JP2013156467A - Scanning type observation device - Google Patents

Scanning type observation device Download PDF

Info

Publication number
JP2013156467A
JP2013156467A JP2012017604A JP2012017604A JP2013156467A JP 2013156467 A JP2013156467 A JP 2013156467A JP 2012017604 A JP2012017604 A JP 2012017604A JP 2012017604 A JP2012017604 A JP 2012017604A JP 2013156467 A JP2013156467 A JP 2013156467A
Authority
JP
Japan
Prior art keywords
pupil
optical system
relay optical
light
axis
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2012017604A
Other languages
Japanese (ja)
Other versions
JP5977527B2 (en
Inventor
Shintaro Fujii
信太朗 藤井
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Olympus Corp
Original Assignee
Olympus Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Olympus Corp filed Critical Olympus Corp
Priority to JP2012017604A priority Critical patent/JP5977527B2/en
Publication of JP2013156467A publication Critical patent/JP2013156467A/en
Application granted granted Critical
Publication of JP5977527B2 publication Critical patent/JP5977527B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Abstract

PROBLEM TO BE SOLVED: To provide a technique that suppresses vignetting of off-axis light due to a housing accommodating a detection element.SOLUTION: A two-photon excitation microscope 1 is a scanning type observation device having a scanner 3 that scans a sample S by using illumination light emitted from a laser 2. Observation light generated in the sample S irradiated with illumination light is condensed by an object lens 6 and enters a detection element 8a via a pupil relay optical system 7 that makes a pupil PP of the object lens 6 almost conjugate to a light receiving surface 8b of a detection element 8a and is detected. In the two-photon excitation microscope 1, the detection element 8a is disposed such that the most off-axis principal ray of the observation light emitted from the pupil relay optical system 7 and the optical axis of the pupil relay optical system 7 intersect with each other between the light receiving surface 8b and the pupil relay optical system 7.

Description

本発明は、標本を走査する走査手段を備えた走査型観察装置に関する。   The present invention relates to a scanning observation apparatus provided with scanning means for scanning a specimen.

観察装置の分野においては、標本上の一定の領域から生じた観察光を効率良く検出するための構成として、検出素子の受光面を観察光が入射する対物レンズや集光レンズ(以降、対物レンズと集光レンズのいずれについても集光レンズと記す)の瞳共役面に配置する構成が知られている。このような構成は、例えば、特許文献1で開示されている。   In the field of observation devices, as a configuration for efficiently detecting observation light generated from a certain region on a specimen, an objective lens or a condenser lens (hereinafter referred to as an objective lens) on which the observation light is incident on the light receiving surface of the detection element is used. And the condensing lens are known to be arranged on the pupil conjugate plane of the condensing lens). Such a configuration is disclosed in Patent Document 1, for example.

特許文献1に開示される走査型顕微鏡は、集光レンズの瞳が光検出器の受光面に投影されるように構成されている。標本から集光レンズに入射する観察光の主光線は、その観察光が生じた標本上の位置に関わらず、集光レンズの瞳位置を通過する。このため、受光面が瞳共役面に配置された特許文献1に開示される走査型顕微鏡によれば、走査位置に関わらず標本からの観察光を効率的に検出することが可能である。   The scanning microscope disclosed in Patent Document 1 is configured such that the pupil of the condenser lens is projected onto the light receiving surface of the photodetector. The principal ray of the observation light incident on the condenser lens from the specimen passes through the pupil position of the condenser lens regardless of the position on the specimen where the observation light is generated. For this reason, according to the scanning microscope disclosed in Patent Document 1 in which the light receiving surface is arranged on the pupil conjugate plane, it is possible to efficiently detect the observation light from the specimen regardless of the scanning position.

特開2008−275763号公報JP 2008-2775763 A

ところで、検出素子は、外部からの電場や磁場の遮蔽や検出素子の冷却など様々な役割を担うハウジングに収納されていて、通常はハウジングに形成された、光軸と平行な開口の底に配置されている。   By the way, the detection element is housed in a housing that plays various roles such as shielding of an electric field and magnetic field from the outside and cooling of the detection element, and is usually arranged at the bottom of the opening formed in the housing and parallel to the optical axis. Has been.

集光レンズの光軸からずれた位置から生じた観察光の主光線、即ち、軸外光の主光線は、光軸に対して傾斜した状態で瞳位置に入射することから、軸外光では、ハウジングが障害物となり、ケラレが生じてしまうことがある。   The principal ray of observation light generated from a position deviated from the optical axis of the condenser lens, that is, the principal ray of off-axis light is incident on the pupil position while being inclined with respect to the optical axis. The housing may become an obstacle and vignetting may occur.

このようなハウジングによるケラレを抑制するためには、瞳投影倍率を高くして入射角を浅くする方法が考えられる。しかしながら、瞳投影倍率が高くなると検出素子の受光面に入射する光束が太くなる。このため、投影倍率を高くしすぎると、観察光が受光面からはみ出してしまう事象や、太くなった光束の周辺部分がハウジングに遮られる事象が生じてしまい、かえって効率が低下してしまう。
以上のような実情を踏まえ、本発明では、検出素子を収納するハウジングによる軸外光のケラレを抑制する技術を提供することを課題とする。
In order to suppress such vignetting due to the housing, a method of increasing the pupil projection magnification and reducing the incident angle can be considered. However, when the pupil projection magnification increases, the luminous flux incident on the light receiving surface of the detection element becomes thicker. For this reason, if the projection magnification is increased too much, the phenomenon that the observation light protrudes from the light receiving surface and the phenomenon that the peripheral portion of the thickened light flux is blocked by the housing occur, and the efficiency is lowered.
Based on the above situation, an object of the present invention is to provide a technique for suppressing vignetting of off-axis light by a housing that houses a detection element.

本発明の第1の態様は、光源から射出された照明光で標本を走査する走査手段と、前記照明光が照射された前記標本で発生する観察光を集光する集光レンズと、前記観察光を検出する検出素子と、前記集光レンズの瞳を前記検出素子の前記受光面と略共役にする瞳リレー光学系と、を含み、前記検出素子は、前記瞳リレー光学系から射出された前記観察光の最軸外の主光線と前記瞳リレー光学系の光軸とが前記受光面と前記瞳リレー光学系との間で交差するように、配置される走査型観察装置を提供する。   The first aspect of the present invention includes a scanning unit that scans a specimen with illumination light emitted from a light source, a condensing lens that collects observation light generated by the specimen irradiated with the illumination light, and the observation A detection element that detects light, and a pupil relay optical system that conjugates a pupil of the condenser lens with the light receiving surface of the detection element, wherein the detection element is emitted from the pupil relay optical system There is provided a scanning observation apparatus arranged such that a principal ray outside the most axis of the observation light and an optical axis of the pupil relay optical system intersect between the light receiving surface and the pupil relay optical system.

本発明の第2の態様は、第1の態様に記載の走査型観察装置において、前記検出素子は、前記集光レンズの瞳共役位置が前記受光面と前記瞳リレー光学系との間に位置するように、配置される走査型観察装置を提供する。   According to a second aspect of the present invention, in the scanning observation apparatus according to the first aspect, the detection element has a pupil conjugate position of the condenser lens located between the light receiving surface and the pupil relay optical system. Thus, a scanning observation apparatus is provided.

本発明の第3の態様は、第1の態様に記載の走査型観察装置において、前記瞳リレー光学系は、前記最軸外の主光線と前記瞳リレー光学系の光軸とが前記受光面と前記瞳リレー光学系との間で交差するような瞳収差を有する走査型観察装置を提供する。   According to a third aspect of the present invention, in the scanning observation apparatus according to the first aspect, the pupil relay optical system is configured such that the off-axis principal ray and the optical axis of the pupil relay optical system are the light receiving surfaces. And a pupil observation optical system having a pupil aberration that intersects the pupil relay optical system.

本発明の第4の態様は、第1の態様に記載の走査型観察装置において、前記検出素子は、前記集光レンズの瞳共役位置が前記受光面と前記瞳リレー光学系との間に位置するように、配置されて、前記瞳リレー光学系は、前記最軸外の主光線と前記瞳リレー光学系の光軸とが前記受光面と前記瞳リレー光学系との間で交差するような瞳収差を有する走査型観察装置を提供する。   According to a fourth aspect of the present invention, in the scanning observation apparatus according to the first aspect, the detection element has a pupil conjugate position of the condenser lens located between the light receiving surface and the pupil relay optical system. The pupil relay optical system is arranged such that the off-axis principal ray and the optical axis of the pupil relay optical system intersect between the light receiving surface and the pupil relay optical system. A scanning observation apparatus having pupil aberration is provided.

本発明の第5の態様は、第2の態様乃至第4の態様のいずれか1つに記載の走査型観察装置において、前記走査手段は、照明光路上で、且つ、前記集光レンズの瞳共役位置に配置される走査型観察装置を提供する。   According to a fifth aspect of the present invention, in the scanning observation apparatus according to any one of the second to fourth aspects, the scanning unit is on an illumination optical path and the pupil of the condenser lens. Provided is a scanning observation apparatus arranged at a conjugate position.

本発明の第6の態様は、第1の態様乃至第5の態様のいずれか1つに記載の走査型観察装置において、前記走査型観察装置は、非線形光学顕微鏡である走査型観察装置を提供する。   According to a sixth aspect of the present invention, there is provided the scanning observation apparatus according to any one of the first to fifth aspects, wherein the scanning observation apparatus is a nonlinear optical microscope. To do.

本発明によれば、検出素子を収納するハウジングによる軸外光のケラレを抑制する技術を提供することができる。   ADVANTAGE OF THE INVENTION According to this invention, the technique which suppresses the vignetting of the off-axis light by the housing which accommodates a detection element can be provided.

本発明の実施例1に係る走査型観察装置の構成を例示した図である。It is the figure which illustrated the structure of the scanning observation apparatus which concerns on Example 1 of this invention. 従来技術に係る走査型観察装置と実施例1に係る走査型観察装置の相違点について説明するための図である。It is a figure for demonstrating the difference between the scanning observation apparatus which concerns on a prior art, and the scanning observation apparatus which concerns on Example 1. FIG. 検出素子の配置と開口効率の関係について例示した図である。It is the figure illustrated about the relationship between arrangement | positioning of a detection element, and aperture efficiency. 図1に例示される典型的な開口形状を備えた検出器の拡大図である。FIG. 2 is an enlarged view of a detector having a typical aperture shape illustrated in FIG. 1. 従来技術に係る走査型観察装置と本発明の実施例2に係る走査型観察装置の相違点について説明するための図である。It is a figure for demonstrating the difference between the scanning observation apparatus which concerns on a prior art, and the scanning observation apparatus which concerns on Example 2 of this invention. 異なる瞳収差を有する瞳リレー光学系の各々から射出される蛍光の様子を例示した図である。It is the figure which illustrated the mode of the fluorescence inject | emitted from each of the pupil relay optical system which has a different pupil aberration. 図6に例示される瞳リレー光学系の各々の球面収差図である。FIG. 7 is a spherical aberration diagram of each of the pupil relay optical systems exemplified in FIG. 6. 図6に例示される瞳リレー光学系の各々を用いた場合における、検出素子の配置と開口効率の関係について例示した図である。FIG. 7 is a diagram illustrating the relationship between the arrangement of detection elements and the aperture efficiency when each of the pupil relay optical systems illustrated in FIG. 6 is used. 本発明の実施例3に係る走査型観察装置の構成を例示した図である。It is the figure which illustrated the structure of the scanning observation apparatus which concerns on Example 3 of this invention.

図1は、本実施例に係る2光子励起顕微鏡の構成を例示した図である。図1に例示される2光子励起顕微鏡1は、標本Sから生じる観察光である蛍光を検出することにより標本Sを観察する、スキャナ3を備えた走査観察装置である。   FIG. 1 is a diagram illustrating the configuration of a two-photon excitation microscope according to the present embodiment. A two-photon excitation microscope 1 illustrated in FIG. 1 is a scanning observation apparatus including a scanner 3 that observes a specimen S by detecting fluorescence that is observation light generated from the specimen S.

2光子励起顕微鏡1は、標本Sを励起するためのレーザ光を射出するレーザ2と、レーザ2から射出されたレーザ光で標本Sを走査する走査手段であるスキャナ3と、瞳リレー光学系4と、レーザ光を反射させて標本Sから生じた蛍光を透過させるダイクロイックミラー5と、対物レンズ6と、瞳リレー光学系7と、蛍光を検出する検出素子8aを備えた検出器8と、を含んでいる。   The two-photon excitation microscope 1 includes a laser 2 that emits laser light for exciting the specimen S, a scanner 3 that is a scanning unit that scans the specimen S with laser light emitted from the laser 2, and a pupil relay optical system 4 A dichroic mirror 5 that reflects laser light and transmits fluorescence generated from the specimen S, an objective lens 6, a pupil relay optical system 7, and a detector 8 that includes a detection element 8a that detects fluorescence. Contains.

スキャナ3は、例えば、ガルバノミラー、ポリゴンミラー、音響光学偏向素子などであり、ダイクロイックミラー5とレーザ2との間の照明光路上で、且つ、対物レンズ6の瞳共役位置に配置されている。瞳リレー光学系4は、レンズ4aとレンズ4bからなり、対物レンズ6の瞳PPがスキャナ3と略共役になるように構成されている。   The scanner 3 is, for example, a galvanometer mirror, a polygon mirror, an acoustooptic deflection element, and the like, and is disposed on the illumination optical path between the dichroic mirror 5 and the laser 2 and at the pupil conjugate position of the objective lens 6. The pupil relay optical system 4 includes a lens 4a and a lens 4b, and is configured so that the pupil PP of the objective lens 6 is substantially conjugate with the scanner 3.

ダイクロイックミラー5は、照明光路と検出光路を分岐させる光路分岐手段である。対物レンズ6は、レーザ光を標本Sに照射するとともに、レーザ光が照射された標本Sで生じる蛍光を集光する集光レンズである。瞳リレー光学系7は、レンズ7aとレンズ7bからなり、対物レンズ6の瞳PPが検出素子8aの受光面8bと略共役になるように構成されている。   The dichroic mirror 5 is an optical path branching unit that branches the illumination optical path and the detection optical path. The objective lens 6 is a condenser lens that irradiates the sample S with the laser light and collects the fluorescence generated in the sample S irradiated with the laser light. The pupil relay optical system 7 includes a lens 7a and a lens 7b, and is configured such that the pupil PP of the objective lens 6 is substantially conjugate with the light receiving surface 8b of the detection element 8a.

検出器8は、検出素子8aに加えて、検出素子8aを収納するハウジング8cを含んでいる。外部からの電場や磁場の遮蔽、検出素子8aの冷却などの為に設けられるハウジング8cには、検出素子8aへ入射する蛍光が通る光軸と平行な開口が形成されている。
なお、検出器8は、例えば冷却式光電子増倍管(フォトマル)であり、検出素子8aの材質としては、GaAsPなどが採用される。
The detector 8 includes a housing 8c that houses the detection element 8a in addition to the detection element 8a. An opening parallel to the optical axis through which the fluorescence incident on the detection element 8a passes is formed in the housing 8c provided for shielding an electric field and a magnetic field from the outside, cooling the detection element 8a, and the like.
The detector 8 is, for example, a cooled photomultiplier tube (photomultiplier), and GaAsP or the like is adopted as the material of the detection element 8a.

検出素子8aは、検出素子8aの受光面8bの法線と瞳リレー光学系7の光軸とが一致するように、その開口の底に配置されている。また、検出素子8aは、瞳リレー光学系7から射出された蛍光の最軸外の主光線と瞳リレー光学系7の光軸とが、瞳リレー光学系7と受光面8bとの間で交差するように、配置されている。   The detection element 8a is disposed at the bottom of the opening so that the normal line of the light receiving surface 8b of the detection element 8a matches the optical axis of the pupil relay optical system 7. In addition, the detection element 8a is configured such that the principal ray off the most axis of fluorescence emitted from the pupil relay optical system 7 and the optical axis of the pupil relay optical system 7 intersect between the pupil relay optical system 7 and the light receiving surface 8b. To be arranged.

図2は、従来技術に係る走査型観察装置と本実施例に係る走査型観察装置の相違点について説明するための図である。図3は、検出素子の配置と開口効率の関係について例示した図である。なお、図3の縦軸は、瞳リレー光学系から射出された蛍光の瞳位置での軸上の光束の面積に対する軸外の光束の面積の割合である開口効率を示し、図3の横軸は、対物レンズの瞳共役位置P0からの受光面8bのずらし量を示す。なお、ずらし量は、受光面8bが瞳共役位置P0よりも瞳リレー光学系から離れた状態でプラスとなるように定義する。   FIG. 2 is a diagram for explaining the difference between the scanning observation apparatus according to the prior art and the scanning observation apparatus according to the present embodiment. FIG. 3 is a diagram illustrating the relationship between the arrangement of the detection elements and the aperture efficiency. The vertical axis in FIG. 3 shows the aperture efficiency, which is the ratio of the area of the off-axis light beam to the area of the light beam on the axis at the pupil position of the fluorescence emitted from the pupil relay optical system, and the horizontal axis in FIG. Indicates the shift amount of the light receiving surface 8b from the pupil conjugate position P0 of the objective lens. The shift amount is defined so as to be positive when the light receiving surface 8b is further away from the pupil relay optical system than the pupil conjugate position P0.

以下、図2及び図3を参照しながら、走査型観察装置である2光子励起顕微鏡の検出素子8aの配置とその影響について、さらに詳細に説明する。   Hereinafter, with reference to FIGS. 2 and 3, the arrangement of the detection element 8a of the two-photon excitation microscope, which is a scanning observation apparatus, and the influence thereof will be described in more detail.

図2(a)には、従来技術に係る走査型観察装置である2光子励起顕微鏡100に含まれる検出素子8aの配置が示されている。図2(b)には、本実施例に係る走査型観察装置である2光子励起顕微鏡1に含まれる検出素子8aの配置が示されている。2光子励起顕微鏡100と2光子励起顕微鏡1では、レンズ7bと検出器8の間の間隔のみが異なっている。   FIG. 2A shows the arrangement of the detection elements 8a included in the two-photon excitation microscope 100, which is a scanning observation apparatus according to the prior art. FIG. 2B shows the arrangement of the detection elements 8a included in the two-photon excitation microscope 1 that is the scanning observation apparatus according to the present embodiment. In the two-photon excitation microscope 100 and the two-photon excitation microscope 1, only the distance between the lens 7b and the detector 8 is different.

図2(a)に例示されるように、従来技術に係る2光子励起顕微鏡100では、検出素子8aは、受光面8bが瞳共役面CPと一致するように光軸上に配置される。この場合、ハウジング8cがなければすべての主光線(例えば、軸上光の主光線L0、軸外光の主光線L1、軸外光の主光線L2)が受光面8bの中心に位置する瞳共役位置P0に入射することになるため、主光線により代表される標本Sの各位置から生じた光を、その光束径が検出素子8aのサイズを超えない限りにおいて検出することが可能である。しかしながら、実際にはハウジング8cが存在するため、光軸に対して主光線が傾斜している軸外光では、ハウジング8cによるケラレが生じてしまう。
なお、ハウジング8cの開口の先端には、通常、防塵、保護のため窓レンズと呼ばれるカバーガラス(平行平板)が配置されている。ここでは線のみの記載としているが、厚みが影響するときは、空気換算長を考慮すればよい。
As illustrated in FIG. 2A, in the two-photon excitation microscope 100 according to the related art, the detection element 8a is disposed on the optical axis so that the light receiving surface 8b coincides with the pupil conjugate plane CP. In this case, if there is no housing 8c, all the principal rays (for example, the principal ray L0 of the on-axis light, the principal ray L1 of the off-axis light, and the principal ray L2 of the off-axis light) are located at the center of the light receiving surface 8b. Since the light enters the position P0, it is possible to detect the light generated from each position of the sample S represented by the principal ray as long as the light beam diameter does not exceed the size of the detection element 8a. However, since the housing 8c actually exists, vignetting by the housing 8c occurs in off-axis light whose principal ray is inclined with respect to the optical axis.
A cover glass (parallel plate) called a window lens is usually disposed at the tip of the opening of the housing 8c for dust prevention and protection. Here, only the lines are described, but when the thickness affects, the air equivalent length may be considered.

具体的には、2光子励起顕微鏡100では、瞳共役位置P0からの受光面8bのずらし量は0であるので、図3に示されるように、主光線L0に代表される軸上光では開口効率が100%であるのに対して、主光線L1に代表される軸外光では開口効率が55%程度、主光線L2に代表されるさらに軸外から生じる軸外光では開口効率が0%となる。
なお、図3の開口効率の導出に当たり、ハウジング8cの開口形状が円筒形で、その直径bがφ6mm、開口の深さcが8.9mm、受光面8bの直径aがφ5mm、レンズ7bの焦点距離fが35.3mm、レンズ7bの入射面側での最も軸外の光束の主光線の光線高が11.8mm、レンズ7bの射出面側で軸上光束の光束径がφ3.2mmとして計算した。
Specifically, in the two-photon excitation microscope 100, since the shift amount of the light receiving surface 8b from the pupil conjugate position P0 is 0, as shown in FIG. 3, the axial light represented by the principal ray L0 has an aperture. The efficiency is 100%, whereas the off-axis light represented by the principal ray L1 has an aperture efficiency of about 55%, and the off-axis light represented by the off-axis light represented by the principal ray L2 has an aperture efficiency of 0%. It becomes.
3, the opening shape of the housing 8c is cylindrical, the diameter b is φ6 mm, the opening depth c is 8.9 mm, the diameter a of the light receiving surface 8b is φ5 mm, and the focal point of the lens 7b. Calculation is made assuming that the distance f is 35.3 mm, the principal ray height of the most off-axis light beam on the entrance surface side of the lens 7b is 11.8 mm, and the light beam diameter of the on-axis light beam on the exit surface side of the lens 7b is φ3.2 mm. did.

一方、図2(b)に例示されるように、本実施例に係る2光子励起顕微鏡1では、検出素子8aは、対物レンズ6の瞳共役位置P0が受光面8bとレンズ7b(瞳リレー光学系7)との間に位置するように、光軸上に配置される。このため、2光子励起顕微鏡1では、ハウジング8cに形成された開口の標本側の端部(以降、開口端と記す)において、軸外光の主光線(主光線L1、主光線L2)が、走査型観察装置100の場合に比べて光軸から近い位置を通過することになる。これにより、ハウジング8cでのケラレを抑制することができるため、図3に示されるように、受光面8cを瞳共役位置P0からずらすことで、軸外光の開口効率が改善される。   On the other hand, as illustrated in FIG. 2B, in the two-photon excitation microscope 1 according to the present embodiment, the detection element 8a has the pupil conjugate position P0 of the objective lens 6 such that the light receiving surface 8b and the lens 7b (pupil relay optics). It is arranged on the optical axis so as to be located between the system 7). For this reason, in the two-photon excitation microscope 1, the principal ray (principal ray L1, principal ray L2) of off-axis light is generated at the end of the opening formed in the housing 8c on the specimen side (hereinafter referred to as the opening end). Compared to the case of the scanning observation apparatus 100, it passes through a position closer to the optical axis. As a result, vignetting in the housing 8c can be suppressed, and as shown in FIG. 3, the aperture efficiency of off-axis light is improved by shifting the light receiving surface 8c from the pupil conjugate position P0.

なお、瞳共役位置P0を通過後の軸外光の主光線(主光線L1、主光線L2)は、瞳共役位置P0から離れるほど光軸から広がっていくことになるため、瞳共役位置P0を開口端に近づけすぎると、瞳共役位置P0を通過後に主光線が大きく広がってしまい、開口内でケラレが生じてしまう。図3に示されるように、2光子励起顕微鏡1の場合には、受光面8cの瞳共役位置P0からのずらし量としては、4mmから6mm程度が望ましく、ずらし量を大きくしすぎると、一旦改善された軸外光の開口効率が再び低下してしまう。このため、検出素子8aの受光面は、瞳共役位置P0は大きく離れた位置に配置されるべきでなく、瞳共役位置P0近傍に配置されることが望ましい。
特に、ハウジングの開口の直径bに対する深さcの比c/bが1.3から1.6程度のとき、瞳リレー光学系の中間像の後段のレンズ系の焦点距離fに対するずらし量zの比z/fは0.1から0.18程度であることが望ましい。
Note that the principal rays (principal ray L1 and principal ray L2) of off-axis light after passing through the pupil conjugate position P0 spread from the optical axis as the distance from the pupil conjugate position P0 increases. If it is too close to the aperture end, the chief ray spreads greatly after passing through the pupil conjugate position P0, and vignetting occurs in the aperture. As shown in FIG. 3, in the case of the two-photon excitation microscope 1, the shift amount from the pupil conjugate position P0 of the light receiving surface 8c is preferably about 4 mm to 6 mm, and once the shift amount is increased, it is improved once. The aperture efficiency of the off-axis light that has been generated is reduced again. For this reason, the light receiving surface of the detection element 8a should not be disposed at a position far away from the pupil conjugate position P0, but is desirably disposed in the vicinity of the pupil conjugate position P0.
In particular, when the ratio c / b of the depth c to the diameter b of the housing opening is about 1.3 to 1.6, the shift amount z with respect to the focal length f of the lens system at the rear stage of the intermediate image of the pupil relay optical system The ratio z / f is preferably about 0.1 to 0.18.

このように、瞳共役位置P0からの受光面8cのずらし量zには、ケラレの発生を効果的に抑制することができる最適な範囲が存在する。図4は、図1に例示される典型的な開口形状を備えた検出器の拡大図である。図4に例示される検出器8の場合、ケラレの発生を効果的に抑制することができるずらし量zの最適な範囲は、以下の式(1)で表される。
As described above, the shift amount z of the light receiving surface 8c from the pupil conjugate position P0 has an optimum range in which the occurrence of vignetting can be effectively suppressed. FIG. 4 is an enlarged view of a detector having the typical aperture shape illustrated in FIG. In the case of the detector 8 illustrated in FIG. 4, the optimum range of the shift amount z that can effectively suppress the occurrence of vignetting is expressed by the following equation (1).

ここで、パラメータaは検出素子8aの受光面径(受光面8bの径)であり、パラメータbはメカ枠径(ハウジング8cの開口の径)であり、パラメータcはメカ枠長(ハウジング8cの開口の深さ)である。また、パラメータhは最軸外光の上側光線幅(最軸外光の主光線と上側マージナル光線との間の間隔)であり、パラメータhは、最軸外光の下側光線幅(最軸外光の主光線と下側マージナル光線との間の間隔)であり、パラメータθは、最軸外光の光線入射角度(最軸外光の主光線が瞳共役位置に入射する際の、主光線と光軸とのなす角)である。なお、パラメータaとパラメータbは、a≦bの関係にあり、パラメータcは、開口内に窓レンズが配置されている場合には、空気換算長で表される。 Here, the parameter a is the light receiving surface diameter of the detection element 8a (the diameter of the light receiving surface 8b), the parameter b is the mechanical frame diameter (the diameter of the opening of the housing 8c), and the parameter c is the mechanical frame length (of the housing 8c). The depth of the opening). The parameter hu is the upper ray width of the most off-axis light (the interval between the principal ray of the most off-axis light and the upper marginal ray), and the parameter hl is the lower ray width of the most off-axis light ( The distance between the principal ray of the most off-axis light and the lower marginal ray), and the parameter θ is the ray incidence angle of the most off-axis light (when the principal ray of the most off-axis light is incident on the pupil conjugate position) , The angle between the principal ray and the optical axis). Note that the parameter a and the parameter b have a relationship of a ≦ b, and the parameter c is represented by an air conversion length when a window lens is disposed in the opening.

式(1)は、下記の式(2)から式(5)で算出されるケラレ量が最小化されることを条件に算出することができる。
Equation (1) can be calculated on condition that the amount of vignetting calculated by the following equations (2) to (5) is minimized.

ここで、ケラレ量uは受光面側での上側ケラレ量(受光面と同一平面における上側マージナル光線と受光面の上端との間の間隔)であり、ケラレ量uはメカ枠側での上側ケラレ量(開口端と同一平面における上側マージナル光線と上側開口端との間の間隔)であり、ケラレ量lは受光面側での下側ケラレ量(受光面と同一平面における下側マージナル光線と受光面の下端との間の間隔)であり、ケラレ量lはメカ枠側での下側ケラレ量(開口端と同一平面における下側マージナル光線と下側開口端との間の間隔)である。なお、ケラレ量u、ケラレ量u、ケラレ量l、ケラレ量lは、それぞれ、ケラレが生じる場合にはプラスの値として、ケラレが生じない場合にはマイナスの値として算出される。 Here, the shading amount u a is the upper vignetting of the light receiving surface side (distance between the upper end of the light-receiving surface and the upper marginal ray on the light-receiving surface in the same plane), the shading amount u b is at the mechanical frame side amount upper vignetting a (distance between the upper marginal ray and the upper open end at the open end flush), vignetting amount l a is lower marginal in the lower vignetting amount (light receiving surface flush with the light receiving surface side the spacing) between the lower end of the beam and the light receiving surface, the distance between the eclipse amount l b is lower marginal ray and a lower opening end in the lower vignetting amount (opening end flush at the mechanical frame side ). Incidentally, vignetting amount u a, vignetting amount u b, vignetting amount l a, vignetting amount l b, respectively, as positive value when the shading occurs, is calculated as a negative value when the eclipse does not occur .

以上のように構成された本実施例に係る2光子励起顕微鏡1によれば、対物レンズ6の瞳共役位置P0が、受光面8b近傍で、且つ、受光面8bと瞳リレー光学系7との間に位置するように検出素子8aが配置されることで、ハウジング8cによる軸外光のケラレを抑制することができる。   According to the two-photon excitation microscope 1 according to the present embodiment configured as described above, the pupil conjugate position P0 of the objective lens 6 is in the vicinity of the light receiving surface 8b and between the light receiving surface 8b and the pupil relay optical system 7. By disposing the detection element 8a so as to be positioned between them, vignetting of off-axis light by the housing 8c can be suppressed.

図5は、従来技術に係る走査型観察装置と本実施例に係る走査型観察装置の相違点について説明するための図である。図5(a)は、従来技術に係る走査型観察装置である2光子励起顕微鏡100の瞳リレー光学系から検出器8へ向けて射出される光の様子を示している。図5(b)は、本実施例に係る走査型観察装置である2光子励起顕微鏡10の瞳リレー光学系から検出器8へ向けて射出される光の様子を示している。   FIG. 5 is a diagram for explaining the difference between the scanning observation apparatus according to the prior art and the scanning observation apparatus according to the present embodiment. FIG. 5A shows the state of light emitted from the pupil relay optical system of the two-photon excitation microscope 100, which is a scanning observation apparatus according to the prior art, toward the detector 8. FIG. FIG. 5B shows the state of light emitted toward the detector 8 from the pupil relay optical system of the two-photon excitation microscope 10 which is the scanning observation apparatus according to the present embodiment.

本実施例に係る2光子励起顕微鏡10は、瞳リレー光学系を構成するレンズ7bの代わりにレンズ17bを含む点、及び、受光面8bが瞳共役面CPと一致するように検出素子8aが配置される点が、図1に例示される2光子励起顕微鏡1と異なっている。なお、受光面8bが瞳共役面CPと一致するように検出素子8aが配置される点については、従来技術に係る2光子励起顕微鏡100と同じである。   In the two-photon excitation microscope 10 according to the present embodiment, the detection element 8a is arranged so that the lens 17b is included instead of the lens 7b constituting the pupil relay optical system, and the light receiving surface 8b coincides with the pupil conjugate plane CP. This is different from the two-photon excitation microscope 1 illustrated in FIG. The detection element 8a is arranged so that the light receiving surface 8b coincides with the pupil conjugate plane CP, which is the same as the two-photon excitation microscope 100 according to the related art.

図5(b)に例示されるレンズ17bと図示しないレンズ7aとで構成される瞳リレー光学系は、最軸外の主光線とその瞳リレー光学系の光軸とが受光面8bと瞳リレー光学系との間で交差するような瞳収差を有している。さらに、その瞳収差は、最軸外において最も大きな球面収差であり、光軸に近づくにつれて球面収差が小さくなるような収差である。   In the pupil relay optical system including the lens 17b illustrated in FIG. 5B and the lens 7a (not shown), the principal ray outside the most axis and the optical axis of the pupil relay optical system are the light receiving surface 8b and the pupil relay. It has pupil aberration that intersects with the optical system. Further, the pupil aberration is the largest spherical aberration off the most axis, and the spherical aberration becomes smaller as it approaches the optical axis.

このため、瞳収差を有する瞳リレー光学系を備えた2光子励起顕微鏡10では、主光線が光軸と交わる位置が主光線毎に異なることになり、光軸からより離れた軸外光の主光線ほど瞳共役位置P0から離れた位置で光軸と交わることになる。なお、瞳位置や瞳共役位置は、一般に、近軸光線によって定義される。   For this reason, in the two-photon excitation microscope 10 having a pupil relay optical system having pupil aberration, the position at which the principal ray intersects the optical axis differs for each principal ray, and the principal light of off-axis light that is further away from the optical axis. The light beam intersects the optical axis at a position away from the pupil conjugate position P0. Note that the pupil position and the pupil conjugate position are generally defined by paraxial rays.

図6は、異なる瞳収差を有する瞳リレー光学系の各々から射出される蛍光の様子を例示した図である。図7は、図6に例示される瞳リレー光学系の各々の球面収差図である。図8は、図6に例示される瞳リレー光学系の各々を用いた場合における、検出素子の配置と開口効率の関係について例示した図である。なお、図8の縦軸は、瞳リレー光学系から射出された蛍光に対する検出素子8aで検出される蛍光の割合である開口効率を示し、図8の横軸は、対物レンズの瞳共役位置P0からの受光面8bのずらし量を示す。なお、ずらし量は、受光面8bが瞳共役位置P0よりも瞳リレー光学系から離れた状態でプラスとなるように定義する。   FIG. 6 is a diagram illustrating the state of fluorescence emitted from each of the pupil relay optical systems having different pupil aberrations. FIG. 7 is a spherical aberration diagram of each of the pupil relay optical systems illustrated in FIG. FIG. 8 is a diagram illustrating the relationship between the arrangement of the detection elements and the aperture efficiency when each of the pupil relay optical systems illustrated in FIG. 6 is used. The vertical axis in FIG. 8 indicates the aperture efficiency, which is the ratio of the fluorescence detected by the detection element 8a to the fluorescence emitted from the pupil relay optical system, and the horizontal axis in FIG. 8 indicates the pupil conjugate position P0 of the objective lens. The shift amount of the light-receiving surface 8b from is shown. The shift amount is defined so as to be positive when the light receiving surface 8b is further away from the pupil relay optical system than the pupil conjugate position P0.

図6(a)に例示されるレンズ18bを含む瞳リレー光学系は、図7(a)に示されるように最軸外で2.5mm程度の瞳収差(球面収差)を有する瞳リレー光学系であり、レンズ18bを含む瞳リレー光学系を用いた場合の開口効率が図8(a)に示されている。図6(b)に例示されるレンズ17bを含む瞳リレー光学系は、図7(b)に示されるように最軸外で5mm程度の瞳収差(球面収差)を有する瞳リレー光学系であり、レンズ17bを含む瞳リレー光学系を用いた場合の開口効率が図8(b)に示されている。図6(c)に例示されるレンズ19bを含む瞳リレー光学系は、図7(c)に示されるように最軸外で8mm程度の瞳収差(球面収差)を有する瞳リレー光学系であり、レンズ19bを含む瞳リレー光学系を用いた場合の開口効率が図8(c)に示されている。
ここで、図8の開口効率の導出に当たり、ハウジングの開口は図3の場合と同形状とし、図6(a)のレンズ18b、図6(b)のレンズ17b、図6(c)のレンズ19bの入射側の面の曲率半径R1と射出側の面の曲率半径R2の比(R1:R2)は、それぞれ26.9:∞、50:54.6、100:35.6として計算した。
The pupil relay optical system including the lens 18b illustrated in FIG. 6A has a pupil aberration (spherical aberration) of about 2.5 mm off the most axis as shown in FIG. 7A. FIG. 8A shows the aperture efficiency when the pupil relay optical system including the lens 18b is used. The pupil relay optical system including the lens 17b illustrated in FIG. 6B is a pupil relay optical system having a pupil aberration (spherical aberration) of about 5 mm off the most axis as shown in FIG. 7B. FIG. 8B shows the aperture efficiency when a pupil relay optical system including the lens 17b is used. The pupil relay optical system including the lens 19b illustrated in FIG. 6C is a pupil relay optical system having a pupil aberration (spherical aberration) of about 8 mm off the most axis as shown in FIG. 7C. FIG. 8C shows the aperture efficiency when a pupil relay optical system including the lens 19b is used.
Here, in deriving the aperture efficiency of FIG. 8, the aperture of the housing has the same shape as in FIG. 3, and the lens 18b in FIG. 6 (a), the lens 17b in FIG. 6 (b), and the lens in FIG. 6 (c). The ratio (R1: R2) of the curvature radius R1 of the incident side surface 19b and the curvature radius R2 of the exit side surface of 19b was calculated as 26.9: ∞, 50: 54.6, and 100: 35.6, respectively.

図8(b)に示されるように、レンズ17bを含む瞳リレー光学系を用いた場合には、受光面8bを瞳共役面CPと一致させた状態で、ハウジング8cによる軸外光のケラレを抑制して、軸外光に対する高い開口効率を実現している。一方で、図8(a)及び図8(c)に示されるように、レンズ18b、レンズ19bを含む瞳リレー光学系を用いた場合には、それぞれ、瞳収差が不足、過剰な状態にあるため、受光面8bを瞳共役面CPと一致させた状態では、特に主光線L2に代表される軸外光のケラレが大きい。   As shown in FIG. 8B, when a pupil relay optical system including the lens 17b is used, vignetting of off-axis light by the housing 8c is performed with the light receiving surface 8b aligned with the pupil conjugate plane CP. Suppressing and realizing high aperture efficiency for off-axis light. On the other hand, as shown in FIGS. 8A and 8C, when the pupil relay optical system including the lens 18b and the lens 19b is used, the pupil aberration is insufficient and excessive, respectively. Therefore, in the state where the light receiving surface 8b coincides with the pupil conjugate plane CP, the vignetting of off-axis light represented by the principal ray L2 is particularly large.

このように、瞳リレー光学系の瞳収差を利用することによっても、瞳共役位置CPを受光面8bに対してずらす場合と同様の効果を得ることが可能である。このため、ある範囲内の瞳収差を利用することで、受光面8bを瞳共役位置CPに一致させた状態であっても、ハウジング8cでのケラレを抑制して、軸外光の開口効率を改善することができる。   As described above, by using the pupil aberration of the pupil relay optical system, it is possible to obtain the same effect as the case where the pupil conjugate position CP is shifted with respect to the light receiving surface 8b. For this reason, by using pupil aberration within a certain range, vignetting in the housing 8c is suppressed and the aperture efficiency of off-axis light is improved even when the light-receiving surface 8b is aligned with the pupil conjugate position CP. Can be improved.

以上のように構成された本実施例に係る2光子励起顕微鏡10によれば、対物レンズ6の瞳共役位置P0が受光面8b近傍(受光面8bと一致した状態を含む)に配置され、且つ、最軸外の主光線と瞳リレー光学系の光軸が受光面8bと瞳リレー光学系との間で交差するような瞳収差を瞳リレー光学系が有することで、実施例1に係る2光子励起顕微鏡1と同様に、ハウジング8cによる軸外光のケラレを抑制することができる。   According to the two-photon excitation microscope 10 according to the present embodiment configured as described above, the pupil conjugate position P0 of the objective lens 6 is disposed in the vicinity of the light receiving surface 8b (including a state in which it coincides with the light receiving surface 8b), and The pupil relay optical system has a pupil aberration such that the off-axis principal ray and the optical axis of the pupil relay optical system intersect between the light receiving surface 8b and the pupil relay optical system. Similar to the photon excitation microscope 1, vignetting of off-axis light by the housing 8c can be suppressed.

なお、瞳リレー光学系の瞳収差1mm分の変動は、受光面8bのずらし量1mm分の変動と同様に作用する。このため、ケラレの発生を効果的に抑制することができる瞳収差の最適な範囲は、実施例1と同様に、式(1)を用いて算出することができる。   Note that the fluctuation of 1 mm of pupil aberration of the pupil relay optical system acts similarly to the fluctuation of 1 mm of the shift amount of the light receiving surface 8b. For this reason, the optimal range of pupil aberration that can effectively suppress the occurrence of vignetting can be calculated using the equation (1), as in the first embodiment.

また、実施例1では、瞳共役位置CPを受光面8bに対してずらすことにより、実施例2では、瞳リレー光学系が瞳収差を有することにより、ハウジング8cでのケラレを抑制する例を示したが、これらを組み合わせて用いてもよい。例えば、受光面8bを瞳共役位置CPに対して5mmずらした状態でケラレを最も効果的に抑制することができる場合には、例えば、最軸外の瞳収差が2mmの瞳リレー光学系を用いた上で、受光面8bを3mmだけずらすことで、ケラレを抑制してもよい。   In the first embodiment, the pupil conjugate position CP is shifted with respect to the light receiving surface 8b. In the second embodiment, the pupil relay optical system has pupil aberration, thereby suppressing vignetting in the housing 8c. However, these may be used in combination. For example, when vignetting can be most effectively suppressed with the light receiving surface 8b shifted by 5 mm with respect to the pupil conjugate position CP, for example, a pupil relay optical system having an off-axis pupil aberration of 2 mm is used. In addition, vignetting may be suppressed by shifting the light receiving surface 8b by 3 mm.

図9、本実施例に係る2光子励起顕微鏡の構成を例示した図である。図9に例示される2光子励起顕微鏡20は、標本Sから生じる蛍光を観察光として検出することにより標本Sを観察する、スキャナ22を備えた走査観察装置である。   FIG. 9 is a diagram illustrating the configuration of a two-photon excitation microscope according to the present embodiment. A two-photon excitation microscope 20 illustrated in FIG. 9 is a scanning observation apparatus including a scanner 22 that observes the specimen S by detecting fluorescence generated from the specimen S as observation light.

2光子励起顕微鏡20は、標本Sを励起するためのレーザ光を射出するレーザ21と、レーザ21から射出されたレーザ光で標本Sを走査する走査手段であるスキャナ22と、瞳リレー光学系23と、レーザ光を標本Sに照射するレンズ24と、標本Sを挟んでレンズ24と向かい合わせに配置されたレンズ25と、瞳リレー光学系26と、レーザ光を遮断し蛍光を透過させるバリアフィルタ27と、蛍光を検出する検出素子28aを備えた検出器28と、を含んでいる。   The two-photon excitation microscope 20 includes a laser 21 that emits laser light for exciting the specimen S, a scanner 22 that is a scanning unit that scans the specimen S with the laser light emitted from the laser 21, and a pupil relay optical system 23. A lens 24 that irradiates the sample S with laser light, a lens 25 that is disposed facing the lens 24 across the sample S, a pupil relay optical system 26, and a barrier filter that blocks the laser light and transmits fluorescence. 27 and a detector 28 having a detection element 28a for detecting fluorescence.

スキャナ22は、例えば、ガルバノミラー、ポリゴンミラー、音響光学偏向素子などであり、標本Sとレーザ21との間の照明光路上で、且つ、レンズ25の瞳共役位置に配置されている。瞳リレー光学系23は、レンズ23aとレンズ23bからなり、レンズ25の瞳PPと光学的に共役な位置に形成されるレンズ24の瞳がスキャナ22と共役になるように構成されている。   The scanner 22 is, for example, a galvano mirror, a polygon mirror, an acousto-optic deflection element, and the like, and is disposed on the illumination optical path between the sample S and the laser 21 and at the pupil conjugate position of the lens 25. The pupil relay optical system 23 includes a lens 23 a and a lens 23 b, and is configured such that the pupil of the lens 24 formed at a position optically conjugate with the pupil PP of the lens 25 is conjugate with the scanner 22.

レンズ25は、レーザ光が照射された標本Sで生じる蛍光を集光する集光レンズである。瞳リレー光学系26は、レンズ26aとレンズ26bからなり、レンズ25の瞳PPが検出素子28aの受光面28bと略共役になるように構成されている。   The lens 25 is a condensing lens that condenses the fluorescence generated in the sample S irradiated with the laser light. The pupil relay optical system 26 includes a lens 26a and a lens 26b, and is configured such that the pupil PP of the lens 25 is substantially conjugate with the light receiving surface 28b of the detection element 28a.

検出器28は、検出素子28aに加えて、検出素子28aを収納するハウジング28cを含んでいる。外部からの電場や磁場の遮蔽、検出素子28aの冷却などの為に設けられるハウジング28cには、検出素子28aへ入射する蛍光が通る光軸と平行な開口が形成されている。   The detector 28 includes a housing 28c that houses the detection element 28a in addition to the detection element 28a. An opening parallel to the optical axis through which the fluorescence incident on the detection element 28a passes is formed in the housing 28c provided for shielding an electric field and a magnetic field from the outside and cooling the detection element 28a.

検出素子28aは、検出素子28aの受光面28bの法線と瞳リレー光学系26の光軸とが一致するように、その開口の底に配置されている。また、検出素子28aは、瞳リレー光学系26から射出された蛍光の最軸外の主光線と瞳リレー光学系26の光軸とが、瞳リレー光学系26と受光面28bとの間で交差するように、配置されている。   The detection element 28a is arranged at the bottom of the opening so that the normal line of the light receiving surface 28b of the detection element 28a and the optical axis of the pupil relay optical system 26 coincide. Further, in the detection element 28a, the principal ray off the most axis of fluorescence emitted from the pupil relay optical system 26 and the optical axis of the pupil relay optical system 26 intersect between the pupil relay optical system 26 and the light receiving surface 28b. To be arranged.

より具体的には、実施例1と同様に、検出素子28aがレンズ25の瞳共役位置が受光面28bとレンズ26bとの間に位置するように配置されてもよく、実施例2と同様に、瞳リレー光学系26が最軸外の主光線とその瞳リレー光学系の光軸とが受光面8bと瞳リレー光学系との間で交差するような瞳収差を有していてもよい。   More specifically, similarly to the first embodiment, the detection element 28a may be arranged so that the pupil conjugate position of the lens 25 is located between the light receiving surface 28b and the lens 26b. The pupil relay optical system 26 may have a pupil aberration such that the off-axis principal ray and the optical axis of the pupil relay optical system intersect between the light receiving surface 8b and the pupil relay optical system.

以上のように構成された本実施例に係る2光子励起顕微鏡20によっても、実施例1及び実施例2に係る2光子励起顕微鏡と同様に、ハウジング28cによる軸外光のケラレを抑制することができる。   The two-photon excitation microscope 20 according to the present embodiment configured as described above can also suppress vignetting of off-axis light by the housing 28c, similarly to the two-photon excitation microscope according to the first and second embodiments. it can.

実施例1から実施例3では、走査型観察装置として2光子励起顕微鏡を例示したが、本願発明が適用される走査型観察装置は、2光子励起顕微鏡に限られない。軸外からの光を効率的に検出することが求められる走査型観察装置であればよく、例えば、第2高調波(SHG)顕微鏡などの蛍光顕微鏡以外の顕微鏡であってもよい。   In the first to third embodiments, the two-photon excitation microscope is illustrated as the scanning observation apparatus. However, the scanning observation apparatus to which the present invention is applied is not limited to the two-photon excitation microscope. Any scanning observation apparatus that is required to efficiently detect off-axis light, for example, a microscope other than a fluorescence microscope such as a second harmonic (SHG) microscope may be used.

なお、非線形光学現象を利用した非線形光学顕微鏡の場合、光は一点からのみ生じるが標本中での散乱などにより広がって標本から射出される。このため、これらの散乱した光を無駄なく取り込む必要がある非線形光学顕微鏡は、本願発明の適用対象として、特に好適である。   In the case of a non-linear optical microscope using a non-linear optical phenomenon, light is generated only from one point, but is spread out due to scattering in the sample and emitted from the sample. For this reason, the nonlinear optical microscope which needs to take in these scattered light without waste is especially suitable as an application object of this invention.

1、10、20、100・・・2光子励起顕微鏡
2、21・・・レーザ
3、22・・・スキャナ
4、23・・・瞳リレー光学系
4a、4b、7a、7b、17b、18b、19b、23a、23b、24、25、26a、26b・・・レンズ
5・・・ダイクロイックミラー
6・・・対物レンズ
7、26・・・瞳リレー光学系
8、28・・・検出器
8a、28a・・・検出素子
8b、28b・・・受光面
8c、28c・・・ハウジング
27・・・バリアフィルタ
P0・・・瞳共役位置
PP・・・瞳面
CP・・・瞳共役面
L0、L1、L2・・・主光線
S・・・標本
1, 10, 20, 100... 2 photon excitation microscope 2, 21... Laser 3, 22, scanner 4, 23, pupil relay optical system 4 a, 4 b, 7 a, 7 b, 17 b, 18 b, 19b, 23a, 23b, 24, 25, 26a, 26b ... lens 5 ... dichroic mirror 6 ... objective lens 7, 26 ... pupil relay optical system 8, 28 ... detectors 8a, 28a ... detecting elements 8b, 28b ... light receiving surfaces 8c, 28c ... housing 27 ... barrier filter P0 ... pupil conjugate position PP ... pupil plane CP ... pupil conjugate planes L0, L1, L2 ... chief ray S ... specimen

Claims (6)

光源から射出された照明光で標本を走査する走査手段と、
前記照明光が照射された前記標本で発生する観察光を集光する集光レンズと、
前記観察光を検出する検出素子と、
前記集光レンズの瞳を前記検出素子の前記受光面と略共役にする瞳リレー光学系と、を含み、
前記検出素子は、前記瞳リレー光学系から射出された前記観察光の最軸外の主光線と前記瞳リレー光学系の光軸とが前記受光面と前記瞳リレー光学系との間で交差するように、配置される
ことを特徴とする走査型観察装置。
Scanning means for scanning the specimen with illumination light emitted from a light source;
A condensing lens that condenses the observation light generated in the specimen irradiated with the illumination light;
A detection element for detecting the observation light;
A pupil relay optical system that makes the pupil of the condenser lens substantially conjugate with the light receiving surface of the detection element;
In the detection element, the principal ray off the most axis of the observation light emitted from the pupil relay optical system and the optical axis of the pupil relay optical system intersect between the light receiving surface and the pupil relay optical system. A scanning observation apparatus, which is arranged as described above.
請求項1に記載の走査型観察装置において、
前記検出素子は、前記集光レンズの瞳共役位置が前記受光面と前記瞳リレー光学系との間に位置するように、配置される
ことを特徴とする走査型観察装置。
The scanning observation apparatus according to claim 1,
The scanning type observation apparatus, wherein the detection element is arranged so that a pupil conjugate position of the condenser lens is located between the light receiving surface and the pupil relay optical system.
請求項1に記載の走査型観察装置において、
前記瞳リレー光学系は、前記最軸外の主光線と前記瞳リレー光学系の光軸とが前記受光面と前記瞳リレー光学系との間で交差するような瞳収差を有する
ことを特徴とする走査型観察装置。
The scanning observation apparatus according to claim 1,
The pupil relay optical system has pupil aberration such that the off-axis principal ray and the optical axis of the pupil relay optical system intersect between the light receiving surface and the pupil relay optical system.
A scanning observation apparatus characterized by that.
請求項1に記載の走査型観察装置において、
前記検出素子は、前記集光レンズの瞳共役位置が前記受光面と前記瞳リレー光学系との間に位置するように、配置されて、
前記瞳リレー光学系は、前記最軸外の主光線と前記瞳リレー光学系の光軸とが前記受光面と前記瞳リレー光学系との間で交差するような瞳収差を有する
ことを特徴とする走査型観察装置。
The scanning observation apparatus according to claim 1,
The detection element is arranged such that a pupil conjugate position of the condenser lens is located between the light receiving surface and the pupil relay optical system,
The pupil relay optical system has pupil aberration such that the off-axis principal ray and the optical axis of the pupil relay optical system intersect between the light receiving surface and the pupil relay optical system.
A scanning observation apparatus characterized by that.
請求項2乃至請求項4のいずれか1項に記載の走査型観察装置において、
前記走査手段は、照明光路上で、且つ、前記集光レンズの瞳共役位置に配置される
ことを特徴とする走査型観察装置。
The scanning observation apparatus according to any one of claims 2 to 4,
The scanning observation apparatus, wherein the scanning unit is arranged on an illumination optical path and at a pupil conjugate position of the condenser lens.
請求項1乃至請求項5のいずれか1項に記載の走査型観察装置において、
前記走査型観察装置は、非線形光学顕微鏡である
ことを特徴とする走査型観察装置。
The scanning observation apparatus according to any one of claims 1 to 5,
The scanning observation apparatus is a nonlinear optical microscope.
JP2012017604A 2012-01-31 2012-01-31 Scanning observation device Active JP5977527B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2012017604A JP5977527B2 (en) 2012-01-31 2012-01-31 Scanning observation device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2012017604A JP5977527B2 (en) 2012-01-31 2012-01-31 Scanning observation device

Publications (2)

Publication Number Publication Date
JP2013156467A true JP2013156467A (en) 2013-08-15
JP5977527B2 JP5977527B2 (en) 2016-08-24

Family

ID=49051699

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2012017604A Active JP5977527B2 (en) 2012-01-31 2012-01-31 Scanning observation device

Country Status (1)

Country Link
JP (1) JP5977527B2 (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN104279984A (en) * 2014-11-05 2015-01-14 哈尔滨工业大学 Two-photon-method-based device and method for measuring smooth free-form surface sample
CN104296688A (en) * 2014-11-05 2015-01-21 哈尔滨工业大学 Smooth free-form surface sample measuring device and method based on differential two-photon method
CN107478628A (en) * 2017-08-31 2017-12-15 浙江大学 A kind of two-photon fluorescence microscopic method and device based on photon restructuring
US9977155B2 (en) 2014-08-25 2018-05-22 Olympus Corporation Microscope apparatus

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN109724954B (en) * 2018-12-07 2021-01-26 北京超维景生物科技有限公司 Fluorescence collection device, miniature two-photon microscope and two-photon imaging method

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2001100093A (en) * 2000-06-13 2001-04-13 Olympus Optical Co Ltd Relay optical system
JP2001159735A (en) * 1999-07-29 2001-06-12 Olympus Optical Co Ltd Relay lens device
US20020027710A1 (en) * 2000-06-13 2002-03-07 Atsushi Yonetani Relay optical system
JP2010091694A (en) * 2008-10-07 2010-04-22 Nikon Corp Scanning microscope
US20110109958A1 (en) * 2009-11-06 2011-05-12 Olympus Corporation Laser microscope using phase-modulation type spatial light modulator
JP2011196852A (en) * 2010-03-19 2011-10-06 Olympus Corp Fluorescence observation device

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2001159735A (en) * 1999-07-29 2001-06-12 Olympus Optical Co Ltd Relay lens device
JP2001100093A (en) * 2000-06-13 2001-04-13 Olympus Optical Co Ltd Relay optical system
US20020027710A1 (en) * 2000-06-13 2002-03-07 Atsushi Yonetani Relay optical system
JP2010091694A (en) * 2008-10-07 2010-04-22 Nikon Corp Scanning microscope
US20110109958A1 (en) * 2009-11-06 2011-05-12 Olympus Corporation Laser microscope using phase-modulation type spatial light modulator
JP2011099986A (en) * 2009-11-06 2011-05-19 Olympus Corp Laser microscope using phase-modulation-type spatial light modulator
JP2011196852A (en) * 2010-03-19 2011-10-06 Olympus Corp Fluorescence observation device

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US9977155B2 (en) 2014-08-25 2018-05-22 Olympus Corporation Microscope apparatus
CN104279984A (en) * 2014-11-05 2015-01-14 哈尔滨工业大学 Two-photon-method-based device and method for measuring smooth free-form surface sample
CN104296688A (en) * 2014-11-05 2015-01-21 哈尔滨工业大学 Smooth free-form surface sample measuring device and method based on differential two-photon method
CN107478628A (en) * 2017-08-31 2017-12-15 浙江大学 A kind of two-photon fluorescence microscopic method and device based on photon restructuring

Also Published As

Publication number Publication date
JP5977527B2 (en) 2016-08-24

Similar Documents

Publication Publication Date Title
JP5534646B2 (en) Apparatus for observing a sample with a microscope using a particle beam and light
JP5977527B2 (en) Scanning observation device
EP3070458B1 (en) Fluorescence observation unit and fluorescence observation apparatus
US20180252648A1 (en) Observation device
JP2011118264A (en) Microscope device
US10642012B2 (en) Laser scanning microscope, and laser scanning microscope control method
US8294984B2 (en) Microscope
US9798128B2 (en) Scanning microscope
US7477449B2 (en) Scanning microscope
JP5934513B2 (en) Transmission electron microscope
JP6260391B2 (en) Confocal microscope apparatus and confocal observation method
JP2007293210A (en) Imaging device
JP5321305B2 (en) Scanning microscope
JP4140490B2 (en) X-ray analyzer and its focusing device
US9977155B2 (en) Microscope apparatus
JP2013054146A (en) Objective lens unit, and scanning microscope including the objective lens unit
EP2733514A1 (en) Apparatus for structured illumination of a specimen
JP6467160B2 (en) Imaging optical system, illumination device and observation device
JP2010286799A (en) Scanning microscope
JP2006195390A (en) Laser scanning type fluorescence microscope and unit of optical detection system
EP2894506B1 (en) Microscope
KR101864984B1 (en) Fluorescence microscopy using the sw-sted
JP4593139B2 (en) Optical scanning confocal observation device
JP2013015681A (en) Disk scan type confocal observation apparatus
JP2011059205A (en) Microscope device

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20141216

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20151126

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20151201

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20160121

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20160705

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20160722

R151 Written notification of patent or utility model registration

Ref document number: 5977527

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R151

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313111

R371 Transfer withdrawn

Free format text: JAPANESE INTERMEDIATE CODE: R371

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313111

R371 Transfer withdrawn

Free format text: JAPANESE INTERMEDIATE CODE: R371

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313111

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250