JP2013152952A - Semiconductor device - Google Patents

Semiconductor device Download PDF

Info

Publication number
JP2013152952A
JP2013152952A JP2013080027A JP2013080027A JP2013152952A JP 2013152952 A JP2013152952 A JP 2013152952A JP 2013080027 A JP2013080027 A JP 2013080027A JP 2013080027 A JP2013080027 A JP 2013080027A JP 2013152952 A JP2013152952 A JP 2013152952A
Authority
JP
Japan
Prior art keywords
semiconductor
layer
current collector
contact
type
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2013080027A
Other languages
Japanese (ja)
Other versions
JP5380715B2 (en
Inventor
Kazuo Tsutsumi
香津雄 堤
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
INST OF ENERGY ENGINEERING Inc
INSTITUTE OF ENERGY ENGINEERING Inc
Original Assignee
INST OF ENERGY ENGINEERING Inc
INSTITUTE OF ENERGY ENGINEERING Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by INST OF ENERGY ENGINEERING Inc, INSTITUTE OF ENERGY ENGINEERING Inc filed Critical INST OF ENERGY ENGINEERING Inc
Priority to JP2013080027A priority Critical patent/JP5380715B2/en
Publication of JP2013152952A publication Critical patent/JP2013152952A/en
Application granted granted Critical
Publication of JP5380715B2 publication Critical patent/JP5380715B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/04Construction or manufacture in general
    • H01M10/045Cells or batteries with folded plate-like electrodes
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M50/00Constructional details or processes of manufacture of the non-active parts of electrochemical cells other than fuel cells, e.g. hybrid cells
    • H01M50/50Current conducting connections for cells or batteries
    • H01M50/531Electrode connections inside a battery casing
    • H01M50/54Connection of several leads or tabs of plate-like electrode stacks, e.g. electrode pole straps or bridges
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/60Heating or cooling; Temperature control
    • H01M10/61Types of temperature control
    • H01M10/613Cooling or keeping cold
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/60Heating or cooling; Temperature control
    • H01M10/64Heating or cooling; Temperature control characterised by the shape of the cells
    • H01M10/647Prismatic or flat cells, e.g. pouch cells
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M50/00Constructional details or processes of manufacture of the non-active parts of electrochemical cells other than fuel cells, e.g. hybrid cells
    • H01M50/50Current conducting connections for cells or batteries
    • H01M50/502Interconnectors for connecting terminals of adjacent batteries; Interconnectors for connecting cells outside a battery casing
    • H01M50/503Interconnectors for connecting terminals of adjacent batteries; Interconnectors for connecting cells outside a battery casing characterised by the shape of the interconnectors
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M50/00Constructional details or processes of manufacture of the non-active parts of electrochemical cells other than fuel cells, e.g. hybrid cells
    • H01M50/50Current conducting connections for cells or batteries
    • H01M50/502Interconnectors for connecting terminals of adjacent batteries; Interconnectors for connecting cells outside a battery casing
    • H01M50/509Interconnectors for connecting terminals of adjacent batteries; Interconnectors for connecting cells outside a battery casing characterised by the type of connection, e.g. mixed connections
    • H01M50/51Connection only in series
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M50/00Constructional details or processes of manufacture of the non-active parts of electrochemical cells other than fuel cells, e.g. hybrid cells
    • H01M50/50Current conducting connections for cells or batteries
    • H01M50/502Interconnectors for connecting terminals of adjacent batteries; Interconnectors for connecting cells outside a battery casing
    • H01M50/521Interconnectors for connecting terminals of adjacent batteries; Interconnectors for connecting cells outside a battery casing characterised by the material
    • H01M50/522Inorganic material
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/0001Technical content checked by a classifier
    • H01L2924/0002Not covered by any one of groups H01L24/00, H01L24/00 and H01L2224/00
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P70/00Climate change mitigation technologies in the production process for final industrial or consumer products
    • Y02P70/50Manufacturing or production processes characterised by the final manufactured product

Landscapes

  • Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Electrochemistry (AREA)
  • General Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Manufacturing & Machinery (AREA)
  • Inorganic Chemistry (AREA)
  • Secondary Cells (AREA)
  • Connection Of Batteries Or Terminals (AREA)
  • Sealing Battery Cases Or Jackets (AREA)
  • Cooling Or The Like Of Semiconductors Or Solid State Devices (AREA)
  • Battery Electrode And Active Subsutance (AREA)
  • Bipolar Transistors (AREA)
  • Cooling Or The Like Of Electrical Apparatus (AREA)
  • Cell Electrode Carriers And Collectors (AREA)
  • Battery Mounting, Suspending (AREA)

Abstract

PROBLEM TO BE SOLVED: To resolve the problems that it is difficult for a conventional semiconductor device to suppress increase in temperature in a semiconductor device, and that provision of a pipe and the like in which cooling medium flows in the semiconductor device causes increase in size of the semiconductor device.SOLUTION: An N-type semiconductor and a P-type semiconductor are laminated in an axial direction of a cylindrical outer package. By setting an outer diameter of one of the N-type semiconductor and the P-type semiconductor to be larger than an inner diameter of the outer package, the N-type semiconductor or the P-type semiconductor tightly contacts with the outer package. Thereby, heat transfer in the semiconductor can be improved, and increase in temperature of the semiconductor device can be suppressed.

Description

本発明は、電池あるいは半導体デバイスの冷却構造に関する。   The present invention relates to a cooling structure for a battery or a semiconductor device.

蓄電池には、円筒型電池、角型電池など種々の形状の電池が開発され広く使用されている。そして、比較的小容量の電池には、耐圧性や封口の容易さの点から円筒型が採用され、比較的大容量の電池には、取扱いの容易性から角型が採用されている。   Various types of batteries such as cylindrical batteries and prismatic batteries have been developed and widely used as storage batteries. In addition, a cylindrical type is adopted for a relatively small capacity battery from the viewpoint of pressure resistance and ease of sealing, and a square type is adopted for a relatively large capacity battery for ease of handling.

また蓄電池の電極構造に着目すれば、大別して、積層タイプと捲回タイプの2つのタイプが広く使用されている。すなわち積層タイプの電池は、正極と負極がセパレータを介して交互に積層されてなる電極群が電池ケースに収納されている。積層タイプの電池の多くは角型の電池ケースを有している。一方捲回タイプの電池は、正極と負極がセパレータを挟みつつ渦巻状に巻き取られた状態で電池ケースに収納されている。捲回タイプの電池ケースは円筒型のものもあるし角型のものもある。   If attention is paid to the electrode structure of the storage battery, two types, a stacked type and a wound type, are widely used. That is, in a stacked battery, an electrode group in which positive and negative electrodes are alternately stacked via separators is housed in a battery case. Many of the stacked type batteries have a rectangular battery case. On the other hand, a wound type battery is housed in a battery case in a state in which a positive electrode and a negative electrode are wound in a spiral shape with a separator interposed therebetween. The wound type battery case may be a cylindrical type or a square type.

特許文献1および特許文献2に、円筒型捲回電池に関する技術が開示されている。すなわち、図1において、蓄電池1は、電池ケース2内に配置された正極3、負極4、セパレータ5および電解液を主な構成要素としている。そして電池ケース2は、上部に開口部2aを有する概ね円筒状の容器であり、その底面部が負極端子にとなっている。帯状の正極3と負極4とはセパレータ5を挟みつつ渦巻き状に巻き取られた状態で電池ケース2内に収納されている。また、電池ケースの開口部2aは、電池ケース2内に電解液が注入された状態で、封口板7により液密に封鎖されている。なお、封口板7の上面に設けたキャップ6が正極端子となる。正極端子は図示しないリード線により正極3に接続されている。   Patent Document 1 and Patent Document 2 disclose techniques related to a cylindrical wound battery. That is, in FIG. 1, the storage battery 1 includes a positive electrode 3, a negative electrode 4, a separator 5, and an electrolytic solution disposed in a battery case 2 as main components. The battery case 2 is a substantially cylindrical container having an opening 2a in the upper portion, and the bottom surface portion serves as a negative electrode terminal. The strip-like positive electrode 3 and the negative electrode 4 are accommodated in the battery case 2 in a state of being wound in a spiral while sandwiching the separator 5 therebetween. Further, the opening 2 a of the battery case is sealed in a liquid-tight manner by the sealing plate 7 in a state where the electrolytic solution is injected into the battery case 2. The cap 6 provided on the upper surface of the sealing plate 7 serves as a positive electrode terminal. The positive electrode terminal is connected to the positive electrode 3 by a lead wire (not shown).

蓄電池の冷却構造については種々の方法が提案されている。その多くは、蓄電池を複数個組み合わせてモジュール化した組電池に関するものである。これは蓄電池をモジュール化して大容量化すると、蓄電池の温度上昇が問題となるからである。組電池の冷却構造については、組電池を収納した容器の表面に突起を設けて冷却空気の流れに乱れを生じさせて放熱をよくする方法(例えば、特許文献3)、隣り合う組電池の間に穴開きの金属製の冷却板を介在させて冷却空気の通路を設ける方法(例えば、特許文献3、4)もしくは収納容器の外部に突出する冷却フィンを設ける方法(例えば、特許文献5)等が提案されている。   Various methods for cooling the storage battery have been proposed. Most of them relate to an assembled battery obtained by combining a plurality of storage batteries into a module. This is because when the storage battery is modularized to increase the capacity, the temperature rise of the storage battery becomes a problem. As for the cooling structure of the assembled battery, a method of providing a protrusion on the surface of the container that houses the assembled battery to cause disturbance in the flow of cooling air to improve heat dissipation (for example, Patent Document 3), between adjacent assembled batteries A method of providing a cooling air passage by interposing a metal cooling plate with holes (for example, Patent Documents 3 and 4) or a method of providing cooling fins protruding outside the storage container (for example, Patent Document 5) Has been proposed.

特許文献6には、正極と負極の間にセパレータを介在させた角型積層電池ユニットにおいて、当該電池ユニットの間に冷却板を設けて、その冷却板に冷媒の流路を設けてなる電池ユニット積層体の冷却構造が開示されている。
特許文献7には、シート状のヒートシンクを正極と負極に配して、セパレータと共に捲回してなる円筒型捲回電池の発明が開示されている。
In Patent Document 6, in a prismatic laminated battery unit in which a separator is interposed between a positive electrode and a negative electrode, a cooling plate is provided between the battery units, and a battery flow path is provided on the cooling plate. A cooling structure for a laminate is disclosed.
Patent Document 7 discloses an invention of a cylindrical wound battery in which a sheet-shaped heat sink is disposed on a positive electrode and a negative electrode and wound together with a separator.

特開2002−198044号公報JP 2002-198044 A 特開2004−103350号公報JP 2004-103350 A 特開2009−016285号公報JP 2009-016285 A 特開2003−007355号公報JP 2003-007355 A 特開2001−143769号公報JP 2001-143769 A 国際公開2008/099609号公報International Publication No. 2008/099609 特開平11−144771号公報Japanese Patent Laid-Open No. 11-144771

田村英雄監修 「電子とイオンの機能化学シリーズVol.1 ニッケル水素二次電池のすべて」エヌ・ティー・エス発行 2005年Supervised by Hideo Tamura “Functional Chemistry Series of Electrons and Ions Vol.1 All about Nickel Metal Hydride Batteries” published by NTS 2005

電池の構成要素のひとつであるセパレータは、正極と負極の短絡を防止し、電解液を保持して正極と負極間のイオン伝導を行う役割を有し、電池にとって重要なパーツであるところ、ポリアミド繊維またはポリオレフィン繊維等の合成繊維の不織布を素材として採用しているので、正極や負極(以下、総称して電極という)の電極と比べてその熱伝導度は小さく、熱を伝え難い。   A separator that is one of the components of a battery has a role of preventing short circuit between the positive electrode and the negative electrode, holding the electrolyte and conducting ionic conduction between the positive electrode and the negative electrode. Polyamide is an important part for the battery. Since a nonwoven fabric of synthetic fibers such as fibers or polyolefin fibers is used as a material, its thermal conductivity is small compared to positive electrodes and negative electrodes (hereinafter collectively referred to as electrodes), and it is difficult to transfer heat.

図1に示す捲回電池の冷却構造に言及すれば、電池内部で発生した熱は電池ケースから放熱される必要がある。しかし、捲回電池は電極とセパレータが多重に積層されている。多層に重ねられたセパレータを経て良好に熱伝達を行うことは困難である。図2は、電池表面(ケース)から中心部に向けての電池内部の温度勾配の状況を説明するための模式図である。図2によれば、円筒型捲回電池においてケースおよび電極は熱伝導度が高いので大きな温度勾配は生じないが、セパレータは熱伝導度が低いので大きな温度勾配を生じる。このため、中心部に行くほど高温となっていることがわかる。   Referring to the wound battery cooling structure shown in FIG. 1, the heat generated inside the battery needs to be dissipated from the battery case. However, the wound battery has multiple electrodes and separators stacked thereon. It is difficult to transfer heat well through separators stacked in multiple layers. FIG. 2 is a schematic diagram for explaining the state of the temperature gradient inside the battery from the battery surface (case) toward the center. According to FIG. 2, in the case of the cylindrical wound battery, the case and the electrode have a high thermal conductivity, so that a large temperature gradient does not occur. However, the separator has a low thermal conductivity, and thus a large temperature gradient is generated. For this reason, it turns out that it becomes high temperature, so that it goes to a center part.

すなわち、捲回電池の電池ケースの表面温度は周囲温度に近いものの、中心部分の温度は高く、特に充放電状態においてはかなり高温となる。電池ケースの外側を冷却しても、電池内部は必要な程度に冷却されず高温となる。電極は温度が高くなると動作しなくなる。一般に、蓄電池に使用されている水素吸蔵合金においては(例えば、ミッシュメタル合金あるいはランタン・ニッケル合金など)、60℃以上になると充電しなくなる。   That is, although the surface temperature of the battery case of the wound battery is close to the ambient temperature, the temperature of the central portion is high, and particularly in the charge / discharge state, the temperature is considerably high. Even if the outside of the battery case is cooled, the inside of the battery is not cooled to a necessary level and becomes high temperature. The electrode stops working when the temperature rises. Generally, in a hydrogen storage alloy used in a storage battery (for example, a misch metal alloy or a lanthanum / nickel alloy), the battery is not charged at 60 ° C. or higher.

電池の冷却方法として、電池ケースの表面に突起を設けて熱の放散を良くする方法(例えば、特許文献3)、組電池の間に穴開きの金属板を設けて冷却空気を流して冷却する方法(例えば、特許文献3,4)もしくは冷却フィンを設ける方法(例えば、特許文献5)が提案されているが、これらはいずれも電池ケースの表面を冷却するのには有効であるが、セパレータによる温度勾配が存在するので、捲回電池においては効果的な冷却方法ということができない。   As a method of cooling the battery, a method of providing protrusions on the surface of the battery case to improve heat dissipation (for example, Patent Document 3), a perforated metal plate is provided between the assembled batteries and cooled by flowing cooling air. A method (for example, Patent Documents 3 and 4) or a method for providing a cooling fin (for example, Patent Document 5) has been proposed, but these are effective for cooling the surface of the battery case, Therefore, an effective cooling method cannot be used for a wound battery.

ヒートシンクを電極と共に捲回する方法(例えば、特許文献7)や、冷却水が流れるパイプを電池内部に収納する方法が提案されている。これらの方法は、電池ケースの表面を冷却するよりは効果的な冷却方法といえるかもしれないが、冷却のためのスペースを必要とし、電池寸法が大きくなり、体積当りの電気容量が低下する。   A method of winding a heat sink together with an electrode (for example, Patent Document 7) and a method of storing a pipe through which cooling water flows in the battery have been proposed. These methods may be said to be more effective cooling methods than cooling the surface of the battery case, but require a space for cooling, increase the battery size, and decrease the electric capacity per volume.

一般にアルカリ蓄電池においては、密閉化を行うために正極規制を採用しており、正極に比べて多くの負極を必要としている。例えば、ニッケル水素電池の負極には、レアメタルである水素吸蔵合金が使用されており、高価であるとともに原料の安定供給の問題もある。負極のコストは、電極全体の80%を占めるといわれており、負極の電池価格に及ぼす影響は大きい。   In general, an alkaline storage battery employs positive electrode regulation for hermetic sealing, and requires more negative electrodes than a positive electrode. For example, a hydrogen storage alloy that is a rare metal is used for the negative electrode of a nickel metal hydride battery, which is expensive and has a problem of stable supply of raw materials. The cost of the negative electrode is said to occupy 80% of the entire electrode, and the negative electrode has a large effect on the battery price.

本発明は、上記実情に鑑みてなされたものであって、電池内部および半導体デバイス内部の温度上昇を抑制するとともに、冷却のために電池内および半導体デバイス内部に余分なスペースを必要としないことを解決すべき課題としている。さらには、電池価格に大きな影響を及ぼす負極のコストを低減させることにより、電池価格の低減を図る。   The present invention has been made in view of the above circumstances, and suppresses the temperature rise inside the battery and inside the semiconductor device, and does not require extra space inside the battery and inside the semiconductor device for cooling. This is a problem to be solved. Furthermore, the battery price is reduced by reducing the cost of the negative electrode, which greatly affects the battery price.

本発明に係る半導体デバイスは、N型半導体とP型半導体とを複数備えた半導体デバイスにおいて、円筒形の外装体の内部に、前記半導体が前記外装体の軸方向に積層されていて、冷媒を流すための通路を有する導電性の集電体が前記半導体を前記外装体の軸方向に貫通している。   The semiconductor device according to the present invention is a semiconductor device comprising a plurality of N-type semiconductors and P-type semiconductors, wherein the semiconductor is laminated in the axial direction of the exterior body inside a cylindrical exterior body, A conductive current collector having a passage for flowing through the semiconductor in the axial direction of the exterior body.

本発明に係る半導体デバイスは、エミッター層と、コレクター層と、ベース層が、前記外装体の内部軸方向に積層されていて、前記エミッター層は、前記P型半導体および前記N型半導体のいずれか一方であって、前記ベース層は、前記エミッター層と前記コレクター層に挟持され、前記エミッター層と異なる型の半導体であって、前記コレクター層は前記エミッター層と同じ型の半導体であり、前記エミッター層、前記コレクター層、前記ベース層のいずれか1が前記外装体の内面に当接して電気的に接続された第1層であり、他が前記外装体に接触していない第2層および第3層であり、かつ、導電性の第1集電体および第2集電体が、前記第1層と前記第2層と前記第3層を前記外装体の軸方向に貫通していて、前記第1集電体は、前記第2層に接触して電気的に接続されており、かつ、前記第1層および前記第3層に接触しておらず、前記第2集電体は、前記第3層と接触して電気的に接続されており、かつ、前記第1層および前記第2層に接触していないことが好ましい。
この構成において、エミッターはN型またはP型いずれか一方の半導体であり、ベースはN型またはP型の半導体であってエミッターと異なる型(エミッターがN型ならP型)の半導体であり、コレクターはN型またはP型半導体であってエミッターと同じ型の半導体である。これにより、NPNトランジスタまたはPNPトランジスタが構成される。組み合わせの一例を表1に示す。

Figure 2013152952
In the semiconductor device according to the present invention, an emitter layer, a collector layer, and a base layer are laminated in the inner axial direction of the outer package, and the emitter layer is one of the P-type semiconductor and the N-type semiconductor. On the other hand, the base layer is sandwiched between the emitter layer and the collector layer, and is a semiconductor of a different type from the emitter layer, and the collector layer is a semiconductor of the same type as the emitter layer, the emitter layer Any one of the layer, the collector layer, and the base layer is a first layer that is in contact with and electrically connected to the inner surface of the exterior body, and the other is a second layer that is not in contact with the exterior body and the second layer The first and second current collectors, which are three layers and are electrically conductive, pass through the first layer, the second layer, and the third layer in the axial direction of the exterior body, The first current collector is the front The second current collector is in contact with and electrically connected to the second layer and is not in contact with the first layer and the third layer, and the second current collector is in contact with the third layer and electrically It is preferable that the first layer and the second layer are not in contact with each other.
In this configuration, the emitter is an N-type or P-type semiconductor, the base is an N-type or P-type semiconductor, and is a semiconductor of a different type from the emitter (P-type if the emitter is N-type), and the collector Is an N-type or P-type semiconductor and is the same type as the emitter. Thereby, an NPN transistor or a PNP transistor is formed. An example of the combination is shown in Table 1.
Figure 2013152952

本発明に係る半導体デバイスは、N型半導体と、P型半導体とが、前記外装体の内部軸方向に積層されており、前記N型半導体と前記P型半導体のうち一方の半導体は、前記外装体の内面に当接して電気的に接続されているが前記集電体には接触しておらず、かつ、他方の半導体は前記集電体に接触して電気的に接続されているが前記外装体の内面に接触していないことが好ましい。   In the semiconductor device according to the present invention, an N-type semiconductor and a P-type semiconductor are stacked in the inner axial direction of the outer package, and one of the N-type semiconductor and the P-type semiconductor is the outer package. Although it is in contact with the inner surface of the body and is electrically connected, it is not in contact with the current collector, and the other semiconductor is in contact with and electrically connected to the current collector. It is preferable not to contact the inner surface of the exterior body.

本発明は、冷却のために余分なスペースを必要とせずに、半導体デバイス内部の温度上昇を抑制することを可能にする。   The present invention makes it possible to suppress an increase in temperature inside a semiconductor device without requiring extra space for cooling.

円筒型積層電池の一部を破断した概略斜視図である。It is the schematic perspective view which fractured | ruptured some cylindrical laminated batteries. 円筒型捲回電池の温度勾配の状況を模式的に示す図である。It is a figure which shows typically the condition of the temperature gradient of a cylindrical winding battery. 第一実施形態に係るトランジスタを示す概略構成図である。It is a schematic block diagram which shows the transistor which concerns on 1st embodiment. 第二実施形態に係るダイオードを示す概略構成図である。It is a schematic block diagram which shows the diode which concerns on 2nd embodiment.

以下、本発明に係る実施形態を図面に従って説明するが、本発明はこの実施形態に限定されるものではない。   Hereinafter, embodiments according to the present invention will be described with reference to the drawings. However, the present invention is not limited to the embodiments.

<第一実施形態>
図3は、本発明の第一実施形態に係るトランジスタを示す概略構成図である。図3に示すトランジスタ180は、外装体と集電体と外装体内部に収納される半導体を主な構成要素として備えている。外装体181は、円管182と、円管182の開口部182cに取付けられた円盤状の蓋部材186とから構成されている。円管182と蓋部材186は鉄でできているが、他の金属であってもよい。蓋部材186の外径は円管182の開口部182cの内径より少し大きく、蓋部材186は半導体183,184,185の収納後に円管開口部182cにおいて絞まり嵌めされている。
<First embodiment>
FIG. 3 is a schematic configuration diagram showing a transistor according to the first embodiment of the present invention. A transistor 180 illustrated in FIG. 3 includes an exterior body, a current collector, and a semiconductor housed in the exterior body as main components. The exterior body 181 includes a circular pipe 182 and a disk-shaped lid member 186 attached to the opening 182c of the circular pipe 182. The circular pipe 182 and the lid member 186 are made of iron, but may be other metals. The outer diameter of the lid member 186 is slightly larger than the inner diameter of the opening 182c of the circular pipe 182, and the lid member 186 is tightly fitted in the circular pipe opening 182c after the semiconductors 183, 184, 185 are accommodated.

半導体183,184,185は、円管182の軸方向(図3のX方向)に積層して外装体181の内部に収納されている。半導体183、半導体185、半導体184はいずれも2つの穴の開いた、円盤状の形状を有している。半導体183の外径は円管182の内径よりも大きく、半導体183の外縁部183cは円管182の内面182aと接触しており、半導体183は円管182に電気的に接続されている(図3(b)参照)。一方、半導体184と半導体185の外径は円管182の内径より小さく、半導体184、185は円管182に接触していない。   The semiconductors 183, 184, and 185 are stacked in the axial direction of the circular pipe 182 (X direction in FIG. 3) and housed in the exterior body 181. Each of the semiconductor 183, the semiconductor 185, and the semiconductor 184 has a disk shape with two holes. The outer diameter of the semiconductor 183 is larger than the inner diameter of the circular tube 182, the outer edge 183 c of the semiconductor 183 is in contact with the inner surface 182 a of the circular tube 182, and the semiconductor 183 is electrically connected to the circular tube 182 (see FIG. 3 (b)). On the other hand, the outer diameters of the semiconductor 184 and the semiconductor 185 are smaller than the inner diameter of the circular pipe 182, and the semiconductors 184 and 185 are not in contact with the circular pipe 182.

2つの棒状の集電体187、189はいずれも、鉄にニッケルメッキを施した導電性の材料でできており、軸部187a、189aと軸部187a、189aの両端に位置する端部187b、189bとを有している。ニッケルメッキを施すことにより、接触面における電気抵抗を小さくすることができる。集電体187、189の軸部187a、189aは、半導体183、184,185を、外装体181の軸方向(図3のX方向)に貫通している。軸部187a、189aの外径は、いずれも半導体183に設けた穴183a、183bの径より小さいので、半導体183は集電体187、189と接触していない。電気的に絶縁状態にある。   Each of the two rod-shaped current collectors 187 and 189 is made of a conductive material in which nickel is plated on iron, and ends 187b and 187b located at both ends of the shafts 187a and 189a and 189a, 189b. By applying nickel plating, the electrical resistance at the contact surface can be reduced. The shaft portions 187a and 189a of the current collectors 187 and 189 penetrate the semiconductors 183, 184 and 185 in the axial direction of the exterior body 181 (X direction in FIG. 3). Since the outer diameters of the shaft portions 187 a and 189 a are both smaller than the diameters of the holes 183 a and 183 b provided in the semiconductor 183, the semiconductor 183 is not in contact with the current collectors 187 and 189. Electrically insulated.

一方、軸部187aの外径は、半導体184に設けた穴184aの径より大きく、集電体187は半導体の穴184aの周縁部に接触している。半導体184と集電体187は、電気的に接続されている。また、軸部187aの外径は、半導体185に設けた穴185aの径より小さく、半導体185とは接触していない。半導体185と集電体187は、電気的に絶縁されている。更に、軸部189aの外径は、半導体184に設けた穴184bの径より小さく、集電体189は半導体184と接触していない。半導体184と集電体189は、電気的に絶縁されている。また、軸部189aの外径は、半導体185に設けた穴185bの径より大きいので、集電体189は半導体の穴185bの周縁部に接触している。半導体185と集電体189は、電気的に接続されている。   On the other hand, the outer diameter of the shaft portion 187a is larger than the diameter of the hole 184a provided in the semiconductor 184, and the current collector 187 is in contact with the peripheral portion of the semiconductor hole 184a. The semiconductor 184 and the current collector 187 are electrically connected. The outer diameter of the shaft portion 187 a is smaller than the diameter of the hole 185 a provided in the semiconductor 185 and is not in contact with the semiconductor 185. The semiconductor 185 and the current collector 187 are electrically insulated. Further, the outer diameter of the shaft portion 189 a is smaller than the diameter of the hole 184 b provided in the semiconductor 184, and the current collector 189 is not in contact with the semiconductor 184. The semiconductor 184 and the current collector 189 are electrically insulated. Further, since the outer diameter of the shaft portion 189a is larger than the diameter of the hole 185b provided in the semiconductor 185, the current collector 189 is in contact with the peripheral portion of the semiconductor hole 185b. The semiconductor 185 and the current collector 189 are electrically connected.

集電体の端部187b、189bは蓋部材に設けられた穴を貫通して、トランジスタ180の外方に突出して、それぞれベース端子187bおよびコレクター端子189bとして機能する。円管182はエミッター端子として機能する。ベース端子187b、コレクター端子189bおよび円管182が、蓋部材186を介して互いに電気的に接続されて短絡するのを防止するために、ベース端子187bおよびコレクター端子189bと蓋部材186の間には絶縁材188が設けられている。トランジスタ180はコレクター端子189bをコレクターとし、ベース端子187bをベースとし、円管をエミッターとするトランジスタとして作用する。また、半導体183で発生する熱は直接円管182に伝えられ、半導体184、185で発生する熱は半導体183を介して円管182に伝えられるので、半導体183,184,185の温度上昇は抑制される。   The end portions 187b and 189b of the current collector pass through holes provided in the lid member and project outward from the transistor 180 to function as a base terminal 187b and a collector terminal 189b, respectively. The circular tube 182 functions as an emitter terminal. In order to prevent the base terminal 187b, the collector terminal 189b, and the circular pipe 182 from being electrically connected to each other via the lid member 186 and short-circuited, the base terminal 187b, the collector terminal 189b, and the lid member 186 are not connected. An insulating material 188 is provided. The transistor 180 functions as a transistor having a collector terminal 189b as a collector, a base terminal 187b as a base, and a circular tube as an emitter. Further, the heat generated in the semiconductor 183 is directly transmitted to the circular tube 182, and the heat generated in the semiconductors 184 and 185 is transmitted to the circular tube 182 through the semiconductor 183, so that the temperature rise of the semiconductors 183, 184 and 185 is suppressed. Is done.

本実施形態において、半導体183と半導体185をN型半導体とし、半導体184をP型半導体としてもよく、また、半導体183と半導体185をP型半導体とし、半導体184をN型半導体としてもよい。前者はNPNトランジスタになり、後者はPNPトランジスタとなる。
<第二実施形態>
In this embodiment, the semiconductor 183 and the semiconductor 185 may be N-type semiconductors, the semiconductor 184 may be a P-type semiconductor, the semiconductor 183 and the semiconductor 185 may be P-type semiconductors, and the semiconductor 184 may be an N-type semiconductor. The former is an NPN transistor, and the latter is a PNP transistor.
<Second embodiment>

図4は、本発明の第二実施形態に係るダイオードを示す概略構成図である。図4に示すダイオード191は、外装体と集電体と外装体内部に収納される半導体を主な構成要素として備えている。外装体195は、円管192と、円管192の開口部192cに取付けられた円盤状の蓋部材196とから構成されている。円管192と蓋部材196は鉄でできているが、他の金属であってもよい。蓋部材196の外径は円管192の開口部192cの内径より少し大きく、蓋部材196は半導体193,194の収納後に円管開口部192cにおいて絞まり嵌めされている。   FIG. 4 is a schematic configuration diagram showing a diode according to the second embodiment of the present invention. A diode 191 shown in FIG. 4 includes an exterior body, a current collector, and a semiconductor housed in the exterior body as main components. The exterior body 195 includes a circular tube 192 and a disk-shaped lid member 196 attached to the opening 192c of the circular tube 192. The circular tube 192 and the lid member 196 are made of iron, but may be other metals. The outer diameter of the lid member 196 is slightly larger than the inner diameter of the opening 192c of the circular tube 192, and the lid member 196 is tightly fitted in the circular tube opening 192c after the semiconductors 193 and 194 are stored.

半導体193,194は、円管192の軸方向(図4のX方向)に積層して外装体195の内方に収納されている。半導体193、半導体194はいずれも中央に穴の開いた、円盤状の形状を有している。半導体193の外径は円管192の内径よりも大きく、半導体の外縁部193bは円管192の内面192aと接触している。半導体193と円管192は電気的に接続されている。一方、半導体194の外径は円管192の内径より小さく、半導体の外縁部194bは円管の内面192aに接触していない。   The semiconductors 193 and 194 are stacked in the axial direction (X direction in FIG. 4) of the circular tube 192 and housed inside the exterior body 195. Each of the semiconductor 193 and the semiconductor 194 has a disk shape with a hole in the center. The outer diameter of the semiconductor 193 is larger than the inner diameter of the circular tube 192, and the outer edge portion 193 b of the semiconductor is in contact with the inner surface 192 a of the circular tube 192. The semiconductor 193 and the circular tube 192 are electrically connected. On the other hand, the outer diameter of the semiconductor 194 is smaller than the inner diameter of the circular tube 192, and the outer edge portion 194b of the semiconductor is not in contact with the inner surface 192a of the circular tube.

集電体197は、鉄にニッケルメッキを施した導電性の材料の円管でできており、外装体195の内部ある中央部197aと外装体195の外部にある端部197bとを有している。ニッケルメッキを施すことにより、接触面における電気抵抗を小さくすることができる。集電体197の中央部197aは、半導体193、194を、外装体195の軸方向(図4のX方向)に貫通している。   The current collector 197 is made of a circular tube made of a conductive material in which nickel is plated on iron. The current collector 197 has a central portion 197a inside the exterior body 195 and an end portion 197b outside the exterior body 195. Yes. By applying nickel plating, the electrical resistance at the contact surface can be reduced. The central portion 197a of the current collector 197 penetrates the semiconductors 193 and 194 in the axial direction of the exterior body 195 (X direction in FIG. 4).

中央部197aの外径は、半導体193に設けた穴193aの径より小さいので、半導体の穴193aの周縁部は集電体197と接触していない。半導体193と集電体197は、電気的に絶縁されている。一方、中央部197aの外径は、半導体194に設けた穴194aの径より大きいので、集電体197は半導体の穴194aの周縁部に接触している。半導体193と集電体197は、電気的に接続されている。   Since the outer diameter of the central portion 197 a is smaller than the diameter of the hole 193 a provided in the semiconductor 193, the peripheral portion of the semiconductor hole 193 a is not in contact with the current collector 197. The semiconductor 193 and the current collector 197 are electrically insulated. On the other hand, since the outer diameter of the central portion 197a is larger than the diameter of the hole 194a provided in the semiconductor 194, the current collector 197 is in contact with the peripheral edge portion of the semiconductor hole 194a. The semiconductor 193 and the current collector 197 are electrically connected.

半導体193がP型半導体で構成され、半導体194がN型半導体で構成されている。集電体の端部197bは蓋部材に設けられた穴を貫通して、ダイオード191の外方に突出してカソード端子197bとして機能する。円管192はアノード端子として機能する。集電体197と円管192が、蓋部材196を介して互いに電気的に接続されて短絡するのを防止するために、集電体197と蓋部材196の間には絶縁材198が設けられている。   The semiconductor 193 is composed of a P-type semiconductor, and the semiconductor 194 is composed of an N-type semiconductor. An end 197b of the current collector passes through a hole provided in the lid member and protrudes outward from the diode 191 to function as a cathode terminal 197b. The circular tube 192 functions as an anode terminal. An insulating material 198 is provided between the current collector 197 and the lid member 196 in order to prevent the current collector 197 and the circular tube 192 from being electrically connected to each other via the lid member 196 and being short-circuited. ing.

円管で構成された集電体197の内部には、冷媒を流すための通路が形成されている。半導体193で発生する熱は円管192に伝えられ、半導体194で発生する熱は集電体197に伝えられる。円管192および集電体197を冷却空気等で冷却することにより、半導体の温度上昇は抑制される。   Inside the current collector 197 formed of a circular pipe, a passage for flowing a refrigerant is formed. Heat generated in the semiconductor 193 is transmitted to the circular tube 192, and heat generated in the semiconductor 194 is transmitted to the current collector 197. By cooling the circular tube 192 and the current collector 197 with cooling air or the like, the temperature rise of the semiconductor is suppressed.

本実施形態において、半導体193をP型半導体で構成し、半導体194をN型半導体で構成したが、半導体193をN型半導体で構成し、半導体194をP型半導体で構成してもよい。この場合は、集電体の端部197bはアノード端子として機能し、円管192はカソード端子として機能する。   In this embodiment, the semiconductor 193 is configured by a P-type semiconductor and the semiconductor 194 is configured by an N-type semiconductor. However, the semiconductor 193 may be configured by an N-type semiconductor and the semiconductor 194 may be configured by a P-type semiconductor. In this case, the end 197b of the current collector functions as an anode terminal, and the circular tube 192 functions as a cathode terminal.

本発明に係る半導体デバイスは、産業用のみならず民生用の半導体デバイスとしてとして好適に用いることができる。   The semiconductor device according to the present invention can be suitably used as a semiconductor device not only for industrial use but also for consumer use.

1 蓄電池
2 電池ケース
3 正極
4 負極
5 セパレータ
6 キャップ
7 封口板
180 トランジスタ
181 外装体
182 円管
183、184、185 半導体
186 蓋部材
187 集電体
188 絶縁材
189 集電体
191 ダイオード
192 円管
193、194 半導体
195 外装体
196 蓋部材
197 集電体
198 絶縁材
DESCRIPTION OF SYMBOLS 1 Storage battery 2 Battery case 3 Positive electrode 4 Negative electrode 5 Separator 6 Cap 7 Sealing plate 180 Transistor 181 Exterior body 182 Circular pipe 183, 184, 185 Semiconductor 186 Lid member 187 Current collector 188 Insulating material 189 Current collector 191 Diode 192 Circular pipe 193 , 194 Semiconductor 195 Exterior body 196 Lid member 197 Current collector 198 Insulating material

Claims (3)

N型半導体とP型半導体とを複数備えた半導体デバイスにおいて、
円筒形の外装体の内部に、前記半導体が前記外装体の軸方向に積層されていて、
冷媒を流すための通路を有する導電性の集電体が前記半導体を前記外装体の軸方向に貫通している半導体デバイス。
In a semiconductor device comprising a plurality of N-type semiconductors and P-type semiconductors,
Inside the cylindrical exterior body, the semiconductor is laminated in the axial direction of the exterior body,
A semiconductor device in which a conductive current collector having a passage for flowing a refrigerant penetrates the semiconductor in an axial direction of the outer package.
エミッター層と、コレクター層と、ベース層が、前記外装体の内部軸方向に積層されていて、
前記エミッター層は、前記P型半導体および前記N型半導体のいずれか一方であって、
前記ベース層は、前記エミッター層と前記コレクター層に挟持され、前記エミッター層と異なる型の半導体であって、
前記コレクター層は前記エミッター層と同じ型の半導体であり、
前記エミッター層、前記コレクター層、前記ベース層のいずれか1が前記外装体の内面に当接して電気的に接続された第1層であり、
他が前記外装体に接触していない第2層および第3層であり、かつ、
導電性の第1集電体および第2集電体が、前記第1層と前記第2層と前記第3層を前記外装体の軸方向に貫通していて、
前記第1集電体は、前記第2層に接触して電気的に接続されており、かつ、前記第1層および前記第3層に接触しておらず、
前記第2集電体は、前記第3層と接触して電気的に接続されており、かつ、前記第1層および前記第2層に接触していない、請求項1に記載の半導体デバイス。
An emitter layer, a collector layer, and a base layer are laminated in the inner axial direction of the exterior body,
The emitter layer is one of the P-type semiconductor and the N-type semiconductor,
The base layer is sandwiched between the emitter layer and the collector layer, and is a semiconductor of a different type from the emitter layer,
The collector layer is a semiconductor of the same type as the emitter layer;
Any one of the emitter layer, the collector layer, and the base layer is a first layer that is in contact with and electrically connected to the inner surface of the exterior body,
The second and third layers are not in contact with the exterior body, and
The conductive first current collector and the second current collector pass through the first layer, the second layer, and the third layer in the axial direction of the exterior body,
The first current collector is in contact with and electrically connected to the second layer, and is not in contact with the first layer and the third layer;
The semiconductor device according to claim 1, wherein the second current collector is in contact with and electrically connected to the third layer, and is not in contact with the first layer and the second layer.
N型半導体と、P型半導体とが、前記外装体の内部軸方向に積層されており、
前記N型半導体と前記P型半導体のうち一方の半導体は、前記外装体の内面に当接して電気的に接続されているが前記集電体には接触しておらず、かつ、他方の半導体は前記集電体に接触して電気的に接続されているが前記外装体の内面に接触していない、請求項1に記載の半導体デバイス。
An N-type semiconductor and a P-type semiconductor are stacked in the inner axial direction of the exterior body,
One of the N-type semiconductor and the P-type semiconductor is in contact with and electrically connected to the inner surface of the outer package, but is not in contact with the current collector, and the other semiconductor. The semiconductor device according to claim 1, wherein is in contact with and electrically connected to the current collector, but not in contact with the inner surface of the exterior body.
JP2013080027A 2011-09-21 2013-04-06 Semiconductor device Active JP5380715B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2013080027A JP5380715B2 (en) 2011-09-21 2013-04-06 Semiconductor device

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
JP2011205597 2011-09-21
JP2011205597 2011-09-21
JP2013080027A JP5380715B2 (en) 2011-09-21 2013-04-06 Semiconductor device

Related Parent Applications (1)

Application Number Title Priority Date Filing Date
JP2012203739A Division JP5531220B2 (en) 2011-09-21 2012-09-15 Stacked battery and stacked battery system

Publications (2)

Publication Number Publication Date
JP2013152952A true JP2013152952A (en) 2013-08-08
JP5380715B2 JP5380715B2 (en) 2014-01-08

Family

ID=47914407

Family Applications (2)

Application Number Title Priority Date Filing Date
JP2012203739A Active JP5531220B2 (en) 2011-09-21 2012-09-15 Stacked battery and stacked battery system
JP2013080027A Active JP5380715B2 (en) 2011-09-21 2013-04-06 Semiconductor device

Family Applications Before (1)

Application Number Title Priority Date Filing Date
JP2012203739A Active JP5531220B2 (en) 2011-09-21 2012-09-15 Stacked battery and stacked battery system

Country Status (2)

Country Link
JP (2) JP5531220B2 (en)
WO (1) WO2013042640A1 (en)

Families Citing this family (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5369342B1 (en) 2011-12-19 2013-12-18 エクセルギー・パワー・システムズ株式会社 Laminated battery, assembled battery including laminated battery, and assembling method of laminated battery
JP5514971B2 (en) * 2012-01-29 2014-06-04 エクセルギー・パワー・システムズ株式会社 Stacked battery and stacked battery system
WO2014091635A1 (en) * 2012-12-16 2014-06-19 エクセルギー・パワー・システムズ株式会社 Layered battery and assembly method for layered battery
FR3009654A1 (en) * 2013-08-12 2015-02-13 Ergosup ELECTRICITY MASS STORAGE USING ELECTROLYSABLE METAL AS VECTOR
KR102046056B1 (en) 2014-08-21 2019-11-18 주식회사 엘지화학 A Battery cell Having Improved Cooling Performance
KR102108208B1 (en) * 2015-07-30 2020-05-07 주식회사 엘지화학 Cylindrical Secondary Battery Having Circular Electrode
JP6288655B2 (en) * 2016-06-20 2018-03-07 エクセルギー・パワー・システムズ株式会社 Reversible fuel cell storage battery
JP2018045948A (en) 2016-09-16 2018-03-22 トヨタ自動車株式会社 Stacked battery
WO2021033697A1 (en) * 2019-08-20 2021-02-25 株式会社Gsユアサ Method for producing electricity storage element, and electricity storage element
CN111129363A (en) * 2019-12-09 2020-05-08 金山电化工业(惠州)有限公司 High-temperature-resistant novel ammonium chloride battery
WO2021192251A1 (en) * 2020-03-27 2021-09-30 株式会社堤水素研究所 Solid-electrolyte battery
DE102021201496A1 (en) * 2021-02-17 2022-08-18 Volkswagen Aktiengesellschaft battery

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH04171849A (en) * 1990-11-06 1992-06-19 Toshiba Corp Cooling system for wafer

Family Cites Families (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4315060A (en) * 1980-06-13 1982-02-09 Gte Products Corporation Metal substrate for an electrochemical cell
US5173376A (en) * 1991-10-28 1992-12-22 Globe-Union Inc. Metal oxide hydrogen battery having sealed cell modules with electrolyte containment and hydrogen venting
JPH11274004A (en) * 1998-03-23 1999-10-08 Asahi Glass Co Ltd Electrochemical element
JP2000048854A (en) * 1998-07-31 2000-02-18 Toshiba Battery Co Ltd Cylindrical secondary battery
JP3802703B2 (en) * 1999-03-19 2006-07-26 トヨタ自動車株式会社 Nickel metal hydride battery
JP2001143716A (en) * 1999-11-16 2001-05-25 Tai-Her Yang Cylindrical single electrode battery
JP4845362B2 (en) * 2004-09-22 2011-12-28 三洋電機株式会社 Assembled battery

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH04171849A (en) * 1990-11-06 1992-06-19 Toshiba Corp Cooling system for wafer

Also Published As

Publication number Publication date
JP2013080698A (en) 2013-05-02
JP5380715B2 (en) 2014-01-08
WO2013042640A1 (en) 2013-03-28
JP5531220B2 (en) 2014-06-25

Similar Documents

Publication Publication Date Title
JP5380715B2 (en) Semiconductor device
JP5211022B2 (en) Lithium ion secondary battery
JP6560438B2 (en) Battery module
RU2613525C2 (en) Electrode unit, layered storage battery and method of producing such battery
JP2011054561A (en) Secondary battery
JP2004503053A (en) Battery, method of manufacturing battery, method of manufacturing battery case, and battery pack
KR102173142B1 (en) Battery module and battery pack including the same
JP6286632B2 (en) Bipolar battery
KR20160129571A (en) Electrode assembly and secondary battery comprising the same
KR101139617B1 (en) A nuclear multiple-layered semiconductor battery with radioactive energy source layers acting also as electrodes embedded in semiconductor layers
KR20160068446A (en) Battery module, and battery pack including the same
JP2014170633A (en) Battery module
JP2015056380A (en) Current interrupting device and power storage device using the same
JP2014071972A (en) Stacked cell
JP6473869B2 (en) Power storage device
JP6473870B2 (en) Power storage device
KR102352295B1 (en) Battery module with improved cooling efficiency
KR101606461B1 (en) Secondary battery module and pouch type secondary battery
KR20170067012A (en) Battery module and battery pack including the same
CN116097496A (en) Electrochemical device and electricity using device
JP2019061895A (en) Laminated battery cell and laminated battery module
JP2018170070A (en) Battery pack
JPH11273644A (en) Set battery and housing body for set battery
WO2018116735A1 (en) Electricity storage device
JP6499043B2 (en) Electrochemical devices

Legal Events

Date Code Title Description
A975 Report on accelerated examination

Free format text: JAPANESE INTERMEDIATE CODE: A971005

Effective date: 20130625

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20130627

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20130727

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20130820

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20130909

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20130910

R150 Certificate of patent or registration of utility model

Ref document number: 5380715

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313531

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250