JP2013150144A - Imaging method and imaging apparatus - Google Patents

Imaging method and imaging apparatus Download PDF

Info

Publication number
JP2013150144A
JP2013150144A JP2012008929A JP2012008929A JP2013150144A JP 2013150144 A JP2013150144 A JP 2013150144A JP 2012008929 A JP2012008929 A JP 2012008929A JP 2012008929 A JP2012008929 A JP 2012008929A JP 2013150144 A JP2013150144 A JP 2013150144A
Authority
JP
Japan
Prior art keywords
signal
value
unit
screen
vertical
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2012008929A
Other languages
Japanese (ja)
Inventor
Yutaka Muto
豊 武藤
Kazuhiko Nakamura
和彦 中村
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hitachi Kokusai Electric Inc
Original Assignee
Hitachi Kokusai Electric Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Kokusai Electric Inc filed Critical Hitachi Kokusai Electric Inc
Priority to JP2012008929A priority Critical patent/JP2013150144A/en
Publication of JP2013150144A publication Critical patent/JP2013150144A/en
Pending legal-status Critical Current

Links

Images

Landscapes

  • Transforming Light Signals Into Electric Signals (AREA)
  • Studio Devices (AREA)

Abstract

PROBLEM TO BE SOLVED: To correct unevenness of a top dark part with a high electron multiplication factor of an electron multiplication type CCD imaging element.SOLUTION: An imaging apparatus includes: an electron multiplication type CCD imaging element; a first acquisition section for acquiring an image signal outputted from an effective pixel of a light receiving face of the CCD imaging element; a second acquisition section for acquiring a signal outputted from a shielded pixel in at least one of a top part and a bottom part of the light receiving face of the CCD imaging element; and a dark part correction section for correcting dark part unevenness. The imaging apparatus also includes means for calculating a first representative value such as a center value and a lower limit value of the signal outputted from the shielded pixel acquired in the second acquisition section. The dark part correction section corrects the dark part unevenness of a video signal in a horizontal scanning period of a screen upper end part from which a vertical video period starts after a vertical feedback period ends in proportional correlation with an average of a vertical period or more of the representative value of the signal outputted from the shielded pixel and subtracts a screen upper end correction signal obtained by multiplying a screen upper end unevenness signal which is previously prepared by the average of the vertical period or more of the representative value from the video signal of the horizontal scanning period of the screen upper end part.

Description

本発明は、固体撮像素子を有する撮像装置の感度向上に関するものである。   The present invention relates to an improvement in sensitivity of an imaging apparatus having a solid-state imaging element.

CCD(Charge-Coupled-Device)撮像素子は固体撮像素子の中でも感度が高く暗電流レベルが異常に高い白キズと呼ばれる画素が少ないが、高温度時や高感度撮像時や蓄積時は白キズが多い。さらにCCD撮像素子の近赤外感度を高くすると、フォトダイオードが深くなり白キズが増加する。そのため、蓄積動作で感度を向上させると、さらに白キズが増加するため、実効感度向上が制限される。また、タイミング発生部( Timing Generator:TG)や垂直転送駆動部や水平転送駆動部がCCD撮像素子を動作させるために必要となる。   CCD (Charge-Coupled-Device) image sensors are less sensitive than solid-state image sensors, and there are few pixels called white scratches with abnormally high dark current levels, but white scratches occur at high temperatures, during high-sensitivity imaging, or during storage. Many. Further, when the near-infrared sensitivity of the CCD image sensor is increased, the photodiode becomes deeper and white scratches increase. For this reason, when the sensitivity is improved by the accumulation operation, white scratches are further increased, and thus the improvement in effective sensitivity is limited. Also, a timing generator (TG), a vertical transfer driver, and a horizontal transfer driver are required to operate the CCD image sensor.

電子増倍型CCD撮像素子(Electron-Multiplying-CCD以下EM−CCD)は、電子増倍の利得制御を行うためのCMG駆動部と電子冷却部と温度センサと組み合わせて感度を高くできるため、可視光と近赤外光の夜間の撮影用の照明なしの準動画監視が可能となった(非特許文献1参照)。また、一般に容量(Capacitor)と抵抗(Resistor)を組み合わせたCR積分位相調整回路でタイミングを調整している。   The electron multiplying CCD image sensor (Electron-Multiplying-CCD or EM-CCD) is visible because it can be combined with a CMG driving unit, an electronic cooling unit, and a temperature sensor to control the gain of electron multiplication. Quasi-video monitoring without illumination for night-time shooting of light and near-infrared light has become possible (see Non-Patent Document 1). In general, the timing is adjusted by a CR integration phase adjustment circuit combining a capacitor and a resistor.

さらに、CCDから出力された信号から雑音を除去するCDS(Correlated Double Sampling)と暗電流補正と利得可変増幅回路(Automatic Gain Control以下AGC)とデジタル映像信号Viに変換するADC(Analog Digital Converter)とを内蔵したAFE(Analog Front End)が普及した。   Furthermore, a CDS (Correlated Double Sampling) that removes noise from the signal output from the CCD, a dark current correction and variable gain amplification circuit (hereinafter referred to as AGC), and an ADC (Analog Digital Converter) that converts the digital video signal Vi. AFE (Analog Front End) with built-in ubiquity.

ところがEM−CCDの電子増倍率は温度や、高電子増倍率と入射光量の積分量で変動する(非特許文献2と非特許文献3参照)。
また、EM−CCDは電子増倍電極の電圧振幅値に正に相関して電子増倍率が高くなるが、電子増倍率が高くなると、わずかな電子増倍電極の電圧振幅値の変動で電子増倍率が変動する(非特許文献1参照)。そのため、電子増倍率が高くなると、画面のむら(シェーディング)が大きくなる。また、EM−CCDは有効画面の上または下の垂直遮光画素(Vertical-Optical Black以下V−OB)が一般に4水平走査ラインと少ないため、白キズの影響を受けやすい。さらに、電子増倍率に比例して暗電流レベルが増加するので、有効画面の左または右の水平遮光画素(Horizontal-Optical Black以下H−OB)クランプ電位も白キズの影響を受けやすい。
However, the electron multiplication factor of the EM-CCD varies depending on the temperature and the integrated amount of the high electron multiplication factor and the amount of incident light (see Non-Patent Document 2 and Non-Patent Document 3).
The EM-CCD increases the electron multiplication factor in a positive correlation with the voltage amplitude value of the electron multiplier electrode. However, when the electron multiplication factor is increased, the electron multiplication factor is increased by a slight change in the voltage amplitude value of the electron multiplier electrode. The magnification varies (see Non-Patent Document 1). For this reason, when the electron multiplication factor increases, the screen unevenness (shading) increases. In addition, the EM-CCD is susceptible to white flaws because the vertical light-shielding pixels (Vertical-Optical Black or below V-OB) above or below the effective screen are generally as few as four horizontal scanning lines. Further, since the dark current level increases in proportion to the electron multiplication factor, the left or right horizontal shading pixel (Horizontal-Optical Black or below H-OB) clamp potential of the effective screen is also easily affected by white scratches.

そして、FIT−CCD構造のEM−CCDの垂直帰線期間内は、電子増倍転送等の水平転送が停止し、撮像部から蓄積部に信号電荷の高速垂直転送が行われる。そのため、垂直帰線期間が終わり垂直映像期間が始まる画面上端(Top V)部分では、各電源電圧とGND電位が変動する。また、高電子増倍時は電子増倍転送の消費電力も増加し、電源電圧とGND電位の変動が増加する。その結果、高電子増倍時は、電源電圧変動分とGND電位の変動分の暗電流と電子増倍率が変動する。また、TGのCR積分位相調整回路の電源電圧変動分とGND電位変動分の水平転送パルスの移相ずれから垂直帰線期間が終わり垂直映像期間が始まる画面上端(Top V)部分ではH−OBクランプ位相とクランプ電位とが変動し暗部(ダーク)むら(シェーディング)となる。   Then, during the vertical blanking period of the EM-CCD having the FIT-CCD structure, horizontal transfer such as electron multiplication transfer is stopped, and high-speed vertical transfer of signal charges is performed from the imaging unit to the storage unit. Therefore, at the upper end (Top V) portion of the screen where the vertical blanking period ends and the vertical video period starts, each power supply voltage and the GND potential fluctuate. Further, at the time of high electron multiplication, the power consumption of electron multiplication transfer also increases, and fluctuations in the power supply voltage and the GND potential increase. As a result, at the time of high electron multiplication, the dark current and the electron multiplication factor for the power supply voltage fluctuation and the GND potential fluctuation fluctuate. In addition, the H-OB is at the top (Top V) portion of the screen where the vertical blanking period ends and the vertical video period starts from the phase shift of the horizontal transfer pulse due to the power supply voltage fluctuation and the GND potential fluctuation of the TG CR integration phase adjustment circuit. The clamp phase and the clamp potential fluctuate, and dark portions (dark) unevenness (shading) occur.

そのため、電子増倍率を高くすると、垂直帰線期間が終わり垂直映像期間が始まる画面上端(Top V)部分では暗部(ダーク)むら(シェーディング)が大きくなる。また電子増倍率を高くすると大きくなるダークシェーディングの補正が困難だった。   Therefore, when the electron multiplication factor is increased, dark portion unevenness (shading) increases in the upper end (Top V) portion of the screen where the vertical blanking period ends and the vertical video period starts. In addition, it was difficult to correct dark shading, which increases when the electron multiplication factor is increased.

特開2003−189318 (感度でCCDむら可変)Japanese Patent Laid-Open No. 2003-189318 (CCD unevenness is variable depending on sensitivity)

TI製TC246RGB-B0 680 x 500 PIXEL IMPACTRONTM PRIMARY COLOR CCD IMAGESENSOR SOCS087- DECEMBER 2004 - REVISED MARCH 2005TI TC246RGB-B0 680 x 500 PIXEL IMPACTRONTM PRIMARY COLOR CCD CCD IMAGESENSOR SOCS087- DECEMBER 2004-REVISED MARCH 2005 浜松ホトニクス 高感度カメラの原理と技術 Cat No.SCAS0020J01 DEC/2006 (電子増倍率の概要説明)Hamamatsu Photonics Principle and Technology of High Sensitive Camera Cat No.SCAS0020J01 DEC / 2006 (Overview of electron multiplication factor) ANDOR Technical Note Longevity in EMCCD and ICCD Part I−EMCCD 14−Mar−06 (電子増倍率の経時劣化の対策)ANDOR Technical Note Longevity in EMCCD and ICCD Part I-EMCCD 14-Mar-06 (Measures against deterioration of electronic multiplication factor over time)

本発明の目的は、電子増倍型CCD撮像素子の高電子増倍率における垂直映像期間が始まる部分のダークシェーディングを補正することである。   An object of the present invention is to correct dark shading in a portion where a vertical video period starts at a high electron multiplication factor of an electron multiplying CCD image pickup device.

本発明は、上記課題を解決するため、電子増倍型CCD撮像素子を用いた撮像装置において、前記電子増倍型CCD撮像素子の電子増倍率を算出し、該算出した電子増倍率に連動して、垂直帰線期間が終わり垂直映像期間が始まる画面上端(Top V)部分での暗部(ダーク)むら(シェーディング)を予め用意しておいた画面上端むら信号に前記算出した電子増倍率をかけて得た画面上端補正信号を画面上端部分の水平走査期間の映像信号から減算することを特徴とする撮像方法である。   In order to solve the above-described problems, the present invention calculates an electron multiplication factor of the electron multiplying CCD image pickup device in an image pickup apparatus using the electron multiplying CCD image pickup device, and interlocks with the calculated electron multiplication factor. Then, the above-mentioned calculated electronic multiplication factor is applied to the screen top edge non-uniformity signal (shading) prepared in advance at the top edge (Top V) of the screen where the vertical blanking period ends and the vertical video period begins. In this imaging method, the screen upper end correction signal obtained in this way is subtracted from the video signal in the horizontal scanning period at the upper end portion of the screen.

また、電子増倍型CCD撮像素子と該CCD撮像素子の撮像素子の温度検出手段と該CCD撮像素子の電子増倍電極の駆動手段と暗部むらを補正する暗部補正部と高電子増倍率と入射光量との積の積分量を算出し、該算出した積分量から電子増倍率を近似算出する手段とを有する撮像装置において、該近似算出した電子増倍率に正に相関(電子増倍率に比例)して、垂直帰線期間が終わり垂直映像期間が始まる画面上端部分の水平走査期間の映像信号の暗部むらを暗部補正部で、予め用意しておいた画面上端むら信号に前記算出した電子増倍率をかけて得た画面上端補正信号を画面上端部分の水平走査期間の映像信号から減算することを特徴とするカラー固体撮像装置である。   Also, an electron multiplying CCD image pickup device, a temperature detecting means for the image pickup device of the CCD image pickup device, a drive means for the electron multiplying electrode of the CCD image pickup device, a dark portion correcting portion for correcting dark portion unevenness, a high electron multiplying factor and incidence In an imaging apparatus having a means for calculating an integral amount of a product with a light amount and approximating an electron multiplication factor from the calculated integration amount, the image pickup device is positively correlated with the approximated electron multiplication factor (proportional to the electron multiplication factor) Then, the dark portion unevenness of the video signal in the horizontal scanning period at the upper end portion of the screen at the end of the vertical blanking period and the start of the vertical video period is converted to the previously calculated screen upper end unevenness signal by the dark portion correction unit. The color solid-state imaging device is characterized by subtracting the screen upper end correction signal obtained by applying from the video signal of the horizontal scanning period at the upper end portion of the screen.

また、電子増倍型CCD撮像素子と該CCD撮像素子の受光面の有効画素から出力される画像信号を取得する第1の取得部と前記CCD撮像素子の受光面の上部または下部の少なくとも一方の遮光した画素から出力される信号を取得する第2の取得部を有する撮像装置において、前記第2の取得部で取得した遮光した画素の左右(V-OBのH-OB)から出力される信号の中央付近の平均値等の第1の代表値(電子増倍暗電流量)を算出する手段とを有し、各温度の非増倍時の第1の代表値の基準値(基準暗電流量)を測定しておき、該基準値と第1の代表値との比(電子増倍率)の3垂直周期以上の平均に予め測定しておいた電子増倍時の画面上端むら信号をかけて得た画面上端補正信号を、水平走査期間の映像信号から減算することを特徴とする撮像装置である。   In addition, an electron multiplying CCD image sensor, a first acquisition unit that acquires an image signal output from an effective pixel on the light receiving surface of the CCD image sensor, and at least one of an upper part or a lower part of the light receiving surface of the CCD image sensor In an imaging apparatus having a second acquisition unit that acquires a signal output from a light-shielded pixel, a signal output from the left and right (H-OB of V-OB) of the light-shielded pixel acquired by the second acquisition unit Means for calculating a first representative value (electron-multiplied dark current amount) such as an average value in the vicinity of the center of the first reference value of the first representative value at the time of non-multiplication of each temperature (reference dark current) ), And multiply the average of the ratio between the reference value and the first representative value (electron multiplication factor) over 3 vertical periods by the uneven signal at the top of the screen at the time of electron multiplication. Subtracting the image top edge correction signal obtained from the video signal in the horizontal scanning period An image device.

また、電子増倍型CCD撮像素子と該CCD撮像素子の受光面の有効画素から出力される画像信号を取得する第1の取得部と前記CCD撮像素子の受光面の左または右の少なくとも一方の遮光した画素から出力される信号を取得する第3の取得部を有し、前記第3の取得部で取得した遮光した画素から出力される信号の(下限のN番目からN+M番目までの平均値等の)第2の代表値を算出する手段とを有し、少なくとも垂直帰線期間が終わり垂直映像期間が始まる画面上端部分に相当する垂直走査期間では、前記前記第3の取得部で取得した遮光した画素から出力される信号の第2の代表値を、水平走査期間において2次曲線補間して算出した暗部補正信号を、前記第2の代表値を画面上端部分の水平走査期間の映像信号から減算することを特徴とする撮像装置である。   In addition, an electron multiplying CCD image sensor, a first acquisition unit that acquires an image signal output from an effective pixel on the light receiving surface of the CCD image sensor, and at least one of left and right of the light receiving surface of the CCD image sensor A third acquisition unit that acquires a signal output from the light-shielded pixel, and an average value from the lower limit Nth to N + Mth of the signal output from the light-shielded pixel acquired by the third acquisition unit; And a second representative value calculating means, and at least acquired in the third acquisition unit in the vertical scanning period corresponding to the upper end portion of the screen where the vertical blanking period ends and the vertical video period starts. A dark portion correction signal calculated by interpolating the second representative value of the signal output from the light-shielded pixel by quadratic curve in the horizontal scanning period, and a video signal in the horizontal scanning period of the upper end portion of the screen as the second representative value. Subtracting from An imaging apparatus characterized.

上記の様に本発明によれば、電子増倍型CCD撮像素子の高電子増倍率における垂直映像期間が始まる部分の暗部むら(ダークシェーディング)を電子増倍率の変化に対応して補正することができる。   As described above, according to the present invention, it is possible to correct the dark portion unevenness (dark shading) in the portion where the vertical video period starts at the high electron multiplication factor of the electron multiplication type CCD image pickup device in accordance with the change of the electron multiplication factor. it can.

色分離フィルタ付きCCD撮像素子を用いた場合の本発明の一実施例の全体構成の撮像装置を示すブロック図。The block diagram which shows the imaging device of the whole structure of one Example of this invention at the time of using the CCD image pick-up element with a color separation filter. 色分解光学系と3ケのCCD撮像素子を用いた場合の本発明の一実施例の全体構成の撮像装置を示すブロック図。1 is a block diagram showing an image pickup apparatus having an overall configuration according to an embodiment of the present invention when a color separation optical system and three CCD image pickup elements are used. 本発明の一実施例の暗電流とスミアと増倍むらとの検出含むOBの代表値を検出する検出部の内部構成を示すブロック図。The block diagram which shows the internal structure of the detection part which detects the representative value of OB including the detection of the dark current of one Example of this invention, a smear, and multiplication unevenness. 本発明の一実施例の暗電流とスミアと増倍むらとの検出含むOBの代表値を検出する検出部の内部構成を示すブロック図。The block diagram which shows the internal structure of the detection part which detects the representative value of OB including the detection of the dark current of one Example of this invention, a smear, and multiplication unevenness. 本発明の一実施例のH−OBの最小値から3番目から5番目の値の平均値を代表値として検出する検出部の内部構成を示すブロック図。The block diagram which shows the internal structure of the detection part which detects the average value of the 3rd to 5th value from the minimum value of H-OB of one Example of this invention as a representative value. V−OBの垂直画素の最小値から2番目の値を代表値として検出する本発明の一実施例のフローチャート。The flowchart of one Example of this invention which detects the 2nd value from the minimum value of the vertical pixel of V-OB as a representative value. V−OBの最小値から2番目の値を代表値として検出する本発明の一実施例のフローチャート。The flowchart of one Example of this invention which detects the 2nd value from the minimum value of V-OB as a representative value. H−OBの最小値から3番目から5番目の値の平均値を代表値として検出する本発明の一実施例のフローチャート。The flowchart of one Example of this invention which detects the average value of the 3rd to 5th value from the minimum value of H-OB as a representative value.

電子増倍型CCD撮像素子は電子増倍時にクロック位相が変動し易く、垂直帰線期間が終わり垂直映像期間が始まる画面上端(Top V)部分での暗部(ダーク)むら(シェーディング)が大きくなる。また、電子増倍型CCD撮像素子は、電子増倍時に白キズが非常に大きい。そのため、CCD撮像素子の受光面の有効画素から出力される水平走査期間の映像信号だけでなく、4行程度しかない垂直遮光画素(V−OB)の左右の20画素程度しかないH−OB部分の平均値が白キズの影響で不安定になる。そこで、前記CCD撮像素子の受光面の上下の遮光した画素の左右のから出力される信号を取得する第2の取得部で取得した遮光した画素から出力される信号の中央値付近の平均値をとることにより、第2の代表値(電子増倍暗電流量)を算出する。そして、各温度の非増倍時の第1の代表値の基準値(基準暗電流量)を測定しておき、基準値と第2の代表値との比の3垂直周期以上の平均から白キズや雑音の影響を受けない電子増倍率を算出する。予め測定しておいた電子増倍時の画面上端むら信号をかけて得た補正信号を画面上端部分の水平走査期間の映像信号から減算する。
以下、添付図面を参照しながら本発明の実施形態を詳細に説明する。なお、各図の説明において、共通な機能を有する構成要素には同一の参照番号を付し、できるだけ説明の重複を避ける。
本発明の一実施形態を図1A、図1B、図2A、図2B、図2C、図3A、図3B、図3Cを用いて説明する。
In the electron multiplying CCD image pickup device, the clock phase is likely to fluctuate at the time of electron multiplication, and the dark portion unevenness (shading) at the upper end (Top V) portion where the vertical blanking period ends and the vertical video period starts increases. . Further, the electron multiplying CCD image pickup device has very large white scratches at the time of electron multiplication. Therefore, not only the video signal of the horizontal scanning period output from the effective pixels on the light receiving surface of the CCD image sensor, but also the H-OB portion having only about 20 pixels on the left and right of the vertical shading pixel (V-OB) having only about 4 rows. The average value becomes unstable due to white scratches. Therefore, an average value around the median value of the signals output from the light-shielded pixels acquired by the second acquisition unit that acquires signals output from the left and right of the light-shielded pixels above and below the light receiving surface of the CCD image pickup device is obtained. Thus, the second representative value (electron multiplying dark current amount) is calculated. Then, the reference value (reference dark current amount) of the first representative value at the time of non-multiplication of each temperature is measured, and the white value is determined from the average of the ratio of the reference value and the second representative value over three vertical periods. Calculates the electron multiplication factor that is not affected by scratches or noise. A correction signal obtained by applying a non-uniformity signal at the upper end of the screen at the time of electron multiplication measured in advance is subtracted from the video signal in the horizontal scanning period at the upper end portion of the screen.
Hereinafter, embodiments of the present invention will be described in detail with reference to the accompanying drawings. In the description of each drawing, the same reference numerals are assigned to components having a common function, and duplication of description is avoided as much as possible.
An embodiment of the present invention will be described with reference to FIGS. 1A, 1B, 2A, 2B, 2C, 3A, 3B, and 3C.

EM−CCDの3と温度センサー8と電子増倍電極の駆動手段のCMG駆動部15と暗部むらを補正するFEPの4と、高電子増倍率と入射光量との積の積分量を算出し、該算出した積分量から電子増倍率を近似算出するCPUの6とを有する撮像装置において、該近似算出した電子増倍率に正に相関(電子増倍率に比例)して、垂直帰線期間が終わり垂直映像期間が始まる画面上端部分の暗部むらをCPUの6の制御により、FEPの4または増倍検出含む映像信号処理部5で補正する。
また、EM−CCDの3と該CCD撮像素子の受光面の有効画素と前記CCD撮像素子の受光面の上部または下部または左または右の少なくとも一方の遮光した画素(Optical Black:OB)から出力される信号を取得するFEPの4と、FEPの4または増倍検出含む映像信号処理部5で暗部むらを補正する撮像装置において、遮光した画素から出力される信号の代表値を算出する増倍検出含む映像信号処理部5とを有し、前記遮光した画素から出力される信号の代表値の垂直周期以上の平均に正に相関(電子増倍率に比例)して、垂直帰線期間が終わり垂直映像期間が始まる画面上端部分の暗部むらを、CPUの6の制御により、FEPの4または増倍検出含む映像信号処理部5で補正する。
なお、以下に説明する実施形態は説明のためのものであり、本願発明の範囲を制限するものではない。従って、当業者であればこれらの各要素若しくは全要素をこれと均等なものに置換した実施形態を採用することが可能であり、これらの実施形態も本願発明の範囲に含まれる。
Calculate the integral amount of the product of EM-CCD 3, temperature sensor 8, CMG drive unit 15 for electron multiplier electrode drive, FEP 4 for correcting dark spot unevenness, and high electron multiplication factor and incident light quantity, In an imaging apparatus having a CPU 6 that approximately calculates an electronic multiplication factor from the calculated integration amount, the vertical retrace period ends with a positive correlation (proportional to the electronic multiplication factor) with the approximated electronic multiplication factor. Under the control of the CPU 6, the dark signal unevenness at the upper end portion of the screen where the vertical video period starts is corrected by the video signal processing unit 5 including FEP 4 or multiplication detection.
Also output from the EM-CCD 3, the effective pixel on the light receiving surface of the CCD image sensor, and at least one of the light-shielded pixels (Optical Black: OB) on the upper or lower side or the left or right of the light receiving surface of the CCD image sensor. 4 and FEP 4 for obtaining a signal to be acquired, and video signal processing unit 5 including FEP 4 or multiplication detection, in an imaging apparatus that corrects dark area unevenness, multiplication detection for calculating a representative value of a signal output from a light-shielded pixel And a video signal processing unit 5 including a positive correlation (in proportion to the electron multiplication factor) of the average value of the representative value of the signal output from the light-shielded pixel that is equal to or greater than the vertical period, and the vertical blanking period ends. The dark portion unevenness at the upper end portion of the screen where the video period starts is corrected by the video signal processing unit 5 including FEP 4 or multiplication detection under the control of the CPU 6.
The embodiments described below are for explanation, and do not limit the scope of the present invention. Accordingly, those skilled in the art can employ embodiments in which these elements or all of the elements are replaced with equivalent ones, and these embodiments are also included in the scope of the present invention.

本発明による撮像装置の一実施例の概要を、図1A、図1B、図2A、図2B、図3A、図3B、によって説明する。図1Aは、色分離フィルタ付きCCD撮像素子を用いた場合の本発明の撮像装置の一実施例の全体構成を示すブロック図である。図1Bは、色分解光学系と3ケのCCD撮像素子を用いた場合の本発明の撮像装置の一実施例の全体構成を示すブロック図である。図2Aと図2Bは、暗電流とスミアと増倍むらとの検出含むOBの代表値を検出する、本発明の撮像装置の映像信号処理部内の検出部の内部構成の一実施例を示すブロック図である。
なお、図2Aと図2Bにおける平均値部68及び平均値部69については、実施例2及び実施例3で説明する。図3Aは、本発明の撮像方法及び撮像装置の、V−OBの垂直画素の最小値から2番目の値を代表値として検出する処理の一実施例を示すフローチャートである。図3Bは、本発明の撮像方法及び撮像装置の、V−OBの最小値から2番目の値を代表値として検出する処理の一実施例を示すフローチャートである。
An outline of an embodiment of an imaging apparatus according to the present invention will be described with reference to FIGS. 1A, 1B, 2A, 2B, 3A, and 3B. FIG. 1A is a block diagram showing an overall configuration of an embodiment of an imaging apparatus of the present invention when a CCD imaging device with a color separation filter is used. FIG. 1B is a block diagram showing the overall configuration of an embodiment of the imaging apparatus of the present invention when a color separation optical system and three CCD imaging elements are used. 2A and 2B are block diagrams showing an embodiment of the internal configuration of the detection unit in the video signal processing unit of the imaging apparatus according to the present invention, which detects a representative value of OB including detection of dark current, smear, and multiplication unevenness. FIG.
In addition, the average value part 68 and the average value part 69 in FIG. 2A and FIG. 2B are demonstrated in Example 2 and Example 3. FIG. FIG. 3A is a flowchart illustrating an example of a process of detecting the second value from the minimum value of the V-OB vertical pixels as a representative value in the imaging method and imaging apparatus of the present invention. FIG. 3B is a flowchart illustrating an example of a process of detecting the second value from the minimum value of V-OB as a representative value in the imaging method and the imaging apparatus of the present invention.

次に、本発明の撮像装置の全体構成の一実施例である図1Aについて説明する。図1Aは、色分離フィルタ付きCCD撮像素子を用いた撮像装置の全体構成を示す図である。
図1Aにおいて、1は撮像装置、2は入射光を結像するレンズ等の光学系、3は光学系2から入射した光を電気信号に変換するCCD撮像素子、4はリセットとCDSとAGCと暗部補正とADCとのTGを含むFEP、5は増倍検出処理部を含む映像信号処理部、6は撮像装置1内の各部を制御するCPU(Central Processing Unit)である。13はタイミング発生部(Timing Generator:TG)を含む垂直転送駆動部、15は電子増倍の利得制御を行うためのCMG駆動部、8は温度センサ、17は冷却部である。
Next, FIG. 1A which is an example of the entire configuration of the imaging apparatus of the present invention will be described. FIG. 1A is a diagram illustrating an overall configuration of an imaging apparatus using a CCD imaging device with a color separation filter.
In FIG. 1A, 1 is an imaging device, 2 is an optical system such as a lens that forms incident light, 3 is a CCD imaging device that converts light incident from the optical system 2 into an electrical signal, and 4 is reset, CDS, and AGC. FEP including dark portion correction and ADC TG, 5 is a video signal processing unit including a multiplication detection processing unit, and 6 is a CPU (Central Processing Unit) that controls each unit in the imaging apparatus 1. Reference numeral 13 denotes a vertical transfer driving unit including a timing generator (TG), 15 denotes a CMG driving unit for performing gain control of electron multiplication, 8 denotes a temperature sensor, and 17 denotes a cooling unit.

なお、CCD撮像素子3は、色分離フィルタ付きのEM−CCDである。また、FEP4は、少なくとも、CCD撮像素子3から出力された信号の雑音を除去するCDS401、CDS401の出力信号に暗電流補正して利得を調整するAGC部402、及び、AGC部402からの出力信号をデジタル映像信号Viに変換する信号処理階調が14bit以上のADC403、TG404、メモリ部405、D.AGC部406、及び、DAC部407で構成される。なお、図1A及び図1Bでは、メモリ部405、D.AGC部406、及び、DAC部407は図示していない。AGCと暗部補正とは、増倍検出含む映像信号処理部5で実行されても構わない。
また、TG404は、CCD撮像素子3に水平転送駆動信号を出力し、FEP4中のCDS401、AGC部402、及びADC403に、タイミング(Timing)信号を出力する信号発生器である。
The CCD image pickup device 3 is an EM-CCD with a color separation filter. The FEP 4 includes at least an AGC unit 402 that removes noise from the signal output from the CCD image sensor 3, an AGC unit 402 that adjusts the gain by correcting dark current on the output signal of the CDS 401, and an output signal from the AGC unit 402 ADC 403, TG 404, memory unit 405, D.D. An AGC unit 406 and a DAC unit 407 are included. 1A and 1B, the memory unit 405, D.I. The AGC unit 406 and the DAC unit 407 are not shown. The AGC and dark part correction may be executed by the video signal processing unit 5 including multiplication detection.
The TG 404 is a signal generator that outputs a horizontal transfer drive signal to the CCD image pickup device 3 and outputs a timing signal to the CDS 401, the AGC unit 402, and the ADC 403 in the FEP4.

また、図1A(図1B)では、読出及び垂直転送駆動部13(13)が、読出及び垂直転送駆動タイミング信号を出力し、CCD撮像素子3(3、7、9)それぞれの読出垂直転送部に出力している。
また、冷却部17は、CCD撮像素子3を冷却するペルチェ素子とペルチェ素子駆動回路と放熱フィンとファンとファン駆動回とから構成される(図1Bでは図示しない)。冷却部17は、CPU6の制御により、温度センサ8が検出する温度に応じてCCD撮像素子3を冷却し、CCD撮像素子3の温度を調節する。なお、図1Bでは、冷却部17及び温度センサ8を図示せず、省略している。
また増倍検出含む映像信号処理部5は、デジタル映像信号Viに種々の画像処理を施し、NTSC方式またはPAL(Phase Alternating by Line)方式の複合映像信号(Video Burst Sync:VBS)またはSDI(Serial Digital Interface)映像信号、あるいは、HDTVのSDI(HD−SDI)等の所定方式の映像信号に変換して出力する。
In FIG. 1A (FIG. 1B), the read and vertical transfer drive unit 13 (13) outputs a read and vertical transfer drive timing signal, and each read vertical transfer unit of the CCD image pickup device 3 (3, 7, 9). Is output.
The cooling unit 17 includes a Peltier element that cools the CCD image pickup element 3, a Peltier element driving circuit, a heat radiation fin, a fan, and a fan driving circuit (not shown in FIG. 1B). The cooling unit 17 controls the temperature of the CCD image sensor 3 by cooling the CCD image sensor 3 according to the temperature detected by the temperature sensor 8 under the control of the CPU 6. In FIG. 1B, the cooling unit 17 and the temperature sensor 8 are not shown and are omitted.
The video signal processing unit 5 including multiplication detection performs various image processing on the digital video signal Vi, and a composite video signal (Video Burst Sync: VBS) or SDI (Serial) of the NTSC system or PAL (Phase Alternating by Line) system. Digital Interface) and converted into a video signal of a predetermined system such as HDTV SDI (HD-SDI) and output.

図1Aにおいて、撮像装置1のEM−CCD等のCCD撮像素子3は光学系2で受光面に結像された入射光をフォトダイオード(Photo Diode)で光電変換して信号電荷を生成し、垂直転送したのち水平転送しながら信号電荷を電子増倍してFEP4に出力する。FEP4は、CCD撮像素子3から出力された信号から雑音を除去し暗電流成分を補正し補正した信号を増幅し、デジタル映像信号Viに変換して、変換したデジタル映像信号Viを映像信号処理部5に出力する。増倍検出含む映像信号処理部5内において、デジタル映像信号Viは、検出部18に送られると共に、後述する信号処理を行うために減算器19にも送られる。
図2Aは、色分離フィルタ付きCCD撮像素子を用いた場合の増倍むら検出含む映像信号処理部の、本発明の一実施例の内部構成を示すブロック図である。18は増倍むら検出部、19は減算器回路である。なお、6は撮像装置1内の各部を制御するCPUである(図1A参照)。D.AGC部50は、OB(Optical Black)代表値信号をFEPのAGC部の増幅度に合わせてD.AGC部自身の増幅度を調節する。なお、OB代表値信号は、V−OBの暗電流を含んだスミア成分信号である。
図2Aにおいて、検出部18はデジタル映像信号Viを比較部41〜42でV−OBラインの垂直画素信号ごとに比較し小さい順にラインメモリ43〜44に記憶し、垂直(以下V)スミアを含むOB代表値信号を検出する。Vスミアを含むOB代表値信号を比較部55〜56で比較しVスミアを含む最大値とVスミアを含まない最小値の差からVスミアを算出する。また、基準温度で非電子増倍時のV−OBラインのH−OB信号を平均して基準メモリ48に記憶しておいた値をD.AGC50で温度補正した値で、V−OBラインのH−OB信号を平均した値を除算すれば、暗電流増倍量が算出できる。そして基準温度で非電子増倍時の有効画素の暗電流から基準温度で非電子増倍時のV−OBラインのH−OB信号を平均して基準メモリ48に記憶しておいた値を減算して画面メモリ49に記憶しておいた値に暗電流増倍量を乗算器52で乗算すれば、有効画素とV−OBとの差分の暗電流が算出でき、加算器45でVスミアを含むOB代表値と加算すれば、各有効画素の暗電流とVスミアとの合計が算出でき、減算器19でデジタル映像信号Viから減算すれば、各有効画素の暗電流とVスミアとが補正でき、無効信号つまり雑音が低減され、実効感度が向上する。
In FIG. 1A, a CCD image pickup device 3 such as an EM-CCD of the image pickup apparatus 1 generates a signal charge by photoelectrically converting incident light imaged on a light receiving surface by an optical system 2 using a photodiode (Photo Diode). After the transfer, the signal charge is multiplied by electrons while being transferred horizontally and output to the FEP4. The FEP 4 removes noise from the signal output from the CCD image pickup device 3, corrects the dark current component, amplifies the corrected signal, converts the signal to a digital video signal Vi, and converts the converted digital video signal Vi into a video signal processing unit. 5 is output. In the video signal processing unit 5 including multiplication detection, the digital video signal Vi is sent to the detection unit 18 and also sent to a subtracter 19 for performing signal processing to be described later.
FIG. 2A is a block diagram showing an internal configuration of an embodiment of the present invention of a video signal processing unit including detection of uneven multiplication when a CCD image pickup device with a color separation filter is used. Reference numeral 18 denotes a multiplication unevenness detector, and reference numeral 19 denotes a subtractor circuit. Reference numeral 6 denotes a CPU that controls each unit in the imaging apparatus 1 (see FIG. 1A). D. The AGC unit 50 matches the OB (Optical Black) representative value signal with the amplification degree of the AGC unit of the FEP. Adjusts the amplification level of the AGC unit itself. The OB representative value signal is a smear component signal including a V-OB dark current.
In FIG. 2A, the detection unit 18 compares the digital video signal Vi with the vertical pixel signals of the V-OB lines by the comparison units 41 to 42, stores them in the line memories 43 to 44 in ascending order, and includes vertical (hereinafter V) smear. An OB representative value signal is detected. The OB representative value signal including the V smear is compared by the comparison units 55 to 56, and the V smear is calculated from the difference between the maximum value including the V smear and the minimum value not including the V smear. Further, the average value of the H-OB signal of the V-OB line at the time of non-electron multiplication at the reference temperature and the value stored in the reference memory 48 are stored in the D.D. The dark current multiplication amount can be calculated by dividing the average value of the H-OB signal of the V-OB line by the value corrected for temperature by the AGC 50. Then, the H-OB signal of the V-OB line at the reference temperature at the non-electron multiplication at the reference temperature is averaged from the dark current of the effective pixel at the non-electron multiplication at the reference temperature, and the value stored in the reference memory 48 is subtracted. Then, by multiplying the value stored in the screen memory 49 by the dark current multiplication amount by the multiplier 52, the dark current of the difference between the effective pixel and V-OB can be calculated, and the adder 45 calculates the V smear. The sum of the dark current and V smear of each effective pixel can be calculated by adding the OB representative value including the correction, and the dark current and V smear of each effective pixel can be corrected by subtracting from the digital video signal Vi by the subtractor 19. Ineffective signal, that is, noise is reduced, and effective sensitivity is improved.

なお、図1Bの本発明の撮像装置の一実施例は、色分解光学系と3ケのCCD撮像素子を用いた場合であり、図1Aの撮像装置が、CCD撮像素子3、FEP4をそれぞれ1ケ使用するのに対し、レンズ系2を介して撮像装置に入射された入射光が、色分離光学系11を用いて、例えば、R(赤)、G(緑)、B(青)等の光の3原色(若しくは、それらの補色)に色分離され、分離された3つの色それぞれに対して、CCD撮像素子3、7、9、及び、FEP4、10、12を使用するものである。その場合、映像信号処理部(増倍むら検出処理を含む)5が、それら3色を所定の割合で合成した後に、図1Aの映像信号処理部5と同様の処理を行うものである(図1Aと同様の構成と動作の説明は省略する)。
また、図2Bの本発明の撮像装置の一実施例の映像信号処理部も、図1Bと同様に、色分解光学系と3ケのCCD撮像素子を用いた場合であり、図1Bの映像信号処理部には、例えば、R(赤)、G(緑)、B(青)等の光の3原色(若しくは、それらの補色)に色分離された色毎に、FEP部4’、10、及び12から、映像信号Vi(例えば、RVi、GVi、BVi)が入力され、映像メモリ部32’及び相関検出部33’から各色毎に、3つの信号が出力されるものである。(詳細の説明図示は省略する)。
1B is an example in which the color separation optical system and three CCD image pickup devices are used, and the image pickup device of FIG. 1A includes one CCD image pickup device 3 and one FEP4. In contrast, the incident light that has entered the image pickup apparatus via the lens system 2 is, for example, R (red), G (green), or B (blue) using the color separation optical system 11. The colors are separated into the three primary colors of light (or their complementary colors), and the CCD image pickup devices 3, 7, 9 and FEPs 4, 10, 12 are used for the three separated colors. In this case, the video signal processing unit (including the multiplication unevenness detection process) 5 performs processing similar to that of the video signal processing unit 5 of FIG. 1A after combining these three colors at a predetermined ratio (see FIG. 1). The description of the same configuration and operation as in 1A is omitted).
The image signal processing unit of the embodiment of the imaging apparatus of the present invention shown in FIG. 2B is also a case where a color separation optical system and three CCD image sensors are used, as in FIG. 1B. The processing unit includes, for example, FEP units 4 ′, 10 for each color separated into three primary colors (or their complementary colors) such as R (red), G (green), and B (blue). And 12, the video signal Vi (for example, RVi, GVi, BVi) is input, and three signals are output for each color from the video memory unit 32 ′ and the correlation detection unit 33 ′. (Detailed illustration is omitted).

次に、本発明の一実施例の動作を図1Aと図2Aを参照しつつ説明する。撮像装置1のCCD撮像素子3は、光学系2で受光面に結像された入射光をフォトダイオードで光電変換して信号電荷を生成し、垂直転送したのち水平転送しながら信号電荷を電子増倍して、電子増倍した信号をFEP4に出力する。FEP4は、CCD撮像素子3から出力された信号から、雑音を除去し、暗電流成分を補正し、補正した信号を増幅した信号(デジタル映像信号Vi)に変換して、映像信号処理部5に出力する。   Next, the operation of one embodiment of the present invention will be described with reference to FIGS. 1A and 2A. The CCD image pickup device 3 of the image pickup apparatus 1 photoelectrically converts incident light imaged on the light receiving surface by the optical system 2 with a photodiode to generate a signal charge. The signal multiplied and electron-multiplied is output to FEP4. The FEP 4 removes noise from the signal output from the CCD image pickup device 3, corrects the dark current component, converts the corrected signal into an amplified signal (digital video signal Vi), and sends it to the video signal processing unit 5. Output.

さらに、垂直転送駆動部(w/TG)13とCMG駆動部15は、CPU6から出力される制御信号それぞれに従ってCCD撮像素子3を駆動するための信号を、CCD撮像素子3に出力する。CCD撮像素子3では、当該入力信号に従って、フォトダイオードから電荷を読出し、CMG部に出力する。CMG部は、入力された電荷を電圧変換部に水平転送出力する。電圧変換部は、入力された電荷を14ビット若しくは14ビット以上の階調の電圧に変換してFEP4に出力する。   Further, the vertical transfer drive unit (w / TG) 13 and the CMG drive unit 15 output signals for driving the CCD image pickup device 3 to the CCD image pickup device 3 in accordance with the control signals output from the CPU 6. In the CCD image pickup device 3, charges are read from the photodiodes according to the input signal and output to the CMG unit. The CMG unit horizontally transfers and outputs the input charge to the voltage conversion unit. The voltage converter converts the input charge into a voltage having a gradation of 14 bits or 14 bits and outputs the converted voltage to the FEP 4.

図2Aと図2Bで本発明の暗電流増倍量を検出する機能の一実施例を説明する。図2Aと図2Bは、本発明の一実施例の暗電流とスミアと増倍むらとの検出含むOBの代表値を検出する検出部の内部構成を示すブロック図である。18は検出部、19,46,57は減算器、45は加算器、51は除算器、52は乗算器、47,68,69は平均部、43,44はラインメモリ部、48は基準メモリ部、41,42,53,54,55,56は比較部、49は画像メモリ部である。
図2Aと図2Bと図3Aと図3Bとを用いて垂直スミア信号の検出と補正の動作について説明する。
2A and 2B, an embodiment of the function for detecting the dark current multiplication amount of the present invention will be described. 2A and 2B are block diagrams showing an internal configuration of a detection unit that detects a representative value of OB including detection of dark current, smear, and multiplication unevenness according to an embodiment of the present invention. 18 is a detection unit, 19, 46 and 57 are subtractors, 45 is an adder, 51 is a divider, 52 is a multiplier, 47, 68 and 69 are average units, 43 and 44 are line memory units, and 48 is a reference memory. , 41, 42, 53, 54, 55, and 56 are comparison units, and 49 is an image memory unit.
The detection and correction operations of the vertical smear signal will be described with reference to FIGS. 2A, 2B, 3A, and 3B.

まず、図2Aと図3Aに示す実施例について説明する。図1Aと図1BのCPU6は、ラインメモリ部44、43に最小値信号の上限値、2番目に小さい信号の上限値をそれぞれ設定しておく。ここで、これらの上限値は、例えば、信号の輝度を数値化したものを用いてよい(以下で述べる各値についても、同様の基準で数値化されたものである)。比較部42は、ラインメモリ部44に記憶されている上限値とV−OB領域の1ライン目(以下V−OB1)の映像信号の画素の値とを各画素間で比較し、値が小さい方の信号(V−OB1の映像信号)を各画素の最小値の信号としてラインメモリ部44に記憶する(ステップ61,62)。
比較部42は、V−OB2の映像信号の画素の値とラインメモリ部44に最小値の信号の値とを各画素間で比較し、値が小さい方の信号をラインメモリ部44に各画素の最小値の信号として記憶する。値が大きい方の信号は比較部41に送られる。比較部41は、大きい方の信号の値と2番目に小さい信号としてラインメモリ部43に記憶されている上限値とを各画素間で比較し、小さい方の信号を各画素の2番目に小さい信号としてラインメモリ部43に記憶する(ステップ63)。
同様に、比較部42は、Nライン目(Nは3以上の自然数)のV−OBNの映像信号の画素の値とメモリ部44の最小値とを各画素間で比較し、値が小さい方の信号を各画素の最小値の信号としてラインメモリ部44に記憶する。値が大きい方の信号は各画素の比較1の信号として、比較部41に送られる(ステップ64)。
比較部41は、2番目に小さい信号の値と比較1の信号の値とを各画素間で比較し、値が小さい方の信号を各画素の2番目に小さい信号(比較2信号)としてラインメモリ部43に記憶する(ステップ65)。
比較部42が最後のV−OBの比較処理を終了すると、ラインメモリ部43は、2番目に小さい信号をスミア補正用のOB代表値信号として出力し(ステップ66)、代表値検出処理が終了する(ステップ67)。
水平周期暗電流増倍量または画面内平均暗電流増倍量から平均部68の循環平均で、画面内平均暗電流増倍量または画面間平均暗電流増倍量を算出し、平均部69の循環平均で画面間平均暗電流増倍量を算出し、図1Aと図1BのCPU6に出力する。
First, the embodiment shown in FIGS. 2A and 3A will be described. The CPU 6 in FIGS. 1A and 1B sets the upper limit value of the minimum value signal and the upper limit value of the second smallest signal in the line memory units 44 and 43, respectively. Here, as these upper limit values, for example, values obtained by quantifying the luminance of the signal may be used (each value described below is also quantified by the same standard). The comparison unit 42 compares the upper limit value stored in the line memory unit 44 with the pixel value of the video signal of the first line in the V-OB area (hereinafter referred to as V-OB1) between the pixels, and the value is small. The other signal (video signal of V-OB1) is stored in the line memory unit 44 as a minimum value signal of each pixel (steps 61 and 62).
The comparison unit 42 compares the pixel value of the video signal of V-OB2 and the minimum signal value in the line memory unit 44 between the pixels, and the signal having the smaller value is stored in the line memory unit 44 in each pixel. Is stored as a minimum value signal. The signal having the larger value is sent to the comparison unit 41. The comparison unit 41 compares the value of the larger signal with the upper limit value stored in the line memory unit 43 as the second smallest signal, and compares the smaller signal with the second smallest signal of each pixel. The signal is stored in the line memory unit 43 as a signal (step 63).
Similarly, the comparison unit 42 compares the pixel value of the V-OBN video signal of the Nth line (N is a natural number of 3 or more) with the minimum value of the memory unit 44 between the pixels, and the smaller value is obtained. Is stored in the line memory unit 44 as a signal of the minimum value of each pixel. The signal having the larger value is sent to the comparison unit 41 as a comparison 1 signal for each pixel (step 64).
The comparison unit 41 compares the value of the second smallest signal and the value of the comparison 1 signal between the pixels, and outputs the signal having the smaller value as the second smallest signal (comparison 2 signal) of each pixel. It memorize | stores in the memory part 43 (step 65).
When the comparison unit 42 finishes the last V-OB comparison process, the line memory unit 43 outputs the second smallest signal as the smear correction OB representative value signal (step 66), and the representative value detection process ends. (Step 67).
The average dark current multiplication amount in the screen or the average dark current multiplication amount between the screens is calculated from the horizontal period dark current multiplication amount or the average dark current multiplication amount in the screen by the circulation average of the average unit 68. The inter-screen average dark current multiplication amount is calculated by the circulation average, and is output to the CPU 6 in FIGS. 1A and 1B.

次に、図2Bと図3Bに示す実施例について説明する。図3Bと図3Aとの相違は、平均部47の代わりに比較部53と比較部54とがあることである。図3Aと同一部分の動作説明は省略し比較部53と比較部54との動作を説明する。CPU6は、比較部53と比較部54に最小値信号の上限値をリセットしておく。ここで、これらの上限値は、例えば、信号の輝度を数値化したものを用いてよい(以下で述べる各値についても、同様の基準で数値化されたものである)。
比較部54は、リセットされている上限値とV−OB領域の1ライン目(以下V−OB1)の映像信号の画素の値とを各画素間で比較し、値が小さい方の信号(V−OB1の最小値の信号)を各画素の最小値の信号として比較部54に記憶する(ステップ71,72)。
比較部54は、V−OB2の映像信号の画素の値と比較部54の最小値の信号の値とを各画素間で比較し、値が小さい方の信号を比較部54に各画素の最小値の信号として記憶する。値が大きい方の信号は比較部53に送られる。比較部53は、大きい方の信号の値と2番目に小さい信号として比較部53にリセットされている上限値とを各画素間で比較し、小さい方の信号を各画素の2番目に小さい信号として比較部53に記憶する(ステップ73)。
同様に、比較部54は、Nライン目(Nは3以上の自然数)のV−OBNの映像信号の画素の値と比較部54の最小値とを各画素間で比較し、値が小さい方の信号を各画素の最小値の信号として比較部54に記憶する。値が大きい方の信号は各画素の比較1の信号として、比較部53に送られる(ステップ74)。
比較部53は、2番目に小さい信号の値と比較1の信号の値とを各画素間で比較し、値が小さい方の信号を各画素の2番目に小さい信号として比較部53に記憶する(ステップ75)。比較部54が最後のV−OBの比較処理を終了すると、比較部53は、2番目に小さい信号を暗電流測定用のOB代表値信号として出力し(ステップ76)、代表値検出処理が終了する(ステップ77)。
Next, the embodiment shown in FIGS. 2B and 3B will be described. The difference between FIG. 3B and FIG. 3A is that there are a comparison unit 53 and a comparison unit 54 instead of the averaging unit 47. The operation of the same part as FIG. 3A is omitted, and the operation of the comparison unit 53 and the comparison unit 54 will be described. The CPU 6 resets the upper limit value of the minimum value signal in the comparison unit 53 and the comparison unit 54. Here, as these upper limit values, for example, values obtained by quantifying the luminance of the signal may be used (each value described below is also quantified by the same standard).
The comparison unit 54 compares the reset upper limit value with the pixel value of the video signal in the first line of the V-OB area (hereinafter referred to as V-OB1) between the pixels, and the signal (V −OB1 minimum value signal) is stored in the comparison unit 54 as a minimum value signal of each pixel (steps 71 and 72).
The comparison unit 54 compares the pixel value of the video signal of V-OB2 with the minimum signal value of the comparison unit 54 between the pixels, and the signal having the smaller value is sent to the comparison unit 54 as the minimum value of each pixel. Store as a value signal. The signal having the larger value is sent to the comparison unit 53. The comparison unit 53 compares the value of the larger signal with the upper limit value reset to the comparison unit 53 as the second smallest signal between the pixels, and compares the smaller signal with the second smallest signal of each pixel. Is stored in the comparison unit 53 (step 73).
Similarly, the comparison unit 54 compares the pixel value of the V-OBN video signal of the Nth line (N is a natural number of 3 or more) and the minimum value of the comparison unit 54 between the pixels, and the smaller value is obtained. Is stored in the comparator 54 as a signal of the minimum value of each pixel. The signal having the larger value is sent to the comparison unit 53 as a comparison 1 signal for each pixel (step 74).
The comparison unit 53 compares the value of the second smallest signal and the value of the comparison 1 signal between the pixels, and stores the signal having the smaller value in the comparison unit 53 as the second smallest signal of each pixel. (Step 75). When the comparison unit 54 finishes the last V-OB comparison process, the comparison unit 53 outputs the second smallest signal as an OB representative value signal for dark current measurement (step 76), and the representative value detection process ends. (Step 77).

また、V―OBのH―OB部分の暗電流や白キズ成分には、垂直スミアや水平スミアがほとんど混入しない。このことを利用し、図2Aの検出部45に示すように、基準温度で非電子増倍状態でのEM−CCDのV―OBのH―OB部分の信号を加算平均して記憶しておいた基準メモリ部の信号と比較すれば、温度と電子増倍による暗電流の増倍量がリアルタイムで推定できる。
別方法としては、V−OBの垂直水平の画素レベルの最小値が、垂直スミアや水平スミアがほとんど混入しない暗電流成分であることを利用する。即ち、図2Bの検出部45に示すように、V−OBの垂直水平の最小値を検出し、基準温度で非電子増倍状態でのEM−CCDのV―OBの垂直水平の最小値の信号を加算平均して記憶しておいた基準メモリ部の信号と比較すれば、温度と電子増倍による暗電流の増倍量がリアルタイムで推定できる。そこで、画面メモリ部49に記憶された画面有効画素から暗電流を出力しから、V―OBのH―OB部分の信号の加算平均を減算した有効画素OB差分基準暗電流信号に温度と電子増倍による暗電流の増倍量をかければ、OBとの差分の画面有効画素の暗電流が推定できる。
Further, the vertical smear and the horizontal smear are hardly mixed in the dark current and white scratch component of the H-OB portion of V-OB. Using this, as shown in the detection unit 45 of FIG. 2A, the signals of the H-OB portion of the V-OB of the EM-CCD in the non-electron multiplication state at the reference temperature are averaged and stored. Compared with the signal of the reference memory section, the dark current multiplication amount due to temperature and electron multiplication can be estimated in real time.
As another method, the fact that the minimum value of the vertical horizontal pixel level of V-OB is a dark current component in which vertical smear and horizontal smear are hardly mixed is used. That is, as shown in the detection unit 45 of FIG. 2B, the minimum value of the vertical horizontal of the V-OB is detected, and the minimum value of the vertical horizontal of the V-OB of the EM-CCD in the non-electron multiplication state at the reference temperature. If the signal is compared with the signal of the reference memory unit that has been stored by averaging, the amount of dark current multiplication due to temperature and electron multiplication can be estimated in real time. Therefore, the dark current is output from the screen effective pixel stored in the screen memory unit 49, and then the temperature and electron increase are added to the effective pixel OB difference reference dark current signal obtained by subtracting the addition average of the signals of the H-OB portion of V-OB. If the dark current multiplication amount due to doubling is applied, the dark current of the screen effective pixel that is the difference from OB can be estimated.

つまり、14bit以上のFEPを使用し、温度測定手段とV−OBとを備える電子増倍型CCD撮像素子と可変電圧電子増倍電極駆動部と利得可変増幅部とラインメモリと画面メモリとを有する固体撮像装置の撮像方法において、V−OBの暗電流の現在の代表値と、非電子増倍時に記憶しておいたV−OBの暗電流の代表値を撮像素子測定温度で補正した暗電流の想定値と、の比(各垂直周期の電子増倍率の推定値)を非電子増倍時に記憶しておいた画面メモリの各有効画素の基準の暗電流に、乗算し、有効画素信号から減算する。この結果、画面の目視上目立つ暗部のすだれ状の固定雑音の暗電流むらが減算され、電子増倍ゆらぎの1/f雑音の主成分の暗電流のが画面間変動も減算され、V―OBの暗電流や白キズや垂直スミア成分と、OBとの差分の画面有効画素の暗電流や白キズ成分とを減算し、画面有効画素の映像信号のみを算出できる。   That is, it uses an FEP of 14 bits or more, and includes an electron multiplying CCD image pickup device including a temperature measuring means and a V-OB, a variable voltage electron multiplying electrode driving unit, a gain variable amplifying unit, a line memory, and a screen memory. In the imaging method of the solid-state imaging device, the current representative value of the V-OB dark current and the dark current obtained by correcting the representative value of the V-OB dark current stored at the time of non-electron multiplication with the image sensor measurement temperature Is multiplied by the reference dark current of each effective pixel of the screen memory stored at the time of non-electron multiplication, and the ratio (the estimated value of the electron multiplication factor of each vertical period) is multiplied by the effective pixel signal. Subtract. As a result, the dark current unevenness of the interstitial fixed noise in the dark part that is conspicuous on the screen is subtracted, the dark current of the main component of 1 / f noise of the electron multiplication fluctuation is also subtracted, and V-OB is also subtracted. By subtracting the dark current and white flaw component of the screen effective pixel, which is the difference from OB, from the dark current and white flaw and vertical smear components of the OB, only the video signal of the screen effective pixel can be calculated.

次に、図2Aと図3Aとを用いて、V−OBの垂直画素間で2番目に小さい信号の検出と、スミア補正用のOB代表値を検出する処理動作について説明する。
図2Aと図3Aにおいて、図1Aと図1BのCPU6は、ラインメモリ部43,44に最小値信号の上限値、2番目に小さい信号の上限値をそれぞれ設定しておく。ここで、これらの上限値は、例えば、信号の輝度を数値化したものを用いてよい(以下で述べる各値についても、同様の基準で数値化されたものである)。
比較部42は、ラインメモリ部44に記憶されている上限値とV−OB領域の1ライン目(以下V−OB1)の映像信号の画素の値とを各画素間で比較し、値が小さい方の信号(V−OB1の映像信号)を各画素の最小値の信号としてラインメモリ部44に記憶する(開始ステップ61、最小値記憶ステップ62)。
比較部42は、V−OB2の映像信号の画素の値とラインメモリ部44に最小値の信号の値とを各画素間で比較し、値が小さい方の信号をラインメモリ部44に各画素の最小値の信号として記憶する。値が大きい方の信号は比較部41に送られる。比較部41は、大きい方の信号の値と2番目に小さい信号としてラインメモリ部43に記憶されている上限値とを各画素間で比較し、小さい方の信号を各画素の2番目に小さい信号としてラインメモリ部43に記憶する(2番目に小さい値記憶ステップ63)。
Next, with reference to FIG. 2A and FIG. 3A, the processing operation for detecting the second smallest signal between the V-OB vertical pixels and detecting the OB representative value for smear correction will be described.
2A and 3A, the CPU 6 in FIGS. 1A and 1B sets the upper limit value of the minimum value signal and the upper limit value of the second smallest signal in the line memory units 43 and 44, respectively. Here, as these upper limit values, for example, values obtained by quantifying the luminance of the signal may be used (each value described below is also quantified by the same standard).
The comparison unit 42 compares the upper limit value stored in the line memory unit 44 with the pixel value of the video signal of the first line in the V-OB area (hereinafter referred to as V-OB1) between the pixels, and the value is small. This signal (video signal of V-OB1) is stored in the line memory unit 44 as a minimum value signal of each pixel (start step 61, minimum value storage step 62).
The comparison unit 42 compares the pixel value of the video signal of V-OB2 and the minimum signal value in the line memory unit 44 between the pixels, and the signal having the smaller value is stored in the line memory unit 44 in each pixel. Is stored as a minimum value signal. The signal having the larger value is sent to the comparison unit 41. The comparison unit 41 compares the value of the larger signal with the upper limit value stored in the line memory unit 43 as the second smallest signal, and compares the smaller signal with the second smallest signal of each pixel. The signal is stored in the line memory unit 43 as a signal (second smallest value storing step 63).

同様に、比較部42は、Nライン目(Nは3以上の自然数)のV−OBNの映像信号の画素の値とラインメモリ部44の最小値とを各画素間で比較し、値が小さい方の信号を各画素の最小値の信号としてラインメモリ部44に記憶する。値が大きい方の信号は各画素の比較1の信号として、比較部41に出力する(比較1信号出力ステップ64)。
比較部41は、2番目に小さい信号の値と比較1信号の値とを各画素間で比較し、値が小さい方の信号を各画素の2番目に小さい信号(比較2信号)としてラインメモリ部43に記憶する(比較2信号記憶ステップ65)。
比較部42が最後のV−OBの比較処理を終了すると、ラインメモリ部43は、比較2信号をスミア補正用のOB代表値信号として加算器45に出力し(OB代表値出力ステップ66)、代表値検出処理を終了する(終了ステップ67)。
Similarly, the comparison unit 42 compares the pixel value of the V-OBN video signal of the Nth line (N is a natural number of 3 or more) with the minimum value of the line memory unit 44, and the value is small. This signal is stored in the line memory unit 44 as a minimum value signal of each pixel. The signal having the larger value is output to the comparison unit 41 as a comparison 1 signal for each pixel (comparison 1 signal output step 64).
The comparison unit 41 compares the value of the second smallest signal and the value of the comparison 1 signal between the pixels, and sets the signal having the smaller value as the second smallest signal (comparison 2 signal) of each pixel. This is stored in the unit 43 (Comparison 2 signal storage step 65).
When the comparison unit 42 finishes the last V-OB comparison process, the line memory unit 43 outputs the comparison 2 signal to the adder 45 as an OB representative value signal for smear correction (OB representative value output step 66). The representative value detection process ends (end step 67).

上記図3Aの説明のように、OB代表値信号は、比較部55にも入力されてOB代表値の最大値を算出され、比較部56にも入力されてOB代表値の最小値が算出され、減算器57は、OB代表値の最大値とOB代表値の最小値との差をとり、差分値をV−OBの垂直スミアとしてCPU6に出力する。
スミア量が所定の基準量以上なら、有効画素の横のH−OBに漏れ込む水平スミアも−80dB程度の垂直スミアと等しいかより大きい。しかし、V−OBに漏れ込む垂直スミアからV−OBのH−OBに漏れ込む水平スミアは、−160dB程度で無視できる。
3A, the OB representative value signal is also input to the comparison unit 55 to calculate the maximum value of the OB representative value, and is also input to the comparison unit 56 to calculate the minimum value of the OB representative value. The subtractor 57 takes the difference between the maximum value of the OB representative value and the minimum value of the OB representative value, and outputs the difference value to the CPU 6 as a V-OB vertical smear.
If the smear amount is greater than or equal to a predetermined reference amount, the horizontal smear that leaks into the H-OB next to the effective pixel is equal to or greater than the vertical smear of about -80 dB. However, the horizontal smear leaking from the vertical smear leaking into the V-OB to the H-OB of the V-OB is negligible at about -160 dB.

したがって、図3Aの平均部47でV−OBのH−OBを加算平均し、基準メモリ部48に記憶しておいた基準V−OBのH−OB加算平均を、D.AGC部50で温度やFEP(Analog Front End:AFEとも称す)の増幅度を補正した基準H−OBと、除算器51で比をとれば、その垂直周期の暗電流増倍量が算出できる。
基準メモリ部48に記憶しておいた基準V−OBのH−OB加算平均と、有効画素の基準暗電流との、減算器46での差分を、有効画素OB差分基準暗電流として画面メモリ部49に記憶しておき、有効画素基準暗電流と暗電流増倍量とを乗算器52で乗算すれば、その垂直周期の有効画素OB差分暗電流が算出できる。そして、算出された有効画素OB差分暗電流とOB代表値とを加算器45で加算し、減算器19に出力する。
なお、図3Aの平均部47で加算平均を算出するかわりに、図3Bの比較部54を用い、H−OBの最小値を算出しても良い。
Therefore, the averaging unit 47 of FIG. 3A adds and averages the V-OB H-OB, and stores the reference V-OB H-OB addition average stored in the reference memory unit 48 as D.D. The dark current multiplication amount of the vertical cycle can be calculated by taking a ratio with the reference H-OB in which the AGC unit 50 corrects the temperature and the FEP (Analog Front End: AFE) amplification degree and the divider 51.
The difference in the subtractor 46 between the H-OB addition average of the reference V-OB stored in the reference memory unit 48 and the reference dark current of the effective pixel is used as the effective pixel OB difference reference dark current. If the effective pixel reference dark current and the dark current multiplication amount are multiplied by the multiplier 52, the effective pixel OB differential dark current of the vertical period can be calculated. Then, the calculated effective pixel OB differential dark current and the OB representative value are added by the adder 45 and output to the subtracter 19.
Instead of calculating the addition average by the averaging unit 47 of FIG. 3A, the minimum value of H-OB may be calculated using the comparison unit 54 of FIG. 3B.

スミア量が所定の基準量未満なら、有効画素の横のH−OBに漏れ込む水平スミアも、−80dB程度の垂直スミアと等しいか小さく、無視できる。したがって、平均部47で有効画素の横のH−OBを加算平均し、基準メモリ部48に記憶しておいた基準の有効画素の横のH−OB加算平均を、D.AGC部50で温度やAFEの増幅度を補正した基準H−OBと、除算器51で比をとれば、その水平周期の暗電流増倍量が算出できる。
基準メモリ部48に記憶しておいた基準H−OB加算平均と、有効画素の基準暗電流との差分を、減算器46で算出し、算出した差分を有効画素OB差分基準暗電流として画面メモリ49に記憶しておき、記憶した有効画素OB差分基準暗電流と暗電流増倍量とを乗算器52で乗算する。この乗算の結果、その水平周期の有効画素OB差分暗電流が算出できる。さらに、算出した水平周期の有効画素OB差分暗電流とOB代表値とを加算器45で加算し、加算した値を減算器19に出力する。
If the smear amount is less than a predetermined reference amount, the horizontal smear leaking into the H-OB next to the effective pixel is equal to or smaller than the vertical smear of about -80 dB and can be ignored. Therefore, the averaging unit 47 adds and averages the horizontal H-OBs of the effective pixels and stores the horizontal H-OB adding average of the reference effective pixels stored in the reference memory unit 48. The dark current multiplication amount in the horizontal period can be calculated by taking a ratio between the reference H-OB in which the AGC unit 50 corrects the temperature and the AFE amplification degree and the divider 51.
The difference between the reference H-OB addition average stored in the reference memory unit 48 and the reference dark current of the effective pixel is calculated by the subtractor 46, and the calculated difference is used as the effective pixel OB difference reference dark current in the screen memory. 49, and the multiplier 52 multiplies the effective pixel OB difference reference dark current and dark current multiplication amount stored therein. As a result of this multiplication, the effective pixel OB differential dark current of the horizontal period can be calculated. Further, the calculated effective pixel OB differential dark current of the horizontal period and the OB representative value are added by the adder 45, and the added value is output to the subtractor 19.

同様に、図2Aと、図3B、を用いて、V−OBの2番目に小さい信号の検出と、暗電流増倍量算出用のOB代表値を検出する処理動作について説明する。
図2A、図3Bにおいて、CPU6は、比較部53及び54に、最小値信号の上限値と2番目に小さい信号の上限値をそれぞれ設定しておく。ここで、これらの上限値は、例えば、信号の輝度を数値化したものを用いてよい。なお、以下で述べる各値についても、同様の基準で数値化されたものである。
比較部54は、設定されている上限値とV−OB領域の映像信号の各画素の値とを比較し、値が小さい方の信号(V−OBの映像信号)をV−OBの最小値の信号としてラインメモリ部44に記憶し、設定する。そして、値が大きい方の信号を、比較部53に出力する(開始ステップ71、最小値記憶ステップ72)。
比較部53は、大きい方の信号の値と、2番目に小さい信号として設定されている上限値とを比較し、小さい方の信号をV−OBの2番目に小さい信号としてラインメモリ部43に記憶し、設定する(2番目に小さい値記憶ステップ73)。
Similarly, the processing operation for detecting the second smallest signal of V-OB and detecting the OB representative value for dark current multiplication amount calculation will be described with reference to FIGS. 2A and 3B.
2A and 3B, the CPU 6 sets the upper limit value of the minimum value signal and the upper limit value of the second smallest signal in the comparison units 53 and 54, respectively. Here, as these upper limit values, for example, a numerical value of the luminance of the signal may be used. Each value described below is also quantified according to the same standard.
The comparison unit 54 compares the set upper limit value with the value of each pixel of the video signal in the V-OB area, and uses the signal with the smaller value (V-OB video signal) as the minimum value of V-OB. Is stored in the line memory unit 44 and set. Then, the signal having the larger value is output to the comparison unit 53 (start step 71, minimum value storage step 72).
The comparison unit 53 compares the value of the larger signal with the upper limit value set as the second smallest signal, and sets the smaller signal to the line memory unit 43 as the second smallest signal of V-OB. Store and set (second smallest value storage step 73).

同様に、比較部53は、Nライン目のV−OBNの映像信号の画素の値と、ラインメモリ部44の最小値とを各画素間で比較し、値が小さいほうの信号を各画素間最小値の信号としてラインメモリ部44に記憶する。値が大きい方の信号は、各画素の比較1の信号として、比較部42に出力する(比較1信号出力ステップ74)。
比較部54が最後のV−OBの比較処理を終了すると、比較部53は、2番目に小さい信号を暗電流増倍量算出用のOB代表値信号として除算器51に出力し(OB代表値出力ステップ75)、代表値検出処理を終了する(終了ステップ76)。
Similarly, the comparison unit 53 compares the pixel value of the V-OBN video signal of the Nth line with the minimum value of the line memory unit 44 between the pixels, and the signal with the smaller value is compared between the pixels. The signal is stored in the line memory unit 44 as a minimum value signal. The signal having the larger value is output to the comparison unit 42 as a comparison 1 signal for each pixel (comparison 1 signal output step 74).
When the comparison unit 54 finishes the last V-OB comparison process, the comparison unit 53 outputs the second smallest signal to the divider 51 as an OB representative value signal for dark current multiplication amount calculation (OB representative value). The output step 75) ends the representative value detection process (end step 76).

つまり、V−OBライン内のH−OBには、有効画素の高輝度信号の垂直スミア成分も水平スミア成分もないので、V−OBの暗電流の代表値として、V−OBライン内のH−OBを加算平均し、非増倍時の基準温度のEM−CCDのV−OBライン内のH−OBを加算平均し、温度補正したものをV−OBの暗電流の代表値で除算することで、暗電流の各画面V−OB時の増倍率が検出でき、各垂直周期の増倍率が推定できる。
または、V−OBの最小値からN番目の値にも、有効画素の高輝度信号の垂直スミア成分も水平スミア成分もないので、V−OBの暗電流の代表値として、V−OBの最小値からN番目の値を算出し、非増倍時のV−OBの最小値からN番目の値を算出し温度補正したものを除算しても、暗電流の各画面V−OB時の増倍率が検出でき、各垂直周期の増倍率が推定できる。
That is, since the H-OB in the V-OB line has neither a vertical smear component nor a horizontal smear component of the high luminance signal of the effective pixel, the H-OB in the V-OB line can be used as a representative value of the dark current of the V-OB. -OB is added and averaged, H-OB in the V-OB line of the EM-CCD at the reference temperature at the time of non-multiplication is added and averaged, and the temperature corrected is divided by the representative value of the dark current of V-OB. Thus, it is possible to detect the multiplication factor for each screen V-OB of dark current, and to estimate the multiplication factor for each vertical period.
Alternatively, neither the vertical smear component nor the horizontal smear component of the high luminance signal of the effective pixel is present in the Nth value from the minimum value of V-OB, so that the minimum value of V-OB is the representative value of the dark current of V-OB. Even if the N-th value is calculated from the value, the N-th value is calculated from the minimum value of V-OB at the time of non-multiplication, and the temperature correction is divided, the dark current increases at each screen V-OB. The magnification can be detected, and the multiplication factor for each vertical period can be estimated.

上記の様に本発明の実施例1によれば、電子増倍型CCD撮像素子の高電子増倍率における垂直映像期間が始まる部分の暗部むら(ダークシェーディング)を電子増倍率の変化に対応して補正することができる。電子増倍率に比例して暗電流レベルが増加するEM−CCDの一般に4水平走査ラインと少ないV−OBであっても、暗電流レベルが異常に高い白キズと呼ばれる画素の影響も暗電流レベルが異常に低い黒キズと呼ばれる画素の影響も、飛び込み雑音の影響もほとんど受けない。   As described above, according to the first embodiment of the present invention, the dark portion unevenness (dark shading) of the portion where the vertical video period starts at the high electron multiplication factor of the electron multiplying CCD image pickup device corresponds to the change of the electron multiplication factor. It can be corrected. Even in the case of EM-CCD, in which the dark current level increases in proportion to the electron multiplication factor, generally four horizontal scanning lines and few V-OBs, the dark current level is also affected by a pixel called a white scratch with an abnormally high dark current level. However, there is almost no influence of pixels called “black scratches” or abnormal noise.

実施例1と同様な構成と動作と効果は省略し、相違点のみ説明する。
OBを備えるCCD撮像素子と利得可変増幅(AGC)部とラインメモリ部と画面メモリ部とを有する固体撮像装置の撮像方法において、暗電流量に強く相関する検出量として、V−OBの垂直画素の最小値(スミア代表値)の水平方向最小値、またはV−OBの最小値、またはV−OBのH−OBの最小値のいずれかを暗電流量の代表値として、暗電流量の代表値の画面間の循環平均を、暗電流量の平均値とする。
具体的には、暗電流量に強く相関する検出量として、スミア代表値として検出している、V−OBの垂直画素の最小値をの水平方向に最小値を暗電流量の代表値として算出する。またはV−OBの最小値を検出し暗電流量の代表値としても良い。またはV−OBのH−OBの最小値を検出し暗電流量の代表値としても良い。
The configuration, operation, and effects similar to those of the first embodiment are omitted, and only differences are described.
In an imaging method of a solid-state imaging device having a CCD imaging device including an OB, a variable gain amplification (AGC) unit, a line memory unit, and a screen memory unit, a vertical pixel of V-OB is used as a detection amount that strongly correlates with the amount of dark current The representative value of the dark current amount, with either the horizontal minimum value of the minimum value (smear representative value), the minimum value of V-OB, or the minimum value of H-OB of V-OB as the representative value of dark current amount The average value of the dark current amount is defined as the circulation average of the values.
Specifically, as a detection amount strongly correlated with the dark current amount, the minimum value of the vertical pixel of the V-OB detected as a smear representative value is calculated as the representative value of the dark current amount in the horizontal direction. To do. Alternatively, the minimum value of V-OB may be detected and used as the representative value of the dark current amount. Alternatively, the minimum value of H-OB of V-OB may be detected and used as a representative value of the dark current amount.

本発明の実施例1で説明したように、図2Aから図2Bの実施例には、暗電流増倍量を検出する機能がある。そこで、画面内で循環平均するレジスタと加算器と係数器からなる平均部68と、画面間で循環平均するレジスタと加算器と係数器からなる平均部69を、実施例1の検出部に追加した図2Aから図2Bの全体の構成にすれば良い。この場合、平均部68と平均部69以外の構成と動作は、実施例1と同一なので説明を省略する。
図2Aから図2Bおいて、検出部18A〜18Dから出力される水平周期暗電流増倍量または画面内平均暗電流増倍量から、平均部68の循環平均で、画面内平均暗電流増倍量または画面間平均暗電流増倍量として算出され、外部(図1AのCPU6若しくは図1BのCPU6’)に出力すると共に平均部69に出力される。そして、平均部69に入力された電流増倍量は、平均部69の循環平均で、画面間平均暗電流増倍量として算出され、図1AのCPU6若しくは図1BのCPU6’に出力される。
As described in the first embodiment of the present invention, the embodiment of FIGS. 2A to 2B has a function of detecting the dark current multiplication amount. Therefore, an averaging unit 68 consisting of a register, an adder, and a coefficient unit that circulates and averages within the screen, and an averaging unit 69 consisting of a register, adder, and a coefficient unit that circulates between the screens are added to the detection unit of the first embodiment. The entire configuration shown in FIGS. 2A to 2B may be used. In this case, since the configuration and operation other than the averaging unit 68 and the averaging unit 69 are the same as those in the first embodiment, the description thereof is omitted.
In FIG. 2A to FIG. 2B, the average dark current multiplication in the screen is performed by the average of the average unit 68 based on the horizontal period dark current multiplication amount or the average dark current multiplication amount in the screen output from the detection units 18A to 18D. Or the average dark current multiplication amount between screens, and is output to the outside (CPU 6 in FIG. 1A or CPU 6 ′ in FIG. 1B) and to the averaging unit 69. Then, the current multiplication amount input to the averaging unit 69 is calculated as the inter-screen average dark current multiplication amount by the circulation average of the averaging unit 69, and is output to the CPU 6 in FIG. 1A or the CPU 6 ′ in FIG. 1B.

図1A若しくは図1Bにおいて、CPU6は、垂直転送駆動部(w/TG)13を制御し、蓄積時間を制御する。また、CPU6はFEPの4(若しくは4,10,12)を制御し、利得可変増幅を制御する。また、CPU6は、増倍検出含む映像信号処理部5を制御し、有効画素信号の暗電流成分の利得可変増幅を制御し、有効画素信号から減算し、出力する。   In FIG. 1A or 1B, the CPU 6 controls the vertical transfer driver (w / TG) 13 to control the accumulation time. Further, the CPU 6 controls 4 (or 4, 10, 12) of the FEP and controls variable gain amplification. Further, the CPU 6 controls the video signal processing unit 5 including multiplication detection, controls the variable gain amplification of the dark current component of the effective pixel signal, subtracts it from the effective pixel signal, and outputs it.

上記の様に本発明の実施例2によれば、電子増倍型CCD撮像素子の高電子増倍率における垂直映像期間が始まる部分の暗部むら(ダークシェーディング)を電子増倍率の変化に対応して補正することができるだけでなく、することができる。   As described above, according to the second embodiment of the present invention, the dark portion unevenness (dark shading) of the portion where the vertical video period starts at the high electron multiplication factor of the electron multiplying CCD image pickup device corresponds to the change of the electron multiplication factor. It can not only be corrected.

実施例1や実施例2と同様な構成と動作と効果は省略し、相違点のみ説明する。
電子増倍型CCD撮像素子は、電子増倍型CCD撮像素子は、電子増倍時に白キズが非常に大きい。そのため、CCD撮像素子の受光面の有効画素から出力される水平走査期間の映像信号だけでなく、各水平走査期間の映像の基準電位となるおよそ20ヶの水平遮光画素(H−OB)の平均値が白キズの影響で不安定になる。
そのため、前記CCD撮像素子の受光面の左または右の少なくとも一方の遮光した画素から出力される信号を取得する第3の取得部で取得した遮光した画素から出力される信号の下限のN番目からN+M番目までの平均値をとることにより、白キズの影響を受けない第2の代表値を算出する。
The configuration, operation, and effects similar to those of the first and second embodiments are omitted, and only the differences are described.
The electron multiplication type CCD image pickup device has a very large white defect at the time of electron multiplication. Therefore, not only the video signal of the horizontal scanning period output from the effective pixels on the light receiving surface of the CCD image sensor, but also an average of about 20 horizontal light-shielding pixels (H-OB) that serve as the reference potential of the video during each horizontal scanning period. The value becomes unstable due to white scratches.
Therefore, from the Nth lower limit of the signal output from the light-shielded pixel acquired by the third acquisition unit that acquires the signal output from at least one light-shielded pixel on the left or right of the light receiving surface of the CCD image sensor. By taking an average value up to the (N + M) th, a second representative value that is not affected by white scratches is calculated.

それでも、垂直帰線期間が終わり垂直映像期間が始まる画面上端(Top V)部分では、各電源電圧とGND電位が変動し、第2の代表値も変動する。
そこで、垂直帰線期間が終わり垂直映像期間が始まる画面上端部分に相当する垂直走査期間では、前記前記第3の取得部で取得した遮光した画素から出力される信号の第2の代表値を、水平走査期間において2次曲線補間して算出した暗部補正信号を、前記第2の代表値を画面上端部分の水平走査期間の映像信号から減算してTop Vのダークシェーディングを補正する。
Nevertheless, at the upper end (Top V) portion of the screen where the vertical blanking period ends and the vertical video period starts, each power supply voltage and the GND potential fluctuate, and the second representative value also fluctuates.
Therefore, in the vertical scanning period corresponding to the upper end portion of the screen where the vertical blanking period ends and the vertical video period starts, the second representative value of the signal output from the shielded pixel acquired by the third acquisition unit is A dark portion correction signal calculated by quadratic curve interpolation in the horizontal scanning period is subtracted from the second representative value from the video signal in the horizontal scanning period at the upper end portion of the screen to correct the Top V dark shading.

次に、図2Cと図3Cに示す実施例について説明する。図2Cと図2Aとの相違は、画像メモリ部49やD.AGC50の代わりに、比較部84〜88と平均部81と基準メモリ部82と2次曲線補間平均部83とがあることである。   Next, the embodiment shown in FIGS. 2C and 3C will be described. The difference between FIG. 2C and FIG. Instead of the AGC 50, there are comparison units 84 to 88, an average unit 81, a reference memory unit 82, and a quadratic curve interpolation average unit 83.

図2Aと同一部分の動作説明は省略し、比較部84〜88と平均部81と基準メモリ部82と2次曲線補間平均部83の動作を、図3Aと同一部分の動作説明は省略し、図3Cを用いて、説明する。   2A is omitted, the operations of the comparison units 84 to 88, the averaging unit 81, the reference memory unit 82, and the quadratic curve interpolation averaging unit 83 are omitted. This will be described with reference to FIG. 3C.

92では、比較部84〜88の値を信号の上限値にし、上限値とH-OB1の信号を比較し、小さいH-OB1の信号を最小値の信号として比較部88に記憶する。   At 92, the values of the comparison units 84 to 88 are set to the upper limit value of the signal, the upper limit value is compared with the H-OB1 signal, and the smaller H-OB1 signal is stored in the comparison unit 88 as the minimum value signal.

93では、最小値の信号とH-OB2の信号を比較し、小さい方を最小値の信号として比較部88に記憶し、大きい方を2番目に小さい信号として上限値と比較し小さい方の信号を2番目に小さい信号として比較部87に記憶する。   In 93, the minimum value signal and the H-OB2 signal are compared, the smaller one is stored in the comparison unit 88 as the minimum value signal, and the smaller one is compared with the upper limit value as the second smallest signal. Is stored in the comparator 87 as the second smallest signal.

94では、最小値の信号とH-OB3の信号を比較し、小さい方を最小値の信号として比較部88に記憶し、大きい方を2番目に小さい信号と比較し小さい方の信号を2番目に小さい信号として比較部87に記憶し、大きい方を3番目に小さい信号として上限値と比較し小さい方の信号を3番目に小さい信号として比較部86に記憶する。   In 94, the minimum value signal is compared with the H-OB3 signal, the smaller one is stored in the comparator 88 as the minimum value signal, the larger one is compared with the second smallest signal, and the smaller one is second. The smaller signal is stored in the comparator 87, the larger signal is compared with the upper limit value as the third smallest signal, and the smaller signal is stored in the comparator 86 as the third smallest signal.

95では、最小値の信号とH-OB4の信号を比較し、小さい方を最小値の信号として比較部88に記憶し、大きい方を2番目に小さい信号と比較し小さい方の信号を2番目に小さい信号として比較部87に記憶し、大大きい方を3番目に小さい信号として上限値と比較し小さい方の信号を3番目に小さい信号として比較部86に記憶し、大きい方を4番目に小さい信号として上限値と比較し小さい方の信号を4番目に小さい信号として比較部85に記憶する。   95, the minimum value signal is compared with the H-OB4 signal, the smaller one is stored in the comparison unit 88 as the minimum value signal, the larger one is compared with the second smallest signal, and the smaller signal is second. Is stored in the comparator 87 as the smaller signal, the larger one is compared with the upper limit value as the third smallest signal, the smaller signal is stored in the comparator 86 as the third smaller signal, and the larger signal is fourth. The smaller signal is compared with the upper limit value as a small signal, and the smaller signal is stored in the comparator 85 as the fourth smallest signal.

96では、最小値の信号とH-OB5の信号を比較し、小さい方を最小値の信号として比較部88に記憶し、大きい方を2番目に小さい信号と比較し小さい方の信号を2番目に小さい信号として比較部87に記憶し、大大きい方を3番目に小さい信号として上限値と比較し小さい方の信号を3番目に小さい信号として比較部86に記憶し、大きい方を4番目に小さい信号として上限値と比較し小さい方の信号を4番目に小さい信号として比較部85に記憶し、大きい方を5番目に小さい信号として上限値と比較し小さい方の信号を5番目に小さい信号として比較部84に記憶する。   In 96, the minimum value signal is compared with the H-OB5 signal, the smaller one is stored in the comparison unit 88 as the minimum value signal, the larger one is compared with the second smallest signal, and the smaller one is second. Is stored in the comparator 87 as the smaller signal, the larger one is compared with the upper limit value as the third smallest signal, the smaller signal is stored in the comparator 86 as the third smaller signal, and the larger signal is fourth. The smaller signal is compared with the upper limit value as a small signal, and the smaller signal is stored in the comparator 85 as the fourth smallest signal, and the smaller signal is compared with the upper limit value as the fifth smallest signal and the smaller signal is the fifth smallest signal. Is stored in the comparison unit 84.

97では、最小値の信号とH-OBNの信号を比較し、小さい方を最小値の信号として比較部88に記憶し、大きい方を2番目に小さい信号と比較し小さい方の信号を2番目に小さい信号として比較部87に記憶し、大大きい方を3番目に小さい信号として上限値と比較し小さい方の信号を3番目に小さい信号として比較部86に記憶し、大きい方を4番目に小さい信号として上限値と比較し小さい方の信号を4番目に小さい信号として比較部85に記憶し、大きい方を5番目に小さい信号として上限値と比較し小さい方の信号を5番目に小さい信号として比較部84に記憶する。   In 97, the minimum value signal and the H-OBN signal are compared, the smaller one is stored as the minimum value signal in the comparison unit 88, the larger one is compared with the second smallest signal, and the smaller one is second. Is stored in the comparator 87 as the smaller signal, the larger one is compared with the upper limit value as the third smallest signal, the smaller signal is stored in the comparator 86 as the third smaller signal, and the larger signal is fourth. The smaller signal is compared with the upper limit value as a small signal, and the smaller signal is stored in the comparator 85 as the fourth smallest signal, and the smaller signal is compared with the upper limit value as the fifth smallest signal and the smaller signal is the fifth smallest signal. Is stored in the comparison unit 84.

98では、3番目に小さい信号と4番目に小さい信号と5番目に小さい信号を平均部81で平均し、記憶部82に記憶する。   At 98, the third smallest signal, the fourth smallest signal, and the fifth smallest signal are averaged by the averaging unit 81 and stored in the storage unit 82.

99では、二次曲線補正部83で
Hdn=Hn*(5/8)+Hn+1*(5/8)−Hn-1*(1/8)−Hn+2*(1/8)
と二次曲線補正平均した信号を暗電流補正用のH-OB代表値信号とする
99, the quadratic curve correction unit 83
Hdn = Hn * (5/8) + Hn + 1 * (5/8) −Hn-1 * (1/8) −Hn + 2 * (1/8)
And the second-order curve correction average signal is used as the H-OB representative value signal for dark current correction

上記の様に本発明の実施例3によれば、電子増倍型CCD撮像素子の高電子増倍率における垂直映像期間が始まる部分の暗部むら(ダークシェーディング)を電子増倍率の変化に対応して補正することができるだけでなく、電子増倍率に比例して暗電流レベルが増加するEM−CCDのH−OBであっても、暗電流レベルが異常に高い白キズと呼ばれる画素の影響も暗電流レベルが異常に低い黒キズと呼ばれる画素の影響も、スパイク状やリンギング状の飛び込み雑音の影響もほとんど受けなくすることができる。   As described above, according to the third embodiment of the present invention, the dark portion unevenness (dark shading) of the portion where the vertical video period starts at the high electron multiplication factor of the electron multiplying CCD image pickup device corresponds to the change of the electron multiplication factor. Even in the case of EM-CCD H-OBs that not only can be corrected, but also increase in the dark current level in proportion to the electron multiplication factor, the influence of pixels called white scratches with an abnormally high dark current level is also caused by dark current. The influence of pixels called black scratches with an abnormally low level can be made almost unaffected by spiked or ringing diving noise.

1:撮像装置、2:光学系、11:色分解光学系、3,7,9:CCD撮像素子、
4,10,12:FEP、5:増倍検出処理部を含む映像信号処理部、6:CPU、
8:温度センサ、13:垂直転送駆動部(w/TG)、14,15,16:CMG駆動部、
17:冷却部、18:検出部、19,46,57:減算器、45:加算器、51:除算器、
52:乗算器、47,68,69,81:平均部、43,44:ラインメモリ部、
48,82:基準メモリ部、83:2次曲線補間平均部、50:D.AGC、
49:画像メモリ部、41,42,53〜56,84〜88:比較部、
401:CDS、402:AGC部、403:ADC、404:TG、
1: imaging device, 2: optical system, 11: color separation optical system, 3, 7, 9: CCD imaging device,
4, 10, 12: FEP, 5: Video signal processing unit including a multiplication detection processing unit, 6: CPU,
8: Temperature sensor, 13: Vertical transfer driver (w / TG), 14, 15, 16: CMG driver,
17: Cooling unit, 18: Detection unit, 19, 46, 57: Subtractor, 45: Adder, 51: Divider
52: Multiplier, 47, 68, 69, 81: Average part, 43, 44: Line memory part,
48, 82: reference memory unit, 83: quadratic curve interpolation average unit, 50: D.D. AGC,
49: Image memory unit, 41, 42, 53 to 56, 84 to 88: Comparison unit,
401: CDS, 402: AGC unit, 403: ADC, 404: TG,

Claims (4)

電子増倍型CCD撮像素子を用いた撮像装置において、前記電子増倍型CCD撮像素子の電子増倍率を算出し、該算出した電子増倍率に連動して、垂直帰線期間が終わり垂直映像期間が始まる画面上端(Top V)部分での暗部(ダーク)むら(シェーディング)を予め用意しておいた画面上端むら信号に前記算出した電子増倍率をかけて得た画面上端補正信号を画面上端部分の水平走査期間の映像信号から減算して、補正することを特徴とする撮像方法。   In an imaging apparatus using an electron multiplying CCD image sensor, an electron multiplying factor of the electron multiplying CCD image sensor is calculated, and a vertical blanking period ends in conjunction with the calculated electron multiplying factor. The screen top edge correction signal obtained by multiplying the screen top edge non-uniformity signal (shading) at the screen top edge (Top V) where the start of the image is prepared in advance with the calculated electronic multiplication factor. An imaging method comprising: subtracting from a video signal in a horizontal scanning period to correct the video signal. 電子増倍型CCD撮像素子と該CCD撮像素子の撮像素子の温度検出手段と該CCD撮像素子の電子増倍電極の駆動手段と暗部むらを補正する暗部補正部と高電子増倍率と入射光量との積の積分量を算出し、該算出した積分量から電子増倍率を近似算出する手段とを有する撮像装置において、該近似算出した電子増倍率に正に相関(電子増倍率に比例)して、垂直帰線期間が終わり垂直映像期間が始まる画面上端部分の水平走査期間の映像信号の暗部むらを暗部補正部で、予め用意しておいた画面上端むら信号に前記算出した電子増倍率をかけて得た画面上端補正信号を画面上端部分の水平走査期間の映像信号から減算することを特徴とするカラー固体撮像装置。   Electron multiplication type CCD image pickup device, temperature detection means for the image pickup device of the CCD image pickup device, drive means for the electron multiplying electrode of the CCD image pickup device, dark portion correction unit for correcting dark portion unevenness, high electron multiplication factor and incident light quantity In an imaging apparatus having a means for calculating an integral amount of a product of and calculating an approximated electron multiplication factor from the calculated integral amount, the imaging device has a positive correlation (proportional to the electronic multiplication factor) The dark portion unevenness of the video signal in the horizontal scanning period at the upper end portion of the screen at the end of the vertical blanking period and the start of the vertical video period is multiplied by the calculated electronic multiplication factor by the dark portion correction unit. A color solid-state imaging device, comprising: subtracting the screen upper end correction signal obtained from the image signal of the horizontal scanning period at the upper end portion of the screen. 電子増倍型CCD撮像素子と該CCD撮像素子の受光面の有効画素から出力される画像信号を取得する第1の取得部と前記CCD撮像素子の受光面の上部または下部の少なくとも一方の遮光した画素から出力される信号を取得する第2の取得部を有する撮像装置において、前記第2の取得部で取得した遮光した画素の左右(V-OBのH-OB)から出力される信号の中央付近の平均値等の第1の代表値(電子増倍暗電流量)を算出する手段とを有し、各温度の非増倍時の第1の代表値の基準値(基準暗電流量)を測定しておき、該基準値と第1の代表値との比(電子増倍率)の3垂直周期以上の平均に予め測定しておいた電子増倍時の画面上端むら信号をかけて得た画面上端補正信号を、水平走査期間の映像信号から減算することを特徴とする撮像装置。   An electron multiplying CCD image sensor, a first acquisition unit that acquires an image signal output from an effective pixel on the light receiving surface of the CCD image sensor, and at least one of the upper and lower portions of the light receiving surface of the CCD image sensor are shielded from light In the imaging apparatus having the second acquisition unit that acquires the signal output from the pixel, the center of the signal output from the left and right (H-OB of V-OB) of the shielded pixel acquired by the second acquisition unit Means for calculating a first representative value (electron-multiplied dark current amount) such as an average value in the vicinity, and a reference value (reference dark current amount) of the first representative value when each temperature is not multiplied Is obtained by multiplying the average of the ratio between the reference value and the first representative value (electron multiplication factor) over 3 vertical periods by the non-uniformity at the top edge of the screen at the time of electron multiplication. An image pickup apparatus characterized by subtracting the screen upper end correction signal from the video signal in the horizontal scanning period. . 電子増倍型CCD撮像素子と該CCD撮像素子の受光面の有効画素から出力される画像信号を取得する第1の取得部と前記CCD撮像素子の受光面の左または右の少なくとも一方の遮光した画素から出力される信号を取得する第3の取得部を有し、前記第3の取得部で取得した遮光した画素から出力される信号の(下限のN番目からN+M番目までの平均値等の)第2の代表値を算出する手段とを有し、少なくとも垂直帰線期間が終わり垂直映像期間が始まる画面上端部分に相当する垂直走査期間では、前記前記第3の取得部で取得した遮光した画素から出力される信号の第2の代表値を、水平走査期間において2次曲線補間して算出した暗部補正信号を、前記第2の代表値を画面上端部分の水平走査期間の映像信号から減算することを特徴とする撮像装置。   An electron multiplying CCD image sensor, a first acquisition unit that acquires an image signal output from an effective pixel on the light receiving surface of the CCD image sensor, and at least one of the left and right sides of the light receiving surface of the CCD image sensor are shielded from light A third acquisition unit that acquires a signal output from the pixel, and the signal output from the light-shielded pixel acquired by the third acquisition unit (such as an average value from the lower limit Nth to N + Mth) ) Means for calculating a second representative value, and at least in the vertical scanning period corresponding to the upper end portion of the screen where the vertical blanking period ends and the vertical video period starts, the light shielding acquired by the third acquisition unit is performed. Subtract the second representative value of the signal output from the pixel by performing quadratic curve interpolation in the horizontal scanning period, and subtract the second representative value from the video signal in the horizontal scanning period at the upper end of the screen. Features to do Imaging device for.
JP2012008929A 2012-01-19 2012-01-19 Imaging method and imaging apparatus Pending JP2013150144A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2012008929A JP2013150144A (en) 2012-01-19 2012-01-19 Imaging method and imaging apparatus

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2012008929A JP2013150144A (en) 2012-01-19 2012-01-19 Imaging method and imaging apparatus

Publications (1)

Publication Number Publication Date
JP2013150144A true JP2013150144A (en) 2013-08-01

Family

ID=49047245

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2012008929A Pending JP2013150144A (en) 2012-01-19 2012-01-19 Imaging method and imaging apparatus

Country Status (1)

Country Link
JP (1) JP2013150144A (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2017086010A1 (en) * 2015-11-19 2017-05-26 オリンパス株式会社 Inspecting device, image processing device, correction value calculating method, image processing method, inspection program and correction program
WO2020144996A1 (en) * 2019-01-10 2020-07-16 ソニーセミコンダクタソリューションズ株式会社 Imaging device and calibration method
CN112312125A (en) * 2020-10-21 2021-02-02 中国科学院光电技术研究所 Multi-tap EMCCD (Electron multiplying Charge coupled device) non-uniformity comprehensive correction method
CN113709393A (en) * 2021-08-20 2021-11-26 国光电器股份有限公司 Calibration curve acquisition method and calibration method for optical dark area of image sensor

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2005323041A (en) * 2004-05-07 2005-11-17 Nikon Corp Clamp level adjusting device and electronic camera
WO2010073541A1 (en) * 2008-12-24 2010-07-01 株式会社日立国際電気 Imaging method and imaging device

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2005323041A (en) * 2004-05-07 2005-11-17 Nikon Corp Clamp level adjusting device and electronic camera
WO2010073541A1 (en) * 2008-12-24 2010-07-01 株式会社日立国際電気 Imaging method and imaging device

Cited By (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2017086010A1 (en) * 2015-11-19 2017-05-26 オリンパス株式会社 Inspecting device, image processing device, correction value calculating method, image processing method, inspection program and correction program
JPWO2017086010A1 (en) * 2015-11-19 2018-02-15 オリンパス株式会社 Inspection device, image processing device, correction value calculation method, image processing method, inspection program, and correction program
CN108141551A (en) * 2015-11-19 2018-06-08 奥林巴斯株式会社 Check device, correction value calculating method, image processing method, checks program and correction program at image processing apparatus
US10735681B2 (en) 2015-11-19 2020-08-04 Olympus Corporation Inspection device, image processing device, correction value calculating method, image processing method and computer readable recording medium
CN108141551B (en) * 2015-11-19 2020-08-11 奥林巴斯株式会社 Inspection device, image processing device, correction value calculation method, image processing method, and storage medium
WO2020144996A1 (en) * 2019-01-10 2020-07-16 ソニーセミコンダクタソリューションズ株式会社 Imaging device and calibration method
CN113167656A (en) * 2019-01-10 2021-07-23 索尼半导体解决方案公司 Imaging apparatus and calibration method
JPWO2020144996A1 (en) * 2019-01-10 2021-11-25 ソニーセミコンダクタソリューションズ株式会社 Imaging device and calibration method
JP7477464B2 (en) 2019-01-10 2024-05-01 ソニーセミコンダクタソリューションズ株式会社 Imaging device and calibration method
CN112312125A (en) * 2020-10-21 2021-02-02 中国科学院光电技术研究所 Multi-tap EMCCD (Electron multiplying Charge coupled device) non-uniformity comprehensive correction method
CN113709393A (en) * 2021-08-20 2021-11-26 国光电器股份有限公司 Calibration curve acquisition method and calibration method for optical dark area of image sensor
CN113709393B (en) * 2021-08-20 2023-06-27 国光电器股份有限公司 Calibration curve acquisition method and calibration method for optical dark area of image sensor

Similar Documents

Publication Publication Date Title
KR101252275B1 (en) The signal process apparatus and method of the solid-state image pickup device and imaging device
US8988561B2 (en) Imaging apparatus having temperature sensor within image sensor wherein apparatus outputs an image whose quality does not degrade if temperature increases within image sensor
KR101211117B1 (en) Signal processing apparatus and signal processing method for solid-state image pickup element and image pickup apparatus
US8508631B2 (en) Pixel defect detection and correction device, imaging apparatus, pixel defect detection and correction method, and program
KR100825076B1 (en) Image pickup device and noise reduction method thereof
JP5526014B2 (en) Imaging device
KR20060000715A (en) Apparatus and method for improving image quality in a image sensor
JP5520833B2 (en) Imaging method and imaging apparatus
US20090040328A1 (en) Image-pickup apparatus
US10027919B2 (en) Signal processing apparatus, image capturing apparatus, control apparatus, signal processing method, and control method
KR101556468B1 (en) Solidstate imaging device and camera
JP2013150144A (en) Imaging method and imaging apparatus
JP5207926B2 (en) Imaging apparatus and control method thereof
JP2008109639A (en) Imaging device and imaging method
JP2016163234A (en) Imaging apparatus, control method therefor, program and storage medium
JP5411322B2 (en) Imaging apparatus and imaging method
JP5195289B2 (en) Imaging device
JP7134786B2 (en) Imaging device and control method
JP5588729B2 (en) Image signal processing device
JP5271201B2 (en) Image signal processing apparatus and imaging apparatus
JP5500702B2 (en) Imaging method and imaging apparatus
JP2018182366A (en) Imaging device and detecting correcting method of dark current fluctuation and imaging device adjusting method
JP2013153380A (en) Imaging apparatus and imaging method
JP2006157341A (en) Smear correcting method and signal processor for solid-state imaging device, and imaging apparatus
JP5395710B2 (en) Imaging device

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20141211

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20151027

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20151105

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20151225

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20160310

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20160915