JP2013153381A - Imaging apparatus and imaging method - Google Patents

Imaging apparatus and imaging method Download PDF

Info

Publication number
JP2013153381A
JP2013153381A JP2012014009A JP2012014009A JP2013153381A JP 2013153381 A JP2013153381 A JP 2013153381A JP 2012014009 A JP2012014009 A JP 2012014009A JP 2012014009 A JP2012014009 A JP 2012014009A JP 2013153381 A JP2013153381 A JP 2013153381A
Authority
JP
Japan
Prior art keywords
image
bit shift
pixel
black image
cmos
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2012014009A
Other languages
Japanese (ja)
Inventor
Michiteru Shibahara
道輝 柴原
Kazuhiko Nakamura
和彦 中村
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hitachi Kokusai Electric Inc
Original Assignee
Hitachi Kokusai Electric Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Kokusai Electric Inc filed Critical Hitachi Kokusai Electric Inc
Priority to JP2012014009A priority Critical patent/JP2013153381A/en
Publication of JP2013153381A publication Critical patent/JP2013153381A/en
Pending legal-status Critical Current

Links

Images

Landscapes

  • Transforming Light Signals Into Electric Signals (AREA)

Abstract

PROBLEM TO BE SOLVED: To reduce signal variation of a black image of an effective pixel in a CMOS imaging element.SOLUTION: In an imaging apparatus using a CMOS imaging element having an integration multiplication A/D section, signal values of respective pixels at each number of integration times of a maximum use temperature and at each bit shift are acquired and stored in a frame memory. In a plurality of reference temperatures, the signal values of the respective pixels of a black image in the CMOS imaging element in a maximum bit shift amount and the maximum number of integration times are acquired and are stored in the frame memory. One of an average value and unevenness of a black image signal of the effective pixel in the CMOS imaging element and respective effective pixel black image signal values are corrected by adapting for each temperature, each number of integration times and each bit shift by using the signal value of each pixel for each number of integration times and each bit shift of the maximum use temperature, which is stored in the frame memory, the signal value of each pixel of the black image of the CMOS imaging element in the maximum bit shift amount and the maximum number of integration times of the plurality of reference temperatures, which are stored in the frame memory, and information on the temperature of the CMOS imaging element.

Description

本発明は、固体撮像素子を有する撮像装置に関し、撮像素子から出力される画像信号に含まれる雑音を低減する方法に関するものである。   The present invention relates to an imaging apparatus having a solid-state imaging device, and relates to a method for reducing noise contained in an image signal output from the imaging device.

CMOS(Complimentary Metal Oxide Semiconductor)撮像素子は一般的にはCCD撮像素子より感度が低い。そこで、積分増倍A/D部を有し、CCD撮像素子より高感度を狙うCMOS撮像素子が開発中である(特許文献1参照)。しかし、フォトダイードの黒画像の信号出力のむらによる暗部むらや黒画像の信号出力が異常に多いフォトダイードの映像信号(白キズ)も積分増倍するため、白キズや暗部むらが増加する。
そこで、従来、光学的黒画素部分の白キズの影響を低減するため、CMOS撮像素子の水平方向の光学的黒画素(Horizontal-Optical Black以下H−OB)部分の12画素信号を平均し、1ライン分の黒画像の基準信号として記憶し、この固体撮像素子の有効画素部分の出力信号よりこの記憶した黒画像の基準信号を減算していた。
A CMOS (Complimentary Metal Oxide Semiconductor) image sensor is generally less sensitive than a CCD image sensor. Therefore, a CMOS image sensor having an integral multiplication A / D section and aiming at higher sensitivity than the CCD image sensor is under development (see Patent Document 1). However, since the dark portion unevenness due to uneven signal output of the black image of the photo diode and the video signal (white scratch) of the photo diode having abnormally large black signal output are also integrated and multiplied, the white scratch and dark portion unevenness increase.
Therefore, conventionally, in order to reduce the influence of white scratches in the optical black pixel portion, the 12 pixel signals of the horizontal optical black pixel (Horizontal-Optical Black) (H-OB) portion of the CMOS image sensor are averaged. This is stored as a black signal reference signal for a line, and the stored black image reference signal is subtracted from the output signal of the effective pixel portion of the solid-state imaging device.

しかし、積分増倍A/D部を有するCMOS撮像素子の積分増倍に強く相関して黒画像の信号出力のむらが大きくなり、白キズや暗部むらも積分増倍するため、白キズや暗部むらのレベルが大きくなり易い。また、積分増倍のもれ電流は、積分増倍を変えた時の基準暗部レベルの変動となる。さらに、電源やGNDのゆすれは、積分増倍の変動となり、積分増倍を高くした場合の暗部むらとなる。   However, the nonuniformity of the signal output of the black image is greatly correlated with the integral multiplication of the CMOS image pickup device having the integral multiplication A / D portion, and the white scratch and the dark portion unevenness are also integral multiplied. The level of is likely to increase. Further, the leakage current of the integral multiplication becomes a fluctuation of the reference dark part level when the integral multiplication is changed. Further, the fluctuation of the power supply and the GND becomes a fluctuation of the integral multiplication, and the dark portion is uneven when the integral multiplication is increased.

そのため、H−OB部分の出力信号を平均しても、白キズ成分が残留する。さらに、有効画素部分の出力信号から、この平均した信号を減算すると、横筋が発生してしまう。
フォトダイードの暗電流は一般に撮像素子の温度が6℃上昇すると6dB増加するので、温度変動で、暗部レベルと白キズと暗部シェーディングが変動する。また、積分増倍のもれ電流も温度が上昇すると増加するので、温度変動で、積分増倍による暗部レベルが変動する。
For this reason, even if the output signals of the H-OB portion are averaged, a white flaw component remains. Further, when this average signal is subtracted from the output signal of the effective pixel portion, a horizontal stripe is generated.
Since the dark current of the photodiode generally increases by 6 dB when the temperature of the image sensor rises by 6 ° C., the dark level, white scratches, and dark portion shading fluctuate due to temperature fluctuation. Further, the leakage current of integral multiplication increases as the temperature rises, so that the dark part level due to integral multiplication fluctuates due to temperature fluctuation.

そのため、扇アンプの積分回数ゲインアップ方式およびビットシフトゲインアップ方式による信号レベル変化特性及びノイズ変化特性を検証した際、暗部レベルと暗部シェーディングがゲインアップにより変動してしまう。また、温度変動に対しても暗部レベルが変動してしまう問題がある。
例えばゲインアップにより暗部レベルと暗部シェーディングが上がってしまうことで、黒画像の映像レベル0を基準とした信号処理が正しく行えない。出力画像についても、黒画像の映像レベルが上がることで黒部が白みを帯び、暗部シェーディングにより画像が暗部ムラとなる。
For this reason, when the signal level change characteristic and the noise change characteristic of the fan amplifier integration frequency gain-up method and the bit shift gain-up method are verified, the dark part level and the dark part shading fluctuate due to the gain increase. Further, there is a problem that the dark part level fluctuates even with respect to temperature fluctuation.
For example, since the dark part level and the dark part shading increase due to the gain increase, the signal processing based on the video level 0 of the black image cannot be performed correctly. As for the output image, the black portion becomes whiter due to the increase in the video level of the black image, and the dark portion shading causes the image to become darker.

また、デジタル信号処理回路の集積化が進み、複数ラインの出力信号を記憶し算術処理することが、映像専用のメモリ集積DSPだけでなく、安価な汎用のFPGA(Field Programmable Gate Array)でも容易に実現できる様になった。   Also, with the progress of integration of digital signal processing circuits, it is easy to store and arithmetically process output signals of multiple lines not only with video-only memory integrated DSPs but also with inexpensive general-purpose FPGAs (Field Programmable Gate Arrays). It became possible to realize.

特開2004−304413号公報 積分増倍A/DJP, 2004-304413, A Integral multiplication A / D

本発明の目的は、積分増倍A/D部を有するCMOS撮像素子出力の暗部変動を低減することにある。   An object of the present invention is to reduce fluctuations in a dark part of an output of a CMOS image sensor having an integral multiplication A / D part.

本発明は、上記課題を解決するため、積分増倍A/D部を有するCMOS撮像素子を用いた撮像装置において、前記CMOS撮像素子の有効画素の黒画像の画像信号の平均値(黒画像の画像信号の平均値つまり暗部レベル)とムラ(暗部シェーディング)と、または各有効画素の黒画像の画像信号の値(黒画像の画像信号値つまり暗部値)との一方をビットシフト量と積分回数と前記CMOS撮像素子の温度に応じて補正する撮像方法である。   In order to solve the above-described problems, the present invention provides an image pickup apparatus using a CMOS image pickup device having an integral multiplication A / D section, and an average value of black image signals (effective black image signals) of effective pixels of the CMOS image pickup device. The bit shift amount and the integration count are either the average value of the image signal, that is, the dark portion level) and the unevenness (dark portion shading), or the value of the black image signal of each effective pixel (the image signal value of the black image, that is, the dark portion value). And an imaging method in which correction is performed according to the temperature of the CMOS image sensor.

さらに、積分増倍A/D部を有するCMOS撮像素子を用いた撮像装置において、最高使用温度の各積分回数および各ビットシフトごとの各画素の信号値を取得しフレームメモリに記憶し、複数の基準温度において、最大ビットシフト量と最大積分回数とにおける前記CMOS撮像素子の黒画像の各画素の信号値を取得しフレームメモリに記憶し、前記フレームメモリに記憶した最高使用温度の各積分回数および各ビットシフトごとの各画素の信号値と、前記フレームメモリに記憶した複数の基準温度の最大ビットシフト量と最大積分回数とにおける前記CMOS撮像素子の黒画像の各画素の信号値と、前記CMOS撮像素子の温度の情報とを用いて、各温度と各積分回数および各ビットシフトに適応して、前記CMOS撮像素子の有効画素の黒画像の画像信号の平均値(暗部レベル)とムラ(暗部シェーディング)と、または各有効画素の黒画像の画像信号の値(暗部値)との一方を補正する撮像方法である。   Further, in an image pickup apparatus using a CMOS image pickup device having an integral multiplication A / D unit, the number of integrations of the highest use temperature and the signal value of each pixel for each bit shift are acquired and stored in a frame memory, At the reference temperature, the signal value of each pixel of the black image of the CMOS image sensor at the maximum bit shift amount and the maximum integration count is acquired and stored in the frame memory, and each integration count of the maximum use temperature stored in the frame memory and The signal value of each pixel for each bit shift, the signal value of each pixel of the black image of the CMOS image sensor at the maximum bit shift amount and the maximum number of integrations of a plurality of reference temperatures stored in the frame memory, and the CMOS Using the temperature information of the image sensor, the effective pixels of the CMOS image sensor are adapted to each temperature, each integration count, and each bit shift. It is an imaging method for correcting the average value of the image signal of the black image (the dark area level) uneven (the dark portion shading), or one of the values of the image signal of the black image of each active pixel (dark region value).

また、積分増倍A/D部を有するCMOS撮像素子を用いた撮像装置において、前記CMOS撮像素子の温度を検出する温度センサと信号処理部とフレームメモリとを有し、最高使用温度の各積分回数および各ビットシフトごとの各画素の画像信号値を取得し前記フレームメモリに記憶し、複数の基準温度において、最大ビットシフト量と最大積分回数とにおける前記CMOS撮像素子の黒画像の各画素の画像信号値を取得し前記フレームメモリに記憶し、前記フレームメモリに記憶した最高使用温度の各積分回数および各ビットシフトごとの各画素の画像信号値と、前記フレームメモリに記憶した複数の基準温度の最大ビットシフト量と最大積分回数とにおける前記CMOS撮像素子の黒画像の各画素の画像信号値と、前記温度センサで検出した前記CMOS撮像素子の温度の情報とを用いて、各温度と各積分回数および各ビットシフトに適応して、前記CMOS撮像素子の有効画素の黒画像の画像信号の平均値(暗部レベル)とムラ(暗部シェーディング)と、または各有効画素の黒画像の画像信号の値(暗部値)との一方を補正する撮像装置である。   An image pickup apparatus using a CMOS image pickup device having an integral multiplication A / D unit includes a temperature sensor for detecting the temperature of the CMOS image pickup device, a signal processing unit, and a frame memory, and each integration of the maximum use temperature. The image signal value of each pixel for each number of times and each bit shift is acquired and stored in the frame memory, and at a plurality of reference temperatures, each pixel of the black image of the CMOS image sensor at the maximum bit shift amount and the maximum number of integrations is obtained. The image signal value is acquired and stored in the frame memory, the number of integrations of the maximum use temperature stored in the frame memory and the image signal value of each pixel for each bit shift, and a plurality of reference temperatures stored in the frame memory The image signal value of each pixel of the black image of the CMOS image sensor at the maximum bit shift amount and the maximum number of integrations, and the temperature sensor Using the information on the temperature of the CMOS image sensor, the average value (dark part level) of the image signal of the black image of the effective pixel of the CMOS image sensor is adapted to each temperature, each integration count, and each bit shift. This is an imaging apparatus that corrects one of unevenness (dark part shading) or the value (dark part value) of the image signal of a black image of each effective pixel.

上記の様に本発明によれば、積分増倍A/D部を有するCMOS撮像素子出力の各画素の黒画像の画像信号の平均値つまり暗部レベルが一定となり、暗部が安定した画像信号が得られる。   As described above, according to the present invention, the average value of the image signal of the black image of each pixel of the CMOS image sensor output having the integral multiplication A / D portion, that is, the dark portion level is constant, and an image signal in which the dark portion is stable is obtained. It is done.

積分増倍A/D部を有するCMOS撮像素子の積分回数と標準入射光量の映像レベルの特性を示す模式図Schematic diagram showing the characteristics of the image level of the number of integrations and the standard incident light quantity of a CMOS image sensor having an integral multiplication A / D section 理想の黒画像と映像レベルを示す模式図Schematic diagram showing ideal black image and video level 積分増倍A/D部を有するCMOS撮像素子の積分回数3回時の黒画像と映像レベルを示す模式図Schematic diagram showing black image and video level when CMOS imaging device having integral multiplication A / D section is integrated 3 times. 積分増倍A/D部を有するCMOS撮像素子の積分回数16回時の黒画像と映像レベルを示す模式図Schematic diagram showing black image and video level when CMOS imaging element having integral multiplication A / D section is integrated 16 times. 積分増倍A/D部を有するCMOS撮像素子の積分回数32回時の黒画像と映像レベルを示す模式図Schematic diagram showing black image and video level when CMOS imaging element having integral multiplication A / D section is integrated 32 times. 積分増倍A/D部を有するCMOS撮像素子の積分回数と黒画像の映像レベルを示す模式図Schematic diagram showing the number of integrations of a CMOS image sensor having an integral multiplication A / D unit and the video level of a black image ビットシフト[16:9]で映像レベル1IREにした時の値を基準値とし、その基準から1ずつ[7:0]へビットシフトした時の映像レベルの変化量でビットシフトと映像レベルの特性を示す模式図The value when the video level is set to 1 IRE with the bit shift [16: 9] is used as a reference value, and the characteristics of the bit shift and the video level according to the change amount of the video level when the bit shift from the reference to [7: 0] one by one Schematic diagram showing ビットシフト[7:0]、映像レベル100IREにした時の値を基準値とし、その基準値から1ずつ[16:9]へビットシフトした時の映像レベルの変化量でビットシフトと映像レベルの特性を示す模式図The value at bit shift [7: 0] and video level 100IRE is used as a reference value, and the bit shift and video level are changed by the amount of change in video level when the bit shift from the reference value to [16: 9] one by one. Schematic diagram showing characteristics ビットシフト[16:9]時の黒画像と黒画像の映像レベルとを示す模式図Schematic diagram showing black image and video level of black image during bit shift [16: 9] ビットシフト[9:2]時の黒画像と黒画像の映像レベルとを示す模式図Schematic diagram showing the black image and the video level of the black image during bit shift [9: 2] ビットシフト[7:0]時の黒画像と黒画像の映像レベルとを示す模式図Schematic diagram showing black image and video level of black image at bit shift [7: 0] ビットシフトと黒画像の映像レベルの特性を示す模式図Schematic diagram showing the characteristics of bit shift and video level of black image 本発明の一実施例の黒画像の映像レベル補正を含む積分増倍A/D部を有するCMOS撮像素子を有する撮像装置のブロック図1 is a block diagram of an image pickup apparatus having a CMOS image pickup element having an integral multiplication A / D unit including a video level correction of a black image according to an embodiment of the present invention. 本発明の一実施例のゲインアップと温度に対する黒画像の映像レベル補正を示す模式図The schematic diagram which shows the video level correction | amendment of the black image with respect to the gain-up and temperature of one Example of this invention

積分増倍A/D部を有するCMOS撮像素子の積分回数と標準入射光量の映像レベルの特性を示す模式図の図1から図11を用いて、積分増倍A/D部を有するCMOS撮像素子の積分回数ゲインアップ方式による映像レベルの感度アップ特性および暗部レベルと暗部シェーディングの特性と暗部変化動作を、説明する。   A CMOS image sensor having an integral multiplication A / D section using FIGS. 1 to 11 which are schematic diagrams showing the characteristics of the image level of the number of integrations and the standard incident light quantity of the CMOS image sensor having an integral multiplication A / D section. The following describes the sensitivity improvement characteristics of the video level, the characteristics of the dark part level and the dark part shading, and the dark part changing operation by the gain-up method of the integration number.

IREとはIEEE(The Institute of Electrical and Electronics Engineers, Inc.)の前身の一つのアメリカ無線学会(Institute of Radio Engineers)が定めた、ビデオ信号の振幅を表す単位で、学会の略称がそのまま単位の名称となった。0.714Vが100IREとなる。   IRE is a unit that expresses the amplitude of a video signal defined by the Institute of Radio Engineers, one of the predecessors of IEEE (The Institute of Electrical and Electronics Engineers, Inc.). It became a name. 0.714V becomes 100IRE.

図1に積分回数と映像レベルの特性図を示す。積分回数32回、映像レベル100IREにした時の値を基準値とし、その基準から積分回数1ずつ減らした時の映像レベルの変化量を測定した。積分回数0〜2回については現状仕様外のためデータはない。また、積分回数毎にキャリブレーションを取り直している。   Fig. 1 shows the characteristics of the number of integrations and the video level. The value at the time of integration of 32 times and the video level of 100 IRE was used as a reference value, and the amount of change in the video level when the number of integrations was reduced by 1 from the reference was measured. There is no data for the number of integrations 0 to 2 because it is out of the current specifications. In addition, the calibration is retaken every integration number.

積分回数による黒画像の映像レベルの変化量について、図2に理想の黒画像と映像レベル、実測値の例として図3に積分回数3回の黒画像と映像レベル、図4に積分回数16回の黒画像と映像レベル、図5に32回時の黒画像、映像信号レベルを示す。   The amount of change in the video level of the black image due to the number of integrations is shown in FIG. 2 as an example of an ideal black image and video level. As an example of actual measurement values, FIG. FIG. 5 shows the black image and video signal level at 32 times.

積分回数ゲインアップ方式について、映像レベルは積分回数に応じてリニアに増加することが分かる。積分回数による黒画像の映像レベルの変動について、黒画像の映像レベルも積分回数に応じてリニアに増加することが分かる。白キズ・ノイズレベルを無視し、積分回数に応じた黒画像の映像レベルの特性図を図6に示す。   It can be seen that the video level increases linearly with the number of integrations for the integration frequency gain-up method. It can be seen that the black image video level also increases linearly with the number of integrations, as the black image video level varies with the number of integrations. FIG. 6 shows a characteristic diagram of the video level of a black image corresponding to the number of integrations while ignoring the white scratch / noise level.

次に、ビットシフトゲインアップ方式による映像レベルの感度アップ特性および黒画像の映像レベルの特性を説明する。   Next, the video level sensitivity enhancement characteristic and the video level characteristic of the black image by the bit shift gain increase method will be described.

図7−1と図7−2に表示用出力レンジ[16:9]〜[7:0]のビットシフトと映像レベルの特性を示す。図7−1はビットシフト[16:9]、映像レベル1IREにした時の値を基準値とし、その基準から1ずつ[7:0]へビットシフトした時の映像レベルの変化量を測定した。図7−2はビットシフト[7:0]、映像レベル100IREにした時の値を基準値とし、その基準値から1ずつ[16:9]へビットシフトした時の映像レベルの変化量を測定した。   FIGS. 7A and 7B show the bit shift and video level characteristics of the display output ranges [16: 9] to [7: 0]. FIG. 7-1 shows the amount of change in the video level when the bit shift [16: 9] and the video level 1IRE are set as the reference value, and the bit level is shifted to [7: 0] one by one from the reference. . Fig. 7-2 shows the amount of change in the video level when the bit shift is [7: 0] and the video level is 100IRE, and the value is changed to [16: 9] one by one from the reference value. did.

ビットシフトによる黒画像の映像レベルの変化量について、実測値の例として図8にビットシフト[16:9]時の黒画像と映像レベル、図9にビットシフト[9:2]時の黒画像と映像レベル、図10にビットシフト[7:0]回時の黒画像、映像信号レベルを示す。キャリブレーションは初期に1回行った。白キズ・ノイズは無視する。   As an example of actual measurement values, the amount of change in the video level of the black image due to the bit shift is shown in FIG. 8 as the black image and video level during the bit shift [16: 9], and as shown in FIG. FIG. 10 shows the black image and the video signal level when the bit shift is [7: 0] times. Calibration was performed once in the initial stage. Ignore white scratch noise.

ビットシフトゲインアップ方式について、映像レベルはビットシフトに応じてリニアに増加することが分かる。ビットシフトによる黒画像の映像レベルの変動について、黒画像の映像レベルもビットシフトに応じてリニアに増加することが分かる。白キズ・ノイズレベルを無視し、ビットシフトに応じた黒画像の映像レベルの特性図を図11に示す。   It can be seen that the video level increases linearly with the bit shift in the bit shift gain up system. It can be seen that the video level of the black image increases linearly with the bit shift with respect to the change in the video level of the black image due to the bit shift. FIG. 11 is a characteristic diagram of the video level of the black image corresponding to the bit shift while ignoring the white scratch / noise level.

本発明の一実施例の黒画像の映像レベル補正を含む積分増倍A/D部を有するCMOS撮像素子を有する撮像装置のブロック図の図12と、本発明の一実施例のゲインアップと温度に対する黒画像の映像レベル補正を示す模式図の図13を用いて、本発明の一実施例の積分増倍A/D部を有するCMOS撮像素子の黒画像の映像レベルの補正の動作を、説明する。   FIG. 12 is a block diagram of an image pickup apparatus having a CMOS image pickup device having an integral multiplication A / D unit including a video level correction of a black image according to an embodiment of the present invention, and gain increase and temperature according to an embodiment of the present invention. The image level correction operation of the black image of the CMOS image sensor having the integral multiplication A / D unit according to the embodiment of the present invention will be described with reference to FIG. To do.

図12において、1は撮像装置、2は光学系、3は積分増倍A/D部を有するCMOS撮像素子、4は温度センサ、5は黒画像の映像レベル補正部、6は黒画像の映像レベル補正信号検出部、7は映像信号処理部、9はCPUである。図12の黒画像の映像レベル補正部5において、11は減算器である。図12の黒画像の映像レベル補正信号検出部6において、21〜22はメモリ部で、23は黒画像の映像レベル補正信号算出部である。   In FIG. 12, 1 is an imaging device, 2 is an optical system, 3 is a CMOS image sensor having an integral multiplication A / D unit, 4 is a temperature sensor, 5 is a video level correction unit for black images, and 6 is a video image for black images. A level correction signal detector, 7 is a video signal processor, and 9 is a CPU. In the black image level correction unit 5 shown in FIG. 12, reference numeral 11 denotes a subtractor. In the black image video level correction signal detection unit 6 of FIG. 12, reference numerals 21 to 22 denote memory units, and reference numeral 23 denotes a black image video level correction signal calculation unit.

黒画像の映像レベル補正部5と黒画像の映像レベル補正信号検出部6とは、映像信号処理部7に統合されても構わない。また、メモリ部21とメモリ部22は統合されても構わない。   The black image video level correction unit 5 and the black image video level correction signal detection unit 6 may be integrated into the video signal processing unit 7. Further, the memory unit 21 and the memory unit 22 may be integrated.

図12の黒画像の映像レベル補正信号検出部6において、積分回数32回までの各黒画像の映像レベルをキャリブレーション値としてメモリ21に記録し、ビットシフト[11:4]から[7:0]までの各黒画像の映像レベルをキャリブレーション値としてメモリ22に記録する。使用する積分回数およびビットシフトに応じてメモリ21とメモリ22に記録したキャリブレーション値を補正係数として引き出し、黒画像の映像レベル補正信号算出部23で補正係数から黒画像の映像レベル補正信号を算出する。また温度センサ4では積分増倍A/D部を有するCMOS撮像素子の温度を検出し、CPU9経由で黒画像の映像レベル補正信号算出部23に積分増倍A/D部を有するCMOS撮像素子の温度の情報を送り、補正係数から温度に応じた黒画像の映像レベル補正信号を算出する。   In the black image video level correction signal detection unit 6 in FIG. 12, the video level of each black image up to 32 integrations is recorded in the memory 21 as a calibration value, and bit shifts [11: 4] to [7: 0] ] Are recorded in the memory 22 as calibration values. The calibration value recorded in the memory 21 and the memory 22 is extracted as a correction coefficient according to the number of integrations used and the bit shift, and the black image level correction signal calculator 23 calculates the black level video level correction signal from the correction coefficient. To do. The temperature sensor 4 detects the temperature of the CMOS image sensor having an integral multiplication A / D unit, and the CPU 9 detects the temperature of the CMOS image sensor having the integral multiplication A / D unit in the video level correction signal calculation unit 23 for a black image. The temperature information is sent, and the video level correction signal of the black image corresponding to the temperature is calculated from the correction coefficient.

実施例1では、図12の黒画像の映像レベル補正信号検出部6において、黒画像の映像レベル補正信号算出部23で、温度に応じた黒画像の暗電流の平均値(暗部レベル)とムラ(暗部シェーディング)とを算出して黒画像の映像レベル補正信号として出力する。   In the first embodiment, in the black image level correction signal detector 6 shown in FIG. 12, the black image level correction signal calculator 23 calculates the average value (dark portion level) and unevenness of the black image dark current according to the temperature. (Dark part shading) is calculated and output as a video level correction signal of a black image.

そして、図12の黒画像の映像レベル補正部5の減算部11で、積分増倍A/D部を有するCMOS撮像素子の出力Viから算出した黒画像の映像レベル補正信号を減算し、黒画像の映像レベル補正後信号Vmとして、映像信号処理部7に送る。
図12の映像信号処理部7は、黒画像の映像レベル補正後信号Vmに、ガンマ、ニー、輪郭補正、色信号処理等の信号処理を行い、出力映像信号Voとして撮像装置1から出力する。
Then, the black image level correction signal calculated from the output Vi of the CMOS image sensor having the integral multiplication A / D unit is subtracted by the subtracting unit 11 of the black image level correcting unit 5 of FIG. Is sent to the video signal processing unit 7 as the post-video level corrected signal Vm.
The video signal processing unit 7 in FIG. 12 performs signal processing such as gamma, knee, contour correction, and color signal processing on the video level-corrected signal Vm of the black image, and outputs it from the imaging device 1 as an output video signal Vo.

黒画像の映像レベル補正信号の温度係数の例として0〜50℃の10℃(または5℃)刻みで持つものとし、補正係数から算出した情報に、その温度に応じた係数をかけて黒画像の映像レベル補正信号を算出して、積分増倍A/D部を有するCMOS撮像素子の出力Viから減算し、黒画像の映像レベル補正後信号Vmの黒画像の映像レベルを0IREにする特性図を図13に示す。   As an example of the temperature coefficient of the video level correction signal of the black image, the black image is assumed to have 0 to 50 ° C. in increments of 10 ° C. (or 5 ° C.), and the information calculated from the correction coefficient is multiplied by the coefficient corresponding to the temperature. Of the image level of the black image is calculated and subtracted from the output Vi of the CMOS image sensor having the integral multiplication A / D unit to set the video level of the black image after the video level correction of the black image to 0IRE. Is shown in FIG.

上記の様に本発明によれば、暗電流の平均値(暗部レベル)とムラ(暗部シェーディング)とをビットシフト量と積分回数とCMOS撮像素子の温度により補正することにより、黒画像の映像レベルを基準とする信号処理に影響がなくなる。さらに、ゲインアップにより暗部が白みを増すことはなくなり、暗部が安定した画像信号が得られる。   As described above, according to the present invention, by correcting the average value of dark current (dark part level) and unevenness (dark part shading) by the bit shift amount, the number of integrations, and the temperature of the CMOS image sensor, the video level of the black image is corrected. No effect on signal processing based on. Furthermore, the dark portion does not increase whiteness due to gain increase, and an image signal in which the dark portion is stable can be obtained.

実施例2では実施例1と同様な構成と同様な動作の説明は省略し、実施例1と相違する構成と動作を説明する。
実施例1が暗電流の平均値(暗部レベル)とムラ(暗部シェーディング)とを算出して補正したのに対し、実施例2ではCMOS撮像素子の各画素の暗電流を算出して補正する。
図12の黒画像の映像レベル補正信号検出部6において、使用する積分回数およびビットシフトに応じてメモリ21とメモリ22に記録した各画素のキャリブレーション値を補正係数として引き出し、黒画像の映像レベル補正信号算出部23で各画素の補正係数から黒画像の各画素の映像レベル補正信号を算出する。また温度センサ4では積分増倍A/D部を有するCMOS撮像素子の温度を検出し、CPU9経由で黒画像の映像レベル補正信号算出部23に積分増倍A/D部を有するCMOS撮像素子の温度の情報を送り、各画素の補正係数から温度に応じた黒画像の各画素の映像レベル補正信号を算出する。
In the second embodiment, description of operations similar to those of the first embodiment will be omitted, and configurations and operations different from those of the first embodiment will be described.
The first embodiment calculates and corrects the dark current average value (dark portion level) and unevenness (dark portion shading), whereas the second embodiment calculates and corrects the dark current of each pixel of the CMOS image sensor.
In the video level correction signal detection unit 6 of the black image in FIG. 12, the calibration value of each pixel recorded in the memory 21 and the memory 22 is extracted as a correction coefficient according to the number of integrations used and the bit shift, and the video level of the black image The correction signal calculation unit 23 calculates a video level correction signal for each pixel of the black image from the correction coefficient for each pixel. The temperature sensor 4 detects the temperature of the CMOS image sensor having an integral multiplication A / D unit, and the CPU 9 detects the temperature of the CMOS image sensor having the integral multiplication A / D unit in the video level correction signal calculation unit 23 for a black image. The temperature information is sent, and the video level correction signal of each pixel of the black image corresponding to the temperature is calculated from the correction coefficient of each pixel.

実施例2では実施例1に比較し、フレームメモリの容量は大きくなる可能性が高いが、Gbit程度のRAM(Random Access Memory)が小型低消費電力で、約100円以下と低価格になったので問題ない。
実施例1では、異常に大きい暗電流のいわゆる白キズは補正できない。しかし、実施例2では各画素の暗電流を算出して補正するので、白キズも同時に補正できる。
In the second embodiment, the frame memory capacity is likely to be larger than in the first embodiment. However, a RAM (Random Access Memory) of about Gbit has a small size and low power consumption, and the price is about 100 yen or less. So no problem.
In the first embodiment, a so-called white defect of an abnormally large dark current cannot be corrected. However, in Example 2, since the dark current of each pixel is calculated and corrected, white defects can be corrected simultaneously.

上記の様に本発明の実施例2によれば、ビットシフト量と積分回数とCMOS撮像素子の温度によりCMOS撮像素子の各画素の暗電流を白キズも含めて補正することにより、黒画像の映像レベルを基準とする信号処理に影響がなくなる。さらに、ゲインアップにより暗部が白みを増すことはなくなり、暗部が安定した画像信号が得られる。   As described above, according to the second embodiment of the present invention, by correcting the dark current of each pixel of the CMOS image sensor including white flaws based on the bit shift amount, the number of integrations, and the temperature of the CMOS image sensor, The signal processing based on the video level is not affected. Furthermore, the dark portion does not increase whiteness due to gain increase, and an image signal in which the dark portion is stable can be obtained.

また、本発明は積分増倍A/D部を有するCMOS撮像素子のフォトダイードの黒画像の信号出力の積分増倍量と温度による変動の影響を受けない様にすることにより、黒画像に近い暗部の画像信号を広い温度範囲で有効利用できるようにする。暗部の画像信号を有効利用できるので、撮像装置を実効的に高感度にする。この広い温度範囲で実効的に高感度にすることにより、放送局の情報カメラ(いわゆるお天気カメラ)や寝顔の顔色確認等の寝ている病人の遠隔看護等の低照度でも高画質が必要な撮像用途に利用することができる。さらに、遠距離間鉄道の監視や海峡の監視のように照明が確保できない監視の撮像用途に利用することができる。特に広い温度範囲が必要とされるロシアやモンゴルや中国東北地方や砂漠地域の遠距離間鉄道の監視やメキシコ等の乾燥地域の国境監視の撮像用途に利用することができる。
さらに、高輝度画像の信号出力は維持するので、実効的に撮像装置のダイナミックレンジを拡大する。広い温度範囲で高感度とダイナミックレンジ拡大を両立することにより、高精細監視のワイドダイナミックレンジ撮像が可能になる。そのため、広い温度範囲で高精細とワイドダイナミックレンジが要求される、逆光状態での鉄道ホームの転落防止の監視用途や自動車の車種とドライバーの顔とナンバープレートの同時識別の監視用途に利用することができる。
The present invention also provides a dark portion close to a black image by avoiding the influence of fluctuations due to the integral multiplication amount and temperature of the black image signal output of the photo diode of the CMOS image sensor having the integral multiplication A / D portion. The image signal can be effectively used over a wide temperature range. Since the image signal of the dark part can be effectively used, the imaging device is effectively made highly sensitive. By effectively increasing the sensitivity over this wide temperature range, imaging that requires high image quality even at low illuminances such as telemedicine for sleeping sick people, such as information cameras at broadcast stations (so-called weather cameras) and facial color checks of sleeping faces, etc. It can be used for applications. Furthermore, the present invention can be used for imaging applications such as long-distance railway monitoring and strait monitoring where lighting cannot be secured. It can be used for imaging applications such as monitoring of long-distance railways in Russia, Mongolia, Northeast China, and desert areas, which require a wide temperature range, and border monitoring in dry areas such as Mexico.
Furthermore, since the signal output of the high luminance image is maintained, the dynamic range of the image pickup apparatus is effectively expanded. By realizing both high sensitivity and dynamic range expansion over a wide temperature range, wide dynamic range imaging for high-definition monitoring becomes possible. Therefore, it should be used for monitoring applications to prevent the fall of railway platforms in backlit conditions where high definition and wide dynamic range are required over a wide temperature range, and for monitoring the simultaneous identification of the vehicle model, driver's face and license plate. Can do.

1:撮像装置、2:光学系、
3:積分増倍A/D部を有するCMOS撮像素子、4:温度センサ、
5:黒画像の映像レベル補正部、6:黒画像の映像レベル補正信号検出部、
7:映像信号処理部、9:CPU、11:減算部、
21〜22:メモリ部、23:黒画像の映像レベル補正信号算出部、
1: imaging device, 2: optical system,
3: CMOS image sensor having integral multiplication A / D section, 4: Temperature sensor,
5: Black image video level correction unit, 6: Black image video level correction signal detection unit,
7: Video signal processing unit, 9: CPU, 11: Subtraction unit,
21 to 22: memory unit, 23: black image video level correction signal calculation unit,

Claims (3)

積分増倍A/D部を有するCMOS撮像素子を用いた撮像装置において、前記CMOS撮像素子の有効画素の黒画像の画像信号の平均値とムラと、または各有効画素の黒画像の画像信号の値との一方をビットシフト量と積分回数と前記CMOS撮像素子の温度に応じて補正する撮像方法。
積分増倍A/D部を有するCMOS撮像素子を用いた撮像装置において、最高使用温度の各積分回数および各ビットシフトごとの各画素の信号値を取得しフレームメモリに記憶し、複数の基準温度において、最大ビットシフト量と最大積分回数とにおける前記CMOS撮像素子の黒画像の各画素の信号値を取得しフレームメモリに記憶し、前記フレームメモリに記憶した最高使用温度の各積分回数および各ビットシフトごとの各画素の信号値と、前記フレームメモリに記憶した複数の基準温度の最大ビットシフト量と最大積分回数とにおける前記CMOS撮像素子の黒画像の各画素の信号値と、前記CMOS撮像素子の温度の情報とを用いて、各温度と各積分回数および各ビットシフトに適応して、前記CMOS撮像素子の有効画素の黒画像の画像信号の平均値とムラと、または各有効画素の黒画像の画像信号の値との一方を補正する撮像方法。
In an imaging apparatus using a CMOS image sensor having an integral multiplication A / D section, the average value and unevenness of the black image image signal of the effective pixel of the CMOS image sensor, or the image signal of the black image of each effective pixel An imaging method in which one of the values is corrected according to the bit shift amount, the number of integrations, and the temperature of the CMOS image sensor.
In an imaging apparatus using a CMOS imaging device having an integral multiplication A / D unit, the number of integrations of the maximum operating temperature and the signal value of each pixel for each bit shift are acquired and stored in a frame memory, and a plurality of reference temperatures , The signal value of each pixel of the black image of the CMOS image sensor at the maximum bit shift amount and the maximum number of integrations is acquired and stored in the frame memory, and each integration number and each bit of the maximum operating temperature stored in the frame memory The signal value of each pixel for each shift, the signal value of each pixel of the black image of the CMOS image sensor at the maximum bit shift amount and the maximum number of integrations of a plurality of reference temperatures stored in the frame memory, and the CMOS image sensor The black image of the effective pixel of the CMOS image sensor is adapted to each temperature, each integration count and each bit shift using the temperature information of Imaging method for correcting the average value and irregularity of the image signal, or one of the values of the image signal of the black image of each active pixel.
積分増倍A/D部を有するCMOS撮像素子を用いた撮像装置において、
最高使用温度の各積分回数および各ビットシフトごとの各画素の信号値を取得しフレームメモリに記憶し、
複数の基準温度において、最大ビットシフト量と最大積分回数とにおける前記CMOS撮像素子の黒画像の各画素の信号値を取得しフレームメモリに記憶し、
前記フレームメモリに記憶した最高使用温度の各積分回数および各ビットシフトごとの各画素の信号値と、前記フレームメモリに記憶した複数の基準温度の最大ビットシフト量と最大積分回数とにおける前記CMOS撮像素子の黒画像の各画素の信号値と、前記CMOS撮像素子の温度の情報とを用いて、各温度と各積分回数および各ビットシフトに適応して、前記CMOS撮像素子の有効画素の黒画像の画像信号の平均値とムラと、または各有効画素の黒画像の画像信号の値との一方を補正する撮像方法。
In an imaging device using a CMOS imaging device having an integral multiplication A / D section,
Acquire the signal value of each pixel for each integration count of each maximum use temperature and each bit shift and store it in the frame memory,
At a plurality of reference temperatures, the signal value of each pixel of the black image of the CMOS image sensor at the maximum bit shift amount and the maximum number of integrations is acquired and stored in a frame memory;
The CMOS imaging at each integration number of the maximum use temperature stored in the frame memory and the signal value of each pixel for each bit shift, and the maximum bit shift amount and the maximum integration number of the plurality of reference temperatures stored in the frame memory Using the signal value of each pixel of the black image of the element and the temperature information of the CMOS image sensor, the black image of the effective pixel of the CMOS image sensor is adapted to each temperature, each number of integrations, and each bit shift. The imaging method which correct | amends one of the average value and nonuniformity of an image signal, or the value of the image signal of the black image of each effective pixel.
積分増倍A/D部を有するCMOS撮像素子を用いた撮像装置において、
前記CMOS撮像素子の温度を検出する温度センサと信号処理部とフレームメモリとを有し、
最高使用温度の各積分回数および各ビットシフトごとの各画素の画像信号値を取得し前記フレームメモリに記憶し、複数の基準温度において、最大ビットシフト量と最大積分回数とにおける前記CMOS撮像素子の黒画像の各画素の画像信号値を取得し前記フレームメモリに記憶し、
前記フレームメモリに記憶した最高使用温度の各積分回数および各ビットシフトごとの各画素の画像信号値と、前記フレームメモリに記憶した複数の基準温度の最大ビットシフト量と最大積分回数とにおける前記CMOS撮像素子の黒画像の各画素の画像信号値と、前記温度センサで検出した前記CMOS撮像素子の温度の情報とを用いて、各温度と各積分回数および各ビットシフトに適応して、前記CMOS撮像素子の有効画素の黒画像の画像信号の平均値とムラと、または各有効画素の黒画像の画像信号の値との一方を補正する撮像装置。
In an imaging device using a CMOS imaging device having an integral multiplication A / D section,
A temperature sensor for detecting the temperature of the CMOS image sensor, a signal processing unit, and a frame memory;
The number of integrations of the maximum operating temperature and the image signal value of each pixel for each bit shift are acquired and stored in the frame memory, and at a plurality of reference temperatures, the CMOS image sensor at the maximum bit shift amount and the maximum number of integrations is obtained. The image signal value of each pixel of the black image is acquired and stored in the frame memory,
The CMOS in each integration number of the maximum use temperature stored in the frame memory and the image signal value of each pixel for each bit shift, and the maximum bit shift amount and the maximum integration number of the plurality of reference temperatures stored in the frame memory Using the image signal value of each pixel of the black image of the image sensor and the temperature information of the CMOS image sensor detected by the temperature sensor, the CMOS is adapted to each temperature, each number of integrations, and each bit shift. An imaging apparatus that corrects one of an average value and unevenness of a black image image signal of an effective pixel of an image sensor, or a value of a black image image signal of each effective pixel.
JP2012014009A 2012-01-26 2012-01-26 Imaging apparatus and imaging method Pending JP2013153381A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2012014009A JP2013153381A (en) 2012-01-26 2012-01-26 Imaging apparatus and imaging method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2012014009A JP2013153381A (en) 2012-01-26 2012-01-26 Imaging apparatus and imaging method

Publications (1)

Publication Number Publication Date
JP2013153381A true JP2013153381A (en) 2013-08-08

Family

ID=49049388

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2012014009A Pending JP2013153381A (en) 2012-01-26 2012-01-26 Imaging apparatus and imaging method

Country Status (1)

Country Link
JP (1) JP2013153381A (en)

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2004088306A (en) * 2002-08-26 2004-03-18 Victor Co Of Japan Ltd Solid-state image pickup device
JP2004229032A (en) * 2003-01-24 2004-08-12 Kyocera Corp Noise correction device for photographing appliance provided with solid-state imaging device
JP2005175517A (en) * 2003-12-05 2005-06-30 Sony Corp Control method and signal processing method of semiconductor device, and semiconductor device and electronic apparatus
JP2006324983A (en) * 2005-05-19 2006-11-30 Nikon Corp Electronic camera suppressing image noise by using dark image
WO2008016049A1 (en) * 2006-07-31 2008-02-07 National University Corporation Shizuoka University A/d converter and reading circuit
JP2008306325A (en) * 2007-06-06 2008-12-18 Sony Corp A/d conversion circuit, control method of a/d conversion circuit, solid-state imaging device, and imaging apparatus
JP2009105501A (en) * 2007-10-19 2009-05-14 Sony Corp Image pickup apparatus, method of correcting optical black level and program

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2004088306A (en) * 2002-08-26 2004-03-18 Victor Co Of Japan Ltd Solid-state image pickup device
JP2004229032A (en) * 2003-01-24 2004-08-12 Kyocera Corp Noise correction device for photographing appliance provided with solid-state imaging device
JP2005175517A (en) * 2003-12-05 2005-06-30 Sony Corp Control method and signal processing method of semiconductor device, and semiconductor device and electronic apparatus
JP2006324983A (en) * 2005-05-19 2006-11-30 Nikon Corp Electronic camera suppressing image noise by using dark image
WO2008016049A1 (en) * 2006-07-31 2008-02-07 National University Corporation Shizuoka University A/d converter and reading circuit
JP2008306325A (en) * 2007-06-06 2008-12-18 Sony Corp A/d conversion circuit, control method of a/d conversion circuit, solid-state imaging device, and imaging apparatus
JP2009105501A (en) * 2007-10-19 2009-05-14 Sony Corp Image pickup apparatus, method of correcting optical black level and program

Similar Documents

Publication Publication Date Title
US8441561B2 (en) Image pickup apparatus and control method that correct image data taken by image pickup apparatus
US8988561B2 (en) Imaging apparatus having temperature sensor within image sensor wherein apparatus outputs an image whose quality does not degrade if temperature increases within image sensor
US8902336B2 (en) Dynamic, local edge preserving defect pixel correction for image sensors with spatially arranged exposures
JP4806584B2 (en) Image processing method and image processing circuit
US9124832B2 (en) Dynamic, local edge preserving defect pixel correction for image sensors
US8451350B2 (en) Solid-state imaging device, camera module, and imaging method
TWI514876B (en) Image sensor and compensation method thereof
JP5520833B2 (en) Imaging method and imaging apparatus
KR101570923B1 (en) Solid-state imaging device
KR101556468B1 (en) Solidstate imaging device and camera
JP4108278B2 (en) Automatic defect detection and correction apparatus for solid-state image sensor and imaging apparatus using the same
US8576310B2 (en) Image processing apparatus, camera module, and image processing method
JP2013150144A (en) Imaging method and imaging apparatus
JP2008109639A (en) Imaging device and imaging method
JP2013153381A (en) Imaging apparatus and imaging method
JP2008131546A (en) Fixed pattern noise elimination apparatus
JP4397869B2 (en) Smear correction method and smear correction circuit
JP2012213211A (en) Imaging apparatus and imaging method
JP2010109670A (en) Image pickup device
JP2013243486A (en) Image data inspection device and image data inspection method
JP2009290653A (en) Defective image correcting apparatus, imaging apparatus, defective pixel correcting method, and program
JP6704611B2 (en) Imaging device and imaging method
JP2013153380A (en) Imaging apparatus and imaging method
JP2018133685A (en) Imaging device, control method of the same, control program, and imaging apparatus
US9549131B2 (en) Imaging apparatus and imaging method using independently corrected color values

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20141215

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20151130

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20151203

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20160324