JP2013157090A - Lithium ion conductive solid electrolyte - Google Patents

Lithium ion conductive solid electrolyte Download PDF

Info

Publication number
JP2013157090A
JP2013157090A JP2012014552A JP2012014552A JP2013157090A JP 2013157090 A JP2013157090 A JP 2013157090A JP 2012014552 A JP2012014552 A JP 2012014552A JP 2012014552 A JP2012014552 A JP 2012014552A JP 2013157090 A JP2013157090 A JP 2013157090A
Authority
JP
Japan
Prior art keywords
lithium ion
solid electrolyte
fluoride
linbo
conductive solid
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2012014552A
Other languages
Japanese (ja)
Other versions
JP5910112B2 (en
Inventor
Hiroiku Tsunoda
宏郁 角田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
TDK Corp
Original Assignee
TDK Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by TDK Corp filed Critical TDK Corp
Priority to JP2012014552A priority Critical patent/JP5910112B2/en
Publication of JP2013157090A publication Critical patent/JP2013157090A/en
Application granted granted Critical
Publication of JP5910112B2 publication Critical patent/JP5910112B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Abstract

PROBLEM TO BE SOLVED: To provide a lithium ion conductive solid electrolyte material exhibiting a high lithium ion conductivity.SOLUTION: A fluoride is added to a lithium ion conductive solid electrolyte material containing LiNbOas a main component. LiF is especially preferable as the fluoride. Content of fluoride in the lithium ion conductive solid electrolyte material is preferably 15 wt% or more and 35 wt% or less. Consequently, the lithium ion conductive solid electrolyte material exhibits a high lithium ion conductivity.

Description

本発明は、リチウムイオン伝導性固体電解質に関する。   The present invention relates to a lithium ion conductive solid electrolyte.

近年、パソコンや携帯電話等の情報通信機器の急速な普及に伴い、その電源である電池の重要性が急速に高まっている。また、最近では環境への配慮、燃費向上の観点からハイブリッド自動車や電気自動車が注目を集めており、それら自動車へ電池が搭載されている。各種の電池がある中で、とりわけエネルギー密度の高いリチウムイオン電池が注目されている。   In recent years, with the rapid spread of information communication devices such as personal computers and mobile phones, the importance of batteries as power sources is rapidly increasing. Recently, hybrid vehicles and electric vehicles have been attracting attention from the viewpoint of environmental considerations and fuel efficiency, and batteries are mounted on these vehicles. Among various types of batteries, lithium ion batteries having a particularly high energy density are attracting attention.

現在、市販されているリチウムイオン電池は電解質の溶媒として可燃性の有機溶剤を用いており、 安全性を確保するため電池に安全装置を付加する必要があり、コストの増加、生産性の低下をもたらしている。また、より高い安全性を確保するため、電池の材料・構造面などでさらなる改善が要求されている。   Currently, commercially available lithium ion batteries use flammable organic solvents as electrolyte solvents, and it is necessary to add a safety device to the batteries to ensure safety, which increases costs and reduces productivity. Has brought. Further, in order to ensure higher safety, further improvements in battery material and structure are required.

これに対し、電解質として固体を用いた全固体電池が提案されている。全固体電池は構成部材に可燃性材料を用いないことから、安全装置の簡素化が図れ、製造コストの低減、生産性の向上が期待されている。このような全固体電池に用いられる固体電解質層としてニオブ酸リチウム(LiNbO)が知られている。(特許文献1〜3) On the other hand, an all-solid battery using a solid as an electrolyte has been proposed. Since all solid-state batteries do not use combustible materials as constituent members, the safety device can be simplified, and manufacturing costs can be reduced and productivity can be improved. Lithium niobate (LiNbO 3 ) is known as a solid electrolyte layer used in such an all-solid battery. (Patent Documents 1 to 3)

従来、LiNbO固体電解質材料は、リチウムイオン伝導性が低く、上述した全固体電池の固体電解質層としての要求性能を満たすことが出来ないと考えられてきた。ところが、固体電解質そのものではなく、正極材料と固体電解質との界面制御材として用いた場合優れた効果が認められる。例えば、硫化物系固体電解質と正極活物質LiCoOとから構成される全固体電池では、固体電解質−正極界面で反応が生じるため電池としての出力密度が充分得られないが、正極活物質表面に数nmのLiNbO層をコーティングすることにより、出力密度を向上できることが報告されている(非特許文献1)。 Conventionally, LiNbO 3 solid electrolyte material has low lithium ion conductivity, and it has been considered that the required performance as the solid electrolyte layer of the all-solid battery described above cannot be satisfied. However, when used as an interface control material between the positive electrode material and the solid electrolyte instead of the solid electrolyte itself, an excellent effect is recognized. For example, in an all-solid battery composed of a sulfide-based solid electrolyte and a positive electrode active material LiCoO 2 , a reaction occurs at the solid electrolyte-positive electrode interface, so that a sufficient output density as a battery cannot be obtained. It has been reported that the power density can be improved by coating a LiNbO 3 layer of several nm (Non-patent Document 1).

この場合、LiNbOの膜厚は数nm程度と極めて薄いため、イオン伝導度が低くともLiNbO層の抵抗増大には至らないが、固体電解質そのものとして用いるにはイオン伝導度が不十分である。非特許文献1より、正極活物質LiCoOとイオン伝導体LiNbOにて良好な界面が形成できることが示されているため、LiNbOを固体電解質層そのものに用いることができれば、大気中で不安定な硫化物系固体電解質を用いることなく、安定な酸化物によって全固体電池が実現できる。そのためには、上述したLiNbOのリチウムイオン伝導度の低さは、解決すべき重要な課題となっている。 In this case, since the film thickness of LiNbO 3 is as thin as several nm, the resistance of the LiNbO 3 layer does not increase even if the ionic conductivity is low, but the ionic conductivity is insufficient for use as the solid electrolyte itself. . Non-Patent Document 1 shows that a good interface can be formed with the positive electrode active material LiCoO 2 and the ionic conductor LiNbO 3, so if LiNbO 3 can be used for the solid electrolyte layer itself, it is unstable in the atmosphere. An all-solid battery can be realized with a stable oxide without using a sulfide-based solid electrolyte. For this purpose, the low lithium ion conductivity of LiNbO 3 described above is an important issue to be solved.

特開昭59−71264号公報JP 59-71264 A 特開2009−218124号公報JP 2009-218124 A 特開2010−251257号公報JP 2010-251257 A

Electrochemistry Communications: Volume 9, Issue 7, Pages 1486−1490 (2007)Electrochemistry Communications: Volume 9, Issue 7, Pages 1486-1490 (2007)

本発明は、上記に鑑みてなされてものであって、リチウムイオン伝導度の高いリチウムイオン伝導性固体電解質を提供することを目的とする。   The present invention has been made in view of the above, and an object thereof is to provide a lithium ion conductive solid electrolyte having high lithium ion conductivity.

上記目的を達成するため、本発明のリチウムイオン伝導性固体電解質材料はLiNbOリチウムイオン伝導体とフッ化物とを含有することを特徴とする。 In order to achieve the above object, the lithium ion conductive solid electrolyte material of the present invention is characterized by containing a LiNbO 3 lithium ion conductor and a fluoride.

この構成によれば、LiNbOとフッ化物が共存していることで、リチウムイオン伝導性固体電解質材料は高いリチウムイオン伝導度を得ることができる。この効果の原因は必ずしも明らかではないが、LiNbOとフッ化物との界面近傍のLiNbO内にリチウムイオン空孔が誘起され、この空孔がリチウムイオン伝導経路を形成し、リチウムイオンの移動がより活発となるためと考えられる。 According to this configuration, LiNbO 3 and fluoride coexist so that the lithium ion conductive solid electrolyte material can obtain high lithium ion conductivity. The cause of this effect is not necessarily clear, but lithium ion vacancies are induced in LiNbO 3 in the vicinity of the LiNbO 3 and fluoride interface, and these vacancies form a lithium ion conduction path. This is thought to be more active.

さらに、本発明のリチウムイオン伝導性固体電解質材料中のLiFの含有量は15重量%以上35重量%以下であることが好ましい。上記範囲とすることで、全固体リチウムイオン二次電池における実用性の目安と考えられている、1x10−5 S/cm以上の高いイオン伝導度を示すリチウムイオン伝導性固体電解質材料を得ることができる。 Furthermore, the content of LiF in the lithium ion conductive solid electrolyte material of the present invention is preferably 15% by weight or more and 35% by weight or less. By setting it as the above range, it is possible to obtain a lithium ion conductive solid electrolyte material exhibiting a high ion conductivity of 1 × 10 −5 S / cm or more, which is considered as a standard of practicality in all solid lithium ion secondary batteries. it can.

フッ化物の含有量が15重量%未満であった場合、LiNbOとフッ化物との界面が充分形成されないため、本発明の効果が充分でない傾向がある。また、フッ化物の含有量が35重量%を上回る場合、リチウムイオン伝導経路となるべきLiNbOの絶対量が不足するため、本発明の効果が充分でない傾向がある。 When the content of fluoride is less than 15% by weight, the interface between LiNbO 3 and fluoride is not sufficiently formed, and thus the effect of the present invention tends to be insufficient. When the fluoride content exceeds 35% by weight, the absolute amount of LiNbO 3 to be a lithium ion conduction path is insufficient, and the effect of the present invention tends to be insufficient.

本発明によれば、従来のLiNbOのみを固体電解質として用いる場合に比べて、より高いリチウムイオン伝導度を有するリチウムイオン伝導性固体電解質材料を提供することできる。 According to the present invention, it is possible to provide a lithium ion conductive solid electrolyte material having higher lithium ion conductivity than when only conventional LiNbO 3 is used as a solid electrolyte.

本実施形態のリチウムイオン伝導性固体電解質材料は、LiNbOとフッ化物との混合物からなる固体電解質であることを特徴とする。LiNbOとフッ化物とが混合されることにより、リチウムイオン伝導性固体電解質材料のリチウムイオン伝導度は向上する。具体的には、LiNbOを主成分とするリチウムイオン伝導性固体電解質であって、さらにフッ化物を含有する。ここで、「LiNbOを主成分として含む」とは、リチウムイオン伝導性固体電解質におけるLiNbO含有量が50重量%以上であることをいう。 The lithium ion conductive solid electrolyte material of this embodiment is a solid electrolyte made of a mixture of LiNbO 3 and fluoride. By mixing LiNbO 3 and fluoride, the lithium ion conductivity of the lithium ion conductive solid electrolyte material is improved. Specifically, it is a lithium ion conductive solid electrolyte mainly composed of LiNbO 3 and further contains a fluoride. Here, “comprising LiNbO 3 as a main component” means that the LiNbO 3 content in the lithium ion conductive solid electrolyte is 50% by weight or more.

リチウムイオンは、リチウムイオン空孔を介して化合物中をイオン伝導するが、LiNbOのみの場合はリチウムイオン空孔の量が十分ではない。LiNbOとフッ化物とを混合することにより、LiNbOのリチウムイオンはLiNbOの界面近傍でフッ化物中のフッ素の方に引き寄せられる。これにより、LiNbO中にリチウムイオン空孔が誘起され、それを介してリチウムイオンが伝導すると考えられる。これによりリチウムイオン伝導性固体電解質材料のリチウムイオン伝導度が向上すると推察される。 Lithium ions conduct ions in the compound through lithium ion vacancies, but the amount of lithium ion vacancies is not sufficient when only LiNbO 3 is used. By mixing the LiNbO 3 and fluoride, lithium ions LiNbO 3 is attracted toward the fluorine in the fluoride in the vicinity of the interface LiNbO 3. Thereby, it is considered that lithium ion vacancies are induced in LiNbO 3 and lithium ions are conducted through the vacancies. This is presumed to improve the lithium ion conductivity of the lithium ion conductive solid electrolyte material.

本実施形態のリチウムイオン伝導性固体電解質材料に含まれるフッ化物はフッ化リチウム(LiF)、フッ化ナトリウム(NaF)、フッ化カルシウム(CaF)、フッ化ストロンチウム(SrF)、フッ化バリウム(BaF)等を適宜用いることができるが、特にLiFであることが好ましい。LiF中のLiはLiNbOの構成元素でもあるため、LiNbOとフッ化物との界面にイオン伝導を妨げる不純物相が生成しがたく、リチウムイオン伝導度の向上が顕著となる。 The fluoride contained in the lithium ion conductive solid electrolyte material of the present embodiment is lithium fluoride (LiF), sodium fluoride (NaF), calcium fluoride (CaF 2 ), strontium fluoride (SrF 2 ), barium fluoride. (BaF 2 ) or the like can be used as appropriate, but LiF is particularly preferable. Since Li in LiF is also a constituent element of LiNbO 3 , it is difficult to generate an impurity phase that hinders ion conduction at the interface between LiNbO 3 and fluoride, and the improvement in lithium ion conductivity is remarkable.

実施形態のリチウムイオン伝導性固体電解質材料中に含まれるフッ化物の含有量は15重量%以上35重量%以下であることが好ましい。フッ化物の添加によりリチウムイオン伝導性が向上するのは、LiNbOとフッ化物、例えばLiFとの界面の効果によると推察されるが、添加量が15重量%未満である場合、形成する界面が少なくリチウムイオン伝導度の大きな向上が見られない。一方、フッ化物の含有量が35重量%より多くなるとリチウムイオン伝導度が低下する傾向が見られ、過剰すぎる添加は逆効果となる。これはリチウムイオン伝導を担うLiNbOの体積が少なくなり、リチウムイオン伝導経路そのものが減少することに起因する。 The content of fluoride contained in the lithium ion conductive solid electrolyte material of the embodiment is preferably 15% by weight or more and 35% by weight or less. It is assumed that the lithium ion conductivity is improved by the addition of the fluoride due to the effect of the interface between LiNbO 3 and the fluoride, for example, LiF, but when the addition amount is less than 15% by weight, the interface to be formed There is little increase in lithium ion conductivity. On the other hand, when the content of fluoride exceeds 35% by weight, the lithium ion conductivity tends to decrease, and excessive addition has an adverse effect. This is because the volume of LiNbO 3 responsible for lithium ion conduction decreases, and the lithium ion conduction path itself decreases.

本実施形態のリチウムイオン伝導性固体電解質材料は、例えば、LiNbOとフッ化物との複合体からなる化合物を用いた固相反応法により製造することができる。リチウム源としては炭酸リチウムや水酸化リチウム、硝酸リチウム等を、ニオブ源としては酸化ニオブを用いることができる。例えば、炭酸リチウムと酸化ニオブを原料として用いた場合は、それぞれ所定量に秤量された各原料をボールミルにて混合し、混合粉体を1100℃で焼成することでLiNbOの粉体を得ることができる。係る粉体とLiF、NaF、CaF等のフッ化物のいずれかの粉体とを上述の重量割合で十分に混合し、成形した後、焼成することで所望の混合物を得ることができる。 The lithium ion conductive solid electrolyte material of the present embodiment can be manufactured by, for example, a solid phase reaction method using a compound made of a complex of LiNbO 3 and fluoride. Lithium carbonate, lithium hydroxide, lithium nitrate or the like can be used as the lithium source, and niobium oxide can be used as the niobium source. For example, when lithium carbonate and niobium oxide are used as raw materials, each raw material weighed in a predetermined amount is mixed in a ball mill, and the mixed powder is fired at 1100 ° C. to obtain a LiNbO 3 powder. Can do. A desired mixture can be obtained by sufficiently mixing the powder and any powder of a fluoride such as LiF, NaF, and CaF 2 in the above-described weight ratio, molding, and firing.

また、リチウムイオン伝導性固体電解質材料の製造方法は固相反応法に限定されることはなく、スパッタリング法、パルスレーザーデポジッション(PLD)法等の薄膜作製方法を用いてもよい。例えば、固相反応法と同様の方法でLiNbOとLiFとからなるターゲットを作製し、上記の方法で成膜することでLiNbOとLiFとの混合体からなるリチウムイオン伝導性固体電解質材料を作製することができる。あるいは、LiNbOからなるターゲットと、LiFとからなるターゲットとを組み合わせた複合ターゲットとして成膜してもよい。また、フッ化物はLiFに限らずNaF、CaF等のフッ化物でも同様に成膜することができる。 Moreover, the manufacturing method of a lithium ion conductive solid electrolyte material is not limited to a solid-phase reaction method, You may use thin film preparation methods, such as sputtering method and a pulse laser deposition (PLD) method. For example, a target made of LiNbO 3 and LiF is prepared by the same method as the solid phase reaction method, and a lithium ion conductive solid electrolyte material made of a mixture of LiNbO 3 and LiF is formed by the above method. Can be produced. Alternatively, a target made of LiNbO 3, may be formed as a composite target of a combination of a target consisting of a LiF. Further, the fluoride film is not limited to LiF, and a film such as NaF or CaF 2 can be formed in the same manner.

本実施形態のリチウムイオン伝導性固体電解質材料は、例えば、全固体リチウムイオン二次電池の固体電解質層および固体電解質層の一部として用いることができる。この場合、固体電解質以外の構成部材、例えば、正極、負極、端子部材、外装ケースなどは、リチウムイオン二次電池の分野において公知の部材を広く用いることができる。例えば、正極としてLiCoOを、負極として金属リチウムを用い、正極/本実施形態のリチウムイオン伝導性固体電解質材料/負極の順に積層することによって、容易に全固体電池の電極素体を得ることができる。この電池素体は、端子部材を設けた上でラミネートケースや金属缶などに収容し、リチウムイオン二次電池としてもよく、ポリイミドなどの樹脂材料によって被覆してリチウムイオン二次電池としてもよい。 The lithium ion conductive solid electrolyte material of the present embodiment can be used, for example, as a part of the solid electrolyte layer and the solid electrolyte layer of the all solid lithium ion secondary battery. In this case, members known in the field of lithium ion secondary batteries can be widely used as constituent members other than the solid electrolyte, for example, the positive electrode, the negative electrode, the terminal member, and the outer case. For example, by using LiCoO 2 as the positive electrode and metallic lithium as the negative electrode, and stacking in the order of positive electrode / lithium ion conductive solid electrolyte material / negative electrode of the present embodiment, an electrode body of an all-solid battery can be easily obtained. it can. The battery body may be accommodated in a laminate case or a metal can with a terminal member and may be a lithium ion secondary battery, or may be covered with a resin material such as polyimide to be a lithium ion secondary battery.

なお、本発明は上記実施形態に限定されるものではない。上記実施形態は例示であり、本発明の特許請求の範囲に記載された技術的思想と実質的に同一な構成を有し、同様な作用効果を奏するものは、いかなるものであっても本発明の技術的範囲に包含される。加えて、LiNbO以外の酸化物リチウムイオン伝導体に対するフッ化物の混合は、本発明と同様の効果が期待できる場合がある。例えば、Li14ZnGe16、Li1.3Ti1.7Al0.3(PO、La0.667−xLi3xTiO(0<x<0.16)、Li3−xPO4−x、(0<x<1)、LiAlSiO、LiLaZr12等でもフッ化物と混合することでリチウムイオン伝導度の向上が期待できる。 The present invention is not limited to the above embodiment. The above-described embodiment is an exemplification, and the present invention has any configuration that has substantially the same configuration as the technical idea described in the claims of the present invention and that exhibits the same effects. Are included in the technical scope. In addition, the mixing of fluoride with oxide lithium ion conductors other than LiNbO 3 may be expected to have the same effect as the present invention. For example, Li 14 ZnGe 4 O 16 , Li 1.3 Ti 1.7 Al 0.3 (PO 4 ) 4 , La 0.667-x Li 3x TiO 3 (0 <x <0.16), Li 3− x PO 4−x N x , (0 <x <1), Li 9 AlSiO 8 , Li 7 La 3 Zr 2 O 12, etc. can be expected to improve lithium ion conductivity by mixing with fluoride.

以下、実施例及び比較例に基づいて本発明をより具体的に説明するが、本発明は以下の実施例に限定されるものではない。
(実施例1)
EXAMPLES Hereinafter, although this invention is demonstrated more concretely based on an Example and a comparative example, this invention is not limited to a following example.
Example 1

原料としてLiCOならびにNbの各粉体をエタノール溶媒とともにボールミルで混合し、スラリーを得た。スラリーから溶媒を乾燥させて得られた混合粉を1100℃で5時間焼成することにより、LiNbO化合物を得た。係るLiNbOを乳鉢により粗粉砕し、その粉体をエタノール溶媒とともにボールミルにて微粉砕した。 Each powder of Li 2 CO 3 and Nb 2 O 5 as raw materials was mixed with an ethanol solvent by a ball mill to obtain a slurry. The mixed powder obtained by drying the solvent from the slurry was fired at 1100 ° C. for 5 hours to obtain a LiNbO 3 compound. Such LiNbO 3 was coarsely pulverized with a mortar, and the powder was finely pulverized with an ethanol solvent by a ball mill.

上記LiNbO微粉末とLiFとを、LiF混合量が原料粉体全体に対して10重量%の混合比になるよう秤量し、再びボールミルにてエタノール溶媒とともによく混合した。溶媒を乾燥させて得た混合粉体を直径12mmのダイスを用いて成形した後、900℃で焼成し、実施例1のリチウムイオン伝導性固体電解質材料を得た。
(実施例2〜7)
The LiNbO 3 fine powder and LiF were weighed so that the amount of LiF mixed was 10% by weight with respect to the whole raw material powder, and again mixed well with an ethanol solvent in a ball mill. The mixed powder obtained by drying the solvent was molded using a die having a diameter of 12 mm, and then fired at 900 ° C. to obtain a lithium ion conductive solid electrolyte material of Example 1.
(Examples 2 to 7)

LiF混合量を、それぞれ15重量%、20重量%、25重量%、30重量%、35重量%、40重量%とした以外は実施例1と同様の作製方法により実施例2〜7のリチウムイオン伝導性固体電解質材料を得た。
(実施例8〜10)
The lithium ions of Examples 2 to 7 were prepared in the same manner as in Example 1 except that the amount of LiF mixed was 15% by weight, 20% by weight, 25% by weight, 30% by weight, 35% by weight, and 40% by weight, respectively. A conductive solid electrolyte material was obtained.
(Examples 8 to 10)

LiFに代えてNaFを、20重量%、25重量%、30重量%それぞれ添加した以外は実施例1と同様の作製方法により実施例8〜10のリチウムイオン伝導性固体電解質材料を得た。
(実施例11〜13)
Lithium ion conductive solid electrolyte materials of Examples 8 to 10 were obtained in the same manner as in Example 1 except that 20% by weight, 25% by weight, and 30% by weight of NaF were added in place of LiF.
(Examples 11 to 13)

LiFに代えてCaFを、20重量%、25重量%、30重量%それぞれ添加した以外は実施例1と同様の作製方法により実施例11〜13のリチウムイオン伝導性固体電解質材料を得た。
(比較例1)
Lithium ion conductive solid electrolyte materials of Examples 11 to 13 were obtained by the same production method as Example 1 except that CaF 2 was added in an amount of 20% by weight, 25% by weight, and 30% by weight in place of LiF.
(Comparative Example 1)

フッ化物を混合していない以外は実施例1と同様の作製方法により比較例1のリチウムイオン伝導性固体電解質材料を得た。
(実施例1〜13、比較例1の評価)
A lithium ion conductive solid electrolyte material of Comparative Example 1 was obtained by the same production method as in Example 1 except that no fluoride was mixed.
(Evaluation of Examples 1 to 13 and Comparative Example 1)

実施例1〜13、比較例1で得られたリチウムイオン伝導性固体電解質材料を厚み1mmのペレットに加工した後、そのペレットの両面にAuスパッタを施すことにより、金電極を形成した試料を得た。これら試料のインピーダンス測定結果からリチウムイオン伝導度を算出した。結果を表1に示す。   After processing the lithium ion conductive solid electrolyte materials obtained in Examples 1 to 13 and Comparative Example 1 into pellets having a thickness of 1 mm, Au sputtering was performed on both sides of the pellets to obtain a sample on which gold electrodes were formed. It was. Lithium ion conductivity was calculated from the impedance measurement results of these samples. The results are shown in Table 1.

Figure 2013157090
Figure 2013157090

表1に示すように、フッ化物を添加したリチウムイオン伝導性固体電解質材料は、LiNbO単体の固体電解質材料よりもリチウムイオン伝導度が向上していた。特に、フッ化物がLiFであって、LiFの混合量が固体電解質全体の15重量%から35重量%の場合に1x10−5 S/cm以上という実用性の高いリチウムイオン伝導度が得られた。 As shown in Table 1, the lithium ion conductive solid electrolyte material to which fluoride was added had improved lithium ion conductivity than the solid electrolyte material of LiNbO 3 alone. In particular, when the fluoride was LiF and the mixed amount of LiF was 15 wt% to 35 wt% of the entire solid electrolyte, a highly practical lithium ion conductivity of 1 × 10 −5 S / cm or more was obtained.

LiFはLiとFの結合が強固であり、LiはLiF中を容易に伝導できないため、LiNbOとLiFとの界面近傍でリチウムイオン伝導が向上したと推察される。LiFの混合量が15重量%より少ないと界面の生成が十分ではなく、リチウムイオン伝導が十分に得られない。また、35重量%より多くなるとリチウムイオン伝導を担うLiNbOの量が低くなり過ぎ、リチウムイオン伝導の低下が見られると推察される。表1からも明らかなように、LiF混合量は15重量%〜35重量%とすることで、顕著なリチウムイオン伝導の向上が見られる。 Since LiF has a strong bond between Li and F and Li cannot easily conduct in LiF, it is presumed that lithium ion conduction is improved in the vicinity of the interface between LiNbO 3 and LiF. When the amount of LiF is less than 15% by weight, the interface is not sufficiently generated, and lithium ion conduction cannot be sufficiently obtained. Also, is more than 35 wt%, the too low amount of LiNbO 3 carrying lithium ion conductivity, it is presumed that reduction in lithium ion conductivity is observed. As is clear from Table 1, when the LiF mixing amount is 15% by weight to 35% by weight, significant improvement in lithium ion conduction is observed.

本発明のリチウムイオン伝導性固体電解質材料は高いリチウムイオン伝導性を有するため充放電特性に優れている。そのため、安全性の高いリチウムイオン電池の電解質層として好適に利用することができる。   Since the lithium ion conductive solid electrolyte material of the present invention has high lithium ion conductivity, it has excellent charge / discharge characteristics. Therefore, it can be suitably used as an electrolyte layer of a highly safe lithium ion battery.

Claims (3)

ニオブ酸リチウム(LiNbO)と、フッ化物とを含有していることを特徴とするリチウムイオン伝導性固体電解質。 A lithium ion conductive solid electrolyte comprising lithium niobate (LiNbO 3 ) and a fluoride. 前記フッ化物を前記リチウムイオン伝導性固体電解質の15重量%以上35重量%以下で含有することを特徴とする請求項1に記載のリチウムイオン伝導性固体電解質。   2. The lithium ion conductive solid electrolyte according to claim 1, wherein the fluoride is contained in an amount of 15 wt% to 35 wt% of the lithium ion conductive solid electrolyte. 前記フッ化物がフッ化リチウム(LiF)であることを特徴とする請求項1または2にいずれか記載のリチウムイオン伝導性固体電解質。   The lithium ion conductive solid electrolyte according to claim 1, wherein the fluoride is lithium fluoride (LiF).
JP2012014552A 2012-01-26 2012-01-26 Lithium ion conductive solid electrolyte Active JP5910112B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2012014552A JP5910112B2 (en) 2012-01-26 2012-01-26 Lithium ion conductive solid electrolyte

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2012014552A JP5910112B2 (en) 2012-01-26 2012-01-26 Lithium ion conductive solid electrolyte

Publications (2)

Publication Number Publication Date
JP2013157090A true JP2013157090A (en) 2013-08-15
JP5910112B2 JP5910112B2 (en) 2016-04-27

Family

ID=49052099

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2012014552A Active JP5910112B2 (en) 2012-01-26 2012-01-26 Lithium ion conductive solid electrolyte

Country Status (1)

Country Link
JP (1) JP5910112B2 (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2017091788A (en) * 2015-11-10 2017-05-25 日本特殊陶業株式会社 Ion conductor, lithium battery, and method of producing ion conductor
WO2022230426A1 (en) 2021-04-28 2022-11-03 昭和電工株式会社 Lithium ion conducting oxide and all solid battery
KR20230037137A (en) * 2021-09-09 2023-03-16 울산대학교 산학협력단 Sulfide-based solid electrolyte, manufacturing method thereof, and all-solid lithium battery manufactured therefrom

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5971264A (en) * 1982-10-15 1984-04-21 Sanyo Electric Co Ltd Solid electrolyte battery
JPS59189566A (en) * 1983-04-11 1984-10-27 Canon Inc Thin film solid electrolyte and its manufacture
JP2008243736A (en) * 2007-03-28 2008-10-09 Arisawa Mfg Co Ltd Lithium ion secondary battery and its manufacturing method
JP2009218124A (en) * 2008-03-11 2009-09-24 Sumitomo Electric Ind Ltd Li ion-conductive solid electrolyte
JP2010244847A (en) * 2009-04-06 2010-10-28 Toyota Motor Corp Solid electrolyte material
JP2011081934A (en) * 2009-10-05 2011-04-21 Konica Minolta Holdings Inc Solid electrolyte and secondary battery

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5971264A (en) * 1982-10-15 1984-04-21 Sanyo Electric Co Ltd Solid electrolyte battery
JPS59189566A (en) * 1983-04-11 1984-10-27 Canon Inc Thin film solid electrolyte and its manufacture
JP2008243736A (en) * 2007-03-28 2008-10-09 Arisawa Mfg Co Ltd Lithium ion secondary battery and its manufacturing method
JP2009218124A (en) * 2008-03-11 2009-09-24 Sumitomo Electric Ind Ltd Li ion-conductive solid electrolyte
JP2010244847A (en) * 2009-04-06 2010-10-28 Toyota Motor Corp Solid electrolyte material
JP2011081934A (en) * 2009-10-05 2011-04-21 Konica Minolta Holdings Inc Solid electrolyte and secondary battery

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
JPN6015023407; SUN H Y, TAKEDA Y, IMANISHI N , YAMAMOTO O: 'Ferroelectric Materials as a Ceramic Filler in Solid Composite Polyethylene Oxide-Based Electrolytes' J Electrochem Soc Vol.147/No.7, 200007, Page.2462-2467 *

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2017091788A (en) * 2015-11-10 2017-05-25 日本特殊陶業株式会社 Ion conductor, lithium battery, and method of producing ion conductor
WO2022230426A1 (en) 2021-04-28 2022-11-03 昭和電工株式会社 Lithium ion conducting oxide and all solid battery
KR20230156423A (en) 2021-04-28 2023-11-14 가부시끼가이샤 레조낙 Lithium-ion conductive oxide and all-solid-state batteries
KR20230037137A (en) * 2021-09-09 2023-03-16 울산대학교 산학협력단 Sulfide-based solid electrolyte, manufacturing method thereof, and all-solid lithium battery manufactured therefrom
WO2023038371A1 (en) * 2021-09-09 2023-03-16 울산대학교 산학협력단 Sulfide-based solid electrolyte, preparation method thereof, and all-solid-state battery prepared therefrom
KR102613606B1 (en) 2021-09-09 2023-12-14 울산대학교 산학협력단 Sulfide-based solid electrolyte, manufacturing method thereof, and all-solid lithium battery manufactured therefrom

Also Published As

Publication number Publication date
JP5910112B2 (en) 2016-04-27

Similar Documents

Publication Publication Date Title
Hou et al. Solid electrolytes and interfaces in all-solid-state sodium batteries: Progress and perspective
CN110233298B (en) Preparation method of novel all-solid-state lithium ion battery
JP7417923B2 (en) Solid electrolyte materials and batteries
JP7417924B2 (en) Solid electrolyte materials and batteries
KR102410194B1 (en) Electrode mixture for sodium ion batteries, production method therefor, and all-solid-state sodium battery
JP5358522B2 (en) Solid electrolyte material and lithium battery
TWI628826B (en) All solid battery
JP5970284B2 (en) All solid battery
JP2015185337A (en) All-solid battery
JP5348607B2 (en) All-solid lithium secondary battery
WO2011040118A1 (en) Solid electrolyte battery
JP6575048B2 (en) The positive electrode composition for nonaqueous electrolyte secondary batteries, the nonaqueous electrolyte secondary battery, and the manufacturing method of the positive electrode composition for nonaqueous electrolyte secondary batteries.
JP6242620B2 (en) All solid battery
JP2014116149A (en) Lithium ion secondary battery and method for producing positive electrode active material for lithium ion secondary battery
CN103545497A (en) Lithium ion battery cathode material with two-shell layer structure and preparation method thereof
JP2009211910A (en) All-solid lithium secondary battery
KR102101466B1 (en) All solid lithium secondary battery using solid electrolyte of complex lithium salt and method for manufacturing the same
JP2013051171A (en) Electrode body for all solid-state battery and all solid-state battery
JP2009094029A (en) All-solid lithium secondary battery, and electrode for all-solid lithium secondary battery
JP6694133B2 (en) All solid state battery
JP6209413B2 (en) Manufacturing method of all solid state battery
JP5910112B2 (en) Lithium ion conductive solid electrolyte
KR102272459B1 (en) Double layer composite solid electrolyte, all solid lithium secondary battery comprising same and method of preparing same
KR20140021072A (en) Solid secondary battery and battery system
RU2558140C1 (en) LiCrTiO4-BASED MATERIAL OF ANODE IN LITHIUM-ION BATTERY BASED ON SPINEL-STRUCTURE AND METHOD OF ITS PRODUCTION

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20141007

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20150529

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20150616

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20150817

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20160301

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20160314

R150 Certificate of patent or registration of utility model

Ref document number: 5910112

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150