there is a problem in assembly.
  • the upper surface 112a of the lens 112 includes a central portion 1121, a first curved portion 1122, and a second curved portion 1123.
  • the curved upper surface 112a having a dent in the central portion is a first region that totally reflects the emitted light and emits it from the side surface 112b, and a second region that refracts the emitted light outward and emits it. And having a region.
  • the first region is formed in the first curved portion 1122, and the second region is formed in the second curved portion 1123.
  • the central portion 1121 is formed at the central portion of the upper surface 112a facing the liquid crystal panel 2 through the diffusion plate 3, and the center of the central portion 1121 (that is, the optical axis of the lens 112) is on the optical axis S of the LED chip 111a. Located in.
  • the central portion 1121 is formed in a circular shape parallel to the light emitting surface of the LED chip 111a, and its diameter L3 is, for example, 1 mm.
  • the central portion 1121 has a circular bottom surface instead of the circular shape, and a conical side surface protruding from the bottom surface toward the LED chip 111a. You may make it a shape.
  • the central portion 1121 is formed to irradiate light to a region facing the central portion 1121 in the diffusion plate 3 that is an irradiated body.
  • the central portion 1121 is a portion facing the LED chip 111a, most of the light emitted from the LED chip 111a reaches the central portion 1121, and when most of the light is transmitted as it is, it faces the central portion 1121.
  • the illuminance of the area to be markedly increased. Therefore, it is preferable that the shape of the central portion 1121 is the side shape of the cone. In the case of the conical side surface shape, most of the light is reflected by the central portion 1121 and less light is transmitted through the central portion 1121, so that the illuminance of the region facing the central portion 1121 can be suppressed.
  • the first curved portion 1122 is connected to the outer peripheral edge of the central portion 1121 and extends outward in one direction of the LED chip 111a in the optical axis S direction (direction toward the liquid crystal panel 2). It is an annular curved surface curved so as to be convex. The shape of this curved surface is designed so that the light emitted from the LED chip 111a is totally reflected.
  • the light that has reached the first curved portion 1122 is totally reflected by the first curved portion 1122, and then passes through the side surface 112b of the lens 112, thereby reflecting the reflecting member 113. Head to.
  • the light that has reached the reflecting member 113 is diffused by the reflecting member 113, and is irradiated on a region that is not opposed to the LED chip 111a in the diffusing plate 3 that is an irradiated body. Thereby, the irradiation light quantity to the area
  • the first curved portion 1122 is formed so that the incident angle of the light emitted from the LED chip 111a is greater than or equal to the critical angle ⁇ in order to totally reflect the light emitted from the LED chip 111a.
  • the critical angle ⁇ is 42.1 °
  • the first curved portion 1122 is formed in a shape with an incident angle of 42.1 ° or more.
  • the second curved portion 1123 is connected to the outer peripheral edge portion of the first curved portion 1122, extends toward the other side in the optical axis S direction of the LED chip 111a, and protrudes to one side in the optical axis S direction. It is a curved annular curved surface.
  • the light that has reached the second curved portion 1123 is refracted and travels toward the diffusion plate 3 and the reflecting member 113 when passing through the second curved portion 1123.
  • the light reaching the reflection member 113 is diffused and travels toward the diffusion plate 3.
  • the light traveling toward the diffusion plate 3 by the second curved portion 1123 is mainly irradiated to a region different from the region irradiated with light by the central portion 1121 and the first curved portion 1122 in the diffusion plate 3.
  • the amount of light is complemented. Since the second curved portion 1123 needs to transmit light, the incident angle is less than 42.1 ° so as not to totally reflect the light emitted from the LED chip 111a.
  • the lens 112 is formed with the first curved portion 1122 that totally reflects the light emitted from the LED chip 111a toward the side surface 112b of the lens 112 at the outer peripheral edge portion of the central portion 1121.
  • a second curved portion 1123 that refracts the light emitted from the LED chip 111a is formed at the outer peripheral edge of the curved portion 1122.
  • the LED chip 111a generally has high directivity, the amount of light near the optical axis S is extremely large, and the amount of light decreases as the light emission angle with respect to the optical axis S increases. Therefore, in order to increase the amount of light emitted to the region relatively far from the optical axis S of the LED chip 111a (that is, the optical axis of the lens 112), light having a large emission angle with respect to the optical axis S is directed to this region. Instead, it is necessary to direct light having a small emission angle to this region.
  • the first curved portion 1122 that totally reflects light toward the region is formed around the central portion 1121 through which the optical axis S passes.
  • the amount of irradiation light can be increased.
  • the second curved portion 1123 is formed adjacent to the periphery of the central portion 1121, and the first curved portion 1122 is formed adjacent to the second curved portion 1123,
  • the emission angle of the light toward the first curved portion 1122 with respect to the optical axis S increases, and as a result, the amount of light that is totally reflected by the first curved portion 1122 and applied to the region is reduced. As a result, the luminance in the diffusion plate 3 becomes non-uniform.
  • FIG. 6 is a diagram for explaining an optical path of light emitted from the LED chip 111a.
  • Light emitted from the LED chip 111 a enters the lens 112 and is diffused by the lens 112. Specifically, of the light incident on the lens 112, the light that has reached the central portion 1121 on the upper surface 112 a facing the liquid crystal panel 2 through the diffusion plate 3 is emitted in the direction of the arrow A 1 toward the liquid crystal panel 2.
  • the light reaching the first curved portion 1122 is totally reflected and emitted from the side surface 112b in the direction of the arrow A2, and the light reaching the second curved portion 1123 is outward (a direction away from the LED chip 111a).
  • the light is refracted and emitted toward the liquid crystal panel 2 in the direction of the arrow A3.
  • the LED chip 111a and the lens 112 have the same optical axis, that is, the center of the lens 112 (that is, the optical axis of the lens 112) is positioned on the optical axis S of the LED chip 111a.
  • the lens 112 is preliminarily aligned with high accuracy so as to contact the LED chip 111a.
  • the LED chip 111a and the lens 112 As a method of forming the LED chip 111a and the lens 112 by aligning them in advance, insert molding, a method of fitting the LED chip 111a supported by the base 111 to the lens 112 molded into a predetermined shape, and the like. Can be mentioned.
  • the LED chip 111a and the lens 112 are formed by being previously aligned by insert molding.
  • Molding is performed by injecting a resin, which is a raw material of the lens 112, from a resin inlet into a space formed when the upper surface mold and the lower surface mold are combined.
  • a resin as a raw material of the lens 112 is injected from the resin injection port. You may make it shape
  • the lens 112 can be aligned with high accuracy so that it abuts the LED chip 111a.
  • the backlight unit 1 can accurately reflect and refract the light emitted from the LED chip 111a through the lens 112 by the lens 112 in contact with the LED chip 111a. Even in the thinned liquid crystal display device 100 in which the distance H3 to the substrate 12 is small, the liquid crystal panel 2 can be irradiated with light through the diffusion plate 3 so that the luminance is uniform in the surface direction.
  • FIG. 7 is a diagram illustrating a configuration of the reflecting member 113 included in the light emitting unit 11.
  • FIG. 7 is an enlarged view of the vicinity of the opposing end portions of the printed circuit boards 12 that are spaced apart from each other with a second interval I2 in the second direction X2.
  • the reflection member 113 is provided around the base 111 on which the LED chip 111 a is supported, and reflects the light emitted from the lens 112 toward the liquid crystal panel 2 through the diffusion plate 3.
  • the reflection member 113 has a polygonal shape, for example, a square shape, when viewed from the diffuser 3 side, that is, when viewed in plan in the direction of the optical axis S of the LED chip 111a.
  • the reflecting member 113 extends outward from both sides in the width direction parallel to the first direction X1 of each printed circuit board 12.
  • each side portion of the outer peripheral shape is continuous with the adjacent reflecting member 113.
  • the distance between the LED chips 111a is the same in the adjacent light emitting sections 11, so that the luminance uniformity on the surface of the diffusion plate 3 on the liquid crystal panel 2 side can be further improved.
  • the reflecting member 113 is a flat plate-like base portion 1131 having an opening 113a at the center, specifically, a square flat plate-like base portion 1131 having a side length of 38.8 mm, and an outer peripheral edge portion surrounding the base portion 1131. And an inclined portion 1132 having an inclined surface that inclines so as to move away from the printed circuit board 12 as it moves away from the LED chip 111a.
  • the reflecting member 113 configured by the base portion 1131 and the inclined portion 1132 is provided in an inverted dome shape with the LED chip 111a as the center.
  • the reflecting member 113 has a square outer peripheral shape when viewed in plan in the direction of the optical axis S of the LED chip 111a, and is configured to be line-symmetric with respect to the square diagonal line. Further, the center point of the square shape is configured to be 90 ° rotationally symmetric.
  • the base 1131 is such that each side of the square shape when viewed in plan in the direction of the optical axis S of the LED chip 111a is in a matrix, that is, parallel to the row direction or column direction of the plurality of LED chips 111a arranged in alignment. Formed.
  • the base 1131 is formed along the printed circuit board 12 and is provided with a circular opening 113a at the center when viewed in plan in the direction of the optical axis S.
  • the diameter of the circular opening 113a is set to be slightly smaller than the diameter L2 of the lens 112, and the lens 112 is inserted through the opening 113a.
  • the base 1131 extends outward from both sides in the width direction parallel to the first direction X1 of each printed circuit board 12.
  • the inclined portion 1132 is connected to each side of the outer peripheral shape of the base portion 1131, and has an inclined surface extending in an inclined manner so as to be separated from the printed circuit board 12 as it goes outward (in a direction away from the LED chip 111 a).
  • An inclination angle ⁇ 1 between the inclined surface of the inclined portion 1132 and the printed circuit board 12 is, for example, 80 °.
  • the height H2 of the inclined portion 1132 in the direction of the optical axis S is, for example, 4 mm.
  • a gap G is formed between the diffusion plate 3 and the far end of the reflecting member 113 with respect to the printed circuit board 12, that is, the tip of the inclined portion 1132 on the diffusion plate 3 side in the optical axis S direction. Is formed.
  • the amount of light tends to decrease as the distance from the LED chip 111a increases in the surface direction.
  • the base portion 1131 and the inclined portion 1132 are made of highly bright PET (Polyethylene Terephthalate) and aluminum.
  • High-brightness PET is foamable PET containing a fluorescent agent, and examples thereof include E60V (trade name) manufactured by Toray Industries, Inc.
  • the thickness of the base 1131 is, for example, 0.1 to 0.5 mm.
  • the reflection member 113 including the base portion 1131 and the inclined portion 1132 has a total reflectance of, for example, 80% to 100% with respect to visible light emitted from the LED chip 111a, and in this embodiment, 97%. is there.
  • the total reflectance can be measured according to JIS-K-7375.
  • the reflection members 113 configured as described above and provided in each of the plurality of light emitting units 11 are integrally formed with each other.
  • a method of integrally molding the plurality of reflecting members 113 when the reflecting member 113 is made of high-brightness PET, extrusion molding and vacuum forming can be mentioned, and the reflecting member 113 is made of aluminum. If it is, press working can be mentioned.
  • a plurality of reflecting members 113 made of high-brightness PET are integrally formed by vacuum forming, they are formed as follows.
  • each of the plurality of light emitting units 11 By integrally forming the reflecting member 113 provided in each of the plurality of light emitting units 11, it is possible to improve the accuracy of the arrangement position of the plurality of light emitting units 11 with respect to the printed circuit board 12, and at the time of the assembly operation of the backlight unit 1, Since the number of operations for attaching the reflecting member 113 can be reduced, the efficiency of the assembly operation can be improved.
  • the backlight unit 1 of the light emitted from the LED chip 111 a and incident on the lens 112, the light reaching the central portion 1121 on the upper surface 112 a facing the liquid crystal panel 2 through the diffusion plate 3 is transmitted to the liquid crystal panel 2.
  • the light emitted toward the arrow A1 and reaching the first curved portion 1122 is reflected and emitted from the side surface 112b in the arrow A2 direction, and the light reaching the second curved portion 1123 is refracted outward. Then, it is emitted toward the liquid crystal panel 2 in the direction of the arrow A3.
  • the light emitted from the lens 112 is incident on the inclined portion 1132 of the reflecting member 113.
  • the inclined portion 1132 of the reflecting member 113 extends away from the printed circuit board 12 as it goes outward (in the direction away from the LED chip 111a), so that the light incident on the inclined section 1132 is parallel to the printed circuit board 12. The amount of light in the region corresponding to the inclined portion 1132 in the surface direction can be increased.
  • FIG. 8 is a diagram for explaining how heat generated from the LED chip 111a is dissipated.
  • FIG. 9 is an enlarged perspective view showing the configuration in the vicinity of the end portions of the printed circuit boards 12 that are spaced apart from each other in the second direction X2 with a second spacing I2 and that face each other with a second spacing I2.
  • each printed circuit board 12 has a width direction parallel to the first direction X1 and a longitudinal direction in the second direction between the bottom 131 of the frame member 13 and the reflection member 113.
  • the frame member 13 is aligned with the bottom 131 so as to be parallel to X2.
  • the plurality of printed circuit boards 12 are spaced from the bottom 131 of the frame member 13 with a first interval I1 in the first direction X1 and a second interval X2 in the second direction X2 orthogonal to the first direction X1. Be placed.
  • the plurality of printed circuit boards 12 are arranged in two rows in the second direction X2.
  • the backlight unit 1 is arranged so that the width direction parallel to the first direction X1 of the printed circuit board 12 matches the vertical direction, and the longitudinal direction parallel to the second direction X2 matches the horizontal direction.
  • the heat generated when the LED chip 111a emits light is conducted through the reflecting member 113 and the printed board 12, and the reflecting member 113 extending from both sides in the width direction parallel to the first direction X1 of each printed board 12 and The air existing around the LED chip 111a such as the air existing between the bottom 131 of the frame member 13 is heated.
  • each printed circuit board 12 interposed between the bottom 131 of the frame member 13 and the reflecting member 113 has a first interval I1 in the first direction X1 and the first direction X1.
  • Is disposed at the bottom 131 with a second interval I2 in the second direction X2 orthogonal to the warm air that exists between the bottom 131 of the frame member 13 and the reflecting member 113 is reflected from the bottom 131.
  • the printed circuit boards 12 that are spaced apart from each other with the member 113 in the first direction X1 extend in the horizontal direction formed between the side portions facing each other with the first distance I1.
  • first heat radiation space 41 Space 41
  • second heat radiation space 42 Space 42 extending in the vertical direction is formed between (hereinafter, referred to as “second heat radiation space 42") to flow without staying.
  • the heat conducted through the reflecting member 113 and the printed board 12 forms an air flow in the first heat radiation space 41 extending in the horizontal direction along the longitudinal direction of the printed board 12 (parallel to the second direction X2). Flowing. And the airflow which flows along the longitudinal direction of the printed circuit board 12 reaches each edge part which mutually opposes the 2nd space
  • first heat radiating space 41 and the second heat radiating space 42 are formed between the bottom 131 of the frame member 13 and the reflecting member 113, the side opposite to the side facing the bottom 131 of the reflecting member 113 is opposite.
  • the airflow flowing through the first heat radiation space 41 and the second heat radiation space 42 does not flow into the region, that is, the region on the light irradiation surface side of the diffusion plate 3. Therefore, it is possible to efficiently dissipate heat while preventing foreign matters such as dust from flowing into the region on the light irradiation surface side of the diffusion plate 3 on the airflow.
  • the printed circuit boards 12 that are spaced apart in the second direction X ⁇ b> 2 with a second spacing I ⁇ b> 2 are opposite to the end portions that face each other with a second spacing I ⁇ b> 2.
  • a drive signal input connector 12a that is a drive signal input unit for inputting a drive signal to each LED chip 111a disposed on each printed circuit board 12 is provided at the end on the side. Accordingly, the drive signal input connector 12a is not provided in the first heat radiation space 41 and the second heat radiation space 42 for radiating the heat in the backlight unit 1, and thus the first heat radiation space 41 and the second heat radiation space.
  • the airflow in 42 can be made smooth.
  • the second heat radiating space 42 is formed at the center in the long side direction of the bottom 131 of the frame member 13, and therefore, between the bottom 131 and the reflecting member 113.
  • the existing warmed air flows through the central portion of the bottom portion 131 in the long side direction, and thereby, heat in the backlight unit 1 can be radiated.
  • the liquid crystal display device 100 is a display device such as a general-use television receiver and the backlight unit 1 is a backlight device provided in the display device, the shape and size corresponding to the liquid crystal panel 2 are obtained.
  • the light emission intensity in the region corresponding to the center portion of the bottom portion 131 of the frame member 13 set to the height is increased.
  • heat tends to stay in the central portion of the bottom portion 131 of the frame member 13, but the second heat radiating space is formed in a region corresponding to the central portion in the long side direction parallel to the second direction X2 of the bottom portion 131.
  • By forming 42 heat can be efficiently radiated.
  • each printed circuit board 12 arranged and arranged on the bottom 131 of the frame member 13 is not limited to the rectangular plate shape described above.
  • FIG. 10 and FIG. 11 are diagrams showing the shapes of the end surfaces of the respective opposite end portions of the respective printed circuit boards 12 that are spaced apart from each other with the second interval I2 in the second direction X2.
  • the end surfaces of the end portions of the printed circuit boards 12 that are spaced apart from each other with the second interval I2 in the second direction X2 are opposed to each other with the second interval I2. It may be formed to be convexly curved. In this case, the minimum distance between the ends facing each other is set as the second interval I2.
  • the end surfaces of the end portions of the printed circuit boards 12 that are spaced apart from each other with the second distance I2 in the second direction X2 are opposed to each other at the second distance I2.
  • the minimum distance between the ends facing each other is set as the second interval I2.
  • the distance between one side in the width direction parallel to the first direction X1 of the printed circuit board 12 at each end facing each other is the second interval I2.
  • the airflow flowing through the second heat radiation space 42 Flows from the other side in the width direction of the printed circuit board 12 to one side, and from the wide side to the narrow side, so that the flow velocity is increased. Thereby, it is possible to more effectively suppress the heat from staying in the backlight unit 1 and to efficiently dissipate heat.
  • FIG. 12 is an exploded perspective view showing, in an enlarged manner, the configuration in the vicinity of the opposite end portions of the printed circuit boards 12 that are spaced apart from each other with a second interval I2 in the second direction X2 in the backlight unit 60.
  • FIG. 13 is an enlarged perspective view showing the configuration in the vicinity of the opposite end portions of the printed circuit boards 12 spaced apart from each other with a second interval I2 in the second direction X2 in the backlight unit 60.
  • the backlight unit 60 of the present embodiment is similar to the backlight unit 1 described above, and corresponding portions are denoted by the same reference numerals and description thereof is omitted.
  • the backlight unit 60 is the same as the backlight unit 1 except that the configuration of the light emitting unit 60a is different from the configuration of the light emitting unit 11 described above.
  • Each of the plurality of light emitting units 60a includes an LED chip 111a, a base 111 that supports the LED chip 111a, a lens 112, and a reflecting member 61.
  • the reflection member 61 is provided around the base 111 on which the LED chip 111 a is supported, and reflects the light emitted from the lens 112 toward the liquid crystal panel 2 via the diffusion plate 3.
  • the reflection member 61 has a polygonal shape, for example, a square shape, when viewed from the diffuser 3 side, that is, when viewed in plan in the direction of the optical axis S of the LED chip 111a.
  • each side portion of the outer peripheral shape is continuous with the adjacent reflecting member 61.
  • the reflection member 61 is a base 611 having an opening 61a at the center, and an outer peripheral edge surrounding the base 611.
  • the reflection member 61 is a flat plate formed so as to be inclined away from the printed circuit board 12 as the distance from the LED chip 111a increases.
  • the reflecting member 61 constituted by the base 611 and the inclined portion 612 is provided in an inverted dome shape with the LED chip 111a as the center.
  • a characteristic configuration of the reflecting member 61 is that the inclined portion 612 is formed in a flat plate shape, and the outer peripheral edge of the inclined portion 612, that is, each side portion of the outer peripheral shape is adjacent to each other. It is connected with.
  • each LED chip 111a disposed at a position closest to each end portion facing each other with a second interval I2 on each printed circuit board 12 spaced apart with a second interval I2 in the second direction X2.
  • Each of the surrounding reflecting members 61 is formed such that each side facing each other protrudes away from each printed circuit board 12 and is continuous with each other.
  • the backlight unit 60 including such a reflective member 61
  • the backlight unit 60 is separated from each printed circuit board 12 in the vicinity of the opposite end portions of the printed circuit boards 12 that are separated from each other with a second interval I2 in the second direction X2.
  • the raised portion of the reflecting member 61 raised is located.
  • a space formed by the raised portions of the reflecting member 61 that are separated from the printed circuit boards 12, that is, a space formed between the inclined portions 612 that are connected to each other, is also included in the second heat radiation space 42.
  • the second heat radiation space 42 becomes larger, the flow of airflow in the second heat radiation space 42 can be made smooth. Therefore, it is possible to more effectively suppress heat from staying in the backlight unit 60, and to efficiently dissipate heat.

Landscapes

  • Physics & Mathematics (AREA)
  • Nonlinear Science (AREA)
  • Mathematical Physics (AREA)
  • Chemical & Material Sciences (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • General Physics & Mathematics (AREA)
  • Optics & Photonics (AREA)
  • Liquid Crystal (AREA)
  • Planar Illumination Modules (AREA)
  • Arrangement Of Elements, Cooling, Sealing, Or The Like Of Lighting Devices (AREA)
  • Led Device Packages (AREA)

Abstract

The present invention is related to a light-emitting device capable of efficiently radiating heat without heat accumulating in the device, and a display device provided with the light-emitting device. A backlight unit (1) includes a frame member (13) having a flat-plate-shaped bottom part (131), a plurality of print substrates (12) arranged on the bottom part (131), a plurality of LED chips (111a) in a linear arrangement on each of the print substrates (12), and a plurality of reflective members (113) provided on each of the print substrates (12) so as to surround each of the LED chips (111a). The plurality of print substrates (12) are arranged on the bottom part (131) of the frame member (13) so as to leave a first gap (I1) in a first direction (X1) and a second gap (I2) in a second direction (X2) orthogonal to the first direction (X1).

Description

発光装置および表示装置Light emitting device and display device
 本発明は、表示パネルの背面に光を照射するバックライトユニットに設けられる発光装置、この発光装置を備える表示装置に関する。 The present invention relates to a light emitting device provided in a backlight unit that irradiates light on the back surface of a display panel, and a display device including the light emitting device.
 表示パネルは、2枚の透明基板の間に液晶が封入され、電圧が印加されることにより液晶分子の向きが変えられ光透過率を変化させることで予め定められた映像等が光学的に表示される。この表示パネルには、液晶自体が発光体ではないので、たとえば透過型の表示パネルの背面側に冷陰極管(CCFL)、発光ダイオード(LED:Light Emitting Diode)などを光源とした光を照射するバックライトユニットが備えられる。 In the display panel, liquid crystal is sealed between two transparent substrates, and when a voltage is applied, the orientation of the liquid crystal molecules is changed and the light transmittance is changed to optically display a predetermined image or the like. Is done. In this display panel, the liquid crystal itself is not a light emitter. For example, the back side of a transmissive display panel is irradiated with light using a cold cathode tube (CCFL), a light emitting diode (LED) as a light source, or the like. A backlight unit is provided.
 バックライトユニットには、冷陰極管やLED等の光源を底面に並べて光を出す直下型と、冷陰極管やLED等の光源を導光板と呼ばれる透明な板のエッジ部に配して、導光板エッジから光を通して背面に設けられたドット印刷やパターン形状によって前面に光を出すエッジライト型とがある。 In the backlight unit, light sources such as cold-cathode tubes and LEDs are arranged on the bottom surface to emit light, and light sources such as cold-cathode tubes and LEDs are arranged on the edge of a transparent plate called a light guide plate. There is an edge light type that emits light to the front surface by dot printing or pattern shape provided on the back surface through light from the light plate edge.
 LEDは、低消費電力、長寿命、水銀を使わないことによる環境負荷低減などの優れた特性を有するが、価格的に高価であることと、青色発光LEDが発明されるまでは白色発光LEDがなかったことと、さらに、強い指向性を有していることから、バックライトユニットの光源としての利用が遅れていた。しかしながら近年、照明用途での高演色高輝度白色LEDが急速に普及しており、それに伴ってLEDが安価になってきているので、バックライトユニットの光源としては、冷陰極管からLEDへの移行が進んでいる。 LEDs have excellent characteristics such as low power consumption, long life, and reduced environmental load by not using mercury, but they are expensive in price and white LEDs are indispensable until blue LEDs are invented. The use of the backlight unit as a light source was delayed due to the absence of the light source and the strong directivity. However, in recent years, high color rendering high-intensity white LEDs for lighting applications have been rapidly spread, and the LEDs have become cheaper along with them. Therefore, as a light source of a backlight unit, a transition from a cold cathode tube to an LED has been made. Is progressing.
 LEDは強い指向性を有するので、表示パネルの表面の輝度がその面方向において均一となるように光を照射するという観点では、直下型よりもエッジライト型が有効である。しかしながら、エッジライト型のバックライトユニットは、導光板のエッジ部に集中して光源が配置されることにより光源によって生じた熱が集中するという問題とともに、表示パネルのベゼル部が大きくなるという問題が生じる。さらに、エッジライト型のバックライトユニットは、表示画像の高品質化および省電力化が可能な制御方法として注目されている部分的な調光制御(ローカルディミング)についても制約が大きく、表示画像の高品質化および省電力化が達成可能な小分割領域の制御ができないという問題がある。 Since the LED has strong directivity, the edge light type is more effective than the direct type from the viewpoint of irradiating light so that the brightness of the surface of the display panel is uniform in the surface direction. However, the edge light type backlight unit has a problem that heat generated by the light source is concentrated due to the light source being concentrated on the edge portion of the light guide plate, and the bezel portion of the display panel is enlarged. Arise. Furthermore, the edge light type backlight unit has a great restriction on partial dimming control (local dimming), which is attracting attention as a control method capable of improving the quality and power saving of a display image. There is a problem that it is not possible to control a small divided area where high quality and power saving can be achieved.
 そこで、部分的な調光制御に有利な直下型のバックライトユニットにおいて、強い指向性を有するLEDを光源として用いた場合であっても、輝度が均一となるように、光を表示パネルに照射することが可能な方法の検討が進められている。 Therefore, in a direct-type backlight unit that is advantageous for partial dimming control, even when an LED with strong directivity is used as the light source, light is irradiated onto the display panel so that the luminance is uniform. There are ongoing studies of possible ways to do this.
 たとえば、特許文献1には、表示パネルを複数の矩形領域に分割し、分割した複数の矩形領域毎に調光制御が可能となるように、各矩形領域に対応する複数の光源ユニットが連結されたバックライトユニットが開示されている。この特許文献1に開示されるバックライトユニットにおいて、各光源ユニットは、表示パネルの矩形領域に対応した大きさに形成される矩形状枠体と、矩形状枠体の底部の中央に発光面を上向きにして配置される発光素子と、発光素子の直上に配置され、頂点を下向きとする逆円錐形状に形成される導光反射体とを含んで構成される。 For example, in Patent Document 1, a display panel is divided into a plurality of rectangular areas, and a plurality of light source units corresponding to the respective rectangular areas are connected so that dimming control can be performed for each of the divided rectangular areas. A backlight unit is disclosed. In the backlight unit disclosed in Patent Document 1, each light source unit has a rectangular frame formed in a size corresponding to a rectangular area of the display panel, and a light emitting surface at the center of the bottom of the rectangular frame. The light-emitting element is configured to include an upward-facing light-emitting element, and a light-guide reflector that is disposed directly above the light-emitting element and has an inverted conical shape with the apex facing downward.
 特許文献1に開示される技術では、発光素子から出射された強い指向性を有する光を、導光反射体によって、発光素子の光軸と交差する方向に拡散させ、面方向において光量が均一化された光を表示パネルに照射することができる。 In the technique disclosed in Patent Document 1, light having a strong directivity emitted from a light emitting element is diffused in a direction intersecting the optical axis of the light emitting element by a light guide reflector so that the amount of light is uniform in the surface direction. The display panel can be irradiated with the emitted light.
特開2010-238420号公報JP 2010-238420 A
 しかしながら、特許文献1に開示される技術では、複数の光源ユニットは、それぞれ矩形状枠体によって仕切られているので、発光素子が発光することにより発生する熱が各矩形状枠体内で滞留しやすくなってしまう。このように、熱が滞留すると、発光素子に電力を供給するための回路における出力効率が低下するおそれがあるとともに、発光素子の寿命が短くなるおそれがある。 However, in the technique disclosed in Patent Document 1, since the plurality of light source units are each partitioned by a rectangular frame, heat generated by light emission from the light-emitting elements tends to stay in each rectangular frame. turn into. As described above, when heat is accumulated, output efficiency in a circuit for supplying power to the light emitting element may be reduced, and the life of the light emitting element may be shortened.
 したがって本発明の目的は、表示パネルを備える表示装置のバックライトユニットに用いられる発光装置において、装置内に熱が滞留することなく、効率よく放熱することができる発光装置、および、この発光装置を備える表示装置を提供することである。 Accordingly, an object of the present invention is to provide a light emitting device used in a backlight unit of a display device including a display panel, which can efficiently dissipate heat without stagnation of heat in the device, and the light emitting device. A display device is provided.
 本発明は、枠部と、枠部に囲まれる矩形板状の底部とからなる筐体と、
 第1方向に第1間隔をあけ、かつ、第1方向と直交する第2方向に第2間隔をあけて前記底部に配置される矩形板状の複数の基板と、
 前記各基板上に第2方向に等間隔で複数配置される、光を出射する発光素子と、
 前記各基板上に配置される複数の発光素子のそれぞれを囲むように前記各基板上に設けられ、前記各基板の第1方向両側部に対して延出し、外周形状が多角形状の複数の反射部材と、を含むことを特徴とする発光装置である。
The present invention includes a casing composed of a frame part and a rectangular plate-shaped bottom part surrounded by the frame part,
A plurality of rectangular plate-like substrates arranged at the bottom with a first interval in the first direction and a second interval in a second direction orthogonal to the first direction;
A plurality of light emitting elements that emit light and are arranged at equal intervals in the second direction on each of the substrates;
A plurality of reflections provided on each substrate so as to surround each of the plurality of light emitting elements disposed on each substrate, extending toward both sides in the first direction of each substrate, and having a polygonal outer peripheral shape. A light emitting device including the member.
 また本発明において、前記各基板の、第2間隔をあけて互いに対向する各端部の端面は、基板の第1方向一側部から他側部に向かうにつれて、互いに離間するように形成されることが好ましい。 In the present invention, the end surfaces of the respective end portions of the respective substrates facing each other with a second interval are formed so as to be separated from each other in the direction from one side portion in the first direction of the substrate toward the other side portion. It is preferable.
 また本発明において、前記各基板の、第2間隔をあけて互いに対向する各端部の端面は、互いに近接する方向に凸状に湾曲して形成されることが好ましい。 In the present invention, it is preferable that the end surfaces of the respective end portions of the respective substrates facing each other with a second interval be curved in a convex shape in a direction approaching each other.
 また本発明において、前記各基板の第2方向一端部には、各基板上に配置される各発光素子に駆動信号を入力するための駆動信号入力部が設けられていることが好ましい。 In the present invention, it is preferable that a drive signal input unit for inputting a drive signal to each light emitting element disposed on each substrate is provided at one end portion in the second direction of each substrate.
 また本発明において、第2方向に第2間隔をあけて離間して対を成す前記基板の少なくとも一部の基板は、互いに対向する各端部が、前記底部の第2方向中央部の両側に位置するように配置されていることが好ましい。 Also, in the present invention, at least some of the substrates that form a pair with a second interval in the second direction have opposite end portions on both sides of the center portion in the second direction of the bottom portion. It is preferable that it arrange | positions so that it may be located.
 また本発明において、前記各基板の第2間隔をあけて互いに対向する各端部に最も近い位置に配置される各発光素子を囲む各反射部材は、互いに対向する各辺部が各基板から離間して隆起し、互いに連なるように形成されることが好ましい。 In the present invention, each reflecting member surrounding each light emitting element disposed at a position closest to each end facing each other with a second interval between each substrate has each side facing each other separated from each substrate. And are preferably formed so as to be raised and continuous with each other.
 また本発明は、表示パネルと、
 前記表示パネルの背面に光を照射する前記発光装置とを備えることを特徴とする表示装置である。
The present invention also provides a display panel,
A display device comprising: the light emitting device that irradiates light on a back surface of the display panel.
 本発明によれば、発光装置は、筐体の底部に配置される矩形板状の複数の基板と、各基板上に整列配置される複数の発光素子と、各発光素子を囲むように各基板上に設けられる複数の反射部材とを含む。複数の基板は、第1方向に第1間隔をあけ、かつ、第1方向と直交する第2方向に第2間隔をあけて筐体の底部に配置されている。各発光素子は、各基板の第2方向に等間隔で、各基板上に配置される。各反射部材は、各基板の第1方向両側部に対して延出し、外周形状が多角形状である。 According to the present invention, the light-emitting device includes a plurality of rectangular plate-like substrates disposed at the bottom of the housing, a plurality of light-emitting elements arranged in alignment on each substrate, and each substrate surrounding each light-emitting element. And a plurality of reflecting members provided on the top. The plurality of substrates are arranged at the bottom of the housing with a first interval in the first direction and a second interval in a second direction orthogonal to the first direction. Each light emitting element is arrange | positioned on each board | substrate at equal intervals in the 2nd direction of each board | substrate. Each reflecting member extends to both sides in the first direction of each substrate, and the outer peripheral shape is a polygonal shape.
 発光素子が光を出射することで発生した熱は、各基板の第1方向両側部から延出した反射部材と、筐体の底部との間に存在する空気などの、発光素子の周辺に存在する空気を温める。 The heat generated when the light emitting element emits light exists in the vicinity of the light emitting element such as air existing between the reflecting member extending from both sides in the first direction of each substrate and the bottom of the housing. Warm up the air.
 本発明の発光装置では、筐体の底部と反射部材との間に介在する各基板が、第1方向に第1間隔をあけ、かつ、第1方向と直交する第2方向に第2間隔をあけて筐体の底部に配置されているので、筐体の底部と反射部材との間に存在する温められた空気は、第1方向に第1間隔をあけて離間する各基板の互いに対向する各側部の間に形成される空間(以下、「第1放熱空間」という)、および、第2方向に第2間隔をあけて離間する各基板の互いに対向する各端部の間に形成される空間(以下、「第2放熱空間」という)を、滞留することなく流れる。そのため、発光装置内に熱が滞留することなく、効率よく放熱することができる。 In the light emitting device of the present invention, each substrate interposed between the bottom of the housing and the reflecting member has a first interval in the first direction and a second interval in the second direction orthogonal to the first direction. Since the opening is disposed at the bottom of the casing, the heated air existing between the bottom of the casing and the reflecting member faces each other of the substrates spaced apart from each other with a first interval in the first direction. A space formed between the side portions (hereinafter referred to as “first heat dissipation space”) and each end portion of the substrates that are spaced apart from each other with a second interval in the second direction. Flow (hereinafter referred to as “second heat radiation space”) without staying. Therefore, heat can be efficiently radiated without heat remaining in the light emitting device.
 本発明によれば、各基板の第2間隔をあけて互いに対向する各端部の端面は、基板の第1方向一側部から他側部に向かうにつれて、互いに離間するように形成される。第1方向が鉛直方向に平行で、基板の第1方向一側部が鉛直方向上方側となるように、発光装置を配置して用いた場合、第2放熱空間を流れる気流は、基板の第1方向他側部側から一側部側に、空間幅が広い側から狭い側に流れるので、流速が速くなる。これによって、発光装置内に熱が滞留することをより効果的に抑制することができ、効率よく放熱することができる。 According to the present invention, the end surfaces of the end portions facing each other with a second interval between the substrates are formed so as to be separated from each other in the direction from the one side portion in the first direction of the substrate to the other side portion. When the light emitting device is arranged and used so that the first direction is parallel to the vertical direction and the first direction side of the substrate is on the upper side in the vertical direction, the airflow flowing through the second heat radiation space is Since the one-direction other side portion side flows to the one side portion side and the space width side to the narrow side, the flow velocity increases. Thereby, it is possible to more effectively suppress heat from staying in the light emitting device, and to efficiently dissipate heat.
 本発明によれば、各基板の第2間隔をあけて互いに対向する各端部の端面は、互いに近接する方向に凸状に湾曲して形成される。これによって、第2放熱空間を流れる気流が、乱流となるのを抑制することができるので、発光装置内に熱が滞留することをより効果的に抑制することができ、効率よく放熱することができる。 According to the present invention, the end surfaces of the end portions facing each other with a second interval between the substrates are formed to be curved in a convex shape in directions close to each other. As a result, it is possible to prevent the airflow flowing through the second heat dissipation space from becoming turbulent, and thus it is possible to more effectively suppress heat from being retained in the light emitting device, and to efficiently dissipate heat. Can do.
 本発明によれば、各基板の第2方向一端部、具体的には、第2方向に第2間隔をあけて離間する各基板の、第2間隔をあけて互いに対向する各端部とは反対側の端部には、各基板上に配置される各発光素子に駆動信号を入力するための駆動信号入力部が設けられている。これによって、装置内の熱を放熱するための第2放熱空間に駆動信号入力部が設けられることがないので、第2放熱空間における気流の流れをスムーズにすることができる。 According to the present invention, one end of each substrate in the second direction, specifically, each of the substrates spaced apart from each other in the second direction with a second interval is opposed to each other with a second interval. A drive signal input unit for inputting a drive signal to each light emitting element arranged on each substrate is provided at the opposite end. Accordingly, since the drive signal input unit is not provided in the second heat radiation space for radiating the heat in the apparatus, the airflow in the second heat radiation space can be made smooth.
 本発明によれば、第2方向に第2間隔をあけて離間して対を成す基板の少なくとも一部の基板は、互いに対向する各端部が、筐体の底部の第2方向中央部の両側に位置するように、底部に配置されている。このように構成された発光装置では、第2放熱空間が、筐体の底部の第2方向中央部に形成されることになるので、筐体の底部と反射部材との間に存在する温められた空気は、筐体の底部の第2方向中央部を流れ、これによって発光装置内の熱を放熱することができる。たとえば、一般家庭用のテレビジョン受像機などの表示装置に備えられるバックライトユニットとしての発光装置では、表示パネルに対応した形状、大きさに設定されている筐体の底部の中央部に対応する領域の発光強度が大きくされている。このような場合には、筐体の底部の中央部に熱が滞留しやすくなるが、筐体の底部の第2方向中央部に対応する領域に第2放熱空間を形成することによって、効率よく放熱することができる。 According to the present invention, at least some of the substrates that are separated from each other with a second interval in the second direction are opposed to each other at the end portions that face each other at the center in the second direction at the bottom of the housing. It arrange | positions at the bottom part so that it may be located on both sides. In the light emitting device configured as described above, the second heat radiating space is formed at the center in the second direction of the bottom portion of the housing, so that the warming that exists between the bottom portion of the housing and the reflecting member is heated. The air flowing in the center in the second direction at the bottom of the housing can radiate heat in the light emitting device. For example, in a light emitting device as a backlight unit provided in a display device such as a general-use television receiver, the shape corresponds to the central portion of the bottom portion of the housing set to a shape and size corresponding to the display panel. The emission intensity of the region is increased. In such a case, heat tends to stay in the central portion of the bottom portion of the housing. However, by forming the second heat radiation space in the region corresponding to the central portion in the second direction of the bottom portion of the housing, the heat can be efficiently obtained. It can dissipate heat.
 本発明によれば、各基板の第2間隔をあけて互いに対向する各端部に最も近い位置に配置される各発光素子を囲む各反射部材は、互いに対向する各辺部が各基板から離間して隆起し、互いに連なるように形成される。このように構成された発光装置では、第2方向に第2間隔をあけて離間する各基板の互いに対向する各端部の近傍に、各基板から離間して隆起した反射部材の隆起部分が位置することになる。これによって、反射部材の各基板から離間した隆起部分により形成される空間も、第2放熱空間に含まれることになる。したがって、第2放熱空間における気流の流れをスムーズにすることができるので、発光装置内に熱が滞留することをより効果的に抑制することができ、効率よく放熱することができる。 According to the present invention, each reflecting member surrounding each light emitting element disposed at a position closest to each end facing each other with a second interval between each substrate has each side facing each other separated from each substrate. And are formed so as to be continuous with each other. In the light emitting device configured as described above, the protruding portion of the reflecting member that protrudes away from each substrate is positioned in the vicinity of the opposing ends of each substrate that is spaced apart from each other by the second interval in the second direction. Will do. As a result, the space formed by the raised portions separated from the respective substrates of the reflecting member is also included in the second heat radiation space. Therefore, since the flow of the airflow in the second heat radiation space can be made smooth, it is possible to more effectively suppress heat from staying in the light emitting device, and heat can be efficiently radiated.
 本発明によれば、表示装置は、装置内に熱が滞留することなく効率よく放熱することができる、本発明に係る発光装置を含んで構成されるので、高画質画像を長期間にわたって表示パネルに表示することができる。 According to the present invention, the display device includes the light-emitting device according to the present invention, which can efficiently dissipate heat without stagnation in the device, so that a high-quality image can be displayed over a long period of time. Can be displayed.
 本発明の目的、特色、および利点は、下記の詳細な説明と図面とからより明確になるであろう。
本発明の実施の一形態に係る液晶表示装置の構成を示す分解斜視図である。 図1における切断面線A-Aで切断したときの液晶表示装置の断面を模式的に示す図である。 基台とLEDチップとを示す図である。 基台とLEDチップとを示す図である。 基台とLEDチップとを示す図である。 プリント基板に実装されたLEDチップおよび基台を示す図である。 基台に支持されたLEDチップとレンズとの位置関係を示す図である。 LEDチップから出射された光の光路を説明するための図である。 発光部が備える反射部材の構成を示す図である。 LEDチップから発生した熱が放熱される様子を説明するための図である。 第2方向X2に第2間隔I2をあけて離間する各プリント基板の互いに対向する各端部近傍の構成を拡大して示す斜視図である。 第2方向X2に第2間隔I2をあけて離間する各プリント基板の互いに対向する各端部の端面の形状を示す図である。 第2方向X2に第2間隔I2をあけて離間する各プリント基板の互いに対向する各端部の端面の形状を示す図である。 バックライトユニットにおける、第2方向X2に第2間隔I2をあけて離間する各プリント基板の互いに対向する各端部近傍の構成を拡大して示す分解斜視図である。 バックライトユニットにおける、第2方向X2に第2間隔I2をあけて離間する各プリント基板の互いに対向する各端部近傍の構成を拡大して示す斜視図である。
Objects, features, and advantages of the present invention will become more apparent from the following detailed description and drawings.
It is a disassembled perspective view which shows the structure of the liquid crystal display device which concerns on one Embodiment of this invention. FIG. 2 is a diagram schematically showing a cross section of the liquid crystal display device when cut along a cutting plane line AA in FIG. It is a figure which shows a base and an LED chip. It is a figure which shows a base and an LED chip. It is a figure which shows a base and an LED chip. It is a figure which shows the LED chip and base mounted in the printed circuit board. It is a figure which shows the positional relationship of the LED chip and lens which were supported by the base. It is a figure for demonstrating the optical path of the light radiate | emitted from the LED chip. It is a figure which shows the structure of the reflection member with which a light emission part is provided. It is a figure for demonstrating a mode that the heat which generate | occur | produced from the LED chip is radiated. It is a perspective view which expands and shows the structure of each edge part vicinity which mutually opposes each printed circuit board spaced apart by the 2nd space | interval I2 in the 2nd direction X2. It is a figure which shows the shape of the end surface of each edge part which mutually opposes each printed circuit board spaced apart by the 2nd space | interval I2 in the 2nd direction X2. It is a figure which shows the shape of the end surface of each edge part which mutually opposes each printed circuit board spaced apart by the 2nd space | interval I2 in the 2nd direction X2. FIG. 6 is an exploded perspective view showing, in an enlarged manner, a configuration in the vicinity of each end of the printed circuit boards that are spaced apart from each other with a second interval I2 in the second direction X2 in the backlight unit. It is a perspective view which expands and shows the structure of the edge part vicinity which mutually opposes each printed circuit board which leaves | separates the 2nd direction X2 in the 2nd direction X2 in a backlight unit.
 以下図面を参考にして本発明の好適な実施形態を詳細に説明する。
 図1は、本発明の実施の一形態に係る液晶表示装置100の構成を示す分解斜視図である。図2は、図1における切断面線A-Aで切断したときの液晶表示装置100の断面を模式的に示す図である。
Hereinafter, preferred embodiments of the present invention will be described in detail with reference to the drawings.
FIG. 1 is an exploded perspective view showing a configuration of a liquid crystal display device 100 according to an embodiment of the present invention. FIG. 2 is a diagram schematically showing a cross section of the liquid crystal display device 100 taken along the cutting plane line AA in FIG.
 本発明の表示装置である液晶表示装置100は、テレビジョン受像機またはパーソナルコンピュータなどにおいて、画像情報を出力することによって画像を表示画面に表示する装置である。表示画面は、液晶素子を有する透過型の表示パネルである液晶パネル2によって形成され、液晶パネル2は、矩形平板状に形成される。液晶パネル2において、厚み方向の2つの面を、前面21および背面22とする。液晶表示装置100は画像を、前面21から背面22に向かう方向に見て視認可能に表示する。 The liquid crystal display device 100 which is a display device of the present invention is a device that displays an image on a display screen by outputting image information in a television receiver or a personal computer. The display screen is formed by a liquid crystal panel 2 that is a transmissive display panel having liquid crystal elements, and the liquid crystal panel 2 is formed in a rectangular flat plate shape. In the liquid crystal panel 2, two surfaces in the thickness direction are a front surface 21 and a back surface 22. The liquid crystal display device 100 displays an image so as to be visible when viewed from the front surface 21 toward the rear surface 22.
 液晶表示装置100は、液晶パネル2と、複数の発光部11を含む、本発明に係る発光装置であるバックライトユニット1とを備える。 The liquid crystal display device 100 includes a liquid crystal panel 2 and a backlight unit 1 that includes a plurality of light emitting units 11 and is a light emitting device according to the present invention.
 液晶パネル2は、バックライトユニット1が備える、枠部と枠部に囲まれる底部131とからなる筐体であるフレーム部材13の底部131の底面131aと平行に、側壁部132により支持される。液晶パネル2は、2枚の基板を含み、厚み方向から見て長方形の板状に形成される。液晶パネル2は、TFT(Thin Film Transistor)等のスイッチング素子を含み、2枚の基板の隙間には液晶が注入されている。 The liquid crystal panel 2 is supported by the side wall portion 132 in parallel with the bottom surface 131a of the bottom portion 131 of the frame member 13 which is a casing including the frame portion and the bottom portion 131 surrounded by the frame portion. The liquid crystal panel 2 includes two substrates and is formed in a rectangular plate shape when viewed from the thickness direction. The liquid crystal panel 2 includes a switching element such as a TFT (Thin Film Transistor), and liquid crystal is injected into a gap between the two substrates.
 液晶パネル2は、背面22側に配置されるバックライトユニット1からの光がバックライトとして照射されることによって、表示機能を発揮する。前記2枚の基板には、液晶パネル2における画素の駆動制御用のドライバー(ソースドライバ)、種々の素子および配線が設けられている。 The liquid crystal panel 2 exhibits a display function when light from the backlight unit 1 disposed on the back surface 22 side is irradiated as a backlight. The two substrates are provided with drivers (source drivers) for driving the pixels in the liquid crystal panel 2, various elements, and wirings.
 また、液晶表示装置100において、液晶パネル2とバックライトユニット1との間には、拡散板3が、液晶パネル2に平行に配置される。この拡散板3が、被照射体となる。なお、液晶パネル2と拡散板3との間に、プリズムシート(図示せず)を配置してもよい。 Further, in the liquid crystal display device 100, a diffusion plate 3 is disposed between the liquid crystal panel 2 and the backlight unit 1 in parallel with the liquid crystal panel 2. This diffusion plate 3 becomes an irradiated body. A prism sheet (not shown) may be disposed between the liquid crystal panel 2 and the diffusion plate 3.
 拡散板3は、バックライトユニット1から照射される光を、面方向に拡散することによって、輝度が局所的に偏ることを防止する。プリズムシートは、拡散板3を介して背面22側から到達した光の進行の向きを、前面21側に向ける。拡散板3では、輝度が面方向に偏ることを防ぐために、光の進行方向は、ベクトル成分として、面方向の成分を多く含む。これに対しプリズムシートは、面方向のベクトル成分を多く含む光の進行方向を、厚み方向の成分を多く含む光の進行方向に変換する。具体的には、プリズムシートは、レンズまたはプリズム状に形成される部分が面方向に多数並んで形成され、これによって、厚み方向に進行する光の拡散度を小さくする。したがって、液晶表示装置100による表示において、輝度を上昇させることができる。 The diffusion plate 3 prevents the luminance from being locally biased by diffusing the light emitted from the backlight unit 1 in the surface direction. The prism sheet directs the traveling direction of the light reaching from the back surface 22 side through the diffusion plate 3 to the front surface 21 side. In the diffusing plate 3, in order to prevent the luminance from being biased in the surface direction, the traveling direction of light includes a lot of components in the surface direction as vector components. On the other hand, the prism sheet converts the traveling direction of light containing a lot of vector components in the surface direction into the traveling direction of light containing many components in the thickness direction. Specifically, the prism sheet is formed with a large number of lens or prism-shaped portions arranged in the plane direction, thereby reducing the diffusion of light traveling in the thickness direction. Therefore, the luminance can be increased in the display by the liquid crystal display device 100.
 バックライトユニット1は、液晶パネル2に背面22側から光を照射する直下型のバックライト装置である。バックライトユニット1は、拡散板3を介して液晶パネル2に光を照射する複数の発光部11と、複数のプリント基板12と、フレーム部材13とを含む。 The backlight unit 1 is a direct type backlight device that irradiates the liquid crystal panel 2 with light from the back surface 22 side. The backlight unit 1 includes a plurality of light emitting units 11 that irradiate light to the liquid crystal panel 2 through the diffusion plate 3, a plurality of printed circuit boards 12, and a frame member 13.
 フレーム部材13は、バックライトユニット1の基本構造体であり、液晶パネル2と予め定められた間隔をあけて対向する矩形平板状の底部131と、底部131に連なり底部131から立ち上がる側壁部132とからなる。底部131は、厚み方向から見て長方形に形成され、その大きさは液晶パネル2よりも少し大き目である。側壁部132は、底部131のうち短辺を成す2つの端部と、長辺を成す2つの端部とから液晶パネル2の前面21側に立ち上がって形成される。これによって、平板状の側壁部132が底部131の周囲に4つ、形成される。 The frame member 13 is a basic structure of the backlight unit 1, and has a rectangular flat plate-shaped bottom portion 131 that faces the liquid crystal panel 2 at a predetermined interval, and a side wall portion 132 that continues to the bottom portion 131 and rises from the bottom portion 131. Consists of. The bottom 131 is formed in a rectangular shape when viewed from the thickness direction, and its size is slightly larger than that of the liquid crystal panel 2. The side wall part 132 is formed to rise from the two end parts forming the short side of the bottom part 131 and the two end parts forming the long side to the front surface 21 side of the liquid crystal panel 2. As a result, four flat side wall portions 132 are formed around the bottom portion 131.
 プリント基板12は、フレーム部材13の底部131に固定される。プリント基板12は、たとえば、導電層が両面に形成されたガラスエポキシからなる基板である。本実施形態では、各プリント基板12は、長方形板状に形成され、その長辺(長手方向)が底部131の長辺方向と平行で、短辺(幅方向)が底部131の短辺方向と平行になるように、底部131に整列配置されている。 The printed circuit board 12 is fixed to the bottom 131 of the frame member 13. The printed circuit board 12 is, for example, a substrate made of glass epoxy having conductive layers formed on both sides. In this embodiment, each printed circuit board 12 is formed in a rectangular plate shape, and its long side (longitudinal direction) is parallel to the long side direction of the bottom part 131, and the short side (width direction) is the short side direction of the bottom part 131. It arranges in the bottom part 131 so that it may become parallel.
 複数のプリント基板12の底部131に対する配置状態の詳細については後述するが、複数のプリント基板12は、第1方向X1に第1間隔I1をあけ、かつ、第1方向X1と直交する第2方向X2に第2間隔I2をあけて、フレーム部材13の底部131に配置される。本実施形態では、前記第1方向X1は、フレーム部材13の底部131の短辺方向と平行で、前記第2方向X2は、底部131の長辺方向と平行である。各プリント基板12上には、複数の発光部11が、第2方向X2に平行な方向に等間隔で設けられている。 Although the details of the arrangement state of the plurality of printed circuit boards 12 with respect to the bottom 131 will be described later, the plurality of printed circuit boards 12 have a first direction I1 in the first direction X1 and a second direction orthogonal to the first direction X1. It is arranged on the bottom 131 of the frame member 13 with a second interval I2 from X2. In the present embodiment, the first direction X1 is parallel to the short side direction of the bottom 131 of the frame member 13, and the second direction X2 is parallel to the long side of the bottom 131. On each printed circuit board 12, a plurality of light emitting portions 11 are provided at equal intervals in a direction parallel to the second direction X2.
 複数の発光部11は、拡散板3を介して液晶パネル2に光を照射するものである。本実施形態では、複数の発光部11を1つの群として、拡散板3を介して液晶パネル2の背面22の全体にわたって対向するように、複数の発光部11が設けられたプリント基板12を複数並列に配列することで、発光部11がマトリクス状に設けられる。各発光部11は、被照射体である拡散板3側から平面視したとき、すなわち、フレーム部材13の底部131に垂直な方向から見て正方形に形成され、拡散板3の液晶パネル2側の面における輝度が5000cd/mとなるように規定され、一辺の長さは、たとえば55mmである。 The plurality of light emitting units 11 irradiate the liquid crystal panel 2 with light through the diffusion plate 3. In the present embodiment, a plurality of printed circuit boards 12 provided with a plurality of light emitting units 11 are disposed so as to face the entire back surface 22 of the liquid crystal panel 2 through the diffusion plate 3 with the plurality of light emitting units 11 as one group. By arranging in parallel, the light emitting units 11 are provided in a matrix. Each light emitting unit 11 is formed in a square shape when viewed from the side of the diffuser plate 3 that is an object to be irradiated, that is, when viewed from a direction perpendicular to the bottom 131 of the frame member 13, and on the liquid crystal panel 2 side of the diffuser plate 3. The luminance on the surface is defined to be 5000 cd / m 2, and the length of one side is, for example, 55 mm.
 複数の発光部11は、それぞれ、発光素子である発光ダイオード(LED)チップ111aと、LEDチップ111aを支持する基台111と、光学部材であるレンズ112と、反射部材113とを含む。 Each of the plurality of light emitting units 11 includes a light emitting diode (LED) chip 111a that is a light emitting element, a base 111 that supports the LED chip 111a, a lens 112 that is an optical member, and a reflecting member 113.
 図3A~図3Cは、基台111とLEDチップ111aとを示す図である。図3Aは平面図であり、図3Bは正面図であり、図3Cは底面図である。 3A to 3C are diagrams showing the base 111 and the LED chip 111a. 3A is a plan view, FIG. 3B is a front view, and FIG. 3C is a bottom view.
 基台111は、LEDチップ111aを支持するための部材であり、樹脂からなる。この基台111は、LEDチップ111aを支持する支持面が正方形に形成され、正方形の一辺の長さL1は、たとえば3mmである。また、基台111の高さは、たとえば1mmである。 The base 111 is a member for supporting the LED chip 111a and is made of resin. The base 111 has a square support surface for supporting the LED chip 111a, and the length L1 of one side of the square is, for example, 3 mm. Moreover, the height of the base 111 is 1 mm, for example.
 図3A~図3Cに示すように、基台111は、セラミックスからなる基台本体111gと、基台本体111gに設けられる2つの電極111cとを含んでおり、LEDチップ111aは、基台111の支持面となる基台本体111gの上面中央部に、接着部材111fで固定されている。2つの電極111cは、互いに離間しており、それぞれ、基台本体111gの上面、側面、および底面にわたって設けられる。LEDチップ111aの図示しない2つの端子と、2つの電極111cとは、2つのボンディングワイヤ111dによってそれぞれ接続されている。そして、LEDチップ111aおよびボンディングワイヤ111dは、シリコン樹脂などの透明樹脂111eによって封止されている。 As shown in FIGS. 3A to 3C, the base 111 includes a base body 111g made of ceramics and two electrodes 111c provided on the base body 111g. An adhesive member 111f fixes the base body 111g serving as a support surface to the center of the upper surface. The two electrodes 111c are spaced apart from each other, and are respectively provided over the top surface, the side surface, and the bottom surface of the base body 111g. Two terminals (not shown) of the LED chip 111a and the two electrodes 111c are connected by two bonding wires 111d, respectively. The LED chip 111a and the bonding wire 111d are sealed with a transparent resin 111e such as silicon resin.
 図4は、プリント基板12に実装されたLEDチップ111aおよび基台111を示す図である。LEDチップ111aは、基台111を介してプリント基板12に実装され、プリント基板12から離れる方向に光を出射する。LEDチップ111aは、発光部11を拡散板3側から平面視したとき、すなわち、フレーム部材13の底部131に垂直な方向から見たときに、基台111の中央部に位置する。複数の発光部11において、それぞれのLEDチップ111aによる光の出射の制御は、互いに独立して制御可能である。これによって、バックライトユニット1は、部分的な調光制御(ローカルディミング)が可能である。 FIG. 4 is a diagram showing the LED chip 111a and the base 111 mounted on the printed circuit board 12. As shown in FIG. The LED chip 111 a is mounted on the printed circuit board 12 via the base 111 and emits light in a direction away from the printed circuit board 12. The LED chip 111 a is located at the center of the base 111 when the light emitting unit 11 is viewed in plan from the diffuser plate 3 side, that is, when viewed from a direction perpendicular to the bottom 131 of the frame member 13. In the plurality of light emitting units 11, the light emission control by the LED chips 111 a can be controlled independently of each other. Thereby, the backlight unit 1 can perform partial dimming control (local dimming).
 プリント基板12にLEDチップ111aおよび基台111を実装するときには、まず、プリント基板12が備える導電層パターンの2つの接続端子部121の上に、それぞれ、半田を付け、その半田に、基台本体111gの底面に設けられる2つの電極111cがそれぞれ合致するように、たとえば図示しない自動機によって、プリント基板12に、基台111および基台111に固定されているLEDチップ111aを載置する。基台111および基台111に固定されているLEDチップ111aを載置したプリント基板12は、赤外線を照射するリフロー槽に送られ、半田は約260℃に熱せられ、基台111とプリント基板12とが半田付けされる。 When mounting the LED chip 111a and the base 111 on the printed circuit board 12, first, solder is respectively applied to the two connection terminal portions 121 of the conductive layer pattern included in the printed circuit board 12, and the base body is attached to the solder. The base 111 and the LED chip 111a fixed to the base 111 are placed on the printed circuit board 12 by, for example, an automatic machine (not shown) so that the two electrodes 111c provided on the bottom surface of 111g match each other. The printed circuit board 12 on which the base 111 and the LED chip 111a fixed to the base 111 are placed is sent to a reflow tank that irradiates infrared rays, and the solder is heated to about 260 ° C. And are soldered.
 複数の発光部11にそれぞれ備えられるLEDチップ111aは、発光部11を拡散板3側から平面視したとき、すなわち、フレーム部材13の底部131に垂直な方向から見たときに、マトリクス状に整列配置され、隣接するLEDチップ111a間の距離は、行方向および列方向ともに同じである。 The LED chips 111a provided in each of the plurality of light emitting units 11 are arranged in a matrix when the light emitting unit 11 is viewed in plan view from the diffusion plate 3 side, that is, when viewed from a direction perpendicular to the bottom 131 of the frame member 13. The distance between the LED chips 111a that are arranged and adjacent to each other is the same in both the row direction and the column direction.
 図5は、基台111に支持されたLEDチップ111aとレンズ112との位置関係を示す図である。 FIG. 5 is a diagram showing a positional relationship between the LED chip 111a supported on the base 111 and the lens 112. As shown in FIG.
 レンズ112は、LEDチップ111aを支持する基台111を覆うように、LEDチップ111aに、インサート成形により、当接して設けられ、LEDチップ111aから出射した光を複数の方向に反射または屈折させる。すなわち、レンズ112は、光を拡散させる。レンズ112は、透明なレンズであり、たとえばシリコン樹脂やアクリル樹脂などからなる。 The lens 112 is provided in contact with the LED chip 111a by insert molding so as to cover the base 111 supporting the LED chip 111a, and reflects or refracts light emitted from the LED chip 111a in a plurality of directions. That is, the lens 112 diffuses light. The lens 112 is a transparent lens, and is made of, for example, silicon resin or acrylic resin.
 レンズ112は、拡散板3を介して液晶パネル2に対向する面である上面112aが中央部に凹みを有して湾曲し、側面112bがLEDチップ111aの光軸Sと平行な略円柱状に形成され、光軸Sに直交する断面における直径L2がたとえば10mmであり、基台111に対して外方に延出し、かつ、基台111の側面(基台111の支持面に対して直交する4つの面)の少なくとも一部を覆うように設けられている。すなわち、レンズ112は、LEDチップ111aの光軸Sに直交する方向に関して基台111よりも大きい(レンズ112の直径L2は、基台111の支持面の一辺の長さL1よりも大きい)。このように、レンズ112が基台111に対して外方に延出して設けられることによって、LEDチップ111aから出射した光をレンズ112により広範囲に拡散させることができる。 In the lens 112, the upper surface 112a, which is a surface facing the liquid crystal panel 2 through the diffusion plate 3, is curved with a recess in the center, and the side surface 112b is in a substantially cylindrical shape parallel to the optical axis S of the LED chip 111a. The diameter L2 in the cross section formed and orthogonal to the optical axis S is, for example, 10 mm, extends outward with respect to the base 111, and is lateral to the base 111 (perpendicular to the support surface of the base 111. The four surfaces are provided so as to cover at least a part thereof. That is, the lens 112 is larger than the base 111 in the direction orthogonal to the optical axis S of the LED chip 111a (the diameter L2 of the lens 112 is larger than the length L1 of one side of the support surface of the base 111). As described above, the lens 112 is provided so as to extend outward with respect to the base 111, so that the light emitted from the LED chip 111a can be diffused by the lens 112 over a wide range.
 また、レンズ112の高さH1は、たとえば4.5mmであり、直径L2よりも小さい。換言すれば、レンズ112は、LEDチップ111aの光軸Sに直交する方向の長さ(直径L2)が、高さH1よりも大きい。このレンズ112に入射した光は、レンズ112の内部において光軸Sに交差する方向に拡散される。 Further, the height H1 of the lens 112 is 4.5 mm, for example, and is smaller than the diameter L2. In other words, the lens 112 has a length (diameter L2) in a direction orthogonal to the optical axis S of the LED chip 111a larger than the height H1. The light incident on the lens 112 is diffused in the direction intersecting the optical axis S inside the lens 112.
 上記のように、直径L2を高さH1よりも大きく設定するのは、バックライトユニット1の薄型化と液晶パネル2への光の均一照射のためである。バックライトユニット1を薄型化するためには、レンズ112の高さH1を小さく、すなわち、レンズ112を極力薄くする必要がある。しかしながら、レンズ112を薄くすると、液晶パネル2の背面22に照度むらが発生し易くなり、その結果、液晶パネル2の前面21に輝度むらが発生し易くなる。特に、隣接するLED111aの間の距離が長い場合、液晶パネル2の背面22において隣接するLEDチップ111aの間の領域は、LEDチップ111aから遠く離れており、照射光量が少なくなるので、その領域とLEDチップ111aに近接する領域との間で、照度むら(輝度むら)が生じ易くなる。 As described above, the reason why the diameter L2 is set to be larger than the height H1 is to make the backlight unit 1 thin and to uniformly irradiate the liquid crystal panel 2. In order to reduce the thickness of the backlight unit 1, it is necessary to reduce the height H1 of the lens 112, that is, to make the lens 112 as thin as possible. However, when the lens 112 is thinned, uneven illuminance tends to occur on the back surface 22 of the liquid crystal panel 2, and as a result, uneven brightness tends to occur on the front surface 21 of the liquid crystal panel 2. In particular, when the distance between the adjacent LEDs 111a is long, the area between the adjacent LED chips 111a on the back surface 22 of the liquid crystal panel 2 is far from the LED chip 111a, and the amount of irradiation light is reduced. Irradiance unevenness (brightness unevenness) is likely to occur between the region adjacent to the LED chip 111a.
 LEDチップ111aから照射された光を、レンズ112を介して、LEDチップ111aから遠く離れた領域に照射させるには、レンズ112の直径L2をある程度大きくする必要があり、本実施形態では、レンズ112の直径L2を、高さH1よりも大きくすることで、バックライトユニット1の薄型化と液晶パネル2への光の均一照射とを可能にしている。 In order to irradiate the light emitted from the LED chip 111a to a region far from the LED chip 111a via the lens 112, it is necessary to increase the diameter L2 of the lens 112 to some extent. In this embodiment, the lens 112 By making the diameter L2 of the light source larger than the height H1, the backlight unit 1 can be made thinner and the liquid crystal panel 2 can be uniformly irradiated with light.
 なお、仮に、レンズ112の高さH1よりも、レンズ112の直径L2を小さくした場合、薄型化および均一照射が困難となるばかりでなく、レンズ112とLEDチップ111aとを一体的に成形するインサート成形において、バランスが悪くなり易いという課題が生じる。また、LEDチップ111aおよび基台111bと、インサート成形されたレンズ112とからなる一体成形物をプリント基板12に半田付けする際に、バランスを崩し易く、組立上にも課題が生じる。 If the diameter L2 of the lens 112 is made smaller than the height H1 of the lens 112, not only thinning and uniform irradiation become difficult, but also an insert for integrally molding the lens 112 and the LED chip 111a. In molding, there is a problem that the balance tends to be poor. Further, when soldering an integrally molded product including the LED chip 111a and the base 111b and the insert-molded lens 112 to the printed circuit board 12, the balance is easily lost, and there is a problem in assembly.
 レンズ112の上面112aは、中央部分1121と、第1湾曲部分1122と、第2湾曲部分1123とを含んで構成される。レンズ112において、中央部に凹みを有して湾曲した上面112aは、到達した光を全反射させて側面112bから出射させる第1領域と、到達した光を外方に屈折させて出射する第2領域とを有する。第1領域は第1湾曲部分1122に形成され、第2領域は第2湾曲部分1123に形成される。 The upper surface 112a of the lens 112 includes a central portion 1121, a first curved portion 1122, and a second curved portion 1123. In the lens 112, the curved upper surface 112a having a dent in the central portion is a first region that totally reflects the emitted light and emits it from the side surface 112b, and a second region that refracts the emitted light outward and emits it. And having a region. The first region is formed in the first curved portion 1122, and the second region is formed in the second curved portion 1123.
 中央部分1121は、拡散板3を介して液晶パネル2に対向する上面112aの中央部に形成され、中央部分1121の中心(すなわち、レンズ112の光軸)は、LEDチップ111aの光軸S上に位置する。中央部分1121は、LEDチップ111aの発光面に平行な円形状に形成され、その直径L3は、たとえば1mmである。 The central portion 1121 is formed at the central portion of the upper surface 112a facing the liquid crystal panel 2 through the diffusion plate 3, and the center of the central portion 1121 (that is, the optical axis of the lens 112) is on the optical axis S of the LED chip 111a. Located in. The central portion 1121 is formed in a circular shape parallel to the light emitting surface of the LED chip 111a, and its diameter L3 is, for example, 1 mm.
 なお、本発明の他の実施形態としては、中央部分1121の形状を、上記円形状の代わりに、上記円形状を仮想的な底面とし、この底面からLEDチップ111aに向かって突出する円錐の側面形状にしてもよい。 As another embodiment of the present invention, the central portion 1121 has a circular bottom surface instead of the circular shape, and a conical side surface protruding from the bottom surface toward the LED chip 111a. You may make it a shape.
 中央部分1121は、被照射体である拡散板3において、中央部分1121に対向する領域に光を照射するために形成されている。ただし、中央部分1121はLEDチップ111aに対向する部分であるので、LEDチップ111aから出射される光の大半が中央部分1121に到達し、その大半の光がそのまま透過した場合、中央部分1121に対向する領域の照度が際立って大きくなる。そこで、中央部分1121の形状を、上記円錐の側面形状とすることが好ましい。上記円錐の側面形状とした場合、大半の光が中央部分1121で反射され、中央部分1121を透過する光は少なくなるので、中央部分1121に対向する領域の照度を抑えることができる。 The central portion 1121 is formed to irradiate light to a region facing the central portion 1121 in the diffusion plate 3 that is an irradiated body. However, since the central portion 1121 is a portion facing the LED chip 111a, most of the light emitted from the LED chip 111a reaches the central portion 1121, and when most of the light is transmitted as it is, it faces the central portion 1121. The illuminance of the area to be markedly increased. Therefore, it is preferable that the shape of the central portion 1121 is the side shape of the cone. In the case of the conical side surface shape, most of the light is reflected by the central portion 1121 and less light is transmitted through the central portion 1121, so that the illuminance of the region facing the central portion 1121 can be suppressed.
 第1湾曲部分1122は、中央部分1121の外周縁端部に連なり、外方に向かうにつれてLEDチップ111aの光軸S方向の一方(液晶パネル2に向かう方向)に延び、光軸S方向の一方に凸となるように湾曲した環状の曲面である。この曲面の形状は、LEDチップ111aから出射された光が全反射するように設計される。 The first curved portion 1122 is connected to the outer peripheral edge of the central portion 1121 and extends outward in one direction of the LED chip 111a in the optical axis S direction (direction toward the liquid crystal panel 2). It is an annular curved surface curved so as to be convex. The shape of this curved surface is designed so that the light emitted from the LED chip 111a is totally reflected.
 より詳細には、LEDチップ111aから出射された光のうち、第1湾曲部分1122に到達した光は、第1湾曲部分1122で全反射した後、レンズ112の側面112bを透過し、反射部材113へ向かう。反射部材113に到達した光は、反射部材113で拡散され、被照射体である拡散板3において、LEDチップ111aに対向していない領域に照射される。これにより、LEDチップ111aに対向していない領域への照射光量を増加させることができる。 More specifically, of the light emitted from the LED chip 111a, the light that has reached the first curved portion 1122 is totally reflected by the first curved portion 1122, and then passes through the side surface 112b of the lens 112, thereby reflecting the reflecting member 113. Head to. The light that has reached the reflecting member 113 is diffused by the reflecting member 113, and is irradiated on a region that is not opposed to the LED chip 111a in the diffusing plate 3 that is an irradiated body. Thereby, the irradiation light quantity to the area | region which is not facing LED chip 111a can be increased.
 第1湾曲部分1122は、LEDチップ111aから出射された光を全反射するために、LEDチップ111aから出射された光の入射角度が、臨界角φ以上となるように形成される。たとえば、レンズ112の材質をアクリル樹脂とするとき、アクリル樹脂の屈折率は「1.49」であり、空気の屈折率は「1」であるので、sinφ=1/1.49となる。この式から、臨界角φは42.1°となり、第1湾曲部分1122は、入射角度が42.1°以上となる形状に形成される。 The first curved portion 1122 is formed so that the incident angle of the light emitted from the LED chip 111a is greater than or equal to the critical angle φ in order to totally reflect the light emitted from the LED chip 111a. For example, when the lens 112 is made of an acrylic resin, the refractive index of the acrylic resin is “1.49” and the refractive index of air is “1”, so sinφ = 1 / 1.49. From this equation, the critical angle φ is 42.1 °, and the first curved portion 1122 is formed in a shape with an incident angle of 42.1 ° or more.
 第2湾曲部分1123は、第1湾曲部分1122の外周縁端部に連なり、外方に向かうにつれてLEDチップ111aの光軸S方向の他方に延び、光軸S方向の一方に凸となるように湾曲した環状の曲面である。 The second curved portion 1123 is connected to the outer peripheral edge portion of the first curved portion 1122, extends toward the other side in the optical axis S direction of the LED chip 111a, and protrudes to one side in the optical axis S direction. It is a curved annular curved surface.
 LEDチップ111aから出射された光のうち、第2湾曲部分1123に到達した光は、第2湾曲部分1123を透過するときに、屈折して、拡散板3および反射部材113に向かう。反射部材113に到達した光は、拡散して拡散板3に向かう。このように第2湾曲部分1123により拡散板3へ向かう光は、拡散板3において、中央部分1121および第1湾曲部分1122により光が照射される領域とは異なる領域に主に照射され、これによって光量の補完が行われる。なお、第2湾曲部分1123は、光を透過する必要があるので、LEDチップ111aから出射された光を全反射しないように、入射角度が42.1°未満となる形状に形成される。 Of the light emitted from the LED chip 111 a, the light that has reached the second curved portion 1123 is refracted and travels toward the diffusion plate 3 and the reflecting member 113 when passing through the second curved portion 1123. The light reaching the reflection member 113 is diffused and travels toward the diffusion plate 3. Thus, the light traveling toward the diffusion plate 3 by the second curved portion 1123 is mainly irradiated to a region different from the region irradiated with light by the central portion 1121 and the first curved portion 1122 in the diffusion plate 3. The amount of light is complemented. Since the second curved portion 1123 needs to transmit light, the incident angle is less than 42.1 ° so as not to totally reflect the light emitted from the LED chip 111a.
 このように、レンズ112は、中央部分1121の外周縁端部に、LEDチップ111aから出射された光をレンズ112の側面112bへ向けて全反射させる第1湾曲部分1122が形成され、その第1湾曲部分1122の外周縁端部に、LEDチップ111aから出射された光を屈折させる第2湾曲部分1123が形成されている。 As described above, the lens 112 is formed with the first curved portion 1122 that totally reflects the light emitted from the LED chip 111a toward the side surface 112b of the lens 112 at the outer peripheral edge portion of the central portion 1121. A second curved portion 1123 that refracts the light emitted from the LED chip 111a is formed at the outer peripheral edge of the curved portion 1122.
 LEDチップ111aは一般的に指向性が強く、光軸S付近の光量が極めて大きく、光軸Sに対する光の出射角度が大きくなればなるほど光量が小さくなる。したがって、LEDチップ111aの光軸S(すなわち、レンズ112の光軸)から比較的遠い領域への照射光量を大きくするためには、光軸Sに対する出射角度が大きな光を、この領域へ向けるのではなく、出射角度が小さな光を、この領域へ向ける必要がある。 The LED chip 111a generally has high directivity, the amount of light near the optical axis S is extremely large, and the amount of light decreases as the light emission angle with respect to the optical axis S increases. Therefore, in order to increase the amount of light emitted to the region relatively far from the optical axis S of the LED chip 111a (that is, the optical axis of the lens 112), light having a large emission angle with respect to the optical axis S is directed to this region. Instead, it is necessary to direct light having a small emission angle to this region.
 本実施形態では、上記のように、光軸Sが通る中央部分1121の周囲に、上記領域へ向けて光を全反射させる第1湾曲部分1122が隣接して形成されるので、この領域への照射光量を大きくすることができる。 In the present embodiment, as described above, the first curved portion 1122 that totally reflects light toward the region is formed around the central portion 1121 through which the optical axis S passes. The amount of irradiation light can be increased.
 これに対して、仮に、中央部分1121の周囲に、第2湾曲部分1123を隣接させて形成し、その第2湾曲部分1123の周囲に、第1湾曲部分1122を隣接して形成した場合、第1湾曲部分1122へ向かう光の光軸Sに対する出射角度が大きくなり、その結果、第1湾曲部分1122で全反射されて上記領域に照射される光の量は少なくなってしまう。この結果、拡散板3における輝度は不均一になる。 On the other hand, if the second curved portion 1123 is formed adjacent to the periphery of the central portion 1121, and the first curved portion 1122 is formed adjacent to the second curved portion 1123, The emission angle of the light toward the first curved portion 1122 with respect to the optical axis S increases, and as a result, the amount of light that is totally reflected by the first curved portion 1122 and applied to the region is reduced. As a result, the luminance in the diffusion plate 3 becomes non-uniform.
 図6は、LEDチップ111aから出射された光の光路を説明するための図である。LEDチップ111aから出射した光は、レンズ112に入射し、このレンズ112で拡散される。具体的には、レンズ112に入射した光のうち、拡散板3を介して液晶パネル2に対向する上面112aにおいて中央部分1121に到達した光は、液晶パネル2に向けて矢符A1方向に出射され、第1湾曲部分1122に到達した光は、全反射して側面112bから矢符A2方向に出射され、第2湾曲部分1123に到達した光は、外方(LEDチップ111aから遠ざかる方向)に屈折して液晶パネル2に向けて矢符A3方向に出射される。 FIG. 6 is a diagram for explaining an optical path of light emitted from the LED chip 111a. Light emitted from the LED chip 111 a enters the lens 112 and is diffused by the lens 112. Specifically, of the light incident on the lens 112, the light that has reached the central portion 1121 on the upper surface 112 a facing the liquid crystal panel 2 through the diffusion plate 3 is emitted in the direction of the arrow A 1 toward the liquid crystal panel 2. The light reaching the first curved portion 1122 is totally reflected and emitted from the side surface 112b in the direction of the arrow A2, and the light reaching the second curved portion 1123 is outward (a direction away from the LED chip 111a). The light is refracted and emitted toward the liquid crystal panel 2 in the direction of the arrow A3.
 また、本実施形態では、LEDチップ111aとレンズ112とは、互いの光軸が一致する、すなわち、レンズ112の中心(すなわち、レンズ112の光軸)がLEDチップ111aの光軸S上に位置し、レンズ112がLEDチップ111aに当接するように、予め高精度に位置合わせされて形成されている。 In the present embodiment, the LED chip 111a and the lens 112 have the same optical axis, that is, the center of the lens 112 (that is, the optical axis of the lens 112) is positioned on the optical axis S of the LED chip 111a. In addition, the lens 112 is preliminarily aligned with high accuracy so as to contact the LED chip 111a.
 LEDチップ111aとレンズ112とを、予め位置合わせして形成する方法としては、インサート成形、所定の形状に成形されたレンズ112に基台111に支持されたLEDチップ111aを嵌合させる方法などを挙げることができる。本実施形態では、LEDチップ111aとレンズ112とは、インサート成形により、予め位置合わせされて形成されている。 As a method of forming the LED chip 111a and the lens 112 by aligning them in advance, insert molding, a method of fitting the LED chip 111a supported by the base 111 to the lens 112 molded into a predetermined shape, and the like. Can be mentioned. In the present embodiment, the LED chip 111a and the lens 112 are formed by being previously aligned by insert molding.
 インサート成形する際には、大きく分けて、上面金型と下面金型とを使用する。上面金型と下面金型とを合わせた際に形成される空間に、LEDチップ111aを保持した状態で、レンズ112の原料となる樹脂を樹脂流入口から注入することにより成形する。なお、上面金型と下面金型とを合わせた際に形成される空間に、基台111に支持されたLEDチップ111aを保持した状態で、レンズ112の原料となる樹脂を樹脂注入口から注入することにより成形するようにしてもよい。 ¡When insert molding, roughly divided into upper and lower molds. Molding is performed by injecting a resin, which is a raw material of the lens 112, from a resin inlet into a space formed when the upper surface mold and the lower surface mold are combined. In addition, in a state where the LED chip 111a supported by the base 111 is held in a space formed when the upper surface mold and the lower surface mold are combined, a resin as a raw material of the lens 112 is injected from the resin injection port. You may make it shape | mold by doing.
 このように、LEDチップ111aとレンズ112とをインサート成形により形成することによって、レンズ112がLEDチップ111aに当接するように、高精度に位置合わせすることができる。 Thus, by forming the LED chip 111a and the lens 112 by insert molding, the lens 112 can be aligned with high accuracy so that it abuts the LED chip 111a.
 これによって、バックライトユニット1は、LEDチップ111aからレンズ112を介して出射した光を、LEDチップ111aに当接したレンズ112により、精度よく反射および屈折させることができるので、拡散板3からプリント基板12までの距離H3が小さい薄型化された液晶表示装置100においても、輝度がその面方向において均一となるように、光を拡散板3を介して液晶パネル2に照射することができる。 Thus, the backlight unit 1 can accurately reflect and refract the light emitted from the LED chip 111a through the lens 112 by the lens 112 in contact with the LED chip 111a. Even in the thinned liquid crystal display device 100 in which the distance H3 to the substrate 12 is small, the liquid crystal panel 2 can be irradiated with light through the diffusion plate 3 so that the luminance is uniform in the surface direction.
 図7は、発光部11が備える反射部材113の構成を示す図である。図7は、第2方向X2に第2間隔I2をあけて離間する各プリント基板12の互いに対向する各端部近傍を拡大して示す。 FIG. 7 is a diagram illustrating a configuration of the reflecting member 113 included in the light emitting unit 11. FIG. 7 is an enlarged view of the vicinity of the opposing end portions of the printed circuit boards 12 that are spaced apart from each other with a second interval I2 in the second direction X2.
 反射部材113は、LEDチップ111aが支持された基台111の周囲に設けられ、レンズ112から出射された光を、拡散板3を介して液晶パネル2へ向けて反射する。反射部材113は、拡散板3側から平面視したとき、すなわち、LEDチップ111aの光軸S方向に平面視したときの外周形状が多角形状、たとえば正方形状である。この反射部材113は、各プリント基板12の第1方向X1に平行な幅方向両側部から外方に延出している。 The reflection member 113 is provided around the base 111 on which the LED chip 111 a is supported, and reflects the light emitted from the lens 112 toward the liquid crystal panel 2 through the diffusion plate 3. The reflection member 113 has a polygonal shape, for example, a square shape, when viewed from the diffuser 3 side, that is, when viewed in plan in the direction of the optical axis S of the LED chip 111a. The reflecting member 113 extends outward from both sides in the width direction parallel to the first direction X1 of each printed circuit board 12.
 また、反射部材113は、LEDチップ111aの光軸S方向に平面視したときに、外周形状の各辺部が、隣接する反射部材113同士で連なる。これによって、隣接する発光部11において、LEDチップ111a間の距離が同じになるので、拡散板3の液晶パネル2側の面における輝度均一性をより向上することができる。 Further, when the reflecting member 113 is viewed in plan in the direction of the optical axis S of the LED chip 111a, each side portion of the outer peripheral shape is continuous with the adjacent reflecting member 113. As a result, the distance between the LED chips 111a is the same in the adjacent light emitting sections 11, so that the luminance uniformity on the surface of the diffusion plate 3 on the liquid crystal panel 2 side can be further improved.
 反射部材113は、中心に開口部113aが設けられた、平板状、具体的には、1辺の長さが38.8mmの正方形平板状の基部1131と、基部1131を取り囲む外周縁部であり、LEDチップ111aから遠ざかるにつれてプリント基板12から遠ざかるように傾斜する傾斜面を有する傾斜部1132とを有する。基部1131と傾斜部1132とによって構成される反射部材113は、LEDチップ111aを中心とした逆ドーム状に設けられる。 The reflecting member 113 is a flat plate-like base portion 1131 having an opening 113a at the center, specifically, a square flat plate-like base portion 1131 having a side length of 38.8 mm, and an outer peripheral edge portion surrounding the base portion 1131. And an inclined portion 1132 having an inclined surface that inclines so as to move away from the printed circuit board 12 as it moves away from the LED chip 111a. The reflecting member 113 configured by the base portion 1131 and the inclined portion 1132 is provided in an inverted dome shape with the LED chip 111a as the center.
 本実施形態では、反射部材113は、LEDチップ111aの光軸S方向に平面視したときの外周形状が正方形状であり、その正方形状の対角線について線対称に構成される。また、正方形状の中心点について90°回転対称に構成される。 In the present embodiment, the reflecting member 113 has a square outer peripheral shape when viewed in plan in the direction of the optical axis S of the LED chip 111a, and is configured to be line-symmetric with respect to the square diagonal line. Further, the center point of the square shape is configured to be 90 ° rotationally symmetric.
 基部1131は、LEDチップ111aの光軸S方向に平面視したときの正方形状の各辺が、マトリクス状に、すなわち整列配置される複数のLEDチップ111aの行方向または列方向と平行になるように形成される。また、基部1131は、プリント基板12に沿って形成され、光軸S方向に平面視したときに、中央部に円形状の開口部113aが設けられる。この円形状の開口部113aの直径は、レンズ112の直径L2よりも少し小さく設定されており、この開口部113aにレンズ112が挿通される。基部1131は、各プリント基板12の第1方向X1に平行な幅方向両側部から外方に延出している。 The base 1131 is such that each side of the square shape when viewed in plan in the direction of the optical axis S of the LED chip 111a is in a matrix, that is, parallel to the row direction or column direction of the plurality of LED chips 111a arranged in alignment. Formed. The base 1131 is formed along the printed circuit board 12 and is provided with a circular opening 113a at the center when viewed in plan in the direction of the optical axis S. The diameter of the circular opening 113a is set to be slightly smaller than the diameter L2 of the lens 112, and the lens 112 is inserted through the opening 113a. The base 1131 extends outward from both sides in the width direction parallel to the first direction X1 of each printed circuit board 12.
 傾斜部1132は、基部1131の外周形状の各辺部に連なり、外方(LEDチップ111aから遠ざかる方向)になるにつれてプリント基板12から離反するように傾斜して延びる傾斜面を有する。傾斜部1132の傾斜面とプリント基板12との間の傾斜角度θ1は、たとえば80°である。また、光軸S方向における傾斜部1132の高さH2は、たとえば4mmである。 The inclined portion 1132 is connected to each side of the outer peripheral shape of the base portion 1131, and has an inclined surface extending in an inclined manner so as to be separated from the printed circuit board 12 as it goes outward (in a direction away from the LED chip 111 a). An inclination angle θ1 between the inclined surface of the inclined portion 1132 and the printed circuit board 12 is, for example, 80 °. Further, the height H2 of the inclined portion 1132 in the direction of the optical axis S is, for example, 4 mm.
 また、本実施形態では、反射部材113のプリント基板12に対する遠端部、すなわち、傾斜部1132の光軸S方向における拡散板3側の先端部と、拡散板3との間には、隙間Gが形成されている。発光部11では、面方向にLEDチップ111aから遠ざかるにつれて、光量が低下する傾向にある。前記隙間Gが形成されていることによって、隣接する発光部11同士において、互いに照射される光の一部が前記隙間Gから入り込み、光量の低下を補うことができる。したがって、面方向における光量の均一性をより向上することができる。 In the present embodiment, a gap G is formed between the diffusion plate 3 and the far end of the reflecting member 113 with respect to the printed circuit board 12, that is, the tip of the inclined portion 1132 on the diffusion plate 3 side in the optical axis S direction. Is formed. In the light emitting unit 11, the amount of light tends to decrease as the distance from the LED chip 111a increases in the surface direction. By forming the gap G, a part of the light emitted from each other between the adjacent light emitting portions 11 can enter the gap G to compensate for a decrease in the amount of light. Therefore, the uniformity of the light quantity in the surface direction can be further improved.
 基部1131および傾斜部1132は、高輝性PET(Polyethylene 
Terephthalate)、アルミニウムなどからなる。高輝性PETとは、蛍光剤を含有した発泡性PETであり、たとえば、東レ株式会社製のE60V(商品名)などを挙げることができる。基部1131の厚みは、たとえば0.1~0.5mmである。
The base portion 1131 and the inclined portion 1132 are made of highly bright PET (Polyethylene
Terephthalate) and aluminum. High-brightness PET is foamable PET containing a fluorescent agent, and examples thereof include E60V (trade name) manufactured by Toray Industries, Inc. The thickness of the base 1131 is, for example, 0.1 to 0.5 mm.
 基部1131および傾斜部1132を含む反射部材113は、その全反射率が、LEDチップ111aから出射される可視光に対して、たとえば、80%~100%であり、本実施形態では、97%である。全反射率は、JIS-K-7375に準拠して測定することができる。 The reflection member 113 including the base portion 1131 and the inclined portion 1132 has a total reflectance of, for example, 80% to 100% with respect to visible light emitted from the LED chip 111a, and in this embodiment, 97%. is there. The total reflectance can be measured according to JIS-K-7375.
 上記のように構成され、複数の発光部11にそれぞれ備えられる反射部材113は、互いに一体的に成形されるのが好ましい。複数の反射部材113を一体成形する方法としては、反射部材113が高輝性PETにより構成されている場合には押出成形加工、真空成形加工を挙げることができ、反射部材113がアルミニウムにより構成されている場合にはプレス加工を挙げることができる。 It is preferable that the reflection members 113 configured as described above and provided in each of the plurality of light emitting units 11 are integrally formed with each other. As a method of integrally molding the plurality of reflecting members 113, when the reflecting member 113 is made of high-brightness PET, extrusion molding and vacuum forming can be mentioned, and the reflecting member 113 is made of aluminum. If it is, press working can be mentioned.
 たとえば、高輝性PETからなる複数の反射部材113を、真空成形加工により一体成形する場合には、以下のようにして成形する。 For example, when a plurality of reflecting members 113 made of high-brightness PET are integrally formed by vacuum forming, they are formed as follows.
 まず、高輝性PETにより作製されたシートを加熱軟化させた後、予め真空吸引のための小穴(真空穴)を多数あけた型の上部に固定する。次に、型またはシートを移動させ、シートと型の間を空気が漏れないように密閉した後、真空穴を通して内部の空気を急速に排除する。シートは内部が減圧となるため大気圧により型面上に押付けられ、型の形状を忠実に再現する。このようにして成形されたものを冷却後に型から取出し、一体成形された反射部材113を製造することができる。このような加工方法で反射部材113を一体成形することによって、基部1131および傾斜部1132の厚みが同じであり、その厚みの均一性に優れた反射部材113を製造することができる。 First, after heating and softening a sheet made of high-brightness PET, it is fixed to the upper part of a mold in which a large number of small holes (vacuum holes) for vacuum suction are formed in advance. Next, after the mold or sheet is moved and sealed between the sheet and the mold so that air does not leak, the internal air is rapidly removed through the vacuum hole. Since the inside of the sheet is depressurized, it is pressed onto the mold surface by atmospheric pressure, and the shape of the mold is faithfully reproduced. What was molded in this way can be taken out of the mold after cooling, and the integrally formed reflecting member 113 can be manufactured. By integrally forming the reflecting member 113 by such a processing method, the reflecting member 113 having the same thickness of the base portion 1131 and the inclined portion 1132 and having excellent thickness uniformity can be manufactured.
 複数の発光部11にそれぞれ備えられる反射部材113を一体成形することによって、複数の発光部11のプリント基板12に対する配置位置の精度を向上することができるとともに、バックライトユニット1の組立作業時に、反射部材113を取り付ける作業数を低減することができるので、組立作業の効率を向上することができる。 By integrally forming the reflecting member 113 provided in each of the plurality of light emitting units 11, it is possible to improve the accuracy of the arrangement position of the plurality of light emitting units 11 with respect to the printed circuit board 12, and at the time of the assembly operation of the backlight unit 1, Since the number of operations for attaching the reflecting member 113 can be reduced, the efficiency of the assembly operation can be improved.
 以上のように構成されるバックライトユニット1を備える液晶表示装置100における、LEDチップ111aから出射した光の光路について図6を用いて説明する。 The optical path of the light emitted from the LED chip 111a in the liquid crystal display device 100 including the backlight unit 1 configured as described above will be described with reference to FIG.
 バックライトユニット1において、LEDチップ111aから出射し、レンズ112に入射した光のうち、拡散板3を介して液晶パネル2に対向する上面112aにおいて中央部分1121に到達した光は、液晶パネル2に向けて矢符A1方向に出射され、第1湾曲部分1122に到達した光は、反射して側面112bから矢符A2方向に出射され、第2湾曲部分1123に到達した光は、外方に屈折して液晶パネル2に向けて矢符A3方向に出射される。 In the backlight unit 1, of the light emitted from the LED chip 111 a and incident on the lens 112, the light reaching the central portion 1121 on the upper surface 112 a facing the liquid crystal panel 2 through the diffusion plate 3 is transmitted to the liquid crystal panel 2. The light emitted toward the arrow A1 and reaching the first curved portion 1122 is reflected and emitted from the side surface 112b in the arrow A2 direction, and the light reaching the second curved portion 1123 is refracted outward. Then, it is emitted toward the liquid crystal panel 2 in the direction of the arrow A3.
 そして、レンズ112から出射した光のうち、側面112bから出射した光(出射方向が光軸Sに交差する方向である光)は、反射部材113の傾斜部1132に入射する。この反射部材113の傾斜部1132は、外方(LEDチップ111aから遠ざかる方向)になるにつれてプリント基板12から離反して延びるので、傾斜部1132に入射した光を、プリント基板12に平行な液晶パネル2側に反射させることができ、面方向において傾斜部1132に対応した領域の光量を増加させることができる。 Of the light emitted from the lens 112, the light emitted from the side surface 112 b (light whose emission direction intersects the optical axis S) is incident on the inclined portion 1132 of the reflecting member 113. The inclined portion 1132 of the reflecting member 113 extends away from the printed circuit board 12 as it goes outward (in the direction away from the LED chip 111a), so that the light incident on the inclined section 1132 is parallel to the printed circuit board 12. The amount of light in the region corresponding to the inclined portion 1132 in the surface direction can be increased.
 次に、本実施形態のバックライトユニット1において特徴的な構成である、LEDチップ111aから発生した熱を放熱するための構成について説明する。 Next, a configuration for radiating the heat generated from the LED chip 111a, which is a characteristic configuration of the backlight unit 1 of the present embodiment, will be described.
 図8は、LEDチップ111aから発生した熱が放熱される様子を説明するための図である。図9は、第2方向X2に第2間隔I2をあけて離間する各プリント基板12の、第2間隔I2をあけて互いに対向する各端部近傍の構成を拡大して示す斜視図である。 FIG. 8 is a diagram for explaining how heat generated from the LED chip 111a is dissipated. FIG. 9 is an enlarged perspective view showing the configuration in the vicinity of the end portions of the printed circuit boards 12 that are spaced apart from each other in the second direction X2 with a second spacing I2 and that face each other with a second spacing I2.
 本実施形態では、前述したように、各プリント基板12は、フレーム部材13の底部131と反射部材113との間において、その幅方向が第1方向X1と平行で、かつ長手方向が第2方向X2と平行になるように、フレーム部材13の底部131に整列配置されている。そして、複数のプリント基板12は、第1方向X1に第1間隔I1をあけ、かつ、第1方向X1と直交する第2方向X2に第2間隔I2をあけて、フレーム部材13の底部131に配置される。本実施形態では、複数のプリント基板12は、第2方向X2に2列で配置されている。 In the present embodiment, as described above, each printed circuit board 12 has a width direction parallel to the first direction X1 and a longitudinal direction in the second direction between the bottom 131 of the frame member 13 and the reflection member 113. The frame member 13 is aligned with the bottom 131 so as to be parallel to X2. The plurality of printed circuit boards 12 are spaced from the bottom 131 of the frame member 13 with a first interval I1 in the first direction X1 and a second interval X2 in the second direction X2 orthogonal to the first direction X1. Be placed. In the present embodiment, the plurality of printed circuit boards 12 are arranged in two rows in the second direction X2.
 また、バックライトユニット1は、プリント基板12の第1方向X1に平行な幅方向が鉛直方向に一致し、第2方向X2に平行な長手方向が水平方向に一致するように配置されている。 The backlight unit 1 is arranged so that the width direction parallel to the first direction X1 of the printed circuit board 12 matches the vertical direction, and the longitudinal direction parallel to the second direction X2 matches the horizontal direction.
 LEDチップ111aが光を出射することで発生した熱は、反射部材113およびプリント基板12を伝導し、各プリント基板12の第1方向X1に平行な幅方向両側部から延出した反射部材113と、フレーム部材13の底部131との間に存在する空気などの、LEDチップ111aの周辺に存在する空気を温める。 The heat generated when the LED chip 111a emits light is conducted through the reflecting member 113 and the printed board 12, and the reflecting member 113 extending from both sides in the width direction parallel to the first direction X1 of each printed board 12 and The air existing around the LED chip 111a such as the air existing between the bottom 131 of the frame member 13 is heated.
 本実施形態のバックライトユニット1では、フレーム部材13の底部131と反射部材113との間に介在する各プリント基板12が、第1方向X1に第1間隔I1をあけ、かつ、第1方向X1と直交する第2方向X2に第2間隔I2をあけて底部131に配置されているので、フレーム部材13の底部131と反射部材113との間に存在する温められた空気は、底部131と反射部材113との間において、第1方向X1に第1間隔I1をあけて離間する各プリント基板12の、第1間隔I1をあけて互いに対向する各側部の間に形成される水平方向に延びる空間41(以下、「第1放熱空間41」という)、および、第2方向X2に第2間隔I2をあけて離間する各プリント基板12の、第2間隔I2をあけて互いに対向する各端部の間に形成される鉛直方向に延びる空間42(以下、「第2放熱空間42」という)を、滞留することなく流れる。 In the backlight unit 1 of the present embodiment, each printed circuit board 12 interposed between the bottom 131 of the frame member 13 and the reflecting member 113 has a first interval I1 in the first direction X1 and the first direction X1. Is disposed at the bottom 131 with a second interval I2 in the second direction X2 orthogonal to the warm air that exists between the bottom 131 of the frame member 13 and the reflecting member 113 is reflected from the bottom 131. The printed circuit boards 12 that are spaced apart from each other with the member 113 in the first direction X1 extend in the horizontal direction formed between the side portions facing each other with the first distance I1. Space 41 (hereinafter referred to as “first heat radiation space 41”) and each end of the printed circuit boards 12 that are spaced apart from each other in the second direction X2 with a second spacing I2 facing each other with a second spacing I2. Space 42 extending in the vertical direction is formed between (hereinafter, referred to as "second heat radiation space 42") to flow without staying.
 具体的には、反射部材113およびプリント基板12を伝導した熱は、気流を形成して水平方向に延びる第1放熱空間41をプリント基板12の長手方向(第2方向X2に平行)に沿って流れる。そして、プリント基板12の長手方向に沿って流れる気流が、第2方向X2に第2間隔I2をあけて離間する各プリント基板12の、第2間隔I2をあけて互いに対向する各端部に到達すると、鉛直方向に延びる第2放熱空間42を上昇気流を形成して流れる。これによって、バックライトユニット1内に熱が滞留することなく、効率よく放熱することができる。 Specifically, the heat conducted through the reflecting member 113 and the printed board 12 forms an air flow in the first heat radiation space 41 extending in the horizontal direction along the longitudinal direction of the printed board 12 (parallel to the second direction X2). Flowing. And the airflow which flows along the longitudinal direction of the printed circuit board 12 reaches each edge part which mutually opposes the 2nd space | interval I2 of each printed circuit board 12 which leaves | separates the 2nd direction X2 with the 2nd space | interval I2. Then, an upward airflow is formed and flows through the second heat radiation space 42 extending in the vertical direction. Accordingly, heat can be efficiently radiated without heat remaining in the backlight unit 1.
 また、第1放熱空間41および第2放熱空間42は、フレーム部材13の底部131と反射部材113との間に形成されているので、反射部材113の底部131と対向する側とは反対側の領域、すなわち、拡散板3の光照射面側の領域には、第1放熱空間41および第2放熱空間42を流れる気流が流れ込まない。そのため、気流にのって埃などの異物が、拡散板3の光照射面側の領域に流れ込むことを防止した上で、効率よく放熱することができる。 Further, since the first heat radiating space 41 and the second heat radiating space 42 are formed between the bottom 131 of the frame member 13 and the reflecting member 113, the side opposite to the side facing the bottom 131 of the reflecting member 113 is opposite. The airflow flowing through the first heat radiation space 41 and the second heat radiation space 42 does not flow into the region, that is, the region on the light irradiation surface side of the diffusion plate 3. Therefore, it is possible to efficiently dissipate heat while preventing foreign matters such as dust from flowing into the region on the light irradiation surface side of the diffusion plate 3 on the airflow.
 また、本実施形態では、図8に示すように、第2方向X2に第2間隔I2をあけて離間する各プリント基板12の、第2間隔I2をあけて互いに対向する各端部とは反対側の端部には、各プリント基板12上に配置される各LEDチップ111aに駆動信号を入力するための駆動信号入力部である駆動信号入力コネクタ12aが設けられている。これによって、バックライトユニット1内の熱を放熱するための第1放熱空間41および第2放熱空間42に駆動信号入力コネクタ12aが設けられることがないので、第1放熱空間41および第2放熱空間42における気流の流れをスムーズにすることができる。 Further, in the present embodiment, as shown in FIG. 8, the printed circuit boards 12 that are spaced apart in the second direction X <b> 2 with a second spacing I <b> 2 are opposite to the end portions that face each other with a second spacing I <b> 2. A drive signal input connector 12a that is a drive signal input unit for inputting a drive signal to each LED chip 111a disposed on each printed circuit board 12 is provided at the end on the side. Accordingly, the drive signal input connector 12a is not provided in the first heat radiation space 41 and the second heat radiation space 42 for radiating the heat in the backlight unit 1, and thus the first heat radiation space 41 and the second heat radiation space. The airflow in 42 can be made smooth.
 また、本実施形態では、図8に示すように、複数のプリント基板12のうち、第2方向X2に第2間隔I2をあけて離間して対を成す少なくとも一部のプリント基板12は、互いに対向する各端部が、フレーム部材の底部131の第2方向X2に平行な長辺方向中央部の両側に位置するように、底部131に配置されている。このように構成されたバックライトユニット1では、第2放熱空間42が、フレーム部材13の底部131の長辺方向中央部に形成されることになるので、底部131と反射部材113との間に存在する温められた空気は、底部131の長辺方向中央部を流れ、これによってバックライトユニット1内の熱を放熱することができる。 In the present embodiment, as shown in FIG. 8, among the plurality of printed boards 12, at least some of the printed boards 12 that form a pair with a second interval I <b> 2 spaced apart in the second direction X <b> 2 are mutually connected. The opposing end portions are arranged on the bottom portion 131 so as to be located on both sides of the central portion in the long side direction parallel to the second direction X2 of the bottom portion 131 of the frame member. In the backlight unit 1 configured as described above, the second heat radiating space 42 is formed at the center in the long side direction of the bottom 131 of the frame member 13, and therefore, between the bottom 131 and the reflecting member 113. The existing warmed air flows through the central portion of the bottom portion 131 in the long side direction, and thereby, heat in the backlight unit 1 can be radiated.
 たとえば、液晶表示装置100を一般家庭用のテレビジョン受像機などの表示装置とし、バックライトユニット1をその表示装置に備えられるバックライト装置とした場合には、液晶パネル2に対応した形状、大きさに設定されているフレーム部材13の底部131の中央部に対応する領域の発光強度が大きくされる。このような場合には、フレーム部材13の底部131の中央部に熱が滞留しやすくなるが、底部131の第2方向X2に平行な長辺方向中央部に対応する領域に、第2放熱空間42を形成することによって、効率よく放熱することができる。 For example, when the liquid crystal display device 100 is a display device such as a general-use television receiver and the backlight unit 1 is a backlight device provided in the display device, the shape and size corresponding to the liquid crystal panel 2 are obtained. The light emission intensity in the region corresponding to the center portion of the bottom portion 131 of the frame member 13 set to the height is increased. In such a case, heat tends to stay in the central portion of the bottom portion 131 of the frame member 13, but the second heat radiating space is formed in a region corresponding to the central portion in the long side direction parallel to the second direction X2 of the bottom portion 131. By forming 42, heat can be efficiently radiated.
 また、フレーム部材13の底部131に整列配置される各プリント基板12の形状は、前述した長方形板状に限定されるものではない。図10および図11は、第2方向X2に第2間隔I2をあけて離間する各プリント基板12の互いに対向する各端部の端面の形状を示す図である。 Further, the shape of each printed circuit board 12 arranged and arranged on the bottom 131 of the frame member 13 is not limited to the rectangular plate shape described above. FIG. 10 and FIG. 11 are diagrams showing the shapes of the end surfaces of the respective opposite end portions of the respective printed circuit boards 12 that are spaced apart from each other with the second interval I2 in the second direction X2.
 たとえば、図10に示すように、第2方向X2に第2間隔I2をあけて離間する各プリント基板12の、第2間隔I2をあけて互いに対向する各端部の端面は、互いに近接する方向に凸状に湾曲して形成されてもよい。この場合には、互いに対向する各端部間の最小距離を、第2間隔I2とする。これによって、第2放熱空間42を流れる気流が、乱流となるのを抑制することができるので、バックライトユニット1内に熱が滞留することをより効果的に抑制することができ、効率よく放熱することができる。 For example, as shown in FIG. 10, the end surfaces of the end portions of the printed circuit boards 12 that are spaced apart from each other with the second interval I2 in the second direction X2 are opposed to each other with the second interval I2. It may be formed to be convexly curved. In this case, the minimum distance between the ends facing each other is set as the second interval I2. Thereby, since it can suppress that the airflow which flows through the 2nd thermal radiation space 42 turns into a turbulent flow, it can suppress more effectively that heat retains in the backlight unit 1, and can be carried out efficiently. It can dissipate heat.
 また、図11に示すように、第2方向X2に第2間隔I2をあけて離間する各プリント基板12の、第2間隔I2をあけて互いに対向する各端部の端面は、プリント基板12の第1方向X1に平行な幅方向の一側部から他側部に向かうにつれて、互いに離間するように形成されてもよい。この場合には、互いに対向する各端部間の最小距離を、第2間隔I2とする。具体的には、互いに対向する各端部において、プリント基板12の第1方向X1に平行な幅方向の一側部間の距離が、第2間隔I2となる。第1方向X1が鉛直方向に平行で、プリント基板12の幅方向一側部が鉛直方向上方側となるように、バックライトユニット1を配置して用いた場合、第2放熱空間42を流れる気流は、プリント基板12の幅方向他側部側から一側部側に、空間幅が広い側から狭い側に流れるので、流速が速くなる。これによって、バックライトユニット1内に熱が滞留することをより効果的に抑制することができ、効率よく放熱することができる。 Further, as shown in FIG. 11, the end surfaces of the end portions of the printed circuit boards 12 that are spaced apart from each other with the second distance I2 in the second direction X2 are opposed to each other at the second distance I2. You may form so that it may mutually space | separate as it goes to the other side part from the one side part of the width direction parallel to the 1st direction X1. In this case, the minimum distance between the ends facing each other is set as the second interval I2. Specifically, the distance between one side in the width direction parallel to the first direction X1 of the printed circuit board 12 at each end facing each other is the second interval I2. When the backlight unit 1 is arranged and used so that the first direction X1 is parallel to the vertical direction and one side in the width direction of the printed circuit board 12 is on the upper side in the vertical direction, the airflow flowing through the second heat radiation space 42 Flows from the other side in the width direction of the printed circuit board 12 to one side, and from the wide side to the narrow side, so that the flow velocity is increased. Thereby, it is possible to more effectively suppress the heat from staying in the backlight unit 1 and to efficiently dissipate heat.
 図12は、バックライトユニット60における、第2方向X2に第2間隔I2をあけて離間する各プリント基板12の互いに対向する各端部近傍の構成を拡大して示す分解斜視図である。図13は、バックライトユニット60における、第2方向X2に第2間隔I2をあけて離間する各プリント基板12の互いに対向する各端部近傍の構成を拡大して示す斜視図である。 FIG. 12 is an exploded perspective view showing, in an enlarged manner, the configuration in the vicinity of the opposite end portions of the printed circuit boards 12 that are spaced apart from each other with a second interval I2 in the second direction X2 in the backlight unit 60. FIG. 13 is an enlarged perspective view showing the configuration in the vicinity of the opposite end portions of the printed circuit boards 12 spaced apart from each other with a second interval I2 in the second direction X2 in the backlight unit 60. FIG.
 本実施形態のバックライトユニット60は、前述したバックライトユニット1に類似し、対応する部分については同一の参照符号を付して説明を省略する。バックライトユニット60は、発光部60aの構成が、前述した発光部11の構成と異なること以外は、バックライトユニット1と同様である。 The backlight unit 60 of the present embodiment is similar to the backlight unit 1 described above, and corresponding portions are denoted by the same reference numerals and description thereof is omitted. The backlight unit 60 is the same as the backlight unit 1 except that the configuration of the light emitting unit 60a is different from the configuration of the light emitting unit 11 described above.
 複数の発光部60aは、それぞれ、LEDチップ111aと、LEDチップ111aを支持する基台111と、レンズ112と、反射部材61とを含む。 Each of the plurality of light emitting units 60a includes an LED chip 111a, a base 111 that supports the LED chip 111a, a lens 112, and a reflecting member 61.
 反射部材61は、LEDチップ111aが支持された基台111の周囲に設けられ、レンズ112から出射された光を、拡散板3を介して液晶パネル2へ向けて反射する。反射部材61は、拡散板3側から平面視したとき、すなわち、LEDチップ111aの光軸S方向に平面視したときの外周形状が多角形状、たとえば正方形状である。 The reflection member 61 is provided around the base 111 on which the LED chip 111 a is supported, and reflects the light emitted from the lens 112 toward the liquid crystal panel 2 via the diffusion plate 3. The reflection member 61 has a polygonal shape, for example, a square shape, when viewed from the diffuser 3 side, that is, when viewed in plan in the direction of the optical axis S of the LED chip 111a.
 また、反射部材61は、LEDチップ111aの光軸S方向に平面視したときに、外周形状の各辺部が、隣接する反射部材61同士で連なっている。 Further, when the reflecting member 61 is viewed in plan in the direction of the optical axis S of the LED chip 111a, each side portion of the outer peripheral shape is continuous with the adjacent reflecting member 61.
 反射部材61は、中心に開口部61aが設けられた基部611と、基部611を取り囲む外周縁部であり、LEDチップ111aから遠ざかるにつれてプリント基板12から遠ざかるように傾斜して形成される平板状の傾斜部612とを有する。基部611と傾斜部612とによって構成される反射部材61は、LEDチップ111aを中心とした逆ドーム状に設けられる。 The reflection member 61 is a base 611 having an opening 61a at the center, and an outer peripheral edge surrounding the base 611. The reflection member 61 is a flat plate formed so as to be inclined away from the printed circuit board 12 as the distance from the LED chip 111a increases. And an inclined portion 612. The reflecting member 61 constituted by the base 611 and the inclined portion 612 is provided in an inverted dome shape with the LED chip 111a as the center.
 反射部材61において特徴的な構成は、傾斜部612が平板状に形成されていることであり、傾斜部612の外周縁端部、すなわち、外周形状の各辺部が、隣接する反射部材61同士で連なっている。換言すると、第2方向X2に第2間隔I2をあけて離間する各プリント基板12上の、第2間隔I2をあけて互いに対向する各端部に最も近い位置に配置される各LEDチップ111aを囲む各反射部材61は、互いに対向する各辺部が各プリント基板12から離間して隆起し、互いに連なるように形成されている。 A characteristic configuration of the reflecting member 61 is that the inclined portion 612 is formed in a flat plate shape, and the outer peripheral edge of the inclined portion 612, that is, each side portion of the outer peripheral shape is adjacent to each other. It is connected with. In other words, each LED chip 111a disposed at a position closest to each end portion facing each other with a second interval I2 on each printed circuit board 12 spaced apart with a second interval I2 in the second direction X2. Each of the surrounding reflecting members 61 is formed such that each side facing each other protrudes away from each printed circuit board 12 and is continuous with each other.
 このような反射部材61を備えるバックライトユニット60では、第2方向X2に第2間隔I2をあけて離間する各プリント基板12の互いに対向する各端部の近傍に、各プリント基板12から離間して隆起した反射部材61の隆起部分が位置することになる。これによって、反射部材61の各プリント基板12から離間した隆起部分により形成される空間、すなわち、互いに連なる傾斜部612間に形成される空間も、第2放熱空間42に含まれることになる。 In the backlight unit 60 including such a reflective member 61, the backlight unit 60 is separated from each printed circuit board 12 in the vicinity of the opposite end portions of the printed circuit boards 12 that are separated from each other with a second interval I2 in the second direction X2. Thus, the raised portion of the reflecting member 61 raised is located. As a result, a space formed by the raised portions of the reflecting member 61 that are separated from the printed circuit boards 12, that is, a space formed between the inclined portions 612 that are connected to each other, is also included in the second heat radiation space 42.
 これによって、第2放熱空間42が大きくなるので、第2放熱空間42における気流の流れをスムーズにすることができる。そのため、バックライトユニット60内に熱が滞留することをより効果的に抑制することができ、効率よく放熱することができる。 Thereby, since the second heat radiation space 42 becomes larger, the flow of airflow in the second heat radiation space 42 can be made smooth. Therefore, it is possible to more effectively suppress heat from staying in the backlight unit 60, and to efficiently dissipate heat.
 本発明は、その精神または主要な特徴から逸脱することなく、他のいろいろな形態で実施できる。したがって、前述の実施形態はあらゆる点で単なる例示に過ぎず、本発明の範囲は特許請求の範囲に示すものであって、明細書本文には何ら拘束されない。さらに、特許請求の範囲に属する変形や変更は全て本発明の範囲内のものである。 The present invention can be implemented in various other forms without departing from the spirit or main features thereof. Therefore, the above-described embodiment is merely an example in all respects, and the scope of the present invention is shown in the claims, and is not restricted by the text of the specification. Further, all modifications and changes belonging to the scope of the claims are within the scope of the present invention.
 1,60 バックライトユニット
 2 液晶パネル
 3 拡散板
 11,60a 発光部
 12 プリント基板
 13 フレーム部材
 41 第1放熱空間
 42 第2放熱空間
 100 液晶表示装置
 111 基台
 111a LEDチップ
 112 レンズ
 61,113 反射部材
DESCRIPTION OF SYMBOLS 1,60 Backlight unit 2 Liquid crystal panel 3 Diffusion plate 11, 60a Light emission part 12 Printed circuit board 13 Frame member 41 1st thermal radiation space 42 2nd thermal radiation space 100 Liquid crystal display device 111 Base 111a LED chip 112 Lens 61,113 Reflection member

Claims (7)

  1.  枠部と、枠部に囲まれる矩形板状の底部とからなる筐体と、
     第1方向に第1間隔をあけ、かつ、第1方向と直交する第2方向に第2間隔をあけて前記底部に配置される矩形板状の複数の基板と、
     前記各基板上に第2方向に等間隔で複数配置される、光を出射する発光素子と、
     前記各基板上に配置される複数の発光素子のそれぞれを囲むように前記各基板上に設けられ、前記各基板の第1方向両側部に対して延出し、外周形状が多角形状の複数の反射部材と、を含むことを特徴とする発光装置。
    A housing composed of a frame portion and a rectangular plate-shaped bottom portion surrounded by the frame portion;
    A plurality of rectangular plate-like substrates arranged at the bottom with a first interval in the first direction and a second interval in a second direction orthogonal to the first direction;
    A plurality of light emitting elements that emit light and are arranged at equal intervals in the second direction on each of the substrates;
    A plurality of reflections provided on each substrate so as to surround each of the plurality of light emitting elements disposed on each substrate, extending toward both sides in the first direction of each substrate, and having a polygonal outer peripheral shape. A light emitting device comprising: a member;
  2.  前記各基板の、第2間隔をあけて互いに対向する各端部の端面は、基板の第1方向一側部から他側部に向かうにつれて、互いに離間するように形成されることを特徴とする請求項1に記載の発光装置。 End surfaces of the respective end portions of the respective substrates facing each other with a second interval are formed so as to be separated from each other in the direction from one side portion in the first direction of the substrate toward the other side portion. The light emitting device according to claim 1.
  3.  前記各基板の、第2間隔をあけて互いに対向する各端部の端面は、互いに近接する方向に凸状に湾曲して形成されることを特徴とする請求項1に記載の発光装置。 2. The light emitting device according to claim 1, wherein the end surfaces of the end portions of the substrates facing each other at a second interval are formed to be convexly curved in directions close to each other.
  4.  前記各基板の第2方向一端部には、各基板上に配置される各発光素子に駆動信号を入力するための駆動信号入力部が設けられていることを特徴とする請求項1~3のいずれか1つに記載の発光装置。 The drive signal input unit for inputting a drive signal to each light emitting element disposed on each substrate is provided at one end portion in the second direction of each substrate. The light emitting device according to any one of the above.
  5.  第2方向に第2間隔をあけて離間して対を成す前記基板の少なくとも一部の基板は、互いに対向する各端部が、前記底部の第2方向中央部の両側に位置するように配置されていることを特徴とする請求項1~4のいずれか1つに記載の発光装置。 At least some of the substrates that are spaced apart from each other in the second direction to form a pair are arranged such that the end portions facing each other are located on both sides of the central portion in the second direction of the bottom portion. The light-emitting device according to claim 1, wherein the light-emitting device is a light-emitting device.
  6.  前記各基板の第2間隔をあけて互いに対向する各端部に最も近い位置に配置される各発光素子を囲む各反射部材は、互いに対向する各辺部が各基板から離間して隆起し、互いに連なるように形成されることを特徴とする請求項1~5のいずれか1つに記載の発光装置。 Each reflecting member surrounding each light emitting element disposed at a position closest to each end facing each other with a second interval between each substrate, each side facing each other protrudes away from each substrate, 6. The light emitting device according to claim 1, wherein the light emitting device is formed so as to be continuous with each other.
  7.  表示パネルと、
     前記表示パネルの背面に光を照射する発光装置とを備え、
     前記発光装置は、請求項1~6のいずれか1つに記載の発光装置であることを特徴とする表示装置。
    A display panel;
    A light emitting device for irradiating light on the back of the display panel;
    The display device according to any one of claims 1 to 6, wherein the light emitting device is the light emitting device according to any one of claims 1 to 6.
PCT/JP2012/063054 2011-07-22 2012-05-22 Light-emitting device and display device WO2013015000A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2011161395A JP2013026528A (en) 2011-07-22 2011-07-22 Light emitting device and display device
JP2011-161395 2011-07-22

Publications (1)

Publication Number Publication Date
WO2013015000A1 true WO2013015000A1 (en) 2013-01-31

Family

ID=47600860

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2012/063054 WO2013015000A1 (en) 2011-07-22 2012-05-22 Light-emitting device and display device

Country Status (2)

Country Link
JP (1) JP2013026528A (en)
WO (1) WO2013015000A1 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN106855664A (en) * 2015-12-09 2017-06-16 天津三星电子有限公司 A kind of LCDs

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20160049383A1 (en) * 2014-08-12 2016-02-18 Invensas Corporation Device and method for an integrated ultra-high-density device
CN109212826B (en) * 2017-06-29 2021-07-27 中强光电股份有限公司 Light source module
JP6680311B2 (en) * 2018-06-04 2020-04-15 日亜化学工業株式会社 Light emitting device and surface emitting light source

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6292505U (en) * 1985-11-30 1987-06-13
JP2000216437A (en) * 1998-11-20 2000-08-04 Kano Densan Hongkong Yugenkoshi Lighting device, display unit with lighting device, lighting device for display unit, and electronic apparatus
JP2007109656A (en) * 2005-10-12 2007-04-26 Samsung Electro-Mechanics Co Ltd Led back light unit
WO2009017007A1 (en) * 2007-07-27 2009-02-05 Sharp Kabushiki Kaisha Chassis, and lighting device and display device with the same
JP2010225385A (en) * 2009-03-23 2010-10-07 Victor Co Of Japan Ltd Backlight device

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6292505U (en) * 1985-11-30 1987-06-13
JP2000216437A (en) * 1998-11-20 2000-08-04 Kano Densan Hongkong Yugenkoshi Lighting device, display unit with lighting device, lighting device for display unit, and electronic apparatus
JP2007109656A (en) * 2005-10-12 2007-04-26 Samsung Electro-Mechanics Co Ltd Led back light unit
WO2009017007A1 (en) * 2007-07-27 2009-02-05 Sharp Kabushiki Kaisha Chassis, and lighting device and display device with the same
JP2010225385A (en) * 2009-03-23 2010-10-07 Victor Co Of Japan Ltd Backlight device

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN106855664A (en) * 2015-12-09 2017-06-16 天津三星电子有限公司 A kind of LCDs

Also Published As

Publication number Publication date
JP2013026528A (en) 2013-02-04

Similar Documents

Publication Publication Date Title
JP5449274B2 (en) Lighting device and display device
JP5401534B2 (en) LIGHT EMITTING DEVICE, LIGHTING DEVICE, AND DISPLAY DEVICE
JP5509154B2 (en) Light emitting device and display device
WO2012132707A1 (en) Light-emitting device, lighting device, and display device
JP6088750B2 (en) Illumination device and display device
JP5228089B2 (en) Light emitting device and display device
JP5999983B2 (en) Illumination device and display device
JP5386551B2 (en) Light emitting device, display device, and reflecting member design method
JP2013038136A (en) Light-emitting device and display device
JP5175956B2 (en) Light emitting device and display device
JP2012216764A (en) Light-emitting device, lighting device and display
JP2012248769A (en) Light-emitting device and display device
WO2013015000A1 (en) Light-emitting device and display device
JP2013021136A (en) Light-emitting device and display device
JP5945460B2 (en) Illumination device and display device
JP2013247092A (en) Light-emitting device, lighting device, and display device
JP5999984B2 (en) Illumination device and display device
JP2013037783A (en) Lighting device and display device
KR102002458B1 (en) Liquid crystal display device
JP2013020896A (en) Lighting apparatus, and display device
JP2013131328A (en) Lighting device, and display device
JP2013026240A (en) Light emitting device and display device
KR20130095051A (en) Ligout source package and backlight unit including the same
JP2013246954A (en) Lighting apparatus and display device
JP2013171639A (en) Lighting system and display device

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 12817133

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 12817133

Country of ref document: EP

Kind code of ref document: A1