JP2013154367A - Method for manufacturing vacuum structure and vacuum structure - Google Patents

Method for manufacturing vacuum structure and vacuum structure Download PDF

Info

Publication number
JP2013154367A
JP2013154367A JP2012016018A JP2012016018A JP2013154367A JP 2013154367 A JP2013154367 A JP 2013154367A JP 2012016018 A JP2012016018 A JP 2012016018A JP 2012016018 A JP2012016018 A JP 2012016018A JP 2013154367 A JP2013154367 A JP 2013154367A
Authority
JP
Japan
Prior art keywords
vacuum
container
welding
space
vacuum structure
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2012016018A
Other languages
Japanese (ja)
Other versions
JP2013154367A5 (en
Inventor
Tsuzuku Yoshioka
続 吉岡
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
KIDEN TECHNOS KK
Original Assignee
KIDEN TECHNOS KK
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by KIDEN TECHNOS KK filed Critical KIDEN TECHNOS KK
Priority to JP2012016018A priority Critical patent/JP2013154367A/en
Publication of JP2013154367A publication Critical patent/JP2013154367A/en
Publication of JP2013154367A5 publication Critical patent/JP2013154367A5/ja
Pending legal-status Critical Current

Links

Landscapes

  • Welding Or Cutting Using Electron Beams (AREA)
  • Laser Beam Processing (AREA)
  • Packages (AREA)
  • Thermally Insulated Containers For Foods (AREA)

Abstract

PROBLEM TO BE SOLVED: To provide a method for manufacturing a vacuum structure and a vacuum structure, which can attain the reduction of the number of processes, and at the same time, can improve corrosion resistance, and can manufacture the vacuum structure having light weight and excellent in strength.SOLUTION: When manufacturing a vacuum structure in which an inner container 72 and an outer container 73 are equipped and a vacuum space 74 is formed in between them, a welding process of welding a bottom portion 80 as a member to constitute the vacuum structure to a container body 70, and a vacuuming process of forming the vacuum space 74 are performed simultaneously. The container body 70 and the bottom portion 80 are composed of the same material, and functions as a vacuum holding portion for holding a vacuum state of the vacuum space 74, by being welded to the container body 70 so as to seal the vacuum space 74. Thereby, the reduction of the number of processes can be attained, and the vacuum structure having improved corrosion resistance and light weight and excellent in strength can be manufactured.

Description

本発明は、真空空間が形成される真空構造体の製造方法および真空構造体に関する。   The present invention relates to a method for manufacturing a vacuum structure in which a vacuum space is formed, and a vacuum structure.

魔法瓶等の内容器と外容器との間に真空空間が形成される真空構造体を製造するに際しては、構造体を形成した後、内容器と外容器との間の空間を真空にするために、空間につながる排気孔を形成し、空間内の空気を抜き取る。そして、この排気孔をろう材によって封止することが行われている(例えば特許文献1および2参照)。   When manufacturing a vacuum structure in which a vacuum space is formed between an inner container such as a thermos bottle and an outer container, after the structure is formed, the space between the inner container and the outer container is evacuated. , Exhaust holes connected to the space are formed, and air in the space is extracted. The exhaust holes are sealed with a brazing material (see, for example, Patent Documents 1 and 2).

特開平10−328042号公報Japanese Patent Laid-Open No. 10-328042 特開2009−269047号公報JP 2009-269047 A

しかしながら、上述の方法では、構造体を形成した後に、空間を真空にし、さらに排気孔を封止するため、構造体を形成する工程以外に、真空空間を形成する工程と排気孔を封止する工程が必要になり、工程数が多くなっていた。また、封止のためにろう材が必要になるので、ろう材と構造体の材料との間に界面が生じ、耐食性が十分でなかった。さらに、ろう材により封止するためには、外容器に相応の肉厚が必要となり、軽量化することが困難で強度が低くなりがちであった。   However, in the above-described method, after the structure is formed, the space is evacuated and the exhaust hole is sealed. Therefore, in addition to the structure forming step, the vacuum space forming step and the exhaust hole are sealed. A process was needed and the number of processes was increasing. In addition, since a brazing material is required for sealing, an interface is formed between the brazing material and the material of the structure, and the corrosion resistance is not sufficient. Further, in order to seal with the brazing material, the outer container needs to have a corresponding thickness, and it is difficult to reduce the weight and the strength tends to be low.

本発明の目的は、工程数の削減を図れるとともに、耐食性を向上させ、かつ軽量で強度に優れる真空構造体を製造できる真空構造体の製造方法および真空構造体を提供することにある。   An object of the present invention is to provide a vacuum structure manufacturing method and a vacuum structure that can reduce the number of steps, improve corrosion resistance, and can manufacture a vacuum structure that is lightweight and excellent in strength.

<1> 内容器と外容器とを備え、これらの間に真空空間が形成される真空構造体の製造方法であって、前記真空構造体を構成する部材を溶接する溶接工程と、前記真空空間を形成する真空化工程とを同時に行うことを特徴とする真空構造体の製造方法である。   <1> A manufacturing method of a vacuum structure including an inner container and an outer container, in which a vacuum space is formed, a welding step of welding members constituting the vacuum structure, and the vacuum space The vacuum structure manufacturing method is characterized in that the vacuuming step for forming the film is performed at the same time.

<2> 前記溶接工程では、前記真空構造体を構成する部材の材料により溶接を行う<1>に記載の真空構造体の製造方法である。   <2> The method for manufacturing a vacuum structure according to <1>, wherein the welding is performed using a material of a member constituting the vacuum structure.

<3> 溶接する領域にビームを照射しつつ、窒素ガスを付与する<1>または<2>に記載の真空構造体の製造方法である。   <3> The method for producing a vacuum structure according to <1> or <2>, wherein nitrogen gas is applied while irradiating a beam to a region to be welded.

<4> 相対的に高温条件下で、溶接する領域にビームを照射する<1>から<3>のいずれかに記載の真空構造体の製造方法である。   <4> The method for producing a vacuum structure according to any one of <1> to <3>, wherein the region to be welded is irradiated with a beam under a relatively high temperature condition.

<5> 真空条件下で、溶接する領域にビームを照射する<1>から<4>のいずれかに記載の真空構造体の製造方法である。   <5> The method for producing a vacuum structure according to any one of <1> to <4>, wherein a beam is irradiated to a region to be welded under a vacuum condition.

<6> 内容器と外容器とを備え、これらの間に真空空間が形成される容器本体と、この容器本体と同じ材料からなり、前記真空空間を密封するように前記容器本体に溶接されて前記真空空間の真空状態を保持する真空保持部と、を有することを特徴とする真空構造体である。   <6> A container body including an inner container and an outer container, in which a vacuum space is formed, and made of the same material as the container body, and welded to the container body so as to seal the vacuum space And a vacuum holding unit that holds a vacuum state of the vacuum space.

<7> 内容器と外容器とを備え、これらの間に真空空間が形成される容器本体と、この容器本体と同じ材料からなり、前記容器本体に嵌合し、前記真空空間を密封するように前記容器本体に溶接されて前記真空空間の真空状態を保持する真空保持部と、前記真空保持部の嵌合方向とは異なる方向に貯まる溶接用金属部と、を有することを特徴とする真空構造体である。   <7> A container body including an inner container and an outer container, in which a vacuum space is formed, and made of the same material as the container body, is fitted into the container body and seals the vacuum space A vacuum holding portion that is welded to the container main body to maintain a vacuum state of the vacuum space, and a welding metal portion that is stored in a direction different from a fitting direction of the vacuum holding portion. It is a structure.

<8> 前記溶接金属部は、前記容器本体の前記真空空間側とは反対側の面を基準として、最も深い位置が前記容器本体の前記真空空間側の面よりも浅い位置までに形成されるとともに、最も浅い位置の幅が最大となるように形成される<6>または<7>に記載の真空構造体である。   <8> The weld metal portion is formed so that the deepest position is shallower than the surface of the container body on the side of the vacuum space on the basis of the surface of the container body opposite to the vacuum space side. In addition, the vacuum structure according to <6> or <7> is formed so that the width of the shallowest position is maximized.

<9> 前記容器本体および前記真空保持部はステンレス材により形成されるとともに、少なくとも前記真空空間側の面に内部より窒素濃度の高い相を有する<6>から<8>のいずれかに記載の真空構造体である。   <9> The container main body and the vacuum holding unit are formed of a stainless steel material, and at least the surface on the vacuum space side has a phase having a higher nitrogen concentration than the inside thereof. It is a vacuum structure.

本発明の真空構造体の製造方法によれば、溶接工程と真空化工程とを同時に行うので、工程数の削減を図れるとともに、耐食性を向上させ、かつ軽量で強度に優れる真空構造体を製造することができる。   According to the method for manufacturing a vacuum structure of the present invention, the welding process and the vacuuming process are simultaneously performed, so that the number of processes can be reduced, the corrosion resistance is improved, and the vacuum structure that is lightweight and excellent in strength is manufactured. be able to.

本発明の真空構造体によれば、容器本体と同じ材料からなる真空保持部が、真空空間を密封するように容器本体に溶接されるので、耐食性を向上させ、かつ軽量で強度に優れたものとすることができる。   According to the vacuum structure of the present invention, the vacuum holding part made of the same material as the container main body is welded to the container main body so as to seal the vacuum space, so that the corrosion resistance is improved and the light weight is excellent in strength. It can be.

図1は、本発明の一形態の真空構造体の容器に溶接を行う溶接装置を示す図である。FIG. 1 is a diagram illustrating a welding apparatus that performs welding on a container of a vacuum structure according to an embodiment of the present invention. 図2は、図1のI部拡大図である。FIG. 2 is an enlarged view of a portion I in FIG. 図3は本発明の溶接前の真空構造体を示す図であり、左側は正面図、右側は縦断面図である。FIG. 3 is a view showing a vacuum structure before welding according to the present invention, in which the left side is a front view and the right side is a longitudinal sectional view. 図4は、図3のII部拡大図である。FIG. 4 is an enlarged view of a portion II in FIG. 図5は、本発明の真空構造体の溶接する領域の一形態の要部断面拡大図であり、(a)は溶接前、(b)は溶接後を示す図である。FIG. 5 is an enlarged cross-sectional view of a main part of one embodiment of a region to be welded of the vacuum structure of the present invention, where (a) is a view before welding and (b) is a view showing after welding. 図6は、本発明の真空構造体の溶接する領域の他の形態の要部断面拡大図である。FIG. 6 is an enlarged cross-sectional view of the main part of another embodiment of the welding region of the vacuum structure of the present invention. 図7は、本発明の真空構造体の溶接する領域の他の形態の要部断面拡大図である。FIG. 7 is an enlarged cross-sectional view of an essential part of another embodiment of the welded region of the vacuum structure of the present invention.

本発明の実施の形態を、図面を参照しながら詳細に説明する。図1は本発明の真空構造体の容器に溶接を行う溶接装置を示す図であり、図2はそのI部拡大図である。図3は本発明の溶接前の真空構造体を示す図であり、左側は正面図、右側は縦断面図であり、図4はそのII部拡大図である。図5は、本発明の真空構造体の溶接する領域の一形態の要部断面拡大図であり、(a)は溶接前、(b)は溶接後を示す図である。なお、説明中、真空構造体について、真空空間が形成される前の構造体についても、説明の便宜上、真空構造体と称することがある。   Embodiments of the present invention will be described in detail with reference to the drawings. FIG. 1 is a view showing a welding apparatus for performing welding on a container of a vacuum structure according to the present invention, and FIG. 2 is an enlarged view of a portion I thereof. FIG. 3 is a view showing a vacuum structure before welding according to the present invention, the left side is a front view, the right side is a longitudinal sectional view, and FIG. 4 is an enlarged view of the II part. FIG. 5 is an enlarged cross-sectional view of a main part of one embodiment of a region to be welded of the vacuum structure of the present invention, where (a) is a view before welding and (b) is a view showing after welding. In the description, the structure before the vacuum space is formed may be referred to as a vacuum structure for convenience of description.

図1に示すように、溶接装置1は、装置本体10と、回転台20と、駆動部30と、補助部40とから主に構成されている。また、溶接装置1による溶接対象物としては、内容器と外容器との間に空間が形成される真空構造体が対象となるが、図1では、その例として魔法瓶50が用いられている。なお、魔法瓶50については、図1および図2では、理解の便宜のため、左側に縦断面図、右側に正面図を示している。   As shown in FIG. 1, the welding apparatus 1 mainly includes an apparatus main body 10, a turntable 20, a drive unit 30, and an auxiliary unit 40. Further, as a welding object by the welding apparatus 1, a vacuum structure in which a space is formed between the inner container and the outer container is an object. In FIG. 1, a thermos bottle 50 is used as an example. In addition, about the thermos 50, in FIG.1 and FIG.2, the longitudinal cross-sectional view is shown on the left side, and the front view is shown on the right side for the convenience of an understanding.

装置本体10は、ビーム照射機11と、これを据え付ける据付台12とを備えている。図2に特に示すように、ビーム照射機11は、水平方向の先端がビーム照射部11aとなっており、このビーム照射部11aは、溶接対象物の方向に向けて尖った錘状をなし、ビームを集中させるようになっている。溶接対象物に照射するビームは、レーザビームであってもよいし、電子ビームであってもよい。溶接対象物の肉厚が2mm以上であれば、より強力である電子ビームが好ましいが、それよりも薄い肉厚のものであればレーザビームが好ましい。図1の例では、溶接対象物が魔法瓶50であるので、軽量化の観点から薄肉化するのが好ましく、そのためレーザビームを照射する。   The apparatus main body 10 includes a beam irradiator 11 and a mounting table 12 on which the beam irradiator 11 is installed. As shown particularly in FIG. 2, the beam irradiator 11 has a beam irradiation part 11a at the tip in the horizontal direction, and the beam irradiation part 11a has a pointed spindle shape toward the welding object, The beam is focused. The beam applied to the welding object may be a laser beam or an electron beam. If the thickness of the welding object is 2 mm or more, a stronger electron beam is preferable, but if it is thinner than that, a laser beam is preferable. In the example of FIG. 1, since the welding object is the thermos 50, it is preferable to reduce the thickness from the viewpoint of weight reduction, and therefore, a laser beam is irradiated.

ビーム照射部11aの後上方には、窒素ガス注入部13が設けられており、ここよりレーザ照射機11内に注入した窒素ガスを、ビーム照射部11aからビームとともに溶接対象物の溶接する領域の周辺に噴射するようになっている。なお、図1中の番号14はランプである。   A nitrogen gas injection unit 13 is provided on the rear upper side of the beam irradiation unit 11a. Nitrogen gas injected into the laser irradiation unit 11 from the beam irradiation unit 11a is welded to the welding object together with the beam from the beam irradiation unit 11a. It is designed to spray around. Note that reference numeral 14 in FIG. 1 denotes a lamp.

回転台20は、挟持部21を備えており、これにより溶接対象物の溶接する領域の高さがビーム照射位置の高さと一致するように挟持する。また、回転台20は、底部に駆動部30の軸31が挿入されるとともに、ビーム照射機11とは反対の側部で補助部40の支持具41により支持され、駆動部30により水平方向に回転自在となっている。ここで、駆動部30は、連結部32によりモータ33が減速器34を介して軸31に連結されており、モータ33の回転速度を減速器34により適宜に減速可能となっている。なお、補助部40における番号42は溶接対象物の位置を検知するセンサ、番号43は挟持部21の傾きを検知するセンサである。   The turntable 20 is provided with a clamping portion 21 so that the height of the area to be welded by the welding target is matched with the height of the beam irradiation position. In addition, the rotary table 20 has a shaft 31 of the driving unit 30 inserted in the bottom, is supported by a support 41 of the auxiliary unit 40 on the side opposite to the beam irradiator 11, and is horizontally supported by the driving unit 30. It is free to rotate. Here, in the drive unit 30, the motor 33 is connected to the shaft 31 via the speed reducer 34 by the connecting part 32, and the rotational speed of the motor 33 can be appropriately reduced by the speed reducer 34. Note that reference numeral 42 in the auxiliary unit 40 is a sensor that detects the position of the welding object, and reference numeral 43 is a sensor that detects the inclination of the clamping unit 21.

このような構成により、溶接対象物を水平方向に回転させてビームにより溶接すると、酸素の燃焼や窒素ガスにより、溶接する領域周辺の酸素が除去されるので、溶接が完了した時点で溶接対象物の内容器と外容器との間の空間が密封されて真空構造体が完成する。つまり、溶接工程と真空化工程とを同時に行うので、溶接が完了した段階で真空空間を形成できるのである。   With such a configuration, when the welding object is rotated in the horizontal direction and welded by the beam, oxygen around the area to be welded is removed by combustion of oxygen and nitrogen gas, so that the welding object is completed when welding is completed. The space between the inner container and the outer container is sealed to complete the vacuum structure. That is, since the welding process and the evacuation process are performed simultaneously, a vacuum space can be formed when the welding is completed.

また、図1の例では、ビーム照射部11aから窒素ガスを噴射しながら溶接を行っているが、溶接装置1を窒素ガスが充填された室(チャンバ)内に設置して溶接を行ってもよい。この場合は、室内で内容器と外容器との間の空間が密封され、室外に出した時点で真空空間が形成される。   Further, in the example of FIG. 1, welding is performed while injecting nitrogen gas from the beam irradiation unit 11 a, but welding may be performed by installing the welding apparatus 1 in a chamber (chamber) filled with nitrogen gas. Good. In this case, the space between the inner container and the outer container is sealed in the room, and a vacuum space is formed when the space is taken out of the room.

さらに、窒素ガス付与の代わりに、相対的な高温条件下、好ましくは30〜100℃の室内に溶接装置1を設置し、空気を希薄にして溶接を行ってもよいし、真空状態の室内(真空条件下)で同様な溶接を行ってもよい。これらの場合も、室内における溶接完了により内容器と外容器との間の空間が密封され、室外に出した時点、つまり常温ないし常圧下で真空空間が形成される。また、これらの各条件を組み合わせて真空化を行ってもよい。要するに、酸素を除去しやすい、あるいは酸素がない環境下で溶接を行い、溶接後に真空空間が形成できればよい。   Further, instead of applying nitrogen gas, welding may be performed by setting the welding apparatus 1 in a room at a relatively high temperature, preferably in a room of 30 to 100 ° C., and diluting the air. Similar welding may be performed under vacuum conditions). Also in these cases, the space between the inner container and the outer container is sealed by the completion of the welding in the room, and a vacuum space is formed at the time when it is taken out of the room, that is, at room temperature or normal pressure. Moreover, you may evacuate combining these each conditions. In short, it is only necessary to perform welding in an environment where oxygen is easily removed or in the absence of oxygen, and a vacuum space can be formed after welding.

窒素ガスが充填された、あるいは真空条件下の室内での溶接は、より精密に密封することが可能なので、相対的に大きな溶接対象物や小さくても精密さが要求される溶接対象物に好適である。また、相対的な高温条件下の室内での溶接は、酸素の除去を速められるので、相対的に大きな溶接対象物のように、表面積が大きく窒素ガスの噴射のみでは酸素の除去に時間がかかりやすいものに好適である。   Since welding in a room filled with nitrogen gas or under vacuum conditions can be sealed more precisely, it is suitable for relatively large welding objects and welding objects that require precision even if small. It is. Also, welding in a room under a relatively high temperature condition can speed up the removal of oxygen, so that it takes a long time to remove oxygen only by injecting nitrogen gas with a large surface area like a relatively large object to be welded. Suitable for easy-to-use items.

ここまでの説明からわかるように、本発明において、「溶接工程と真空化工程とを同時に行う」とは、完全に同一のタイミングで行う必要はなく、一方の工程を、早く開始したり、遅く終了させてもよく、例えば、上述したように、相対的な高温条件や真空条件を整えた上で、その条件下で溶接を行ってもよい。なお、溶接工程と真空化工程は、同時に行えるのであれば、図示した溶接装置1以外の装置やシステムで行ってもよいが、同じ装置やシステムで行うのが好ましいことはいうまでもない。   As can be seen from the description so far, in the present invention, “the welding process and the evacuation process are simultaneously performed” does not need to be performed at completely the same timing, and one process is started earlier or later. For example, as described above, after adjusting the relative high temperature condition and the vacuum condition, welding may be performed under the condition. The welding process and the evacuation process may be performed by an apparatus or system other than the illustrated welding apparatus 1 as long as they can be performed simultaneously, but it is needless to say that the welding process and the vacuuming process are preferably performed by the same apparatus or system.

次に、魔法瓶50における具体的な溶接方法について説明する。図3に示すように、魔法瓶50は、溶接前に、構成する部材として、上から順に、キャップ60と、容器本体70と、底部80とからなる構造体を形成しておく。なお、この溶接前までの構造体の形成については、公知の方法により行うことができる。   Next, a specific welding method in the thermos 50 will be described. As shown in FIG. 3, the thermos 50 forms a structure including a cap 60, a container main body 70, and a bottom 80 in order from the top as constituent members before welding. In addition, about formation of the structure before this welding, it can carry out by a well-known method.

この魔法瓶50は、キャップ60の内面と、容器本体70のキャップ60との係合域に、キャップ60を容器本体70に締めるためのネジ部61、71がそれぞれ形成されている。   In the thermos 50, screw portions 61 and 71 for fastening the cap 60 to the container body 70 are formed in the engagement area between the inner surface of the cap 60 and the cap 60 of the container body 70, respectively.

容器本体70は、内容器72と、外容器73とを備え、これらの間には空間74が形成されている。この空間74は、上述の溶接を経た後に真空空間となる。   The container body 70 includes an inner container 72 and an outer container 73, and a space 74 is formed between them. This space 74 becomes a vacuum space after the above-described welding.

内容器72と外容器73は、上端で溶接されている。この溶接には、上述した本発明のための溶接装置1を用いてもよいし、公知の溶接装置を用いてもよい。外容器73のネジ部71の下方は、少なくともネジ部71よりは大径に形成され、底部80まで直線状に伸びる側部75となっている。ネジ部71と側部75の間には、両者より大径に形成された大径部76を備えており、これによりキャップ60が滑り落ちないようになっている。   The inner container 72 and the outer container 73 are welded at the upper end. For this welding, the above-described welding apparatus 1 for the present invention may be used, or a known welding apparatus may be used. Below the screw part 71 of the outer container 73 is a side part 75 which is formed to have a diameter larger than at least the screw part 71 and extends linearly to the bottom part 80. Between the screw part 71 and the side part 75, the large diameter part 76 formed larger diameter than both is provided, and the cap 60 is prevented from slipping down by this.

図4に特に示すように、側部75の下端には、溝77が周方向に沿って形成されており、ここに底部80が、側部75と表面位置が合わさるように長手方向に嵌合し、空間74を閉じている。つまり、底部80は、溶接装置1により、溶接が完了した時点で容器本体71を密封するので、溶接後は、空間74の真空空間を保持する真空保持部として機能する。そして、この底部80が、溶接装置1により、容器本体70の外容器73に溶接され、空間74を真空化する。   As shown particularly in FIG. 4, a groove 77 is formed along the circumferential direction at the lower end of the side portion 75, and the bottom portion 80 is fitted in the longitudinal direction so that the surface position is aligned with the side portion 75. The space 74 is closed. That is, since the bottom 80 seals the container main body 71 when welding is completed by the welding apparatus 1, the bottom 80 functions as a vacuum holding unit that holds the vacuum space of the space 74 after welding. And this bottom part 80 is welded to the outer container 73 of the container main body 70 by the welding apparatus 1, and the space 74 is evacuated.

容器本体70および底部80は同じステンレス材からなり、キャップ60も少なくともネジ部71は、それらと同じステンレス材からなることが好ましい。ステンレス材としては、特に制限はないが、例えば、SUS304、SUS316、SUS430、SUS445などが好適に挙げられる。   It is preferable that the container main body 70 and the bottom portion 80 are made of the same stainless material, and the cap 60 and at least the screw portion 71 are made of the same stainless material. Although there is no restriction | limiting in particular as a stainless steel material, For example, SUS304, SUS316, SUS430, SUS445 etc. are mentioned suitably.

このように、同じ材料を溶接して真空化するので、魔法瓶50を構成する部材としての容器本体70および底部80を薄肉化することができ、軽量で強度に優れるものとすることができる。また、真空化のために、魔法瓶50を構成する部材と異なる材料を用いないので、材料間に界面が生じる懸念がなく耐食性の向上を図ることができる。ただし、真空化の万全を図ったり、デザイン用の肉盛を行うために、ろう材等の異なる材料を溶接してもよい。   Thus, since the same material is welded and evacuated, the container main body 70 and the bottom 80 as members constituting the thermos bottle 50 can be thinned, and can be lightweight and excellent in strength. Moreover, since a different material from the member which comprises the thermos 50 is not used for vacuuming, there is no fear that an interface may arise between materials, and it can improve corrosion resistance. However, different materials such as brazing material may be welded in order to ensure complete evacuation or build up for design.

また、容器本体70の内容器72、外容器73、および底部80のそれぞれの空間74側の面に内部より窒素(分子)濃度の高い相を有することが好ましい。これにより、耐食性の向上を図ることができる。なお、空間74側でない面にも同様な相を形成してもよい。   In addition, it is preferable that each of the inner container 72, the outer container 73, and the bottom 80 of the container body 70 has a phase with a higher nitrogen (molecule) concentration than the inside on the space 74 side surface. Thereby, corrosion resistance can be improved. A similar phase may be formed on a surface that is not on the space 74 side.

この窒素濃度の高い相を形成するに際しては、溶接時に空間74に窒素ガスを噴射する方法、つまり上述した本発明の方法によってもよいし、板状または溶接前の状態で窒素ガスを充填した雰囲気内でステンレス材を1200℃以下の窒素吸着が可能な温度(通常、窒素吸着が行われる温度)で加熱し、表面に窒素を吸着させる方法によってもよい。また、表面に窒素を吸着させるには、表面をオーストナイト相にしてもよいし、オーストナイト系材料を使用してもよいし、表面の窒素濃度を内部に対して相対的に高くしてもよい。オーステナイト相とする場合や窒素濃度を相対的に高くする場合には、その部分の厚さは、例えば10〜200μmが好ましい。   In forming this high nitrogen concentration phase, a method of injecting nitrogen gas into the space 74 at the time of welding, that is, the method of the present invention described above may be used, or an atmosphere filled with nitrogen gas in a plate-like or pre-weld state. The stainless steel material may be heated at a temperature at which nitrogen adsorption is possible at 1200 ° C. or less (usually the temperature at which nitrogen adsorption is performed), and nitrogen may be adsorbed on the surface. Further, in order to adsorb nitrogen on the surface, the surface may be in an austenite phase, an austenite-based material may be used, or the surface nitrogen concentration may be relatively high with respect to the inside. Good. When the austenite phase is used or when the nitrogen concentration is relatively high, the thickness of the portion is preferably 10 to 200 μm, for example.

次に、底部80の外容器73への溶接方法について説明する。図5(a)に特に示すように、底部80が外容器73の溝77に嵌合した先端と、溝77の側面との間には若干の隙間90が存在する。溶接装置1により底部80を溶接するに際しては、この隙間90に底部80の金属を相対的に多めに、外容器73(溝77の側面)の金属を相対的に少なめに、それぞれ図5(a)中の楕円状に囲んだ部分を目処として溶かす。これにより、図5(b)に示すように、底部80の嵌合方向(溝77の側面方向)とは略鉛直方向に貯まる溶接金属部100を形成する。このように、溶接金属部100を底部80の嵌合方向と異なる方向に形成することで、隙間90の壁面となる外容器73や底部80の金属を利用できるので、少ない金属を溶かすだけで、強度の高い確実な溶接が可能となる。つまり、溶接金属部100は、底部80の嵌合方向と異なる方向に形成すれば、隙間90の壁面を利用して、溶かす金属を少なくしつつ確実な溶接ができるので、必ずしも略鉛直方向に形成しなくてもよい。   Next, a method for welding the bottom 80 to the outer container 73 will be described. As particularly shown in FIG. 5A, there is a slight gap 90 between the tip end where the bottom portion 80 is fitted in the groove 77 of the outer container 73 and the side surface of the groove 77. When the bottom 80 is welded by the welding device 1, the gap 90 has a relatively large amount of metal in the bottom 80 and a relatively small amount of metal in the outer container 73 (side surface of the groove 77). ) Melt the part enclosed in the oval shape inside. Thereby, as shown in FIG.5 (b), the weld metal part 100 which accumulates in a substantially perpendicular direction with the fitting direction (side surface direction of the groove | channel 77) of the bottom part 80 is formed. In this way, by forming the weld metal part 100 in a direction different from the fitting direction of the bottom part 80, the outer container 73 serving as the wall surface of the gap 90 and the metal of the bottom part 80 can be used, so only by melting a small amount of metal, High strength and reliable welding is possible. In other words, if the weld metal part 100 is formed in a direction different from the fitting direction of the bottom part 80, the welded metal part 100 can be reliably welded using the wall surface of the gap 90 while reducing the amount of metal to be melted. You don't have to.

溶接金属部100は、外容器73の表面(溶接装置1によりビームが照射される側の面)を基準として、最も深い位置が外容器73の金属内で収まるように、つまり空間74側の面より浅い位置までに形成する。空間74側の面より深い位置まで形成すると、空間74を十分に真空にすることが困難になるおそれがある。   The weld metal part 100 is such that the deepest position is within the metal of the outer container 73 with respect to the surface of the outer container 73 (the surface on which the beam is irradiated by the welding apparatus 1), that is, the surface on the space 74 side. It is formed to a shallower position. If it is formed to a position deeper than the surface on the space 74 side, it may be difficult to sufficiently evacuate the space 74.

また、底部80は溝77と当接する位置があり、この位置より手前に小さな隙間91が存在する。溶接金属部100は、最も浅い位置の幅Wが最大となるように形成し、溶けた金属が隙間91に極力拡がらないようにし、好ましくは隙間91に入り込まないようにする。これにより、溶かす金属を少なくできるとともに、外容器73と底部80との溶接をより確実にすることができる。   Further, the bottom 80 has a position where it abuts the groove 77, and a small gap 91 is present in front of this position. The weld metal portion 100 is formed so that the width W at the shallowest position is maximized so that the molten metal does not spread into the gap 91 as much as possible, and preferably does not enter the gap 91. As a result, the amount of metal to be melted can be reduced, and welding between the outer container 73 and the bottom 80 can be made more reliable.

以上説明したように、本発明の真空構造体の製造方法では、真空構造体を構成する部材を溶接する溶接工程と、真空空間を形成する真空化工程とを同時に行うので、構造体を形成した後に、真空化工程を別途経る必要がなく、工程数の削減を図ることができる。   As described above, in the method for manufacturing a vacuum structure according to the present invention, the welding process for welding the members constituting the vacuum structure and the vacuuming process for forming the vacuum space are simultaneously performed, so the structure is formed. It is not necessary to go through a vacuum process later, and the number of processes can be reduced.

以上、本発明の実施の形態を詳細に説明したが、本発明の真空構造体は、上記実施の形態に限定されない。例えば、上記実施の形態では、真空構造体として魔法瓶を例に挙げて説明したが、これに限らず、真空筒体、真空タンク、フロート、真空球体などに適用することもできる。   As mentioned above, although embodiment of this invention was described in detail, the vacuum structure of this invention is not limited to the said embodiment. For example, in the above-described embodiment, a thermos bottle has been described as an example of the vacuum structure. However, the present invention is not limited to this and can be applied to a vacuum cylinder, a vacuum tank, a float, a vacuum sphere, and the like.

また、上記実施の形態では、底部を真空保持部として外容器と溶接しているが、これと同一な方法により、例えば、真空タンクのように容量の大きな真空構造体では、内壁を真空保持部として内容器と嵌合させて溶接してもよい。また、複数箇所を真空保持部として、容器本体と嵌合させて溶接してもよい。なお、この場合に、嵌合方向は、真空構造体が、球体であれば径方向とすればよいし、径の方が高さより大きい大径の真空構造体であれば高さ方向(短手方向)とすればよい。   In the above embodiment, the bottom part is welded to the outer container as a vacuum holding part. However, in the same structure as this, for example, in a vacuum structure having a large capacity such as a vacuum tank, the inner wall is made to be a vacuum holding part. And may be welded with the inner container. Moreover, you may make it weld with a container main body by making several places into a vacuum holding part. In this case, the fitting direction may be the radial direction if the vacuum structure is a sphere, or the height direction (short side) if the diameter of the vacuum structure is larger than the height. Direction).

さらに、上記実施の形態では、容器本体70の外容器73および真空保持部となる底部80の双方の金属を溶かしているが、これに限定されない。例えば、図6に示すように、底部80を溝77に面で圧着させておき、底部80の一点にビーム(図中矢印参照)を照射することで、その周囲の金属を溶かして溶接金属部100を形成して溶接する、いわゆるスポット溶接を行うこととしてもよい。また、図7に示すように、容器本体70に合わせ溝78を形成しておき、ここに底部80を嵌合させ、容器本体70と底部80とにより形成される角部81にビームを照射することにより、その周辺の金属を溶かして溶接金属部100を形成することにより溶接してもよい。   Furthermore, in the said embodiment, although the metal of both the outer container 73 of the container main body 70 and the bottom part 80 used as a vacuum holding part is melt | dissolved, it is not limited to this. For example, as shown in FIG. 6, the bottom 80 is pressure-bonded to the groove 77 and irradiated with a beam (see the arrow in the figure) at one point of the bottom 80, thereby melting the surrounding metal and welding metal parts. It is good also as performing what is called spot welding which forms 100 and welds. Further, as shown in FIG. 7, a groove 78 is formed in the container body 70, a bottom portion 80 is fitted therein, and a beam is irradiated to a corner portion 81 formed by the container body 70 and the bottom portion 80. Thus, welding may be performed by melting the surrounding metal to form the weld metal portion 100.

1 溶接装置
10 装置本体
11 ビーム照射機
11a ビーム照射部
12 据付台
13 窒素ガス注入部
14 ランプ
20 回転台
30 駆動部
31 軸
32 連結具
33 モータ
34 減速器
40 補助部
41 支持具
42 センサ
43 センサ
50 魔法瓶(真空構造体)
60 キャップ
61 ネジ部
70 容器本体
71 ネジ部
72 内容器
73 外容器
74 空間(真空空間)
75 側部
76 大径部
77 溝
78 合わせ溝
80 底部(真空保持部)
81 角部
90 隙間
91 隙間
100 溶接金属部
W 最も浅い位置の溶接金属部の幅
DESCRIPTION OF SYMBOLS 1 Welding apparatus 10 Apparatus main body 11 Beam irradiation machine 11a Beam irradiation part 12 Installation stand 13 Nitrogen gas injection part 14 Lamp 20 Rotation stand 30 Drive part 31 Axis 32 Connection tool 33 Motor 34 Decelerator 40 Auxiliary part 41 Support tool 42 Sensor 43 Sensor 50 Thermos (vacuum structure)
60 Cap 61 Screw part 70 Container body 71 Screw part 72 Inner container 73 Outer container 74 Space (vacuum space)
75 Side part 76 Large diameter part 77 Groove 78 Alignment groove 80 Bottom (vacuum holding part)
81 Corner portion 90 Clearance 91 Clearance 100 Weld metal part W Width of weld metal part at the shallowest position

Claims (9)

内容器と外容器とを備え、これらの間に真空空間が形成される真空構造体の製造方法であって、前記真空構造体を構成する部材を溶接する溶接工程と、前記真空空間を形成する真空化工程とを同時に行うことを特徴とする真空構造体の製造方法。   A manufacturing method of a vacuum structure including an inner container and an outer container, in which a vacuum space is formed, the welding step of welding members constituting the vacuum structure, and forming the vacuum space A vacuum structure manufacturing method comprising performing a vacuuming step simultaneously. 前記溶接工程では、前記真空構造体を構成する部材の材料により溶接を行う請求項1に記載の真空構造体の製造方法。   The method for manufacturing a vacuum structure according to claim 1, wherein in the welding step, welding is performed using a material of a member constituting the vacuum structure. 溶接する領域にビームを照射しつつ、窒素ガスを付与する請求項1または2に記載の真空構造体の製造方法。   The manufacturing method of the vacuum structure of Claim 1 or 2 which provides nitrogen gas, irradiating a beam to the area | region to weld. 相対的に高温条件下で、溶接する領域にビームを照射する請求項1から3のいずれかに記載の真空構造体の製造方法。   The method of manufacturing a vacuum structure according to any one of claims 1 to 3, wherein a beam is irradiated to a region to be welded under a relatively high temperature condition. 真空条件下で、溶接する領域にビームを照射する請求項1から4のいずれかに記載の真空構造体の製造方法。   The manufacturing method of the vacuum structure in any one of Claim 1 to 4 which irradiates a beam to the area | region to weld on vacuum conditions. 内容器と外容器とを備え、これらの間に真空空間が形成される容器本体と、
この容器本体と同じ材料からなり、前記真空空間を密封するように前記容器本体に溶接されて前記真空空間の真空状態を保持する真空保持部と、を有することを特徴とする真空構造体。
A container body including an inner container and an outer container, in which a vacuum space is formed;
A vacuum structure made of the same material as the container main body, and having a vacuum holding section that is welded to the container main body so as to seal the vacuum space and holds the vacuum state of the vacuum space.
内容器と外容器とを備え、これらの間に真空空間が形成される容器本体と、
この容器本体と同じ材料からなり、前記容器本体に嵌合し、前記真空空間を密封するように前記容器本体に溶接されて前記真空空間の真空状態を保持する真空保持部と、
前記真空保持部の嵌合方向とは異なる方向に貯まる溶接用金属部と、を有することを特徴とする真空構造体。
A container body including an inner container and an outer container, in which a vacuum space is formed;
Made of the same material as this container body, fitted into the container body, welded to the container body so as to seal the vacuum space, and holding a vacuum state of the vacuum space,
And a welding metal part stored in a direction different from the fitting direction of the vacuum holding part.
前記溶接金属部は、前記容器本体の前記真空空間側とは反対側の面を基準として、最も深い位置が前記容器本体の前記真空空間側の面よりも浅い位置までに形成されるとともに、最も浅い位置の幅が最大となるように形成される請求項6または7に記載の真空構造体。   The weld metal portion is formed so that the deepest position is shallower than the surface of the container main body on the side of the vacuum space, with reference to the surface of the container main body opposite to the vacuum space side. The vacuum structure according to claim 6 or 7, wherein the vacuum structure is formed so that the width of the shallow position is maximized. 前記容器本体および前記真空保持部はステンレス材により形成されるとともに、少なくとも前記真空空間側の面に内部より窒素濃度の高い相を有する請求項6から8のいずれかに記載の真空構造体。   The vacuum structure according to any one of claims 6 to 8, wherein the container main body and the vacuum holding part are formed of a stainless material and have a phase having a higher nitrogen concentration than the inside on at least the surface on the vacuum space side.
JP2012016018A 2012-01-30 2012-01-30 Method for manufacturing vacuum structure and vacuum structure Pending JP2013154367A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2012016018A JP2013154367A (en) 2012-01-30 2012-01-30 Method for manufacturing vacuum structure and vacuum structure

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2012016018A JP2013154367A (en) 2012-01-30 2012-01-30 Method for manufacturing vacuum structure and vacuum structure

Publications (2)

Publication Number Publication Date
JP2013154367A true JP2013154367A (en) 2013-08-15
JP2013154367A5 JP2013154367A5 (en) 2014-12-25

Family

ID=49050090

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2012016018A Pending JP2013154367A (en) 2012-01-30 2012-01-30 Method for manufacturing vacuum structure and vacuum structure

Country Status (1)

Country Link
JP (1) JP2013154367A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN110860777A (en) * 2019-12-02 2020-03-06 桂林实创真空数控设备有限公司 Laminated rotary local sealing high-vacuum electron beam welding machine
JP2020065675A (en) * 2018-10-24 2020-04-30 三恵技研工業株式会社 Heat insulation double container and production method thereof

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS58157580A (en) * 1982-03-11 1983-09-19 Taiyo Sanso Kk Vacuum sealing of metallic vacuum bottle
JPS5928933A (en) * 1982-08-09 1984-02-15 株式会社井上ジャパックス研究所 Production of metal magic pot
JPH02125858A (en) * 1988-11-02 1990-05-14 Sumitomo Metal Ind Ltd Method for nitriding stainless steel
JPH07233461A (en) * 1994-02-23 1995-09-05 Nippon Steel Corp Production of stainless steel sheet excellent in corrosion resistance
JP2004060852A (en) * 2002-07-31 2004-02-26 Zojirushi Corp Vacuum heat insulator and manufacturing method therefor

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS58157580A (en) * 1982-03-11 1983-09-19 Taiyo Sanso Kk Vacuum sealing of metallic vacuum bottle
JPS5928933A (en) * 1982-08-09 1984-02-15 株式会社井上ジャパックス研究所 Production of metal magic pot
JPH02125858A (en) * 1988-11-02 1990-05-14 Sumitomo Metal Ind Ltd Method for nitriding stainless steel
JPH07233461A (en) * 1994-02-23 1995-09-05 Nippon Steel Corp Production of stainless steel sheet excellent in corrosion resistance
JP2004060852A (en) * 2002-07-31 2004-02-26 Zojirushi Corp Vacuum heat insulator and manufacturing method therefor

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2020065675A (en) * 2018-10-24 2020-04-30 三恵技研工業株式会社 Heat insulation double container and production method thereof
JP7179577B2 (en) 2018-10-24 2022-11-29 三恵技研工業株式会社 Insulated double container and its manufacturing method
CN110860777A (en) * 2019-12-02 2020-03-06 桂林实创真空数控设备有限公司 Laminated rotary local sealing high-vacuum electron beam welding machine
CN110860777B (en) * 2019-12-02 2024-05-28 桂林实创真空数控设备有限公司 Laminated rotary local sealing high vacuum electron beam welding machine

Similar Documents

Publication Publication Date Title
JP6045783B2 (en) Secondary battery and method for manufacturing secondary battery
JP2006300322A (en) Fluid dynamic pressure bearing device and its manufacturing method
CN102294541A (en) Electron beam welding method for ultra supercritical partition plates
CN106392292A (en) Electron beam welding method of thin-walled part
US20160184930A1 (en) Method of welding shaft and wheel in turbine shaft, turbine shaft, and welding device
JP2012169254A (en) Secondary battery and method for manufacturing secondary battery
JP2013154367A (en) Method for manufacturing vacuum structure and vacuum structure
JPH05166462A (en) Manufacture of vacuum vessel for flat display device
KR20070106169A (en) Susceptor and method of manufacturing the same
WO2011142350A1 (en) Welding device
CN107186329A (en) A kind of electron beam welding method of molybdenum alloy and tungsten alloy
KR101203892B1 (en) Laser welding device
RU2456146C1 (en) Method of producing complex combined axially symmetric welded structures
JP6005845B2 (en) Method of assembling fuel supply pipe and fuel supply pipe assembly apparatus
US10710199B2 (en) Method of manufacturing tube, and tube
CN107081515A (en) A kind of suit electron beam welding manufacture method in T-shaped ring of major diameter
JP2015104729A (en) Laser welding method, device and structure
KR101203893B1 (en) Laser welding device
CN114713959A (en) Aero-engine cylinder assembly double-face forming welded joint and forming method thereof
KR101419879B1 (en) Apparatus and method for manufacturing tube
CN104772561B (en) Weld the friction stir welding method of harden structure and cylinder
US20120255155A1 (en) Method for Producing a Container for a Temperature-Sensitive Operating Material, and Container for Said Material
JP2008082451A (en) Manufacturing method for dynamic bearing device
KR200147294Y1 (en) Welding device of thermal receptacle
JP4170857B2 (en) Laser welding equipment

Legal Events

Date Code Title Description
A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20141030

A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20141030

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20151014

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20151027

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20160308