JP2013152979A - Solar cell module and manufacturing method therefor - Google Patents

Solar cell module and manufacturing method therefor Download PDF

Info

Publication number
JP2013152979A
JP2013152979A JP2012011837A JP2012011837A JP2013152979A JP 2013152979 A JP2013152979 A JP 2013152979A JP 2012011837 A JP2012011837 A JP 2012011837A JP 2012011837 A JP2012011837 A JP 2012011837A JP 2013152979 A JP2013152979 A JP 2013152979A
Authority
JP
Japan
Prior art keywords
solar cell
solder
electrode
receiving surface
thermosetting resin
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2012011837A
Other languages
Japanese (ja)
Other versions
JP5616913B2 (en
Inventor
Tsuneo Hamaguchi
恒夫 濱口
Yoshimi Yabugaki
良美 藪垣
Mitsuhiro Nonogaki
光裕 野々垣
Shinsuke Miyamoto
慎介 宮本
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Electric Corp
Original Assignee
Mitsubishi Electric Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Electric Corp filed Critical Mitsubishi Electric Corp
Priority to JP2012011837A priority Critical patent/JP5616913B2/en
Publication of JP2013152979A publication Critical patent/JP2013152979A/en
Application granted granted Critical
Publication of JP5616913B2 publication Critical patent/JP5616913B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E10/00Energy generation through renewable energy sources
    • Y02E10/50Photovoltaic [PV] energy

Landscapes

  • Photovoltaic Devices (AREA)

Abstract

PROBLEM TO BE SOLVED: To provide a low cost solar cell module having a high conversion efficiency in which a wiring material and a thin line electrode can attain a sufficient mechanical bonding strength, and warpage of a solar cell element is reduced, and to provide a manufacturing method therefor.SOLUTION: A solar cell module 100 includes a solar cell element 1, a plurality of thin line electrodes 2a formed on the light-receiving surface 1a of the solar cell element 1, a back electrode formed on the rear surface 1b of the solar cell element 1, and a wiring material 5 for taking out power from the thin line electrodes 2a and the back electrode. A reinforcement electrode 6 wider than the thin line electrodes 2a is provided at an end of the light-receiving surface 1a. The reinforcement electrode 6 and the thin line electrodes 2a are joined to the wiring material 5 using a solder 3. Both sides of the solder joint are covered with a thermosetting resin 4, and a part of the light-receiving surface 1a, not provided with the reinforcement electrode 6 and the thin line electrodes 2a, and the wiring material 5 are bonded by the thermosetting resin 4.

Description

本発明は、太陽電池素子が配線材にて接続された太陽電池モジュール及びその製造方法に関する。   The present invention relates to a solar cell module in which solar cell elements are connected by a wiring material, and a method for manufacturing the same.

従来、太陽電池素子は、シリコン基板と、シリコン基板の光電変換部領域に生成された光生成キャリアを集電する細線電極と、細線電極と接続して、集電した光生成キャリアを出力配線材に伝達するための受光面集電電極(受光面配線材接続用電極)を含んで構成されている。   Conventionally, a solar cell element has a silicon substrate, a thin wire electrode that collects photogenerated carriers generated in the photoelectric conversion region of the silicon substrate, and the light generated carrier that is collected by connecting to the thin wire electrode. Including a light receiving surface current collecting electrode (light receiving surface wiring material connecting electrode) for transmitting to the light source.

出力配線材は、銅(Cu)にて作製された帯状細長の銅箔であり、受光面集電電極(受光面配線材接続用電極)は、この銅箔の配線材を接合するための電極であり、細線電極は樹脂をバインダーとして、銀(Ag)などの良電導材の粒子がフィラーとして含有した導電性ペーストとして焼成される。通常、受光面集電電極と配線材とは、特許文献1に示されるように、はんだで接合される。はんだは、Sn−3Ag−0.5Cu(融点218℃)などのSn主体のPbフリーはんだ、またはPb−Sn(融点183℃)が用いられる。   The output wiring material is a strip-like elongated copper foil made of copper (Cu), and the light-receiving surface current collecting electrode (light-receiving surface wiring material connection electrode) is an electrode for joining the copper foil wiring material. The fine wire electrode is fired as a conductive paste containing resin as a binder and particles of a good conductive material such as silver (Ag) as a filler. Usually, the light-receiving surface current collecting electrode and the wiring member are joined by solder as disclosed in Patent Document 1. As the solder, Sn-based Pb-free solder such as Sn-3Ag-0.5Cu (melting point 218 ° C.) or Pb—Sn (melting point 183 ° C.) is used.

予めシリコン基板に形成した受光面集電電極を用いて配線材の接合を行う上記のような方法においては、以下の二つの問題がある。第1に、受光面集電電極の材料に用いる銀(Ag)が高価であり、幅を1〜2mmで形成するには銀を大量に必要とするため製造コストが高くなる。第2に、太陽電池セルの全長にわたり配線材を接合するが、太陽電池素子のシリコンと配線材の銅との熱膨張率の差により、太陽電池素子が反って破損する場合がある。   The above-described method for bonding wiring members using a light-receiving surface collecting electrode formed in advance on a silicon substrate has the following two problems. First, silver (Ag) used for the material of the light-receiving surface current collecting electrode is expensive, and a large amount of silver is required to form with a width of 1 to 2 mm, resulting in an increase in manufacturing cost. Secondly, the wiring member is joined over the entire length of the solar battery cell, but the solar cell element may be warped and damaged due to the difference in thermal expansion coefficient between silicon of the solar battery element and copper of the wiring material.

そのため、上記問題に対して、特許文献2に示されるように、受光面バス電極を用いずに、配線材を太陽電池の受光面に直接熱硬化性接着剤にて接合する方法が提案されている。すなわち、太陽電池の細線電極に交差するように熱硬化性樹脂を配置し、その上に配線材を配置し、押し付けた状態で、接着剤を熱硬化させて配線材を接続する方法である。細線電極と配線材は、直接接触又は熱硬化性樹脂に含有された導電粒子を介して電気的に接続され、接触を維持する力は熱硬化性樹脂による。   For this reason, as shown in Patent Document 2, a method has been proposed in which a wiring material is directly bonded to a light receiving surface of a solar cell with a thermosetting adhesive without using a light receiving surface bus electrode. Yes. That is, in this method, a thermosetting resin is disposed so as to intersect with the thin wire electrode of the solar cell, and a wiring material is disposed thereon, and in a pressed state, the adhesive is thermally cured to connect the wiring material. The fine wire electrode and the wiring material are directly connected or electrically connected via conductive particles contained in the thermosetting resin, and the force for maintaining the contact is based on the thermosetting resin.

この構成では、細線電極によって集電された光生成キャリアは、配線材に直接流れる。また、受光面集電電極を形成しないため、低コストで製造可能である。また、配線材は、はんだの約1/10のヤング率を持つ樹脂でシリコン基板に接合しているため、太陽電池素子の反りを小さくすることができる。   In this configuration, the photogenerated carriers collected by the thin wire electrodes flow directly to the wiring material. Moreover, since the light receiving surface collecting electrode is not formed, it can be manufactured at low cost. In addition, since the wiring member is bonded to the silicon substrate with a resin having a Young's modulus of about 1/10 that of solder, the warpage of the solar cell element can be reduced.

特開2005−217148号公報JP 2005-217148 A 国際公開第2009/011209号International Publication No. 2009/011209

特許文献2に開示されるように、受光面集電電極を用いずに配線材を熱硬化性樹脂にてシリコン基板に接着する方法を用いると、細線電極と配線材とは接触にて電気的接続をとることとなる。接触による電気抵抗ははんだ接続の場合の約100倍と大きく、細線電極と配線材との接触面積が小さいために許容電流がはんだ接続の場合よりも小さくなるため、電気的特性が劣化してしまう。また、配線材は接合力がはんだの約1/10である熱硬化性樹脂のみで接着しているために、接合信頼性が低下してしまう。   As disclosed in Patent Document 2, when a method of adhering a wiring material to a silicon substrate with a thermosetting resin without using a light-receiving surface collecting electrode is used, the thin wire electrode and the wiring material are electrically contacted with each other. Connection will be taken. The electrical resistance due to contact is about 100 times larger than that in the case of solder connection, and since the allowable area is smaller than in the case of solder connection because the contact area between the thin wire electrode and the wiring material is small, the electrical characteristics deteriorate. . Further, since the wiring material is bonded only with the thermosetting resin whose bonding strength is about 1/10 of that of the solder, the bonding reliability is lowered.

本発明は、上記に鑑みてなされたものであって、配線材と細線電極とが十分な機械的接合強度を得ることができ、変換効率が高く、低コストで、さらに太陽電池素子の反りが小さい太陽電池モジュール及びその製造方法を得ることを目的とする。   The present invention has been made in view of the above, and the wiring material and the fine wire electrode can obtain sufficient mechanical joint strength, high conversion efficiency, low cost, and further warping of the solar cell element. It aims at obtaining a small solar cell module and its manufacturing method.

上述した課題を解決し、目的を達成するために、本発明は、太陽電池素子と、太陽電池素子の受光面に複数の細い線状に形成された細線電極と、太陽電池素子の裏面に形成された裏面電極と、細線電極及び裏面電極から電力を取り出す配線材とを有する太陽電池モジュールであって、受光面の端部に、細線電極よりも幅広に設けられた補強電極を備え、補強電極及び細線電極と配線材とは、はんだを用いてはんだ接合され、はんだ接合された部分の両脇が熱硬化性樹脂で覆われており、受光面の補強電極及び細線電極が設けられていない部分と配線材とは、熱硬化性樹脂で接着されていることを特徴とする。   In order to solve the above-described problems and achieve the object, the present invention provides a solar cell element, a plurality of thin line electrodes formed on the light receiving surface of the solar cell element, and a back surface of the solar cell element. A solar cell module having a back electrode, a thin wire electrode, and a wiring member for taking out power from the back electrode, the reinforcing electrode provided at the end of the light receiving surface wider than the thin wire electrode, The thin wire electrode and the wiring material are soldered using solder, and both sides of the soldered portion are covered with a thermosetting resin, and the reinforcing electrode and the fine wire electrode on the light receiving surface are not provided. The wiring member is bonded with a thermosetting resin.

本発明によれば、配線材と細線電極とが十分な機械的接合強度を得ることができ、変換効率を向上させ、コストダウンを図り、さらに太陽電池素子の反りを小さくできるという効果を奏する。   ADVANTAGE OF THE INVENTION According to this invention, there exists an effect that a wiring material and a thin wire | line electrode can obtain sufficient mechanical joining strength, improve conversion efficiency, aim at cost reduction, and also can make the curvature of a solar cell element small.

図1は、本発明の実施の形態1にかかる太陽電池モジュールの構造を示す図である。FIG. 1 is a diagram showing a structure of a solar cell module according to Embodiment 1 of the present invention. 図2は、実施の形態1にかかる太陽電池モジュールの太陽電池素子と配線材戸の接合部を示す断面図である。FIG. 2 is a cross-sectional view illustrating a joint portion between the solar cell element and the wiring member door of the solar cell module according to the first embodiment. 図3は、本発明の実施の形態2にかかる太陽電池モジュールの太陽電池素子と配線材との接合部を示す断面図である。FIG. 3: is sectional drawing which shows the junction part of the solar cell element and wiring material of the solar cell module concerning Embodiment 2 of this invention. 図4は、本発明の実施の形態3の熱硬化性樹脂のゲル化時間と加熱温度との関係を示す図である。FIG. 4 is a diagram showing the relationship between the gelation time of the thermosetting resin according to Embodiment 3 of the present invention and the heating temperature. 図5は、実施の形態3の配線材表面とはんだと熱硬化性樹脂との接合部を示す断面図である。FIG. 5 is a cross-sectional view illustrating a joint portion between the surface of the wiring material, the solder, and the thermosetting resin according to the third embodiment. 図6は、熱硬化性接着剤が流動性を失いゲル化するまでの時間と加熱温度との関係を示す図である。FIG. 6 is a diagram showing the relationship between the heating time and the time until the thermosetting adhesive loses fluidity and gels. 図7は、受光面の補強電極及び細線電極以外の部分と配線材との接着部について、熱硬化性樹脂とはんだでコートした配線材の接着部断面の拡大模式図である。FIG. 7 is an enlarged schematic view of the cross section of the bonding portion of the wiring material coated with a thermosetting resin and solder, with respect to the bonding portion between the portion other than the reinforcing electrode and the fine wire electrode on the light receiving surface and the wiring material.

以下に、本発明にかかる太陽電池モジュール及びその製造方法の実施の形態を図面に基づいて詳細に説明する。なお、この実施の形態によりこの発明が限定されるものではない。   Embodiments of a solar cell module and a manufacturing method thereof according to the present invention will be described below in detail with reference to the drawings. Note that the present invention is not limited to the embodiments.

実施の形態1.
図1は、本発明の実施の形態1にかかる太陽電池モジュールの断面図である。図1に示すように、太陽電池モジュール100は、複数の太陽電池素子1の受光面1aと裏面1bとを、配線材5を用いて交互に接続した太陽電池ストリング10の受光面1a側に受光面保護材11を配置し、裏面1b側に裏面保護材12を配置し、太陽電池ストリング10と保護材11、12間に封止材13が配置されている。受光面1a上に形成された補強電極6及び細線電極2aは、配線材5にはんだ3で接合され、はんだ接合部の側面を熱硬化性樹脂4で覆い、補強電極6及び細線電極2aが形成されている箇所以外の領域では、配線材5と受光面1aとが熱硬化性樹脂4で接合されている。
Embodiment 1 FIG.
FIG. 1 is a cross-sectional view of a solar cell module according to Embodiment 1 of the present invention. As shown in FIG. 1, the solar cell module 100 receives light on the light receiving surface 1 a side of a solar cell string 10 in which light receiving surfaces 1 a and back surfaces 1 b of a plurality of solar cell elements 1 are alternately connected using wiring members 5. The surface protection material 11 is disposed, the back surface protection material 12 is disposed on the back surface 1 b side, and the sealing material 13 is disposed between the solar cell string 10 and the protection materials 11 and 12. The reinforcing electrode 6 and the fine wire electrode 2a formed on the light receiving surface 1a are joined to the wiring member 5 with the solder 3, and the side surface of the solder joint portion is covered with the thermosetting resin 4 to form the reinforcing electrode 6 and the fine wire electrode 2a. In a region other than the portion where the wiring is made, the wiring member 5 and the light receiving surface 1a are joined by the thermosetting resin 4.

図2は、複数の太陽電池素子を配線材にて接続したストリングの斜視図である。図2に示すように、太陽電池ストリング10は、複数の太陽電池素子1を配線材5で接続したものである。太陽電池素子1は、例えば、100〜200μm程度の厚さのp型シリコンを基板として以下のように構成される。p型層となるp型シリコン基板の受光面1a側には、リン拡散によってn型拡散層(不純物拡散層:不図示)が形成され、さらに入射光の反射を防止して変換効率を向上させるためのシリコン窒化膜からなる反射防止膜が表面処理によって設けられて、太陽電池素子1の受光面1a(光電変換部領域)となっている。また、p型シリコン基板(以下、単に基板)の裏面1bには、高濃度不純物を含んだp+層が形成され、さらに入射光の反射及び電力の取り出しを目的として裏面1bに、受光面1aと同じく電極(裏面電極2b)が設けられている。   FIG. 2 is a perspective view of a string in which a plurality of solar cell elements are connected by a wiring material. As shown in FIG. 2, the solar cell string 10 is formed by connecting a plurality of solar cell elements 1 with wiring members 5. The solar cell element 1 is configured as follows using, for example, p-type silicon having a thickness of about 100 to 200 μm as a substrate. An n-type diffusion layer (impurity diffusion layer: not shown) is formed by phosphorous diffusion on the light-receiving surface 1a side of the p-type silicon substrate serving as a p-type layer, and further prevents reflection of incident light and improves conversion efficiency. An antireflection film made of a silicon nitride film is provided by surface treatment to form a light receiving surface 1a (photoelectric conversion unit region) of the solar cell element 1. Further, a p + layer containing a high-concentration impurity is formed on the back surface 1b of a p-type silicon substrate (hereinafter simply referred to as “substrate”). Further, for the purpose of reflecting incident light and taking out electric power, Similarly, an electrode (back surface electrode 2b) is provided.

図3は、太陽電池モジュールを受光面側から見た平面図である。図3に示すように、受光面1aの端部に設けた補強電極6と配線材5とははんだ3で接合されている。また、細線電極2aと配線材5とははんだ3で接合されている。補強電極6及び細線電極2aが存在しない部分では、配線材5は受光面1aと熱硬化性樹脂4で接着される。また、はんだ接合部の側面は、熱硬化性樹脂4で覆われている。   FIG. 3 is a plan view of the solar cell module as seen from the light receiving surface side. As shown in FIG. 3, the reinforcing electrode 6 provided at the end of the light receiving surface 1 a and the wiring member 5 are joined by solder 3. Further, the fine wire electrode 2 a and the wiring member 5 are joined by the solder 3. In a portion where the reinforcing electrode 6 and the thin wire electrode 2a do not exist, the wiring member 5 is bonded to the light receiving surface 1a with the thermosetting resin 4. The side surfaces of the solder joints are covered with the thermosetting resin 4.

本実施の形態において、補強電極6は配線材5よりも幅を大きくしている。   In the present embodiment, the reinforcing electrode 6 is wider than the wiring member 5.

配線材5の材料には、電気抵抗が低くて安価な銅が広く用いられる。太陽電池素子1は通常シリコンが用いられる。両者の熱膨張係数はそれぞれ、16×10−6(1/K)、3×10−6(1/K)とであり、差が大きい。そのため、はんだ接合後に熱膨張差に起因して接合部に熱応力が発生する。本実施の形態においては、はんだ接合部が補強電極6及び細線電極2aとの当接部分であり、配線材5全面がはんだ接合している従来の構造に比べてはんだ接合面積が小さいこと、及び、補強電極6及び細線電極2aとの当接部分以外ははんだ3よりも剛性の小さい熱硬化性樹脂4で受光面1aと接着していることにより、接合部に発生する熱応力を小さくすることができ接合信頼性が向上する。 As the material for the wiring material 5, inexpensive copper having a low electric resistance is widely used. The solar cell element 1 is usually made of silicon. Their thermal expansion coefficients are 16 × 10 −6 (1 / K) and 3 × 10 −6 (1 / K), respectively, and the difference is large. Therefore, a thermal stress is generated in the joint due to the difference in thermal expansion after the solder joint. In the present embodiment, the solder joint portion is a contact portion between the reinforcing electrode 6 and the fine wire electrode 2a, and the solder joint area is small compared to the conventional structure in which the entire wiring member 5 is solder joined, and The thermal stress generated at the joint is reduced by bonding to the light receiving surface 1a with the thermosetting resin 4 having a rigidity lower than that of the solder 3 except for the contact portion between the reinforcing electrode 6 and the thin wire electrode 2a. Can improve the bonding reliability.

また、受光面1aの端部に細線電極2aよりも大きな補強電極6を設け、補強電極6と配線材5とを接合することで、繰り返し熱ストレスに起因する配線材5の端部からの剥離を防止することができる。   Further, the reinforcing electrode 6 larger than the thin wire electrode 2a is provided at the end of the light receiving surface 1a, and the reinforcing electrode 6 and the wiring material 5 are joined, so that peeling from the end of the wiring material 5 due to repeated thermal stress is caused. Can be prevented.

一方、太陽電池素子1の裏面1bに設けられた裏面電極2bは、受光面1a側の配線材5に対応した位置(配線材5と太陽電池素子1の厚さ方向に重なる位置)に設けられている。裏面電極2bは、裏面1bの全面に形成されている場合、銀で形成された電極が配線材5と同じ方向に、太陽電池素子1の長手方向に線上に形成されている場合、又は島状に形成されている場合がある。本実施の形態では、図1に示すように、裏面電極2bは、島状に形成されたものを受光面1aの細線電極2aと同じ方法を用いて接合した。   On the other hand, the back electrode 2b provided on the back surface 1b of the solar cell element 1 is provided at a position corresponding to the wiring material 5 on the light receiving surface 1a side (a position overlapping the wiring material 5 and the solar cell element 1 in the thickness direction). ing. When the back surface electrode 2b is formed on the entire surface of the back surface 1b, an electrode formed of silver is formed on the line in the same direction as the wiring member 5 and in the longitudinal direction of the solar cell element 1, or an island shape May be formed. In the present embodiment, as shown in FIG. 1, the back electrode 2b is formed in an island shape and joined using the same method as the thin wire electrode 2a on the light receiving surface 1a.

なお、上記の説明では、複数の太陽電池素子1が接続されて構成される太陽電池ストリング10と保護材11、12と封止材13とを含んだものを太陽電池モジュール100としているが、これに限らず配線材5が接合された細線電極2aと裏面電極2bとを有する太陽電池素子1を含むものも太陽電池モジュールと呼ぶ。   In the above description, the solar cell module 100 includes the solar cell string 10 formed by connecting a plurality of solar cell elements 1, the protective materials 11 and 12, and the sealing material 13. The solar cell module 1 including the thin wire electrode 2a and the back electrode 2b to which the wiring member 5 is bonded is also referred to as a solar cell module.

また、上記の説明では太陽電池素子1が概略平板状である構成を例としているが、太陽電池素子1は平板状に限られるものではなく、例えばフレキシブルなシート状や立方体状などでもよく、受光面1aに形成された細線電極2aに配線材5が接合される太陽電池素子1であれば適用可能である。   In the above description, the solar cell element 1 has a substantially flat plate shape as an example. However, the solar cell element 1 is not limited to a flat plate shape, and may be, for example, a flexible sheet shape or a cubic shape. Any solar cell element 1 in which the wiring member 5 is joined to the thin wire electrode 2a formed on the surface 1a is applicable.

また、上記の説明では、複数の太陽電池素子1を配線材5で接続した太陽電池ストリング10を示したが、太陽電池素子1が1枚の構成であっても良い。   In the above description, the solar cell string 10 in which a plurality of solar cell elements 1 are connected by the wiring member 5 is shown. However, the solar cell element 1 may have a single configuration.

さらに、上記の例では細線電極2aは、受光面1aに複数本が平行に形成されているとしたが、細線電極2aが平行に形成されていなくてもよく、受光面1aに複数本形成されている太陽電池素子1であれば適用可能である。   Further, in the above example, a plurality of thin wire electrodes 2a are formed in parallel on the light receiving surface 1a. However, the thin wire electrodes 2a may not be formed in parallel, and a plurality of thin wire electrodes 2a are formed on the light receiving surface 1a. The solar cell element 1 can be applied.

図4は、配線材5と太陽電池素子1の受光面1a側との接合部の断面図である。図4(a)は、細線電極2a上での補強電極6と配線材5との接合部の断面(図3のA−A線での断面)を示す。図4(b)は、細線電極2a同士の間での補強電極6と配線材5との接合部の断面(図3のB−B線での断面)を示す。図4(c)は、細線電極2aと配線材5との接合部での断面(図3のC−C線での断面)を示す。図4(d)は、配線材5と受光面1aとの接着部での断面(図3のD−D線での断面)を示す。配線材5と補強電極6とははんだ3で接合されており、はんだ接合部の側面は熱硬化性樹脂4で覆われている。配線材5と細線電極2aとははんだ3で接合されており、はんだ接合部の側面は熱硬化性樹脂4で覆われている。   FIG. 4 is a cross-sectional view of the joint between the wiring member 5 and the light receiving surface 1a side of the solar cell element 1. FIG. FIG. 4A shows a cross section (cross section taken along line AA in FIG. 3) of the joint between the reinforcing electrode 6 and the wiring member 5 on the thin wire electrode 2a. FIG. 4B shows a cross section (cross section taken along the line BB in FIG. 3) of the joint portion between the reinforcing electrode 6 and the wiring member 5 between the thin wire electrodes 2a. FIG. 4C shows a cross section (cross section taken along the line C-C in FIG. 3) at the joint between the thin wire electrode 2 a and the wiring member 5. FIG. 4D shows a cross section (cross section taken along the line DD in FIG. 3) at the bonding portion between the wiring member 5 and the light receiving surface 1a. The wiring member 5 and the reinforcing electrode 6 are joined with the solder 3, and the side surface of the solder joint portion is covered with the thermosetting resin 4. The wiring member 5 and the thin wire electrode 2a are joined with the solder 3, and the side surface of the solder joint is covered with the thermosetting resin 4.

はんだ3は、Sn−3Ag−0.5Cu(融点220℃)、Sn−3.5Ag(融点221℃)、Sn−0.7Cu(融点230℃)、Sn−8.8Zn(融点199℃)などのPbフリーはんだでも良いし、Pb−Sn(融点183℃)はんだを用いても良い。   The solder 3 is Sn-3Ag-0.5Cu (melting point 220 ° C.), Sn-3.5Ag (melting point 221 ° C.), Sn-0.7Cu (melting point 230 ° C.), Sn-8.8Zn (melting point 199 ° C.), etc. Pb-free solder or Pb—Sn (melting point: 183 ° C.) solder may be used.

集電用の細線電極2aが、はんだ3にて配線材5と接合されることにより、接合部の電気抵抗を小さくすることができ、さらに、導電粒子を含有した樹脂接着剤を用いた従来の方法(特許文献2)に比べて電気的な接続面積が大きくとれるため、電気特性の劣化を招かない接合を実現できる。   The current collector thin wire electrode 2a is joined to the wiring member 5 with the solder 3, whereby the electrical resistance of the joint can be reduced, and a conventional resin adhesive containing conductive particles is used. Compared with the method (Patent Document 2), a large electrical connection area can be obtained, so that it is possible to realize a joint that does not cause deterioration of electrical characteristics.

図4(d)に示すように、配線材5の下面と受光面1aとは、熱硬化性樹脂4で接着される。熱硬化性樹脂4には、有機酸を含有又は有機酸を硬化剤に用いたエポキシ樹脂組成物を用いることができる。有機酸硬化剤としては、例えば、フェノール硬化剤や酸無水硬化剤、カルボン酸硬化剤を適用可能である。   As shown in FIG. 4D, the lower surface of the wiring member 5 and the light receiving surface 1 a are bonded with a thermosetting resin 4. As the thermosetting resin 4, an epoxy resin composition containing an organic acid or using an organic acid as a curing agent can be used. As the organic acid curing agent, for example, a phenol curing agent, an acid anhydride curing agent, or a carboxylic acid curing agent can be applied.

本実施の形態にかかる太陽電池モジュールを製造する際には、補強電極6及び細線電極2aが設けられた受光面1aの配線材5を接合する領域に、未硬化の熱硬化性樹脂4(以下、熱硬化性接着剤4aと言う。)を塗布する。熱硬化性接着剤4aは液体でも良いし、半硬化状態(Bステージ)のフィルムを用いてもよい。はんだ3をコートした配線材5を受光面1aの所望の位置(熱硬化性接着剤4aを塗布した領域)に配置した後、配線材5をはんだの融点以上に加熱する。   When the solar cell module according to the present embodiment is manufactured, an uncured thermosetting resin 4 (hereinafter referred to as “uncured thermosetting resin 4”) is formed in a region where the wiring member 5 of the light receiving surface 1a provided with the reinforcing electrode 6 and the thin wire electrode 2a is joined. , Referred to as thermosetting adhesive 4a). The thermosetting adhesive 4a may be a liquid or a semi-cured (B stage) film. After the wiring material 5 coated with the solder 3 is disposed at a desired position (a region where the thermosetting adhesive 4a is applied) on the light receiving surface 1a, the wiring material 5 is heated to the melting point of the solder or higher.

熱硬化性接着剤4aは有機酸を含むか又は有機酸の硬化剤を用いているため、熱硬化する過程ではんだ表面の酸化膜を還元して除去する作用を発現する。これにより、配線材5にコートされたはんだ3の表面にある酸化膜を除去し、配線材5と細線電極2aとをはんだ3で接合できる。   Since the thermosetting adhesive 4a contains an organic acid or uses an organic acid curing agent, the thermosetting adhesive 4a exhibits an action of reducing and removing the oxide film on the solder surface in the process of thermosetting. Thereby, the oxide film on the surface of the solder 3 coated on the wiring material 5 is removed, and the wiring material 5 and the thin wire electrode 2a can be joined with the solder 3.

熱硬化性接着剤4aに含まれる有機酸がフラックスの役割を果たすため、通常のはんだ付けのようにはんだ付け前にフラックスを塗布し、はんだ接合後にフラックスを洗浄する必要がなく、生産性に優れる。また、フラックス残渣が受光面1a上に残って残留イオンが特性の劣化を引き起こす懸念がない。従って、太陽電池モジュールの製造時に歩留まりを向上させることができる。   Since the organic acid contained in the thermosetting adhesive 4a plays a role of flux, it is not necessary to apply the flux before soldering as in normal soldering and to wash the flux after soldering. . Further, there is no concern that the flux residue remains on the light receiving surface 1a and the residual ions cause deterioration of characteristics. Therefore, a yield can be improved at the time of manufacture of a solar cell module.

また、加熱時に熱硬化性接着剤4aは液状化し、はんだ3が溶融し、はんだ接合が開始されると側面に排除され、はんだ接合部の側面で固体化して熱硬化性樹脂4となる。はんだ接合部の側面を熱硬化性樹脂4で覆うことで、はんだ接合部を補強することができる。はんだ接合部を覆った熱硬化性樹脂4は、配線材5と太陽電池素子1との熱膨張差から発生する剪断応力を緩和する作用と、はんだ接合部の疲労で発生するクラックの発生を抑制する作用とを持つ。   Further, when the thermosetting adhesive 4a is liquefied during heating, the solder 3 is melted, and when solder bonding is started, it is removed to the side surface, and is solidified on the side surface of the solder joint portion to become the thermosetting resin 4. By covering the side surface of the solder joint portion with the thermosetting resin 4, the solder joint portion can be reinforced. The thermosetting resin 4 that covers the solder joint portion reduces the shear stress generated from the thermal expansion difference between the wiring member 5 and the solar cell element 1 and suppresses the generation of cracks caused by fatigue of the solder joint portion. It has the action to do.

本実施の形態においては、配線材5は受光面1a内の細線電極2aとはんだ接合され、はんだ接合部側面が熱硬化性樹脂4で覆われているため、電気接続抵抗が低く信頼性の高い接合が得られ、受光面1aの細線電極2aが設けられていない部分と配線材5とがはんだ3よりも剛性の小さい熱硬化性樹脂4で接着されているため、従来の構造(特許文献1の構造)よりも太陽電池素子1の反りを小さくできる。さらに、受光面1aの端部に設けた補強電極6と配線材5とをはんだ3で接続しているため、大きな熱ストレスが加わった場合でも、配線材5が受光面1aの端部を起点として受光面1aから剥離することを防止できる。   In the present embodiment, since the wiring member 5 is soldered to the thin wire electrode 2a in the light receiving surface 1a and the side surface of the solder joint is covered with the thermosetting resin 4, the electrical connection resistance is low and the reliability is high. Since the bonding is obtained and the portion of the light receiving surface 1a where the thin wire electrode 2a is not provided and the wiring member 5 are bonded with the thermosetting resin 4 having a rigidity lower than that of the solder 3, the conventional structure (Patent Document 1) The warp of the solar cell element 1 can be made smaller than that of Furthermore, since the reinforcing electrode 6 provided at the end of the light receiving surface 1a and the wiring member 5 are connected by the solder 3, the wiring member 5 starts from the end of the light receiving surface 1a even when a large thermal stress is applied. Can be prevented from peeling from the light receiving surface 1a.

実施の形態2.
図5は、本発明の実施の形態2にかかる太陽電池モジュールの太陽電池素子1の受光面1a側での補強電極6と配線材5との接合部断面を示す図である。図5は、図3におけるB−B線での断面に相当する接合部の断面を示す。
Embodiment 2. FIG.
FIG. 5: is a figure which shows the junction part cross section of the reinforcement electrode 6 and the wiring material 5 by the side of the light-receiving surface 1a of the solar cell element 1 of the solar cell module concerning Embodiment 2 of this invention. FIG. 5 shows a cross section of the joint corresponding to the cross section taken along line BB in FIG.

本実施の形態では、補強電極6の幅は配線材5よりも狭い。補強電極6の幅を配線材5よりも狭くすることで、はんだ接合時に側面に排出された熱硬化性接着剤4aが固化することにより、熱硬化性樹脂4は、はんだ接合部の側面だけでなく、補強電極6の受光面1aとの接合部側面も覆う。補強電極6と受光面1aとの接合部の側面を覆うことで、補強電極6の受光面1aとの密着力が向上し、接合信頼性をより高めることができる。   In the present embodiment, the width of the reinforcing electrode 6 is narrower than that of the wiring member 5. By making the width of the reinforcing electrode 6 narrower than that of the wiring member 5, the thermosetting adhesive 4a discharged to the side surface at the time of solder bonding solidifies, so that the thermosetting resin 4 is only on the side surface of the solder bonding portion. The side surface of the joint portion with the light receiving surface 1a of the reinforcing electrode 6 is also covered. By covering the side surface of the joint portion between the reinforcing electrode 6 and the light receiving surface 1a, the adhesion with the light receiving surface 1a of the reinforcing electrode 6 is improved, and the bonding reliability can be further increased.

実施の形態3.
図6は、熱硬化性接着剤4aが流動性を失いゲル化するまでの時間と加熱温度との関係を示す図である。熱硬化性接着剤4aのゲル化に要する時間は、加熱温度が高いほど短くなる。生産性の観点では、10秒以内に熱硬化性接着剤4aが硬化する温度を採用することが望まれる。本実施の形態では、加熱温度を200℃とする。
Embodiment 3 FIG.
FIG. 6 is a diagram showing the relationship between the heating temperature and the time until the thermosetting adhesive 4a loses fluidity and gels. The time required for gelation of the thermosetting adhesive 4a becomes shorter as the heating temperature is higher. From the viewpoint of productivity, it is desirable to employ a temperature at which the thermosetting adhesive 4a is cured within 10 seconds. In the present embodiment, the heating temperature is 200 ° C.

はんだ3の表面は、はんだ組成物の凝固温度が異なるために凹凸を有する(例えば、鉛フリーはんだ実装技術、コロナ社、p79参照)。通常、熱硬化性樹脂4の接着力は表面の凹凸によるアンカー効果で決定される。そのため、はんだ3でコートされた配線材5の接着力を大きくするには、はんだ3の表面に凹凸がある状態、つまり、はんだ3が溶融していない状態で熱硬化性接着剤4aをゲル化する必要がある。   The surface of the solder 3 has irregularities due to different solidification temperatures of the solder composition (see, for example, lead-free solder mounting technology, Corona, p79). Usually, the adhesive force of the thermosetting resin 4 is determined by the anchor effect due to the unevenness of the surface. Therefore, in order to increase the adhesive force of the wiring material 5 coated with the solder 3, the thermosetting adhesive 4a is gelled in a state where the surface of the solder 3 is uneven, that is, the solder 3 is not melted. There is a need to.

図7は、受光面1aの補強電極6及び細線電極2a以外の部分と配線材5との接着部について、熱硬化性樹脂4とはんだ3でコートした配線材5の接着部断面の拡大模式図である。図7(a)は、熱硬化性接着剤4aにはんだ3をコートした配線材5を押し付けた状態を示す。図7(b)は、加熱によって熱硬化性接着剤4aがゲル化した状態を示す。図7(c)は、はんだが溶融した状態を示す。図7(d)は、冷却後の状態を示す。   FIG. 7 is an enlarged schematic view of the cross section of the bonding portion of the wiring member 5 coated with the thermosetting resin 4 and the solder 3 with respect to the bonding portion between the portion other than the reinforcing electrode 6 and the thin wire electrode 2a of the light receiving surface 1a and the wiring member 5. It is. FIG. 7A shows a state where the wiring member 5 in which the solder 3 is coated on the thermosetting adhesive 4a is pressed. FIG.7 (b) shows the state which the thermosetting adhesive 4a gelatinized by heating. FIG. 7C shows a state where the solder is melted. FIG. 7D shows a state after cooling.

図7(a)に示すようにはんだ3でコートされた配線材5を熱硬化性接着剤4aに押し付けることにより、熱硬化性接着剤4aの表面には、はんだ3の表面の凹凸に倣った凹凸が形成される。図7(b)に示す熱硬化性接着剤4aがゲル化した時点では、はんだ3は溶融しておらず、ゲル化した熱硬化性接着剤4bと接した状態となっている。さらに温度が上がりはんだ3が溶融すると、図7(c)に示すように溶融したはんだ3aはゲル化した熱硬化性接着剤4bの凹凸の中で溶融する。図7(d)に示す冷却後では、ゲル化した熱硬化性接着剤4aが完全に硬化しており、はんだ3は熱硬化性樹脂4の凹凸の中で凝固しているため、配線材5と熱硬化性樹脂4との接着力が向上する。   As shown in FIG. 7 (a), the wiring material 5 coated with the solder 3 is pressed against the thermosetting adhesive 4a so that the surface of the thermosetting adhesive 4a follows the unevenness of the surface of the solder 3. Unevenness is formed. When the thermosetting adhesive 4a shown in FIG. 7B is gelled, the solder 3 is not melted and is in contact with the gelled thermosetting adhesive 4b. When the temperature further rises and the solder 3 is melted, the melted solder 3a is melted in the irregularities of the gelled thermosetting adhesive 4b as shown in FIG. After cooling shown in FIG. 7 (d), the gelled thermosetting adhesive 4a is completely cured, and the solder 3 is solidified in the unevenness of the thermosetting resin 4, so that the wiring material 5 And the adhesive force between the thermosetting resin 4 are improved.

熱硬化性接着剤4aが10秒でゲル化する温度である200℃よりも融点が高いSn−3Ag−0.5Cu(融点218℃)で実施したところ、融点の低いはんだ材、例えば融点183℃のSn−58Biと比較して3倍以上の接着強度が得られた。   When implemented with Sn-3Ag-0.5Cu (melting point 218 ° C.) having a melting point higher than 200 ° C., which is the temperature at which the thermosetting adhesive 4a gels in 10 seconds, a solder material having a low melting point, for example, melting point 183 ° C. Compared with Sn-58Bi, an adhesion strength of 3 times or more was obtained.

このように、はんだ3の融点よりも低い温度で熱硬化性接着剤4aをゲル化させることにより、熱硬化性樹脂4のアンカー効果を高め、配線材5と熱硬化性樹脂4との接着力を向上させることができる。   Thus, by making the thermosetting adhesive 4a gel at a temperature lower than the melting point of the solder 3, the anchor effect of the thermosetting resin 4 is enhanced, and the adhesive force between the wiring member 5 and the thermosetting resin 4 is increased. Can be improved.

以上のように、本発明にかかる太陽電池モジュール及びその製造方法は、太陽電池素子の反りを低減できる点で有用であり、特に、反りの影響を受けやすい大型の太陽電池素子を用いた太陽電池モジュールへの適用に適している。   As described above, the solar cell module and the manufacturing method thereof according to the present invention are useful in that the warpage of the solar cell element can be reduced, and in particular, a solar cell using a large-sized solar cell element that is easily affected by the warp. Suitable for application to modules.

1 太陽電池素子
1a 受光面
1b 裏面
2a 細線電極
2b 裏面電極
3 はんだ
3a 溶融したはんだ
4 熱硬化性樹脂
4a 熱硬化性接着剤(未硬化の熱硬化性樹脂)
4b ゲル化した熱硬化性接着剤
5 配線材
6 補強電極
10 太陽電池ストリング
11、12 保護材
100 太陽電池モジュール
DESCRIPTION OF SYMBOLS 1 Solar cell element 1a Light-receiving surface 1b Back surface 2a Fine wire electrode 2b Back surface electrode 3 Solder 3a Molten solder 4 Thermosetting resin 4a Thermosetting adhesive (Uncured thermosetting resin)
4b Gelled thermosetting adhesive 5 Wiring material 6 Reinforcing electrode 10 Solar cell string 11, 12 Protective material 100 Solar cell module

Claims (4)

太陽電池素子と、該太陽電池素子の受光面に複数の細い線状に形成された細線電極と、前記太陽電池素子の裏面に形成された裏面電極と、前記細線電極及び前記裏面電極から電力を取り出す配線材とを有する太陽電池モジュールであって、
前記受光面の端部に、前記細線電極よりも幅広に設けられた補強電極を備え、
前記補強電極及び前記細線電極と前記配線材とは、はんだを用いてはんだ接合され、該はんだ接合された部分の両脇が熱硬化性樹脂で覆われており、
前記受光面の前記補強電極及び前記細線電極が設けられていない部分と前記配線材とは、前記熱硬化性樹脂で接着されていることを特徴とする太陽電池モジュール。
A solar cell element, a plurality of thin line electrodes formed on the light receiving surface of the solar cell element, a back electrode formed on the back surface of the solar cell element, and power from the thin line electrode and the back electrode A solar cell module having a wiring material to be extracted,
Reinforcing electrodes provided wider at the end of the light receiving surface than the thin wire electrodes,
The reinforcing electrode and the fine wire electrode and the wiring member are soldered using solder, and both sides of the soldered part are covered with a thermosetting resin,
A portion of the light receiving surface where the reinforcing electrode and the fine wire electrode are not provided and the wiring member are bonded with the thermosetting resin.
前記補強電極の幅は、前記配線材の幅よりも狭いことを特徴とする請求項1に記載の太陽電池モジュール。   The solar cell module according to claim 1, wherein a width of the reinforcing electrode is narrower than a width of the wiring member. 前記はんだの融点は、前記熱硬化性樹脂がゲル化する温度よりも高いことを特徴とする請求項1または2に記載の太陽電池モジュール。   3. The solar cell module according to claim 1, wherein a melting point of the solder is higher than a temperature at which the thermosetting resin gels. 4. 請求項3に記載の太陽電池モジュールの製造方法であって、
前記はんだでコーティングされた前記配線材を未硬化の前記熱硬化性樹脂に当接させる工程と、
前記配線材を当接させた前記未硬化の熱硬化性樹脂を、前記はんだの融点未満の温度でゲル化させる工程と、
前記はんだを融点以上に加熱して溶融させる工程と、
前記はんだを融点未満に冷却して固化させる工程とを有することを特徴とする太陽電池モジュールの製造方法。
It is a manufacturing method of the solar cell module according to claim 3,
Contacting the wiring material coated with the solder with the uncured thermosetting resin;
The step of causing the uncured thermosetting resin brought into contact with the wiring material to gel at a temperature lower than the melting point of the solder;
Heating and melting the solder above its melting point;
And a step of cooling the solder to below the melting point and solidifying the solder.
JP2012011837A 2012-01-24 2012-01-24 Solar cell module and manufacturing method thereof Expired - Fee Related JP5616913B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2012011837A JP5616913B2 (en) 2012-01-24 2012-01-24 Solar cell module and manufacturing method thereof

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2012011837A JP5616913B2 (en) 2012-01-24 2012-01-24 Solar cell module and manufacturing method thereof

Publications (2)

Publication Number Publication Date
JP2013152979A true JP2013152979A (en) 2013-08-08
JP5616913B2 JP5616913B2 (en) 2014-10-29

Family

ID=49049137

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2012011837A Expired - Fee Related JP5616913B2 (en) 2012-01-24 2012-01-24 Solar cell module and manufacturing method thereof

Country Status (1)

Country Link
JP (1) JP5616913B2 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2016204192A1 (en) * 2015-06-17 2016-12-22 株式会社カネカ Crystalline silicon solar cell module and manufacturing method for same
TWI585989B (en) * 2015-01-21 2017-06-01 三菱電機股份有限公司 Solar cell unit, solar cell module, method for manufacturing the solar cell, and method for manufacturing the solar cell module

Citations (14)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH11298019A (en) * 1998-04-07 1999-10-29 Sharp Corp Solar battery and manufacture of the solar battery
JP2000188409A (en) * 1998-12-24 2000-07-04 Sharp Corp Solar battery and its manufacture
JP2006270043A (en) * 2005-02-22 2006-10-05 Kyocera Corp Solar cell module
JP2007200970A (en) * 2006-01-24 2007-08-09 Sanyo Electric Co Ltd Photovoltaic module
JP2008010857A (en) * 2006-05-30 2008-01-17 Kyocera Corp Solar cell module
JP2008034592A (en) * 2006-07-28 2008-02-14 Sanyo Electric Co Ltd Photoelectromotive-force element and method of manufacturing the same
JP2008053435A (en) * 2006-08-24 2008-03-06 Shin Etsu Handotai Co Ltd Solar cell module and manufacturing method thereof
JP2009141264A (en) * 2007-12-10 2009-06-25 Shin Etsu Chem Co Ltd Solar-battery module and its manufacturing method
WO2009107804A1 (en) * 2008-02-28 2009-09-03 三洋電機株式会社 Solar cell module
JP2009206493A (en) * 2008-01-31 2009-09-10 Sanyo Electric Co Ltd Solar cell module and method of manufacturing solar cell module
JP2009283606A (en) * 2008-05-21 2009-12-03 Hitachi Chem Co Ltd Connection structure of wiring member, and connection method of wiring member
JP2011049525A (en) * 2009-07-30 2011-03-10 Sanyo Electric Co Ltd Solar cell module
WO2011152309A1 (en) * 2010-05-31 2011-12-08 三洋電機株式会社 Solar cell module and method for manufacturing same
WO2011152372A1 (en) * 2010-05-31 2011-12-08 三洋電機株式会社 Solar cell module and method for manufacturing same

Patent Citations (14)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH11298019A (en) * 1998-04-07 1999-10-29 Sharp Corp Solar battery and manufacture of the solar battery
JP2000188409A (en) * 1998-12-24 2000-07-04 Sharp Corp Solar battery and its manufacture
JP2006270043A (en) * 2005-02-22 2006-10-05 Kyocera Corp Solar cell module
JP2007200970A (en) * 2006-01-24 2007-08-09 Sanyo Electric Co Ltd Photovoltaic module
JP2008010857A (en) * 2006-05-30 2008-01-17 Kyocera Corp Solar cell module
JP2008034592A (en) * 2006-07-28 2008-02-14 Sanyo Electric Co Ltd Photoelectromotive-force element and method of manufacturing the same
JP2008053435A (en) * 2006-08-24 2008-03-06 Shin Etsu Handotai Co Ltd Solar cell module and manufacturing method thereof
JP2009141264A (en) * 2007-12-10 2009-06-25 Shin Etsu Chem Co Ltd Solar-battery module and its manufacturing method
JP2009206493A (en) * 2008-01-31 2009-09-10 Sanyo Electric Co Ltd Solar cell module and method of manufacturing solar cell module
WO2009107804A1 (en) * 2008-02-28 2009-09-03 三洋電機株式会社 Solar cell module
JP2009283606A (en) * 2008-05-21 2009-12-03 Hitachi Chem Co Ltd Connection structure of wiring member, and connection method of wiring member
JP2011049525A (en) * 2009-07-30 2011-03-10 Sanyo Electric Co Ltd Solar cell module
WO2011152309A1 (en) * 2010-05-31 2011-12-08 三洋電機株式会社 Solar cell module and method for manufacturing same
WO2011152372A1 (en) * 2010-05-31 2011-12-08 三洋電機株式会社 Solar cell module and method for manufacturing same

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
TWI585989B (en) * 2015-01-21 2017-06-01 三菱電機股份有限公司 Solar cell unit, solar cell module, method for manufacturing the solar cell, and method for manufacturing the solar cell module
WO2016204192A1 (en) * 2015-06-17 2016-12-22 株式会社カネカ Crystalline silicon solar cell module and manufacturing method for same
JPWO2016204192A1 (en) * 2015-06-17 2018-04-05 株式会社カネカ Crystalline silicon solar cell module and manufacturing method thereof

Also Published As

Publication number Publication date
JP5616913B2 (en) 2014-10-29

Similar Documents

Publication Publication Date Title
JP5738425B2 (en) Solar cell module and manufacturing method thereof
JP5266235B2 (en) Method for providing an electrical connection in an electrical device
JP5436697B2 (en) Solar cell module and manufacturing method thereof
JP4024161B2 (en) Manufacturing method of solar cell module
WO2012141073A1 (en) Solar cell module and method for manufacturing same
JP2005252062A (en) Solar cell device
US20070095387A1 (en) Solar cell module
WO2011152309A1 (en) Solar cell module and method for manufacturing same
JP2009130117A (en) Solar cell, semiconductor device link, and its connecting interconnect
JP5616913B2 (en) Solar cell module and manufacturing method thereof
CN114203836A (en) Heterojunction shingled photovoltaic cell assembly and preparation method thereof
JP2008288278A (en) Manufacturing process of solar cell module
JP5535472B2 (en) Solar cell module and method for replacing solar cell
US20220069141A1 (en) Low temperature metallic interconnect for solar cell shingling
JP2009147123A (en) Semiconductor device, and manufacturing method therefor
JP2004200517A (en) Solar cell module and method of manufacturing the same
JP2014175520A (en) Solar battery module and manufacturing method for the same
JP5174972B2 (en) Thin film solar cell module and manufacturing method thereof
JP2005294679A (en) Solar battery cell
JP2009231813A (en) Solar cell module and method for manufacturing the same
JP2003142703A (en) Method for manufacturing integrated solar battery
WO2018097282A1 (en) Solar cell module
JP2012253279A (en) Photovoltaic power generation module and manufacturing method thereof
JP5611250B2 (en) Method for manufacturing photovoltaic module
JP5490466B2 (en) Solar cell module

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20130930

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20140131

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20140204

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20140327

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20140513

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20140808

A911 Transfer to examiner for re-examination before appeal (zenchi)

Free format text: JAPANESE INTERMEDIATE CODE: A911

Effective date: 20140815

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20140909

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20140912

R150 Certificate of patent or registration of utility model

Ref document number: 5616913

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

LAPS Cancellation because of no payment of annual fees