JP2010091694A - Scanning microscope - Google Patents

Scanning microscope Download PDF

Info

Publication number
JP2010091694A
JP2010091694A JP2008260248A JP2008260248A JP2010091694A JP 2010091694 A JP2010091694 A JP 2010091694A JP 2008260248 A JP2008260248 A JP 2008260248A JP 2008260248 A JP2008260248 A JP 2008260248A JP 2010091694 A JP2010091694 A JP 2010091694A
Authority
JP
Japan
Prior art keywords
light
objective lens
sample
image
magnification
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2008260248A
Other languages
Japanese (ja)
Inventor
Yuki Yoshida
祐樹 吉田
Naoshi Aikawa
直志 相川
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nikon Corp
Original Assignee
Nikon Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nikon Corp filed Critical Nikon Corp
Priority to JP2008260248A priority Critical patent/JP2010091694A/en
Publication of JP2010091694A publication Critical patent/JP2010091694A/en
Pending legal-status Critical Current

Links

Images

Abstract

<P>PROBLEM TO BE SOLVED: To provide a scanning microscope that obtains a bright image by guiding light to a light-receiving surface at an optimum magnification. <P>SOLUTION: The scanning microscope 1 includes: a light source 6 that emits illuminating light; an objective lens 32 that condenses the illuminating light and irradiates a specimen S with the condensed illuminating light; a scanning device 2 that is disposed between a light source 6 and an objective optical system 3 and scans the surface of the specimen S with the illuminating light; a light separating section 4 that is disposed between the scanning device 2 and the objective lens 32, transmits one of the illuminating light and observation light from the specimen S and reflects the other; a detecting section 5, the receiving surface 5a of which is disposed in a position substantially conjugating with the exit pupil position of the objective lens 32 and that detects the observation light transmitted or reflected by the light separating section 4; and a magnification altering optical system 7 that is disposed between the light separating section 4 and detecting section 5, and alters the size of an image of an exit pupil according to the objective lens 32 while maintaining the substantially conjugating relation between the light-receiving surface 5a and the objective lens 32. <P>COPYRIGHT: (C)2010,JPO&INPIT

Description

本発明は、走査型顕微鏡に関する。   The present invention relates to a scanning microscope.

現在、生物顕微鏡の分野では、非線形効果を用いた顕微鏡が注目を集めている。その中でも、多光子励起を使用した顕微鏡は蛍光の試料内の拡散に対して強く、試料の深部まで観察をすることができる。したがって、今まで観察し難かった、脳などの光の拡散が大きい試料の深部を観察することができるため、ユーザーからの需要がある。この需要に対応するため、多くの多光子励起顕微鏡が提案されている(例えば、特許文献1参照)。   Currently, in the field of biological microscopes, microscopes using nonlinear effects are attracting attention. Among them, the microscope using multiphoton excitation is strong against the diffusion of fluorescence in the sample, and can observe up to the deep part of the sample. Therefore, there is a demand from the user because it is possible to observe a deep part of a sample such as a brain, which has been difficult to observe until now, and has a large diffusion of light. In order to meet this demand, many multiphoton excitation microscopes have been proposed (for example, see Patent Document 1).

通常、走査型顕微鏡では走査した光を非走査光に変え、ピンホールを通過させ共焦点効果を得ることにより光軸方向の分解能を得る。しかし、多光子励起顕微鏡では、対物レンズにより励起光がスポットを結ぶ位置のみが励起されるので、ピンホールを使用しなくとも光軸方向の分解能を得ることができる。   Usually, in a scanning microscope, the scanned light is changed to non-scanning light and passed through a pinhole to obtain a confocal effect, thereby obtaining a resolution in the optical axis direction. However, in the multiphoton excitation microscope, only the position where the excitation light connects the spots is excited by the objective lens, so that the resolution in the optical axis direction can be obtained without using a pinhole.

したがって、ピンホールを使用しなくてよいのであれば、わざわざ試料からの観察光を非走査光に変える必要がなく、走査手段と対物レンズとの間に光束分離手段を挿入配置し、その先にディテクターを配置すればよい。このディテクターをNDD(Non Descanned Detector)と言う。ピンホールを使用する場合は、試料面のうち当該ピンホールと共役な位置から出射した観察光しか受光できないが、NDDであれば集光位置の周りに拡散した観察光であっても受光することができるため、明るい画像を得ることができる。このようなアイディアが、従来より提案されている(例えば、非特許文献1参照)。   Therefore, if it is not necessary to use a pinhole, there is no need to bother to change the observation light from the sample into non-scanning light, and a light beam separation means is inserted between the scanning means and the objective lens, and beyond that, A detector may be arranged. This detector is called NDD (Non Descanned Detector). When using a pinhole, only observation light emitted from a position conjugate with the pinhole on the sample surface can be received. However, in the case of NDD, even observation light diffused around the condensing position is received. Therefore, a bright image can be obtained. Such an idea has been conventionally proposed (see, for example, Non-Patent Document 1).

特に、脳などの試料を観察する場合は、拡散が大きいので深部まで観察するためには、少しでも明るく受光する必要がある。このように少しでも明るく受光するための光学的な手段としては、蛍光取得可能範囲は検出光学系の視野数/対物レンズの倍率で決まるので、試料の拡散した光を少しでも多く獲得するために検出光学系の視野数を大きくすることが考えられる。無限遠系対物レンズの場合、検出光学系の視野数を大きくすると対物レンズの射出瞳を出て行く平行光束が、より大きな角度で射出瞳から射出されることとなる。   In particular, when observing a sample such as a brain, since diffusion is large, it is necessary to receive light as brightly as possible in order to observe deeply. As an optical means for receiving light as brightly as possible in this way, the fluorescence acquisition range is determined by the number of fields of the detection optical system / the magnification of the objective lens, so in order to acquire as much diffused light of the sample as possible. It is conceivable to increase the number of fields of view of the detection optical system. In the case of an infinite objective lens, when the number of fields of the detection optical system is increased, a parallel light beam exiting the exit pupil of the objective lens is emitted from the exit pupil at a larger angle.

ところで、検出器がヘッドオン形状の光電子増倍管(以下、PMTと呼ぶ)の場合、その種類にもよるが、ユニフォーミティ(光電面での位置に対する光量ムラ)は悪くはないが、入射角度に対する光量ムラが多少残っているのに対し、アンギュラーレスポンス(光電面に入射する角度に対する光量ムラ)は非常に綺麗なカーブを描くPMTが存在する。後者のPMTを用いる場合には、光電面を対物レンズの射出瞳と共役に配置することにより、光量ムラを防ぐことができる。このような配置は、従来より提案されている(例えば、特許文献2参照)。   By the way, when the detector is a head-on photomultiplier tube (hereinafter referred to as PMT), the uniformity (unevenness of the light amount with respect to the position on the photocathode) is not bad, although it depends on the type, the incident angle. There is a PMT that draws a very beautiful curve for the angular response (light amount unevenness with respect to the angle of incidence on the photocathode). When the latter PMT is used, unevenness in the amount of light can be prevented by arranging the photocathode in a conjugate manner with the exit pupil of the objective lens. Such an arrangement has been conventionally proposed (see, for example, Patent Document 2).

また、一般的に、対物レンズの射出瞳と共役関係にある受光面への縮小倍率は、想定されるどの対物レンズに交換した場合であっても、受光面への入射角度が許容最大入射角度までの範囲で瞳像の大きさが受光面の有効領域内になるように決定される。
特許第2848952号公報 特表2007−510176号公報 NATURE VOL385・9 JANUARY 1997 P161〜P165
In general, the reduction magnification to the light receiving surface that is conjugate with the exit pupil of the objective lens is such that the incident angle on the light receiving surface is the maximum allowable incident angle, regardless of the assumed objective lens. In such a range, the size of the pupil image is determined to be within the effective area of the light receiving surface.
Japanese Patent No. 2848952 Special table 2007-510176 gazette NATURE VOL385 ・ 9 JANUARY 1997 P161-P165

しかしながら、従来の顕微鏡であれば、この顕微鏡を構成するレンズの位置は固定であり、一定の倍率で対物レンズの射出瞳を受光面に投影することとなり、対物レンズを交換した場合、受光面の有効領域が有効に活用されておらず、試料からの観察光を無駄にしていると言う課題があった。   However, in the case of a conventional microscope, the position of the lens constituting the microscope is fixed, and the exit pupil of the objective lens is projected onto the light receiving surface at a constant magnification. When the objective lens is replaced, There is a problem that the effective area is not effectively used and the observation light from the sample is wasted.

本発明はこのような課題に鑑みてなされたものであり、対物レンズを交換した場合でも、最適化された倍率で光を受光面に導くことができ、明るい画像を取得することが可能な走査型顕微鏡を提供することを目的とする。   The present invention has been made in view of such a problem, and even when the objective lens is replaced, the light can be guided to the light receiving surface at an optimized magnification, and scanning capable of acquiring a bright image is obtained. An object is to provide a scanning microscope.

前記課題を解決するために、本発明に係る走査型顕微鏡は、照明光を射出する光源と、この照明光を集光して試料に照射する対物レンズと、光源と対物レンズとの間に配置され、照明光により試料の面を走査する走査装置と、走査装置と対物レンズとの間に配置され、照明光及び試料からの観察光のいずれか一方を透過し、他方を反射する光分離部と、受光面が対物レンズの射出瞳位置と略共役位置に配置され、光分離部で透過若しくは反射した観察光を検出する検出部と、光分離部と検出部との間に配置され、受光面と対物レンズの射出瞳との略共役関係を維持したまま、射出瞳の像の大きさを対物レンズに応じて変化させる倍率変更光学系と、を有する。   In order to solve the above problems, a scanning microscope according to the present invention includes a light source that emits illumination light, an objective lens that collects the illumination light and irradiates the sample, and is disposed between the light source and the objective lens. A scanning device that scans the surface of the sample with illumination light, and a light separating unit that is disposed between the scanning device and the objective lens and transmits either the illumination light or the observation light from the sample and reflects the other And the light receiving surface is disposed at a position substantially conjugate with the exit pupil position of the objective lens, and is disposed between the light separating unit and the detecting unit for detecting observation light transmitted or reflected by the light separating unit. A magnification changing optical system that changes the size of the image of the exit pupil in accordance with the objective lens while maintaining a substantially conjugate relationship between the surface and the exit pupil of the objective lens.

このような走査型顕微鏡装置において、倍率変更光学系は、対物レンズに応じて、射出瞳の像が受光面の有効領域と略同一大きさになるように変倍することが好ましい。   In such a scanning microscope apparatus, it is preferable that the magnification changing optical system changes the magnification so that the image of the exit pupil becomes approximately the same size as the effective area of the light receiving surface in accordance with the objective lens.

また、このような走査型顕微鏡装置において、倍率変更光学系は、試料側から順に、試料の像を結像する第1リレーレンズ群と、射出瞳の像を受光面上に結像する第2リレーレンズ群と、を有し、第1リレーレンズ群、及び、第2リレーレンズ群の少なくともいずれか一方を交換することにより、変倍することが好ましい。   In such a scanning microscope apparatus, the magnification changing optical system includes, in order from the sample side, a first relay lens group that forms an image of the sample and a second relay image that forms an image of the exit pupil on the light receiving surface. It is preferable to change the magnification by exchanging at least one of the first relay lens group and the second relay lens group.

あるいは、倍率変更光学系は、試料側から順に、対物レンズから射出された光束の径を変倍する変倍レンズ群と、試料の像を結像する第1リレーレンズ群と、射出瞳の像を受光面上に結像する第2リレーレンズ群と、を有することが好ましい。   Alternatively, the magnification changing optical system includes, in order from the sample side, a variable power lens group that changes the diameter of the light beam emitted from the objective lens, a first relay lens group that forms an image of the sample, and an image of the exit pupil. And a second relay lens group that forms an image on the light receiving surface.

あるいは、倍率変更光学系は、試料側から順に、試料の像を結像する第1リレーレンズ群と、射出瞳の像を受光面上に結像する第2リレーレンズ群と、を少なくとも有し、この倍率変更光学系を構成するレンズの少なくとも一部を光軸に沿って移動させて変倍することが好ましい。   Alternatively, the magnification changing optical system has at least a first relay lens group that forms an image of the sample and a second relay lens group that forms an image of the exit pupil on the light receiving surface in order from the sample side. It is preferable to change the magnification by moving at least a part of the lens constituting the magnification changing optical system along the optical axis.

本発明に係る走査型顕微鏡を以上のように構成すると、対物レンズを交換した場合でも、最適化された倍率で光を受光面に導くことができ、明るい画像を取得することが可能な走査型顕微鏡を提供することができる。   When the scanning microscope according to the present invention is configured as described above, even when the objective lens is replaced, the scanning microscope can guide light to the light receiving surface at an optimized magnification and can acquire a bright image. A microscope can be provided.

以下、本発明の好ましい実施形態について図面を参照して説明する。まず、図1を用いて本実施形態における走査型顕微鏡1の構成について説明する。この走査型顕微鏡1は、レーザー光を放射する光源6と、対物レンズ32とを有し、光源6から放射された照明光(レーザー光)をステージ8上に載置された試料Sに照射する機能を有する対物光学系3と、光源6と対物光学系3との間に配置され、試料Sからの観察光を取得するために、照明光により試料Sの面上を走査する走査装置2と、受光面5aが対物レンズ32の射出瞳位置と略共役位置に配置され、観察光を検出する検出部(PMT)5と、走査装置2と対物レンズ32との間に配置され、照明光及び観察光のいずれか一方を透過し、他方を反射する光分離部(ダイクロイックミラー)4と、光分離部4と検出部5との間に配置され、受光面5aと対物レンズ32の射出瞳位置との略共役関係を維持したまま、射出瞳の像の倍率を変化させる倍率変更光学系7と、を有して構成される。   Hereinafter, preferred embodiments of the present invention will be described with reference to the drawings. First, the configuration of the scanning microscope 1 in this embodiment will be described with reference to FIG. The scanning microscope 1 includes a light source 6 that emits laser light and an objective lens 32, and irradiates the sample S placed on the stage 8 with illumination light (laser light) emitted from the light source 6. An objective optical system 3 having a function, and a scanning device 2 that is arranged between the light source 6 and the objective optical system 3 and scans the surface of the sample S with illumination light in order to obtain observation light from the sample S; The light receiving surface 5a is disposed at a position substantially conjugate with the exit pupil position of the objective lens 32, and is disposed between the detection unit (PMT) 5 that detects observation light, the scanning device 2, and the objective lens 32, and includes illumination light and Positioned between a light separation unit (dichroic mirror) 4 that transmits one of the observation lights and reflects the other, and between the light separation unit 4 and the detection unit 5, the exit pupil position of the light receiving surface 5a and the objective lens 32 The magnification of the exit pupil image while maintaining the approximate conjugate relationship with Configured to have a magnification changing optical system 7 to vary, the.

ここで、走査装置2は、ガルバノミラーを有して構成される走査機構22と、この走査機構22から出射した照明光を一旦結像する瞳投影レンズ23とを備えて構成される。また、対物光学系3は、瞳投影レンズ23で結像された照明光を略平行光に変換する第1集光レンズ31と、この略平行光を試料S上に集光して照射する上述の対物レンズ32とを備えて構成される。さらに、倍率変更光学系7は、試料Sからの観察光を集光して試料Sの像を結像する第1リレーレンズ群71と、対物レンズ32の射出瞳の像を検出部5の受光面5a上に結像させる第2リレーレンズ群72と、を備えて構成される。   Here, the scanning device 2 includes a scanning mechanism 22 configured to include a galvanometer mirror, and a pupil projection lens 23 that temporarily forms an illumination light emitted from the scanning mechanism 22. Further, the objective optical system 3 collects and irradiates the first condenser lens 31 that converts the illumination light imaged by the pupil projection lens 23 into substantially parallel light and the substantially parallel light on the sample S. The objective lens 32 is configured. Further, the magnification changing optical system 7 receives the image of the exit pupil of the first relay lens group 71 and the objective lens 32 that collects the observation light from the sample S to form an image of the sample S, and receives the image of the exit pupil of the objective lens 32. And a second relay lens group 72 that forms an image on the surface 5a.

ここで、この走査型顕微鏡1は、試料Sに照明光(レーザー光)を照射することにより、この試料Sで発生する蛍光を用いた蛍光観察が可能な共焦点顕微鏡として使用することも可能であり、光源6と走査機構22との間の光路上に、レーザー光源6からのレーザー光を集光する第2集光レンズ21、レーザー光源6からのレーザー光を透過して試料Sからの蛍光を反射するダイクロイックミラー24、このダイクロイックミラー24で反射された蛍光を集光する第3集光レンズ25、この第3集光レンズ25の焦点近傍にピンホールが位置するように配置された遮光板26からなる共焦点光学系10、及び、このピンホールを通過した光を検出する光検出器9、を有して構成される。   Here, the scanning microscope 1 can also be used as a confocal microscope capable of observing fluorescence using fluorescence generated in the sample S by irradiating the sample S with illumination light (laser light). There is a second condenser lens 21 for condensing the laser light from the laser light source 6 on the optical path between the light source 6 and the scanning mechanism 22, and the fluorescence from the sample S through the laser light from the laser light source 6. A dichroic mirror 24 that reflects light, a third condenser lens 25 that condenses the fluorescence reflected by the dichroic mirror 24, and a light-shielding plate disposed so that a pinhole is positioned in the vicinity of the focal point of the third condenser lens 25. 26, and a photodetector 9 for detecting the light passing through the pinhole.

このような本実施の形態に係る走査型顕微鏡1において、上述の倍率変更光学系7は、対物レンズ32の倍率により変化する射出瞳の径に関わらず、この射出瞳の像の大きさを受光面5aの有効領域(光量を所定の精度で検出できる領域)と略同一の大きさになるように変倍するように構成されている。具体的には、例えば、倍率変更光学系7を構成する第1リレーレンズ群71及び第2リレーレンズ群72のうちのいずれか一方(図2に示す場合には、第2リレーレンズ群72の方)を、対物レンズ32の倍率に応じて交換することにより、このような変倍が可能となる。   In the scanning microscope 1 according to the present embodiment, the magnification changing optical system 7 receives the size of the image of the exit pupil regardless of the diameter of the exit pupil that changes depending on the magnification of the objective lens 32. It is configured to be scaled so as to be approximately the same size as the effective area of the surface 5a (area where the amount of light can be detected with a predetermined accuracy). Specifically, for example, one of the first relay lens group 71 and the second relay lens group 72 constituting the magnification changing optical system 7 (in the case shown in FIG. By changing the method according to the magnification of the objective lens 32, such zooming can be performed.

もちろん、この倍率変更光学系7の変倍方法は、他の方法であっても良く、例えば、正レンズ及び負レンズを組み合わせ、対物レンズ32から射出された光束の径を変倍する変倍レンズ群を、対物レンズ32と第1リレーレンズ群71との間の光路上に挿入するように構成しても良い。あるいは、第1リレーレンズ群71及び第2リレーレンズ群72を含むこの倍率変更光学系7を構成するレンズの少なくとも一部を光軸に沿って移動させて変倍するように構成しても良い(すなわち、この倍率変更光学系7をリレーズーム系として構成する)。   Of course, the magnification changing method of the magnification changing optical system 7 may be other methods. For example, a variable magnification lens that combines a positive lens and a negative lens to change the diameter of a light beam emitted from the objective lens 32. The group may be configured to be inserted on the optical path between the objective lens 32 and the first relay lens group 71. Alternatively, at least part of the lenses constituting the magnification changing optical system 7 including the first relay lens group 71 and the second relay lens group 72 may be moved along the optical axis to change the magnification. (That is, the magnification changing optical system 7 is configured as a relay zoom system).

ここで、図2を用いて、対物レンズ32の倍率に応じて変化する射出瞳の径の大きさに関わらず受光面5a上での射出瞳の像の大きさが略一定になるように、倍率変更光学系7を変倍することにより、より明るい画像が取得できる理由を説明する。   Here, using FIG. 2, the size of the image of the exit pupil on the light receiving surface 5 a is substantially constant regardless of the size of the exit pupil diameter that changes according to the magnification of the objective lens 32. The reason why a brighter image can be acquired by changing the magnification changing optical system 7 will be described.

第1リレーレンズ群71の焦点距離をf1、第2リレーレンズ群72の焦点距離をf2とし、f1=4f2の関係にあるとする。第1リレーレンズ群71と第2リレーレンズ群72(リレー光学系)を介して形成される対物レンズ32の瞳像の倍率(リレー倍率)は、f2/f1=f2/4f2=1/4(倍)である。 Assume that the focal length of the first relay lens group 71 is f 1 , the focal length of the second relay lens group 72 is f 2, and f 1 = 4f 2 . The magnification (relay magnification) of the pupil image of the objective lens 32 formed via the first relay lens group 71 and the second relay lens group 72 (relay optical system) is f 2 / f 1 = f 2 / 4f 2 = 1/4 (times).

ある低倍率の対物レンズ32の瞳の大きさ(径)をφとすると、受光面5a上に形成される瞳像の大きさは、φ×1/4=φ/4である(これは、受光面5aの有効領域に相当する大きさになっている)。   If the pupil size (diameter) of a certain low magnification objective lens 32 is φ, the size of the pupil image formed on the light receiving surface 5a is φ × 1/4 = φ / 4 (this is The size corresponds to the effective area of the light receiving surface 5a).

また、受光面5aへの光の入射角度がα(最大入射角度に相当する角度になっている)とすると、受光面5aへの結像に寄与する光の対物レンズ32の瞳からの射出角度Xは、ヘルムホルツ−ラグランジの不変量より、φ×1/2×X=φ/4×1/2×αの関係から、X=α/4となる。   Further, when the incident angle of light on the light receiving surface 5a is α (an angle corresponding to the maximum incident angle), the emission angle from the pupil of the objective lens 32 of the light contributing to the image formation on the light receiving surface 5a. From the relationship of φ × 1/2 × X = φ / 4 × 1/2 × α, X is X = α / 4 based on the invariant of Helmholtz-Lagrange.

このようなリレー光学系において、第1リレーレンズ群71により結像される試料Sの像面Fの大きさ(径)を視野数Aとする。次に、低倍率の対物レンズ32を高倍率の対物レンズ32に切り替えたとする。高倍率の対物レンズ32の瞳の大きさがφ/2であるとすると、リレー倍率が固定の場合は、受光面5a上に形成される瞳像の大きさは、φ/2×1/4=φ/8となる。   In such a relay optical system, the size (diameter) of the image plane F of the sample S imaged by the first relay lens group 71 is defined as the field number A. Next, assume that the low magnification objective lens 32 is switched to the high magnification objective lens 32. Assuming that the pupil size of the high-magnification objective lens 32 is φ / 2, when the relay magnification is fixed, the size of the pupil image formed on the light receiving surface 5a is φ / 2 × 1/4. = Φ / 8.

受光面5aの有効領域を最大限に活用するために、瞳像の大きさが受光面5a上でφ/4になるように、第2リレーレンズ群72の焦点距離をf3(=2f2)に変更すると、リレー倍率は、f3/f1=2f2/4f2=1/2(倍)となる。 In order to make the best use of the effective area of the light receiving surface 5a, the focal length of the second relay lens group 72 is set to f 3 (= 2f 2) so that the size of the pupil image becomes φ / 4 on the light receiving surface 5a. ), The relay magnification is f 3 / f 1 = 2f 2 / 4f 2 = 1/2 (times).

これに伴って、対物レンズ32の瞳からの射出角度がα/4の光の受光面5aへの入射角度Yは、φ/2×1/2×α/4=φ/4×1/2×Yの関係から、Y=α/2となる。さらに、受光面5aへの光の最大入射角度はα(α/2の2倍)なので、受光面5aへの結像に寄与できる光の対物レンズ32の瞳からの出射角度はα/2(α/4の2倍)まで可能であり、結果的に視野数は約2Aとなる。   Accordingly, the incident angle Y of light having an emission angle α / 4 from the pupil of the objective lens 32 to the light receiving surface 5a is φ / 2 × 1/2 × α / 4 = φ / 4 × 1/2. From the relationship of × Y, Y = α / 2. Further, since the maximum incident angle of light on the light receiving surface 5a is α (twice α / 2), the light exit angle from the pupil of the objective lens 32 that can contribute to the image formation on the light receiving surface 5a is α / 2 ( 2 times α / 4), and the number of fields of view is about 2A as a result.

リレー倍率が固定の場合は、試料Sから取得できる蛍光取得可能範囲はA(視野数)/対物レンズ32の倍率であるが、リレー光学系を変倍(1/4倍から1/2倍に変更)することにより、2A/対物レンズ32の倍率となり、約2倍に増加する。   When the relay magnification is fixed, the fluorescence obtainable range that can be obtained from the sample S is A (number of fields) / magnification of the objective lens 32, but the relay optical system is scaled (from 1/4 to 1/2 times). Change), the magnification of 2A / objective lens 32 is obtained, and the magnification increases by about 2 times.

それでは、上述のような倍率変更光学系7を、試料Sの一次像を結像する第1リレーレンズ群71と、対物レンズ32の射出瞳の像を検出部5の受光面5a上に結像する第2リレーレンズ群72とを有する構成(図2の構成)とした場合についての実施例を以下に示す。   Then, the magnification changing optical system 7 as described above is formed on the light receiving surface 5a of the detector 5 with the first relay lens group 71 that forms the primary image of the sample S and the image of the exit pupil of the objective lens 32. An example of the configuration having the second relay lens group 72 (configuration shown in FIG. 2) is shown below.

本実施例に係る走査型顕微鏡1は、図1に示す構成で、その詳細は上述した説明の通りである。この走査型顕微鏡1では、16倍、20倍、及び60倍の対物レンズ32を使用し、これらを目的に応じて交換可能となっている。また、各対物レンズ32の倍率に対応して、倍率変更光学系7の第2リレーレンズ群72を交換するように構成されている。図2に、各対物レンズ32及び倍率変更光学系7の関係を示す。ここで、図2(a)は16倍、図2(b)は20倍、図2(c)は60倍の対物レンズ32を使用した場合における、各対物レンズ32と倍率変更光学系7との関係を示している。この図2に示すように、検出部5の受光面5aは、対物レンズ32の射出瞳位置Hの略共役位置に配置されている。また、試料Sの面上と、第1リレーレンズ群71により結像される試料Sの像面Fとは、略共役関係にある。   The scanning microscope 1 according to the present embodiment has the configuration shown in FIG. 1, and details thereof are as described above. This scanning microscope 1 uses 16 ×, 20 ×, and 60 × objective lenses 32, which can be exchanged according to the purpose. Further, the second relay lens group 72 of the magnification changing optical system 7 is exchanged corresponding to the magnification of each objective lens 32. FIG. 2 shows the relationship between each objective lens 32 and the magnification changing optical system 7. Here, FIG. 2 (a) is 16 times, FIG. 2 (b) is 20 times, and FIG. 2 (c) is 60 times, when each objective lens 32 and the magnification changing optical system 7 are used. Shows the relationship. As shown in FIG. 2, the light receiving surface 5 a of the detection unit 5 is disposed at a substantially conjugate position with respect to the exit pupil position H of the objective lens 32. Further, the surface of the sample S and the image plane F of the sample S formed by the first relay lens group 71 are in a substantially conjugate relationship.

次の表1に、本実施例で使用する各対物レンズ32毎に、対物レンズ32の倍率、対物レンズ32のNA、射出瞳直径、射出瞳から検出部5の受光面5aまでの倍率変更光学系7によるリレー倍率、視野数、及び、倍率変更光学系7中の第2リレーレンズ群72の焦点距離を示す。なお、受光面5aの面積を直径3mmとして計算した円の面積とし、この受光面5aが受光できる最大入射角を30°とし、第1集光レンズ31の焦点距離を200mmとしている。   Table 1 below shows, for each objective lens 32 used in the present embodiment, the magnification of the objective lens 32, the NA of the objective lens 32, the exit pupil diameter, and the magnification changing optics from the exit pupil to the light receiving surface 5a of the detection unit 5. The relay magnification by the system 7, the number of fields of view, and the focal length of the second relay lens group 72 in the magnification changing optical system 7 are shown. Note that the area of the light receiving surface 5a is a circle area calculated with a diameter of 3 mm, the maximum incident angle that the light receiving surface 5a can receive is 30 °, and the focal length of the first condenser lens 31 is 200 mm.

Figure 2010091694
Figure 2010091694

この表1に示す数値は、以下のような計算方法で導出した。本実施例における16倍の対物レンズ32での例を挙げる。16倍の対物レンズ32の焦点距離は、「第1集光レンズ31の焦点距離/対物レンズ32の倍率」で求められるので、200(mm)/16(倍)=12.5mmとなる。また、射出瞳の直径は、「2×対物レンズ32の焦点距離×対物レンズ32のNA」で求められるので、この射出瞳の直径=2×12.5(mm)×0.8=20mmとなる。   The numerical values shown in Table 1 were derived by the following calculation method. An example with a 16 × objective lens 32 in this embodiment will be described. Since the focal length of the 16 × objective lens 32 is obtained by “the focal length of the first condenser lens 31 / the magnification of the objective lens 32”, 200 (mm) / 16 (times) = 12.5 mm. Further, since the diameter of the exit pupil is obtained by “2 × focal length of the objective lens 32 × NA of the objective lens 32”, the diameter of the exit pupil = 2 × 12.5 (mm) × 0.8 = 20 mm. Become.

直径20mmの射出瞳を直径3mmの受光面5aで受光できるように縮小投影するので、倍率変更光学系7によるリレー倍率は0.15倍となる。そのため、リレー倍率を0.15倍とすると、倍率変更光学系7中の第1リレーレンズ群71の焦点距離は、第1集光レンズ31の焦点距離と同じであるので、この倍率変更光学系7中の第2リレーレンズ群72の焦点距離は、200(mm)×0.15(倍)=30mmとなる。検出部(PMT)5への最大入射角は30度なので、視野数の大きさは「像高=焦点距離×tan(射出角)」で求められ、像高=30(mm)×tan(30度)=17.3mmとなる。また、視野数は直径で定義するので、像高を倍にすることにより視野数34.6が求められる。なお、他の倍率の対物レンズ32においても同様の方法により上記諸元を求めることができる。   Since the exit pupil having a diameter of 20 mm is reduced and projected so as to be received by the light receiving surface 5a having a diameter of 3 mm, the relay magnification by the magnification changing optical system 7 is 0.15 times. Therefore, if the relay magnification is 0.15, the focal length of the first relay lens group 71 in the magnification changing optical system 7 is the same as the focal length of the first condenser lens 31, and therefore this magnification changing optical system. 7, the focal length of the second relay lens group 72 is 200 (mm) × 0.15 (times) = 30 mm. Since the maximum incident angle to the detection unit (PMT) 5 is 30 degrees, the size of the number of fields is obtained by “image height = focal length × tan (exit angle)”, and image height = 30 (mm) × tan (30 Degrees) = 17.3 mm. Since the field number is defined by the diameter, the field number 34.6 is obtained by doubling the image height. It should be noted that the above specifications can be obtained by the same method for the objective lens 32 having other magnifications.

以上の表1及び図2から、本実施例の走査型顕微鏡1では、対物レンズ32を交換しても、最適化された倍率で光を受光面5aに導くことができ、高倍の対物レンズ32ほど、視野数が大きくなり、より広い部分において、試料面からの観察光を取得することができることがわかる。   From the above Table 1 and FIG. 2, in the scanning microscope 1 of the present embodiment, even if the objective lens 32 is replaced, the light can be guided to the light receiving surface 5a with the optimized magnification, and the high magnification objective lens 32 is obtained. It can be seen that the number of fields of view increases and observation light from the sample surface can be acquired in a wider area.

ところで、高倍の対物レンズ32ほど、大きな視野数で蛍光を取得すると有利になることが分かっている。その理由を、以下で説明する。   By the way, it has been found that the higher the objective lens 32, the more advantageous it is to acquire fluorescence with a larger number of fields. The reason will be described below.

多光子励起顕微鏡の主な使用法の1つに、試料Sとして脳の観察がある。脳は一般的に白く見えるが、これは脳が光を拡散し易いためである。この拡散のために多光子励起した脳の一カ所で光った蛍光は拡散されてしまう。この拡散光も含め、如何に多くの蛍光を取り込むことができるかが、明るさのポイントであり、また、明るければ明るいほど、試料のより深部が観察できることになる。ここで、何倍の対物レンズ32で励起しようとも、一カ所で光った蛍光の、脳内(試料S内)での拡散の度合いは変化しない。そのため、試料S上の如何に大きな部分を取り込むかで光の強度が変わることとなる。   One of the main uses of the multiphoton excitation microscope is observation of the brain as the sample S. The brain generally looks white because it is easy for the brain to diffuse light. Because of this diffusion, the fluorescence emitted from one part of the brain that has been excited by multiphotons is diffused. The point of brightness is how much fluorescence can be captured including this diffused light, and the brighter the brighter the portion of the sample can be observed. Here, no matter how many times the objective lens 32 is excited, the degree of diffusion of the fluorescence emitted in one place in the brain (in the sample S) does not change. Therefore, the intensity of light changes depending on how large a portion on the sample S is taken.

次の表2に、各種の対物レンズ32を使用した際の走査型顕微鏡1の試料S上の走査範囲の大きさと、各対物レンズ32の走査型顕微鏡1における試料S上での蛍光を取得できる範囲(蛍光取得可能範囲)との関係を示す。走査範囲は、走査型顕微鏡1の走査光学系の視野数(18と設定)/対物レンズ32の倍率であり、蛍光取得可能範囲は倍率変更光学系7の視野数/対物レンズ32の倍率である。また、走査範囲と、各対物レンズ32の試料S上での蛍光を取得できる範囲を示すとともに、この蛍光を取得できる範囲に対する走査範囲の関係を、各々の面積の割合で示す。また、図3に、各対物レンズ32における走査範囲(図3においてAで示される範囲)と、試料S上での蛍光を取得できる範囲(図3においてBで示される範囲)とを示す。なお、図3(a)は16倍、図3(b)は20倍、図3(c)は60倍の各対物レンズ32に対する走査範囲と蛍光を取得できる範囲を示す。また、表2中の走査範囲の値は、図3のAで示される正方形の対角線の長さ(mm)を示し、蛍光を取得できる範囲の値は、図3のBで示される円の直径(mm)を示す。この面積の割合の値が大きいほど、本発明の恩恵を効果的に受けていると考えることができる。   In the following Table 2, the size of the scanning range on the sample S of the scanning microscope 1 when various objective lenses 32 are used, and the fluorescence on the sample S in the scanning microscope 1 of each objective lens 32 can be acquired. The relationship with a range (fluorescence acquisition possible range) is shown. The scanning range is the number of fields of view of the scanning optical system of the scanning microscope 1 (set to 18) / the magnification of the objective lens 32, and the fluorescence obtainable range is the number of fields of the magnification changing optical system 7 / the magnification of the objective lens 32. . Moreover, while showing the scanning range and the range which can acquire the fluorescence on the sample S of each objective lens 32, the relationship of the scanning range with respect to the range which can acquire this fluorescence is shown by the ratio of each area. FIG. 3 shows a scanning range (range indicated by A in FIG. 3) in each objective lens 32 and a range in which fluorescence on the sample S can be acquired (range indicated by B in FIG. 3). 3A shows a scanning range and a range in which fluorescence can be obtained for each objective lens 32 of 16 times, FIG. 3B shows 20 times, and FIG. 3C shows 60 times. The value of the scanning range in Table 2 indicates the length (mm) of the diagonal line of the square shown by A in FIG. 3, and the value of the range in which fluorescence can be acquired is the diameter of the circle shown by B in FIG. (Mm) is shown. It can be considered that the larger the value of the area ratio, the more effectively the benefits of the present invention are received.

Figure 2010091694
Figure 2010091694

前述の理由、及び、表2の結果からわかるように、本実施例では、対物レンズ32の倍率に対応して、倍率変更光学系7(中の第2リレーレンズ群72)を交換し、リレー倍率を変化させることで、より明るい画像を効果的に取得することができる。   As can be seen from the above-described reason and the results in Table 2, in this embodiment, the magnification changing optical system 7 (the second relay lens group 72 in the middle) is replaced in accordance with the magnification of the objective lens 32, and the relay By changing the magnification, a brighter image can be acquired effectively.

なお、本実施例の走査型顕微鏡1では、第2リレーレンズ群72を交換し、焦点距離を変えることによりリレー倍率を変更させているが、上述のように、他の異なる実施例として、リレーズーム系として構成したり、変倍レンズ群を中間に挿入することにより変倍しても、本実施例と同様の効果を得ることができる。   In the scanning microscope 1 of the present embodiment, the second relay lens group 72 is replaced and the relay magnification is changed by changing the focal length. However, as described above, as another different embodiment, Even if it is configured as a zoom system or is zoomed by inserting a zoom lens group in the middle, the same effect as in this embodiment can be obtained.

また、この倍率変更光学系7を、リレーズーム系で構成すると、対物レンズ32の倍率に関わらず最適化が図られるので、何種類もの交換レンズ(例えば、第2リレーレンズ群72)を用意する必要がない分、よりコンパクトな製品を得ることができる。また、このような倍率の変化を自動化することにより、ユーザーが複雑な調整を行わなくても、常に明るい画像を快適に取得することができる。   In addition, when the magnification changing optical system 7 is configured by a relay zoom system, optimization is achieved regardless of the magnification of the objective lens 32, and therefore various types of interchangeable lenses (for example, the second relay lens group 72) are prepared. Since it is not necessary, a more compact product can be obtained. Also, by automating such a change in magnification, a bright image can always be comfortably acquired without complicated adjustments by the user.

本発明に係る走査型顕微鏡の構成を示す説明図である。It is explanatory drawing which shows the structure of the scanning microscope which concerns on this invention. 第1実施例に係る走査型顕微鏡の構成を示すレンズ構成図であり、(a)は16倍、(b)は30倍、(c)は60倍の対物レンズをそれぞれ用いた場合のレンズ構成図である。It is a lens block diagram which shows the structure of the scanning microscope which concerns on 1st Example, (a) is 16 times, (b) is 30 times, (c) is a lens structure at the time of using a 60 times objective lens, respectively. FIG. 第1実施例に係る走査型顕微鏡の対物レンズにおける走査範囲の実視野と蛍光を取得できる範囲とを示す概略図で、(a)は16倍、(b)は20倍、(c)は60倍の各対物レンズに対する走査範囲の実視野と蛍光を取得できる範囲とを示す。It is the schematic which shows the real field of the scanning range in the objective lens of the scanning microscope which concerns on 1st Example, and the range which can acquire fluorescence, (a) is 16 times, (b) is 20 times, (c) is 60 times. The actual field of view of the scanning range for each objective lens and the range in which fluorescence can be obtained are shown.

符号の説明Explanation of symbols

1 走査型顕微鏡 2 走査装置 3 対物光学系 4 光分離部
5 検出部 6 光源 7 倍率変更光学系 32 対物レンズ
S 試料
DESCRIPTION OF SYMBOLS 1 Scanning microscope 2 Scanning device 3 Objective optical system 4 Light separation part 5 Detection part 6 Light source 7 Magnification change optical system 32 Objective lens S Sample

Claims (5)

照明光を射出する光源と、
前記照明光を集光して試料に照射する対物レンズと、
前記光源と前記対物レンズとの間に配置され、前記照明光により前記試料の面を走査する走査装置と、
前記走査装置と前記対物レンズとの間に配置され、前記照明光及び前記試料からの観察光のいずれか一方を透過し、他方を反射する光分離部と、
受光面が前記対物レンズの射出瞳位置と略共役位置に配置され、前記光分離部で透過若しくは反射した前記観察光を検出する検出部と、
前記光分離部と前記検出部との間に配置され、前記受光面と前記対物レンズの射出瞳との略共役関係を維持したまま、前記射出瞳の像の大きさを前記対物レンズに応じて変化させる倍率変更光学系と、を有する走査型顕微鏡。
A light source that emits illumination light;
An objective lens that collects the illumination light and irradiates the sample; and
A scanning device disposed between the light source and the objective lens and scanning the surface of the sample with the illumination light;
A light separating unit that is disposed between the scanning device and the objective lens, transmits one of the illumination light and the observation light from the sample, and reflects the other;
A light receiving surface disposed at a position substantially conjugate with an exit pupil position of the objective lens, and a detection unit that detects the observation light transmitted or reflected by the light separation unit;
The size of the image of the exit pupil is set according to the objective lens while maintaining a substantially conjugate relationship between the light receiving surface and the exit pupil of the objective lens, which is disposed between the light separation unit and the detection unit. A scanning microscope having a magnification changing optical system to be changed.
前記倍率変更光学系は、前記対物レンズに応じて、前記射出瞳の像が前記受光面の有効領域と略同一大きさになるように変倍する請求項1に記載の走査型顕微鏡。   2. The scanning microscope according to claim 1, wherein the magnification changing optical system changes the magnification so that an image of the exit pupil becomes substantially the same size as an effective area of the light receiving surface in accordance with the objective lens. 前記倍率変更光学系は、前記試料側から順に、
前記試料の像を結像する第1リレーレンズ群と、
前記射出瞳の像を前記受光面上に結像する第2リレーレンズ群と、を有し、
前記第1リレーレンズ群、及び、前記第2リレーレンズ群の少なくともいずれか一方を交換することにより、変倍する請求項1または2に記載の走査型顕微鏡。
The magnification changing optical system, in order from the sample side,
A first relay lens group that forms an image of the sample;
A second relay lens group that forms an image of the exit pupil on the light receiving surface;
The scanning microscope according to claim 1 or 2, wherein zooming is performed by exchanging at least one of the first relay lens group and the second relay lens group.
前記倍率変更光学系は、前記試料側から順に、
前記対物レンズから射出された光束の径を変倍する変倍レンズ群と、
前記試料の像を結像する第1リレーレンズ群と、
前記射出瞳の像を前記受光面上に結像する第2リレーレンズ群と、
を有する請求項1または2に記載の走査型顕微鏡。
The magnification changing optical system, in order from the sample side,
A variable power lens group that changes the diameter of the light beam emitted from the objective lens;
A first relay lens group that forms an image of the sample;
A second relay lens group that forms an image of the exit pupil on the light receiving surface;
The scanning microscope according to claim 1 or 2, wherein:
前記倍率変更光学系は、前記試料側から順に、
前記試料の像を結像する第1リレーレンズ群と、
前記射出瞳の像を前記受光面上に結像する第2リレーレンズ群と、を少なくとも有し、
当該倍率変更光学系を構成するレンズの少なくとも一部を光軸に沿って移動させて変倍する請求項1または2に記載の走査型顕微鏡。
The magnification changing optical system, in order from the sample side,
A first relay lens group that forms an image of the sample;
A second relay lens group that forms an image of the exit pupil on the light receiving surface;
The scanning microscope according to claim 1 or 2, wherein at least part of a lens constituting the magnification changing optical system is moved along the optical axis to change the magnification.
JP2008260248A 2008-10-07 2008-10-07 Scanning microscope Pending JP2010091694A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2008260248A JP2010091694A (en) 2008-10-07 2008-10-07 Scanning microscope

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2008260248A JP2010091694A (en) 2008-10-07 2008-10-07 Scanning microscope

Publications (1)

Publication Number Publication Date
JP2010091694A true JP2010091694A (en) 2010-04-22

Family

ID=42254494

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2008260248A Pending JP2010091694A (en) 2008-10-07 2008-10-07 Scanning microscope

Country Status (1)

Country Link
JP (1) JP2010091694A (en)

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2011242532A (en) * 2010-05-17 2011-12-01 Olympus Corp Non-confocal detection optical system and multi-photon excitation microscope incorporating the same
JP2013156467A (en) * 2012-01-31 2013-08-15 Olympus Corp Scanning type observation device
JP2015108718A (en) * 2013-12-04 2015-06-11 オリンパス株式会社 Scanning microscope
JP2016001227A (en) * 2014-06-11 2016-01-07 オリンパス株式会社 Laser microscope device
JP2016143030A (en) * 2015-02-05 2016-08-08 オリンパス株式会社 Laser microscope device
US9625694B2 (en) 2015-05-29 2017-04-18 Olympus Corporation Scanning optical system and scanning device

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2011242532A (en) * 2010-05-17 2011-12-01 Olympus Corp Non-confocal detection optical system and multi-photon excitation microscope incorporating the same
JP2013156467A (en) * 2012-01-31 2013-08-15 Olympus Corp Scanning type observation device
JP2015108718A (en) * 2013-12-04 2015-06-11 オリンパス株式会社 Scanning microscope
JP2016001227A (en) * 2014-06-11 2016-01-07 オリンパス株式会社 Laser microscope device
US10018822B2 (en) 2014-06-11 2018-07-10 Olympus Corporation Laser microscope apparatus including photodetector having a plurality of detection elements and an adjusting mechanism for adjusting the beam diameter
JP2016143030A (en) * 2015-02-05 2016-08-08 オリンパス株式会社 Laser microscope device
US10001632B2 (en) 2015-02-05 2018-06-19 Olympus Corporation Laser microscope apparatus
US9625694B2 (en) 2015-05-29 2017-04-18 Olympus Corporation Scanning optical system and scanning device

Similar Documents

Publication Publication Date Title
JP6035018B2 (en) SPIM microscope using a continuous light sheet
CN101031837B (en) Method and apparatus for fluorescent confocal microscopy
US8089691B2 (en) Projection device for patterned illumination and microscopy
JP5006694B2 (en) Lighting device
JP5286774B2 (en) Microscope device and fluorescent cube used therefor
US7480046B2 (en) Scanning microscope with evanescent wave illumination
JP5307353B2 (en) Multiphoton excitation laser scanning microscope and multiphoton excitation fluorescence image acquisition method
US9804377B2 (en) Low numerical aperture exclusion imaging
US7915575B2 (en) Laser scanning microscope having an IR partial transmission filter for realizing oblique illumination
JP2010286566A (en) Laser scanning-type fluorescence microscope and fluorescence observation method
JP2010091694A (en) Scanning microscope
JP2007121749A (en) Microscope
JP2011118264A (en) Microscope device
JP2010054601A (en) Microscope
JP2006171024A (en) Multi-point fluorescence spectrophotometry microscope and multi-point fluorescence spectrophotometry method
JP2010091809A (en) Microscope apparatus
US8294984B2 (en) Microscope
JP5495740B2 (en) Confocal scanning microscope
JPWO2009142312A1 (en) Microscope equipment
JP2004354937A (en) Laser microscope
JP2018194634A (en) Light field microscope
JP2006220954A (en) Fluorescence microscopic device
JP2010286799A (en) Scanning microscope
JP2005140956A (en) Focal point detection device and fluorescent microscope
JP2006284701A (en) Illuminator for microscope and fluorescence microscope apparatus