JP2014071972A - Stacked cell - Google Patents

Stacked cell Download PDF

Info

Publication number
JP2014071972A
JP2014071972A JP2012215527A JP2012215527A JP2014071972A JP 2014071972 A JP2014071972 A JP 2014071972A JP 2012215527 A JP2012215527 A JP 2012215527A JP 2012215527 A JP2012215527 A JP 2012215527A JP 2014071972 A JP2014071972 A JP 2014071972A
Authority
JP
Japan
Prior art keywords
electrode
current collector
metal foil
battery
negative electrode
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2012215527A
Other languages
Japanese (ja)
Other versions
JP5417579B1 (en
Inventor
Kazuo Tsutsumi
香津雄 堤
Masateru Nakoji
昌輝 名小路
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Exergy Power Systems Inc
Original Assignee
Exergy Power Systems Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Exergy Power Systems Inc filed Critical Exergy Power Systems Inc
Priority to JP2012215527A priority Critical patent/JP5417579B1/en
Application granted granted Critical
Publication of JP5417579B1 publication Critical patent/JP5417579B1/en
Publication of JP2014071972A publication Critical patent/JP2014071972A/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P70/00Climate change mitigation technologies in the production process for final industrial or consumer products
    • Y02P70/50Manufacturing or production processes characterised by the final manufactured product

Landscapes

  • Secondary Cells (AREA)
  • Connection Of Batteries Or Terminals (AREA)
  • Battery Electrode And Active Subsutance (AREA)
  • Sealing Battery Cases Or Jackets (AREA)
  • Cell Electrode Carriers And Collectors (AREA)

Abstract

PROBLEM TO BE SOLVED: To solve the problems of a conventional wound battery that it is difficult to suppress temperature rise in a battery, that it does not function as a battery when the temperature of an electrode rises, and that the battery size increases if a pipe, or the like, for feeding refrigerant is provided in the battery.SOLUTION: A battery having excellent cycle life is obtained by stacking a positive electrode and a negative electrode in the axial direction of a cylindrical exterior body, interposing a metal foil between one electrode of the positive electrode or a negative electrode and a current collector, thereby suppressing temperature rise in a battery.

Description

本発明は、電池の冷却に関し、詳しくは、電池における冷却性能の向上を図った積層電池に関する。   The present invention relates to battery cooling, and more particularly, to a laminated battery with improved cooling performance in the battery.

二次電池には、円筒型電池、角型電池など種々の形状の電池が開発され広く使用されている。そして、比較的小容量の電池には、耐圧性や封口の容易さの点から円筒型が採用され、比較的大容量の電池には、取扱いの容易性から角型が採用されている。   As secondary batteries, batteries of various shapes such as cylindrical batteries and square batteries have been developed and widely used. In addition, a cylindrical type is adopted for a relatively small capacity battery from the viewpoint of pressure resistance and ease of sealing, and a square type is adopted for a relatively large capacity battery for ease of handling.

また二次電池の電極構造に着目すれば、大別して、積層タイプと捲回タイプの2つのタイプが広く使用されている。すなわち積層タイプの電池は、正極と負極がセパレータを介して交互に積層された電極群が電池ケースに収納されている。積層タイプの電池の多くは角型の電池ケースを有しているが、円筒型の電池ケースを有するものもある。一方、捲回タイプの電池は、正極と負極がセパレータを挟みつつ渦巻状に巻き取られた状態で電池ケースに収納されている。捲回タイプの電池の多くは円筒型であるが、角型のものもある。   If attention is paid to the electrode structure of the secondary battery, two types, a stacked type and a wound type, are widely used. That is, in a stacked type battery, an electrode group in which positive electrodes and negative electrodes are alternately stacked via separators is housed in a battery case. Many of the stacked type batteries have a rectangular battery case, but some have a cylindrical battery case. On the other hand, a wound type battery is housed in a battery case in a state in which a positive electrode and a negative electrode are wound in a spiral shape with a separator interposed therebetween. Many of the wound type batteries are cylindrical, but some are rectangular.

特許文献1および特許文献2に、円筒型捲回電池に関する技術が開示されている。そして、特許文献3には、有底円筒容器の内部に円盤状の電極を積み重ねて、電池の高容量化を図ることを目的とした円筒型積層電池が開示されている。   Patent Document 1 and Patent Document 2 disclose techniques related to a cylindrical wound battery. Patent Document 3 discloses a cylindrical laminated battery for the purpose of increasing battery capacity by stacking disk-shaped electrodes inside a bottomed cylindrical container.

二次電池の冷却構造については種々の方法が提案されている。その多くは、二次電池を複数個組み合わせてモジュール化した組電池に関するものである。これは二次電池をモジュール化して大容量化すると、二次電池の温度上昇が問題となるからである。組電池の冷却構造については、組電池を収納した容器の表面に突起を設けて冷却空気の流れに乱れを生じさせて放熱をよくする方法(例えば、特許文献4)、隣り合う組電池の間に穴開きの金属製の冷却板を介在させて冷却空気の通路を設ける方法(例えば、特許文献4、5)、もしくは収納容器の外部に突出する冷却フィンを設ける方法(例えば、特許文献6)が提案されている。   Various methods have been proposed for the cooling structure of the secondary battery. Most of them are related to an assembled battery obtained by modularizing a plurality of secondary batteries. This is because when the secondary battery is modularized to increase the capacity, the temperature rise of the secondary battery becomes a problem. As for the cooling structure of the assembled battery, a method of providing protrusions on the surface of the container that houses the assembled battery to cause disturbance in the flow of cooling air to improve heat dissipation (for example, Patent Document 4), between adjacent assembled batteries A method of providing a cooling air passage by interposing a metal cooling plate with a hole (for example, Patent Documents 4 and 5) or a method of providing cooling fins protruding outside the storage container (for example, Patent Document 6) Has been proposed.

特許文献7には、正極と負極の間にセパレータを介在させた角型積層電池ユニットにおいて、当該電池ユニットの間に冷媒の流路を設けた冷却板を配置した電池ユニットの冷却構造が開示されている。
特許文献8には、シート状のヒートシンクを正極と負極に配して、セパレータと共に捲回してなる円筒型捲回電池が開示されている。
Patent Document 7 discloses a cooling structure for a battery unit in which a cooling plate in which a coolant channel is provided between the battery units in a prismatic stacked battery unit in which a separator is interposed between the positive electrode and the negative electrode. ing.
Patent Document 8 discloses a cylindrical wound battery in which a sheet-shaped heat sink is disposed on a positive electrode and a negative electrode and wound together with a separator.

特開2002−198044号公報JP 2002-198044 A 特開2004−103350号公報JP 2004-103350 A 特開2000−48854号公報JP 2000-48854 A 特開2009−16285号公報JP 2009-16285 A 特開2003−7355号公報JP 2003-7355 A 特開2001−143769号公報JP 2001-143769 A 国際公開2008/099609号公報International Publication No. 2008/099609 特開平11−144771号公報Japanese Patent Laid-Open No. 11-144771

電池の構成要素のひとつであるセパレータは、正極と負極の短絡を防止し、電解液を保持して正極と負極間のイオン伝導を行う役割を有し、電池にとって重要なパーツである。しかし、セパレータはポリアミド繊維やポリオレフィン繊維等の合成繊維の不織布を素材として採用しているので、正極もしくは負極(以下、総称して電極という)と比べてその熱伝導度は小さく、熱を伝え難い。   The separator, which is one of the constituent elements of the battery, has a role of preventing a short circuit between the positive electrode and the negative electrode, holding an electrolyte, and conducting ionic conduction between the positive electrode and the negative electrode, and is an important part for the battery. However, since the separator uses a nonwoven fabric of synthetic fibers such as polyamide fibers and polyolefin fibers, its thermal conductivity is small compared to the positive electrode or negative electrode (hereinafter collectively referred to as electrodes), and it is difficult to transfer heat. .

捲回電池の熱の移動に言及すれば、電池の内部で発生した熱を、電池表面に伝えるためには、電池の半径方向に熱を伝える必要がある。捲回電池は、熱伝導度が低いセパレータが、電池表面と中心部の間に多層に重ねられているので、良好に熱伝達を行うことは困難である。この結果、捲回電池は電池内部と電池表面に大きな温度勾配を生じ、中心部に行くほど高温となる。   Referring to the heat transfer of the wound battery, in order to transfer the heat generated inside the battery to the battery surface, it is necessary to transfer the heat in the radial direction of the battery. In a wound battery, separators having low thermal conductivity are stacked in multiple layers between the battery surface and the central portion, so that it is difficult to perform heat transfer well. As a result, the wound battery has a large temperature gradient in the battery and on the battery surface, and the temperature increases toward the center.

この結果、捲回電池の電池ケースの表面温度は周囲温度に近いものの、中心部分の温度は高く、特に充放電状態においてはかなり高温となる。電池ケースの外側を冷却しても、電池内部は必要な程度に冷却されず高温となる。電極は温度が高くなると機能しなくなる。   As a result, although the surface temperature of the battery case of the wound battery is close to the ambient temperature, the temperature of the central portion is high, and particularly in the charge / discharge state, the temperature is considerably high. Even if the outside of the battery case is cooled, the inside of the battery is not cooled to a necessary level and becomes high temperature. The electrode stops functioning at higher temperatures.

電池の冷却方法として、前述したように、種々の方法が提案されている(例えば、特許文献4,5,6)。しかし、これらの方法はいずれも電池ケースの表面を冷却するのには有効であるが、セパレータによる温度勾配が存在するため捲回電池においては効果的な冷却方法ということができない。   As described above, various methods for cooling the battery have been proposed (for example, Patent Documents 4, 5, and 6). However, any of these methods is effective for cooling the surface of the battery case, but it cannot be an effective cooling method for a wound battery because of the temperature gradient due to the separator.

ヒートシンクを電極と共に捲回する方法、もしくは冷却水が流れるパイプを電池内部に収納する方法が提案されている。これらの方法は、電池ケースの表面を冷却するよりは効果的な冷却方法といえるかもしれないが、冷却のためのスペースを必要とし、電池寸法が大きくなり、体積当りの電気容量が低下する。   A method of winding a heat sink together with an electrode, or a method of storing a pipe through which cooling water flows in a battery has been proposed. These methods may be said to be more effective cooling methods than cooling the surface of the battery case, but require a space for cooling, increase the battery size, and decrease the electric capacity per volume.

特許文献3に記載の電池は、電池容器を一方の電極端子とし、電極を貫通する集電棒を他方の電極端子とする電池であって、電極と端子の接続構造が簡素であることを特徴としている。しかし、電池の組立過程において正極と負極が短絡して初期不良を生じることがある。更には、充放電を繰り返すことにより、電極が収縮・膨張を繰り返すことにより変形して、正極と負極が短絡して経年不良を起こすことがある。このような現象は電池のサイクル寿命を短くする。   The battery described in Patent Document 3 is a battery having a battery container as one electrode terminal and a current collecting rod penetrating the electrode as the other electrode terminal, wherein the connection structure between the electrode and the terminal is simple. Yes. However, in the battery assembly process, the positive electrode and the negative electrode may be short-circuited to cause an initial failure. Furthermore, by repeating charge and discharge, the electrode may be deformed by repeated contraction and expansion, and the positive electrode and the negative electrode may be short-circuited, resulting in aged defects. Such a phenomenon shortens the cycle life of the battery.

本発明は、係る課題を解決するためになされたものであり、電池内部の温度上昇を抑制するとともに、電極と端子の接触不良を起こすことがない、サイクル寿命特性に優れた二次電池を提供することを解決課題とする。   The present invention has been made to solve such problems, and provides a secondary battery excellent in cycle life characteristics that suppresses temperature rise inside the battery and does not cause poor contact between electrodes and terminals. To solve it.

前記した課題を達成するために、本発明に係る積層電池は、筒状の外装体の内部に、正極と、負極とが、セパレータを介して、前記外装体の軸方向に積層されている電池であって、導電性の集電体が、前記正極と前記負極と前記セパレータとを前記外装体の軸方向に貫通しており、前記正極もしくは前記負極のいずれか一方の電極が第1金属箔を介して前記外装体に電気的に接続されている第1電極であり、他方の電極が前記外装体に電気的に接続されていない第2電極であり、かつ、前記第2電極が第2金属箔を介して前記集電体に電気的に接続されていて、前記第1電極が前記集電体に電気的に接続されていない(請求項1)。   In order to achieve the above-described problems, a laminated battery according to the present invention is a battery in which a positive electrode and a negative electrode are laminated in the axial direction of the outer casing through a separator inside a cylindrical outer casing. The conductive current collector passes through the positive electrode, the negative electrode, and the separator in the axial direction of the outer casing, and either the positive electrode or the negative electrode is a first metal foil. A first electrode that is electrically connected to the exterior body via the other electrode, a second electrode that is not electrically connected to the exterior body, and the second electrode is a second electrode. It is electrically connected to the current collector through a metal foil, and the first electrode is not electrically connected to the current collector (Claim 1).

この構成によれば、セパレータは電解液を保持していて、正負極間の絶縁を図るとともに、イオンの透過を可能にしている。外装体は、金属でできており、外装体に電気的に接続されている方の電極(第1電極)の端子として機能する。一方、集電体は、金属でできており、集電体に電気的に接続されている方の電極(第2電極)の端子として機能する。また集電体は、鉄やアルミであってよく、これらにニッケルメッキを施したものが好ましい。   According to this configuration, the separator holds the electrolytic solution, insulates between the positive and negative electrodes, and enables ion permeation. The exterior body is made of metal and functions as a terminal of the electrode (first electrode) that is electrically connected to the exterior body. On the other hand, the current collector is made of metal and functions as a terminal of the electrode (second electrode) that is electrically connected to the current collector. Further, the current collector may be iron or aluminum, and these are preferably nickel-plated.

正負極とセパレータは、シート状に形成されている。そして正負極とセパレータは、その中央部分に集電体が通る穴を有しており、その穴を棒状の集電体が貫通している。第1電極の穴の径は、棒状の集電体の外径と第2金属箔の厚みの和より大きい。このため第1電極は、第2金属箔および集電体とは接触せず、第1電極と集電体は電気的に絶縁されている。一方、第2電極の穴の径は、棒状の集電体の外径と第2金属箔の厚みの和より小さい。このため、第2電極の穴の周縁の全体または一部が第2金属箔を介して集電体に接触している。第2電極は、第2金属箔を介して集電体と電気的に接続されている。   The positive and negative electrodes and the separator are formed in a sheet shape. The positive and negative electrodes and the separator each have a hole through which the current collector passes, and the rod-shaped current collector passes through the hole. The diameter of the hole of the first electrode is larger than the sum of the outer diameter of the rod-shaped current collector and the thickness of the second metal foil. For this reason, the first electrode is not in contact with the second metal foil and the current collector, and the first electrode and the current collector are electrically insulated. On the other hand, the diameter of the hole of the second electrode is smaller than the sum of the outer diameter of the rod-shaped current collector and the thickness of the second metal foil. For this reason, the whole or part of the periphery of the hole of the second electrode is in contact with the current collector via the second metal foil. The second electrode is electrically connected to the current collector through the second metal foil.

外装体は中空であって、正負極とセパレータが外装体の軸方向に積層されて、外装体の内部に収納されている。外装体は、好ましくは缶であってよく、鉄やアルミニウムやチタンであってよい。第2電極の外方寸法(円筒の場合は外径)と第1金属箔の厚みの和は外装体の内方寸法(円筒の場合は内径)よりも小さく、第2電極は、第1金属箔および外装体と接触せず、第2電極と外装体は電気的に絶縁されている。一方、第1電極の外方寸法と第1金属箔の厚みの和は、外装体の内方寸法よりも大きい。第1電極はその外縁の全体もしくは部分的に、外装体の内面に第1金属箔を介して接触している。すなわち、第1電極は第1金属箔を介して外装体と電気的に接続されている。第1電極が外装体内部に圧入されるので、第1電極で発生する熱は、小さい抵抗で外装体に伝えられ、電極の冷却に有効に作用する。
第1および第2金属箔は、電極を組み上げた状態で、それぞれ電極の側面および穴に接触するように取り付けられる。
The exterior body is hollow, and the positive and negative electrodes and the separator are stacked in the axial direction of the exterior body, and are accommodated inside the exterior body. The outer package may preferably be a can, and may be iron, aluminum or titanium. The sum of the outer dimension of the second electrode (outer diameter in the case of a cylinder) and the thickness of the first metal foil is smaller than the inner dimension of the outer casing (inner diameter in the case of a cylinder). The second electrode and the exterior body are electrically insulated without contact with the foil and the exterior body. On the other hand, the sum of the outer dimension of the first electrode and the thickness of the first metal foil is larger than the inner dimension of the exterior body. The first electrode is in contact with the inner surface of the exterior body through the first metal foil, either entirely or partially at the outer edge thereof. That is, the first electrode is electrically connected to the exterior body via the first metal foil. Since the first electrode is press-fitted into the exterior body, the heat generated in the first electrode is transmitted to the exterior body with a small resistance and effectively acts on the cooling of the electrode.
The first and second metal foils are attached so as to be in contact with the side surface and the hole of the electrode, respectively, in a state where the electrode is assembled.

第1電極で発生する熱は、直接外装体に伝えられる。途中に熱の不良導体を介さないので温度勾配(温度差)は小さい。第2電極で発生する熱は、セパレータを介して第1電極に伝えられる。途中に熱伝導度の小さいセパレータが介するが、1枚だけであり大きな熱抵抗とはならないので温度勾配は小さく抑えられる。更に、正負極とセパレータからなる電極群を軸方向に大きな圧力を持って外装体に押し込むことにより、第2電極が強く第1電極に押し付けられるので、第2電極の熱の移動はより大きくなる。捲回電池の温度勾配が大きいのは、外装体と電極の間に幾重もの熱を伝え難いセパレータを介しているのと、その構造上大きな力で捲回することができないので電極間の熱の移動を大きくすることができないからである。   The heat generated in the first electrode is directly transferred to the exterior body. The temperature gradient (temperature difference) is small because there is no defective heat conductor in the middle. Heat generated in the second electrode is transmitted to the first electrode through the separator. A separator with a low thermal conductivity is interposed in the middle, but only one sheet does not provide a large thermal resistance, so the temperature gradient can be kept small. Furthermore, the second electrode is strongly pressed against the first electrode by pushing the electrode group consisting of the positive and negative electrodes and the separator into the exterior body with a large pressure in the axial direction, so that the heat transfer of the second electrode becomes larger. . The temperature gradient of the wound battery is large because the separator between the outer body and the electrode, which is difficult to transfer heat, cannot be wound with a large force due to its structure. This is because the movement cannot be increased.

捲回電池の総括熱伝達係数(U1)は、後述するように、数1で示される。一方、本発明に係る積層電池の総括熱伝達係数(U2)は、数2で示される。両者を比較すると、捲回数nの項において大きな差が生じるといえる。具体的な数値は、実施例の説明で詳述するが、捲回電池の捲回数nが大きいほど、総括熱伝達係数は小さくなる。 The overall heat transfer coefficient (U 1 ) of the wound battery is expressed by Equation 1 as will be described later. On the other hand, the overall heat transfer coefficient (U 2 ) of the laminated battery according to the present invention is expressed by Equation 2. Comparing the two, it can be said that a large difference occurs in the term of the number of times n. Specific numerical values will be described in detail in the description of the embodiment, but the overall heat transfer coefficient decreases as the number n of wound batteries increases.

以上のように、本発明に係る積層電池の温度勾配は小さく、積層電池の中心部における温度上昇を小さくすることができる。このため電池内部に冷媒を流すためのパイプ等を設ける必要がないのでコンパクトな構造で温度上昇を抑えることができる。更には、外装体の冷却は比較的容易に行うことができるので、容易に電池の温度上昇を抑えることが可能となる。   As described above, the temperature gradient of the laminated battery according to the present invention is small, and the temperature rise at the center of the laminated battery can be reduced. For this reason, since it is not necessary to provide a pipe or the like for flowing a refrigerant inside the battery, the temperature rise can be suppressed with a compact structure. Furthermore, since the exterior body can be cooled relatively easily, it is possible to easily suppress the temperature rise of the battery.

本発明に係る積層電池は、前記第1金属箔もしくは第2金属箔の少なくとも片面に、複数の突起を有していることが好ましい(請求項2)。
この構成によれば、これら金属箔は、その表面に突出するように形成された多数の突起を有するよう三次元加工が施されている。二次電池の充放電に伴ない、電極に体積変化が生じるが、金属箔に設けた突起は、第1電極と外装体間、および第2電極と集電体間の接触が悪くなるのを防ぐことを可能にする。電池のサイクル寿命特性を改善することができる。
The laminated battery according to the present invention preferably has a plurality of protrusions on at least one surface of the first metal foil or the second metal foil.
According to this configuration, these metal foils are three-dimensionally processed so as to have a large number of protrusions formed so as to protrude on the surface thereof. As the secondary battery is charged / discharged, the volume of the electrode changes, but the protrusions provided on the metal foil deteriorate the contact between the first electrode and the exterior body and between the second electrode and the current collector. Makes it possible to prevent. The cycle life characteristics of the battery can be improved.

本発明に係る積層電池は、前記第1金属箔もしくは第2金属箔に設けた前記突起が、底部の面積が頂部の面積より大きい錐台状となっていることが好ましい(請求項3)。
この構成によれば、金属箔の表面には凹凸を設けることにより、突起を形成することが可能である。この場合、金属箔の両面に突起が形成させることになる。金属箔の凹凸の凸部に着目すれば、その形状は錐台状となる。具体的には、多角錐台もしくは円錐台である。突起の突き出ている方(頂部)の面積は、突起の底部の面積より小さく、その縦断面は台形状となっている。電極は錐台状の突起に食い込み、第1電極と外装体間および第2電極と集電体間の接触を良好に保つのに有効に働く。底部の面積が頂部の面積より大きいので、電極が安定的に金属箔の突起に食い込む。
In the laminated battery according to the present invention, it is preferable that the protrusion provided on the first metal foil or the second metal foil has a frustum shape in which the area of the bottom is larger than the area of the top.
According to this configuration, protrusions can be formed by providing irregularities on the surface of the metal foil. In this case, protrusions are formed on both surfaces of the metal foil. If attention is paid to the convex and concave portions of the metal foil, the shape thereof becomes a frustum shape. Specifically, it is a polygonal frustum or a truncated cone. The area of the protrusion (top) of the protrusion is smaller than the area of the bottom of the protrusion, and the longitudinal section thereof is trapezoidal. The electrode bites into the frustum-shaped protrusion, and effectively works to keep good contact between the first electrode and the outer package and between the second electrode and the current collector. Since the area of the bottom is larger than the area of the top, the electrode stably bites into the protrusion of the metal foil.

本発明に係る積層電池は、前記第1金属箔もしくは第2金属箔に設けられた前記突起の先端部が突起と反対方向に折り曲げられていることが好ましい(請求項4)。
この構成によれば、金属箔は、突起の先端部が突起と反対方向に折り曲げられた「カエシ」を有している。このカエシは、電極に喰い込み引っかかりを生じることで、充放電に伴う電極の膨張・収縮に関わらず第1電極と外装体間および第2電極と集電体間の接触を確実にする。
In the laminated battery according to the present invention, it is preferable that a tip portion of the protrusion provided on the first metal foil or the second metal foil is bent in a direction opposite to the protrusion.
According to this configuration, the metal foil has a “cache” in which the tip of the protrusion is bent in the direction opposite to the protrusion. This bite causes the electrode to bite and catch, thereby ensuring contact between the first electrode and the exterior body and between the second electrode and the current collector regardless of the expansion and contraction of the electrode accompanying charging and discharging.

本発明に係る積層電池は、前記第1金属箔もしくは第2金属箔に設けられた前記突起の先端部に穴が設けられていて、当該穴の周縁から外方に突出する外縁を有することが好ましい(請求項5)。
この構成によれば、突起の先端部もしくは頂部にカエシを容易に設けることが可能となる。
In the laminated battery according to the present invention, a hole is provided at a tip portion of the protrusion provided in the first metal foil or the second metal foil, and the outer battery protrudes outward from a peripheral edge of the hole. Preferred (claim 5).
According to this configuration, it is possible to easily provide a cache at the tip or top of the protrusion.

本発明に係る積層電池は、前記セパレータの外縁が前記第1電極により覆われており、前記第2電極の外縁が前記セパレータにより覆われており、前記第1電極の前記集電体が貫通する穴の周縁が前記セパレータにより覆われており、前記セパレータの前記集電体を貫通する穴の周縁が前記第2電極により覆われている(請求項6)。   In the laminated battery according to the present invention, the outer edge of the separator is covered with the first electrode, the outer edge of the second electrode is covered with the separator, and the current collector of the first electrode penetrates. The peripheral edge of the hole is covered with the separator, and the peripheral edge of the hole penetrating the current collector of the separator is covered with the second electrode.

この構成によれば、電極とセパレータが積層されている状態において、第2電極の外縁がセパレータにより覆われているので、第1電極と第2電極とはその外縁部において、セパレータにより確実に隔離されている。電極の変形により第1電極と第2電極が、その外縁部において接触(短絡)することはない。同様に、第1電極の集電体が貫通する穴の周縁がセパレータにより覆われているので、第1電極と第2電極とはその穴の周縁部において、セパレータにより確実に隔離されている。電極の変形により第1電極と第2電極が、穴の周縁部において接触(短絡)することはない。
第1電極と第2電極が積み重ねられた状態において、第1電極の外縁部に第1金属箔を取り付ける際に、セパレータは障害とならない。また、集電体が貫通するセパレータの穴の周縁部は第2電極により覆われているので、第2金属箔を第2電極の穴の周縁部に取り付けるのに、セパレータは障害とならない。
電極が円盤状である場合は、第1電極の外径はセパレータの外径より大きく、セパレータの外径は第2電極の外径より大きい。また、集電体が丸棒である場合は、第1電極の穴径はセパレータの穴径より大きく、セパレータの穴径は第2電極の穴径より大きい。この構成によれば、正極と負極とが組立時に誤って短絡することがない。電極の変形による電極間で短絡を起こすことがない。
According to this configuration, since the outer edge of the second electrode is covered with the separator in a state where the electrode and the separator are stacked, the first electrode and the second electrode are reliably separated by the separator at the outer edge portion. Has been. The first electrode and the second electrode do not contact (short-circuit) at the outer edge portion due to the deformation of the electrode. Similarly, since the periphery of the hole through which the current collector of the first electrode passes is covered with the separator, the first electrode and the second electrode are reliably separated by the separator at the periphery of the hole. The first electrode and the second electrode do not contact (short-circuit) at the peripheral portion of the hole due to the deformation of the electrode.
In the state where the first electrode and the second electrode are stacked, the separator does not become an obstacle when the first metal foil is attached to the outer edge portion of the first electrode. Moreover, since the peripheral part of the hole of the separator through which the current collector passes is covered with the second electrode, the separator does not become an obstacle to attaching the second metal foil to the peripheral part of the hole of the second electrode.
When the electrode is disk-shaped, the outer diameter of the first electrode is larger than the outer diameter of the separator, and the outer diameter of the separator is larger than the outer diameter of the second electrode. When the current collector is a round bar, the hole diameter of the first electrode is larger than the hole diameter of the separator, and the hole diameter of the separator is larger than the hole diameter of the second electrode. According to this configuration, the positive electrode and the negative electrode are not accidentally short-circuited during assembly. There is no short circuit between the electrodes due to the deformation of the electrodes.

本発明に係る積層電池は、前記集電体がパイプ状の側部を有することが好ましい(請求項7)。
この構成において、集電体の側部の一部もしくは全部がパイプで覆われているので、集電体と電極との結合が緩んだ折に、集電体のパイプ部分に、パイプの内径より少し大きめの杭を打ち込むことで、集電体の外径を広げることが可能となる。これにより、集電体と電極との結合を強固にすることができる。
In the laminated battery according to the present invention, it is preferable that the current collector has a pipe-shaped side portion (Claim 7).
In this configuration, part or all of the side part of the current collector is covered with the pipe, so when the connection between the current collector and the electrode is loose, the pipe part of the current collector is connected to the inner diameter of the pipe. By driving a slightly larger pile, the outer diameter of the current collector can be increased. Thereby, the coupling | bonding of a collector and an electrode can be strengthened.

本発明に係る積層電池は、前記集電体のパイプ状側部の軸方向にスリットが設けられていることが好ましい(請求項8)。
この構成によれば、集電体のパイプ部分に、パイプの内径よりも少し大きめの杭を打ち込むと、スリットが広がる。これにより、小さな抵抗で集電体の外径を広げ、集電体と電極との結合を締め付けることができる。集電体のパイプ部分にスリットがないと、集電体の肉厚が大きいと、集電体に杭を打ち込む際、集電体の外径が広がりにくい。肉厚が薄いと、集電体の導電性が悪くなる。
In the laminated battery according to the present invention, it is preferable that a slit is provided in the axial direction of the pipe-shaped side portion of the current collector.
According to this configuration, when a pile slightly larger than the inner diameter of the pipe is driven into the pipe portion of the current collector, the slit is widened. Thereby, the outer diameter of the current collector can be widened with a small resistance, and the coupling between the current collector and the electrode can be tightened. If there is no slit in the pipe portion of the current collector, the outer diameter of the current collector is difficult to expand when a pile is driven into the current collector if the current collector is thick. When the wall thickness is thin, the electrical conductivity of the current collector becomes poor.

本発明に係る積層電池は、前記集電体の側面が凸凹形状を有することが好ましい(請求項9)。
この構成によれば、集電体の側面には凸凹形状を有する。そして、第2電極に設けた集電体が貫通する穴の径は集電体の凹の径と第2金属箔の厚さの和より小さい。これにより、充放電に伴い電極の体積が変化しても、凸凹の形状によるアンカー効果によって、第2電極と集電体の接触を十分確保することが可能になる。凸凹形状を設ける手法としては、エッチング加工、ローレット加工、ナール加工、エンボス加工、ネジ加工、レーザー加工など既存のものが挙げられる。
In the laminated battery according to the present invention, it is preferable that a side surface of the current collector has an uneven shape.
According to this configuration, the current collector has an uneven shape on the side surface. The diameter of the hole through which the current collector provided in the second electrode passes is smaller than the sum of the concave diameter of the current collector and the thickness of the second metal foil. Thereby, even if the volume of the electrode changes with charge / discharge, it becomes possible to ensure sufficient contact between the second electrode and the current collector by the anchor effect due to the uneven shape. Examples of the method for providing the uneven shape include existing methods such as etching, knurling, knurling, embossing, screwing, and laser processing.

本発明に係る積層電池は、前記集電体の側面に溝加工が施されていて、前記集電体の溝の谷の径と前記第2金属箔の厚さの和は前記第2電極に設けた前記集電体が貫通する穴の径より大きく、前記集電体の溝の山の径と前記第2金属箔の厚さの和は前記第1電極に設けた前記集電体が貫通する穴の径より小さいことが好ましい(請求項10)。
この構成によれば、集電体の側面に設けられた溝は、ネジ溝であることが好ましい。溝の谷とは、集電体のもっとも細い部分をいう。そして、第2電極が第2金属箔を介して、ネジ溝に密着している。溝の山とは、集電体のもっとも太い部分をいう。そして、第1電極は集電体に接触していない。
In the laminated battery according to the present invention, a groove is formed on a side surface of the current collector, and a sum of a groove trough diameter of the current collector and a thickness of the second metal foil is applied to the second electrode. The diameter of the groove of the current collector and the sum of the thickness of the second metal foil are larger than the diameter of the hole through which the current collector is provided, and the current collector provided in the first electrode penetrates. It is preferable that it is smaller than the diameter of the hole to be formed.
According to this configuration, the groove provided on the side surface of the current collector is preferably a screw groove. The groove valley is the thinnest part of the current collector. The second electrode is in close contact with the screw groove via the second metal foil. Groove mountain is the thickest part of the current collector. The first electrode is not in contact with the current collector.

集電体にネジ溝加工を施さない場合、電極の組立時に集電体と電極との結合が緩み、集電体と電極の密接な接触が阻害されることがある。このような課題を解決するために、集電体にネジ溝加工を施した。すなわち、第2電極が集電体に形成したネジのリードに沿って強く嵌め合い状態を維持することが可能となる。これにより、組立加工時に電極が集電体から抜けてしまうのを防止することが可能となる。   If the current collector is not subjected to thread groove processing, the connection between the current collector and the electrode may be loosened during assembly of the electrode, and intimate contact between the current collector and the electrode may be hindered. In order to solve such a problem, the current collector was subjected to thread groove processing. In other words, the second electrode can be strongly fitted along the lead of the screw formed on the current collector. As a result, it is possible to prevent the electrode from coming off the current collector during assembly processing.

本発明に係る積層電池は、前記負極の充電容量が前記正極の充電容量よりも小さいことが好ましい(請求項11)。一般にアルカリ二次電池において、密閉化を行うために正極規制を採用しており、正極容量に比べて多くの負極容量を必要としている。しかし、当該積層電池は、いわゆる負極規制となっている。ここに、各充電容量は、単に、正極容量もしくは負極容量と称されることがある。   In the laminated battery according to the present invention, it is preferable that a charge capacity of the negative electrode is smaller than a charge capacity of the positive electrode. Generally, in an alkaline secondary battery, positive electrode regulation is adopted for sealing, and a larger negative electrode capacity is required than a positive electrode capacity. However, the laminated battery is a so-called negative electrode regulation. Here, each charge capacity may be simply referred to as a positive electrode capacity or a negative electrode capacity.

したがって、本発明に係る積層電池では、充電が進んだ状態では、正極が満充電になる前に、負極が満充電になる。負極規制のニッケル水素電池では、満充電の状態からさらに充電が行われる過充電時には、負極において、下記の反応式(1)により、水素ガスが発生する。
+ +e- → 1/2H2 (1)
Therefore, in the laminated battery according to the present invention, in a state where charging has progressed, the negative electrode is fully charged before the positive electrode is fully charged. In a nickel metal hydride battery regulated by a negative electrode, hydrogen gas is generated in the negative electrode according to the following reaction formula (1) at the time of overcharge in which charging is further performed from a fully charged state.
H + + e → 1 / 2H 2 (1)

発生した水素ガスは、外装体の内部に蓄積されるが、別途に設けた水素ガス貯蔵室に貯蔵されてもよい。外装体の内部に蓄積もしくは貯蔵された水素ガスは、放電に際して、負極の水素吸蔵合金に吸蔵されて、放電のエネルギー源となる。放電の際の反応式を(2)に示す。
負極 1/2H2 → H+ + e-
正極 NiOOH+e-+H+ → Ni(OH)2 (2)
全体 NiOOH+1/2H2 → Ni(OH)2
The generated hydrogen gas is accumulated inside the exterior body, but may be stored in a separately provided hydrogen gas storage chamber. During the discharge, the hydrogen gas accumulated or stored in the exterior body is occluded in the hydrogen storage alloy of the negative electrode and becomes an energy source for the discharge. The reaction formula at the time of discharge is shown in (2).
Negative electrode 1 / 2H 2 → H + + e
Positive electrode NiOOH + e + H + → Ni (OH) 2 (2)
Overall NiOOH + 1 / 2H 2 → Ni (OH) 2

ニッケル水素電池の負極は、レアメタルである水素吸蔵合金を含んでいる。水素吸蔵合金は、高価である。負極のコストは、電極全体の80%を占めるといわれており、負極コストの電池価格に及ぼす影響は大きい。正極規制の二次電池は、負極材料の量は、正極材料の1.5倍から2倍となっている。しかし、本発明の構成によれば、高価な負極材料の量を減らすことが可能になる。このため、安価な電池を得ることができる。なお、負極容量が減少しても、過充電により蓄えられた水素ガスは、放電の際に使用されので、電池容量が低下することはない。   The negative electrode of the nickel metal hydride battery includes a hydrogen storage alloy that is a rare metal. Hydrogen storage alloys are expensive. The cost of the negative electrode is said to occupy 80% of the entire electrode, and the negative electrode cost has a great influence on the battery price. In the secondary battery regulated by the positive electrode, the amount of the negative electrode material is 1.5 to 2 times that of the positive electrode material. However, according to the configuration of the present invention, the amount of expensive negative electrode material can be reduced. For this reason, an inexpensive battery can be obtained. Even if the negative electrode capacity decreases, the hydrogen gas stored by overcharging is used at the time of discharging, so that the battery capacity does not decrease.

本発明に係る積層電池は、前記外装体の内部に、前記負極で発生する水素ガスを貯蔵する水素貯蔵室を備えていることが好ましい(請求項12)。この構成では、水素貯蔵室は、独立した空間であってもよい。また、水素貯蔵室は、独立した空間でなく、電極あるいはセパレータの隙間であってもよい。事実、水素は、正極活物質あるいは水素吸蔵合金の間に貯蔵されることが可能である。   The laminated battery according to the present invention preferably includes a hydrogen storage chamber for storing hydrogen gas generated at the negative electrode inside the outer package. In this configuration, the hydrogen storage chamber may be an independent space. Further, the hydrogen storage chamber is not an independent space but may be a gap between electrodes or separators. In fact, hydrogen can be stored between the positive electrode active material or the hydrogen storage alloy.

本発明に係る積層電池は、前記水素貯蔵室に貯蔵された水素ガス用いて前記負極に含まれる水素吸蔵合金を充電することが好ましい(請求項13)。この構成によれば、過充電で発生した水素ガスは負極を充電して有効に利用される。負極に含まれる水素吸蔵合金は、いわば、触媒として作用する。   In the laminated battery according to the present invention, it is preferable that the hydrogen storage alloy contained in the negative electrode is charged using hydrogen gas stored in the hydrogen storage chamber (claim 13). According to this configuration, the hydrogen gas generated by overcharging is used effectively by charging the negative electrode. The hydrogen storage alloy contained in the negative electrode functions as a catalyst.

本発明に係る積層電池の組み立て方法は、前記正極の外径より内径が少し大きい筒の中心に前記負極の内径よりも少し小さい丸棒を突き立てて、前記丸棒に前記正極と前記負極の間に前記セパレータが介在するように順次挿入して電極を積み重ねた後、前記筒から積み重ねた電極群と前記丸棒を一体に取り出し、前記正極の外周に第1金属箔を貼り付け、軸方向に隣り合う正極同士を電気的に接続し、前記電極群から、前記丸棒を抜き取り、前記負極の内周に第2金属箔を貼り付け、前記第1および第2金属箔を貼り付けた前記電極群を前記外装体に圧入し、前記負極の内径より大きい前記集電体を前記電極群に圧入して、空気抜きを行い、電解液を注入する(請求項14)。
この組立方法によれば、有底の円筒缶からなる外装体に電極集合体を圧入して、電解液を注入後に円筒缶を蓋部材で封印して、電池の密閉化を図る。
In the method for assembling the laminated battery according to the present invention, a round bar slightly smaller than the inner diameter of the negative electrode is projected at the center of a cylinder having an inner diameter slightly larger than the outer diameter of the positive electrode, and the positive electrode and the negative electrode are placed on the round bar. After sequentially inserting the electrodes so that the separator is interposed between them and stacking the electrodes, the electrode group stacked from the cylinder and the round bar are taken out integrally, and the first metal foil is attached to the outer periphery of the positive electrode, and the axial direction The positive electrodes adjacent to each other are electrically connected, the round bar is extracted from the electrode group, the second metal foil is attached to the inner periphery of the negative electrode, and the first and second metal foils are attached. An electrode group is press-fitted into the exterior body, and the current collector larger than the inner diameter of the negative electrode is press-fitted into the electrode group, air is evacuated, and an electrolytic solution is injected (claim 14).
According to this assembling method, the electrode assembly is press-fitted into an exterior body composed of a cylindrical can with a bottom, and after the electrolyte is injected, the cylindrical can is sealed with the lid member to seal the battery.

本発明は、電池内部の温度上昇を抑制するとともに、冷却のために余分なスペースを必要としない電池の提供を可能にする。さらには、電極と端子の間の接続不良を起すことのない二次電池を提供する。   The present invention makes it possible to provide a battery that suppresses temperature rise inside the battery and does not require extra space for cooling. Furthermore, a secondary battery that does not cause poor connection between electrodes and terminals is provided.

本発明の第一実施形態に係る円筒型積層電池の概略構成図であり、軸方向断面を示す図である。It is a schematic block diagram of the cylindrical laminated battery which concerns on 1st embodiment of this invention, and is a figure which shows an axial direction cross section. 円筒型積層電池の組立方法を説明するための図である。It is a figure for demonstrating the assembly method of a cylindrical laminated battery. 金属箔の種々の形状を説明するための図である。It is a figure for demonstrating the various shapes of metal foil. 集電体のネジ構造を模式的に示した図であり、集電体に電極群を挿入したときの部分拡大図である。It is the figure which showed typically the screw structure of the electrical power collector, and is the elements on larger scale when an electrode group is inserted in the electrical power collector. 縦溝構造の集電体の図面(平面図と側面図)である。It is drawing (a top view and a side view) of the collector of a longitudinal groove structure. 金属箔3の断面図(a)と平面図(b)である。They are sectional drawing (a) of metal foil 3, and a top view (b). 金属箔4の断面図(a)と平面図(b)である。They are sectional drawing (a) of metal foil 4, and a top view (b). 集電体2の構造を説明するためのイメージ図である。3 is an image diagram for explaining the structure of a current collector 2. FIG. 集電体3〜5の構造を説明するためのイメージ図である。It is an image figure for demonstrating the structure of the electrical power collectors 3-5. 電池の温度上昇試験結果を示すグラフである。It is a graph which shows the temperature rise test result of a battery.

以下、本発明に係る実施形態を図面に従って説明するが、本発明はこの実施形態に限定されるものではない。また、本発明の実施形態の説明にあたり、説明の都合上ニッケル水素電池について述べるが、二次電池のタイプはこれに限定されるものでなく、リチウムイオン電池、亜鉛マンガン電池、ニッケル鉄電池、ニッケルカドミウム等の二次電池であってもよい。
本発明の各実施形態について説明するのに先立ち、全ての実施形態に共通する電極の作り方について説明を行う。
<電極の製造について>
Hereinafter, embodiments according to the present invention will be described with reference to the drawings. However, the present invention is not limited to the embodiments. In the description of the embodiments of the present invention, a nickel metal hydride battery will be described for convenience of explanation, but the type of the secondary battery is not limited to this, and a lithium ion battery, a zinc manganese battery, a nickel iron battery, nickel A secondary battery such as cadmium may be used.
Prior to describing each embodiment of the present invention, how to make an electrode common to all the embodiments will be described.
<About electrode production>

負極は、ニッケル水素二次電池(以下、単にニッケル水素電池という)で一般的に用いられているランタン・ニッケルのような水素吸蔵合金を主要な活物質として含んでいる。正極の活物質としては、ニッケル水素電池で一般的に用いられているものであればよい。   The negative electrode contains, as a main active material, a hydrogen storage alloy such as lanthanum nickel generally used in nickel-hydrogen secondary batteries (hereinafter simply referred to as nickel-hydrogen batteries). Any positive electrode active material may be used as long as it is generally used in nickel-metal hydride batteries.

負極としては、水素吸蔵合金、導電性フィラーおよび樹脂に溶剤を加えてペースト状にしたものを、基板上に塗布して板状に成形し硬化させたものを使用することができる。同様に、正極としては、正極活物質、導電性フィラーおよび樹脂に溶剤を加えてペースト状にしたものを、基板上に塗布して板状に成形し硬化させたものを使用することができる。   As the negative electrode, a hydrogen storage alloy, a conductive filler, and a resin that are made into a paste by adding a solvent, applied onto a substrate, formed into a plate, and cured can be used. Similarly, as the positive electrode, a positive electrode active material, a conductive filler, and a resin added with a solvent to form a paste, which is applied on a substrate, formed into a plate, and cured can be used.

導電性フィラーとしては、炭素繊維、炭素繊維にニッケルメッキを施したもの、炭素粒子、炭素粒子にニッケルメッキを施したもの、有機繊維にニッケルメッキを施したもの、繊維状ニッケル、ニッケル粒子、ニッケル箔のいずれかを単独で、または組み合わせて用いることができる。樹脂としては、軟化温度120℃までの熱可塑性樹脂、硬化温度が常温から120℃までの樹脂、120℃以下の温度で溶剤に溶解する樹脂、水に可溶な溶剤に溶解する樹脂、アルコールに可溶な溶剤に溶解する樹脂などを用いることができる。基板としては、ニッケル板のような電気伝導性のある金属板を用いることができる。   Conductive fillers include carbon fiber, carbon fiber nickel-plated, carbon particles, carbon particles nickel-plated, organic fibers nickel-plated, fibrous nickel, nickel particles, nickel Any of the foils can be used alone or in combination. Examples of the resin include thermoplastic resins having a softening temperature of 120 ° C., resins having a curing temperature from room temperature to 120 ° C., resins that dissolve in a solvent at a temperature of 120 ° C. or less, resins that dissolve in a solvent soluble in water, and alcohol. Resins that are soluble in a soluble solvent can be used. As the substrate, a metal plate having electrical conductivity such as a nickel plate can be used.

セパレータは、水素イオンを透過させるが電子を透過させない素材を使用している。セパレータを形成する素材としては、例えば、ポリエチレン繊維やポリプロピレン繊維などのポリオレフィン系繊維、ポリフェニレンサルファイド繊維、ポリフルオロエチレン系繊維、ポリアミド系繊維などを使用することができる。セパレータには電解液が保持されている。電解液としては、ニッケル水素電池で一般的に用いられているアルカリ系水溶液、例えば、KOH水溶液、NaOH水溶液、LiOH水溶液などを用いることができる。   The separator uses a material that transmits hydrogen ions but does not transmit electrons. As a material for forming the separator, for example, polyolefin fibers such as polyethylene fibers and polypropylene fibers, polyphenylene sulfide fibers, polyfluoroethylene fibers, polyamide fibers, and the like can be used. The separator holds an electrolytic solution. As the electrolytic solution, an alkaline aqueous solution generally used in nickel-metal hydride batteries, for example, a KOH aqueous solution, a NaOH aqueous solution, a LiOH aqueous solution, or the like can be used.

シート状に形成された電極およびセパレータは、所定の幅を有する帯状に巻き取られて保管、搬送される。この帯状の電極やセパレータは外装体の形状に合わせて切断されて、電極およびセパレータとなる。電極、特に負極は高価であるのでその歩留まりを考慮して、帯状のシートの側部を底辺とする台形もしくは三角形としてできた電極ピースを円形上に並べて組み合わせて円盤状の電極を製作することも可能である。   The electrode and separator formed in the form of a sheet are wound into a band having a predetermined width and stored and transported. This strip-shaped electrode or separator is cut in accordance with the shape of the exterior body to form an electrode and a separator. Since electrodes, especially the negative electrode, are expensive, considering the yield, it is also possible to manufacture a disk-like electrode by arranging a trapezoidal or triangular electrode piece with the side of the belt-like sheet as the base and combining them in a circular shape. Is possible.

<積層電池の第一実施形態>
図1に本発明の第一実施形態に係る円筒型積層電池の軸方向の概略断面図を示す。図1に示す円筒型積層電池11(以下、単に積層電池という)は、外装体15と集電体17と外装体内部に収納される電極体13を主な構成要素として備えている。積層電池11は、公称径500mmの円筒缶を用いて製作されている。外装体15は、有底の円筒缶12と、円筒缶12の開口部12cに取付けられた円盤状の蓋部材16とから構成されている。円筒缶12と蓋部材16は鉄にニッケルめっきを施したものでできているが、他の金属であってもよい。蓋部材16の外径は円筒缶の開口部12cの内径より少し大きく、蓋部材16は電極体13を円筒缶12に収納後に円筒缶開口部12cにおいて絞まり嵌めされている。第一実施形態では円筒缶を用いたが、角型缶を用いてもよい。角型缶を用いれば、角型電池となる。
<First embodiment of laminated battery>
FIG. 1 shows a schematic sectional view in the axial direction of a cylindrical laminated battery according to the first embodiment of the present invention. A cylindrical laminated battery 11 (hereinafter simply referred to as a laminated battery) shown in FIG. 1 includes an exterior body 15, a current collector 17, and an electrode body 13 housed inside the exterior body as main components. The laminated battery 11 is manufactured using a cylindrical can having a nominal diameter of 500 mm. The exterior body 15 includes a bottomed cylindrical can 12 and a disk-shaped lid member 16 attached to the opening 12 c of the cylindrical can 12. The cylindrical can 12 and the lid member 16 are made of iron plated with nickel, but may be other metals. The outer diameter of the lid member 16 is slightly larger than the inner diameter of the opening 12c of the cylindrical can, and the lid member 16 is tightly fitted in the cylindrical can opening 12c after the electrode body 13 is stored in the cylindrical can 12. In the first embodiment, a cylindrical can is used, but a square can may be used. If a square can is used, a square battery is obtained.

電極体13は、正極活物質を含む正極13aと、水素吸蔵合金を含む負極13bと、正極13aと負極13bの間に介在してイオンは透過するが電子を透過させないセパレータ13cから構成されている。電極体13は、円筒缶12の軸方向(図1のX方向)に積層して外装体15の内部に収納されている。なお、電解液(図示せず)は、セパレータ13cに保持されている。正極13a、負極13b、セパレータ13cはいずれも中央に穴の開いた、円盤状である。   The electrode body 13 includes a positive electrode 13a including a positive electrode active material, a negative electrode 13b including a hydrogen storage alloy, and a separator 13c interposed between the positive electrode 13a and the negative electrode 13b that transmits ions but does not transmit electrons. . The electrode body 13 is stacked in the axial direction (X direction in FIG. 1) of the cylindrical can 12 and housed in the exterior body 15. In addition, the electrolyte solution (not shown) is hold | maintained at the separator 13c. Each of the positive electrode 13a, the negative electrode 13b, and the separator 13c has a disk shape with a hole in the center.

集電体17は、鉄にニッケルメッキを施した導電性の材料でできており、棒状の軸部17aと軸部17aの一端に配された止め部17bとを有している。軸部17aの他端は、蓋部材16の中央に設けられた軸受18によって支持されている。蓋部材16と軸部17aとが電気的に短絡を起こすことを防止するために、軸受18は絶縁性材料でできている。集電体17にニッケルメッキを施すことにより、集電体17がセパレータ13cに含まれる電解液により腐食されるのを防止する。集電体の軸部17aは、正極13aと負極13bとセパレータ13cから構成される電極体13の中央を、外装体15の軸方向(図1のX方向)に貫通している。   The current collector 17 is made of a conductive material in which nickel is plated on iron, and includes a rod-shaped shaft portion 17a and a stopper portion 17b disposed at one end of the shaft portion 17a. The other end of the shaft portion 17 a is supported by a bearing 18 provided at the center of the lid member 16. In order to prevent the cover member 16 and the shaft portion 17a from being electrically short-circuited, the bearing 18 is made of an insulating material. By applying nickel plating to the current collector 17, the current collector 17 is prevented from being corroded by the electrolyte contained in the separator 13c. The shaft portion 17a of the current collector passes through the center of the electrode body 13 composed of the positive electrode 13a, the negative electrode 13b, and the separator 13c in the axial direction of the exterior body 15 (X direction in FIG. 1).

電極体13は、集電体の止め部17bの上に順次積み重ねるように配されていて、止め部17bは電極体13が集電体17の端部から脱落するのを防止している。止め部17bの形状は円盤状である。止め部17bは、絶縁板14を介して円筒缶底部12bに配置されている。絶縁板14は、集電体17と円筒缶12が直接接触して電気的に短絡するのを防止している。蓋部材16を貫通した軸部は正極端子17cを構成する。円筒缶12は負極端子として機能する。   The electrode body 13 is arranged so as to be sequentially stacked on the current collector stop portion 17 b, and the stop portion 17 b prevents the electrode body 13 from falling off the end of the current collector 17. The shape of the stop portion 17b is a disk shape. The stopper 17b is disposed on the cylindrical can bottom 12b via the insulating plate 14. The insulating plate 14 prevents the current collector 17 and the cylindrical can 12 from coming into direct contact and being electrically short-circuited. A shaft portion penetrating the lid member 16 constitutes a positive electrode terminal 17c. The cylindrical can 12 functions as a negative electrode terminal.

次に、電極13a、13bの各部寸法と、外装体15および集電体17の寸法関係について説明する。
セパレータ13cの外径は正極13a(第1電極)の外径より小さく、かつ、負極13b(第2電極)の外径より大きい。このため、正極13aと負極13bとは、外装体15の内周面近傍においてセパレータ13cにより完全に隔離されている。このため、電極が変形しても、電極は互いに接触することがない。また、負極13bは、セパレータ13cによっても、外装体15と隔離されている。更に、セパレータ13cの中央に設けられた穴の径は、正極13aの穴の径より小さく、負極13bの穴の径より大きい。このため、正極13aと負極13bとは、集電体17の外周面近傍においてセパレータ13cにより完全に隔離されており、電極が変形しても、電極は互いに接触することがない。また、正極13aは、セパレータ13cによって、集電体17と隔離されている。
Next, the dimensions of each part of the electrodes 13a and 13b and the dimensional relationship between the outer package 15 and the current collector 17 will be described.
The outer diameter of the separator 13c is smaller than the outer diameter of the positive electrode 13a (first electrode) and larger than the outer diameter of the negative electrode 13b (second electrode). For this reason, the positive electrode 13 a and the negative electrode 13 b are completely separated by the separator 13 c in the vicinity of the inner peripheral surface of the outer package 15. For this reason, even if an electrode deform | transforms, an electrode does not contact each other. Moreover, the negative electrode 13b is isolated from the exterior body 15 also by the separator 13c. Furthermore, the diameter of the hole provided in the center of the separator 13c is smaller than the diameter of the hole of the positive electrode 13a and larger than the diameter of the hole of the negative electrode 13b. For this reason, the positive electrode 13a and the negative electrode 13b are completely separated by the separator 13c in the vicinity of the outer peripheral surface of the current collector 17, and the electrodes do not contact each other even if the electrodes are deformed. The positive electrode 13a is separated from the current collector 17 by a separator 13c.

金属箔10a(第1金属箔)は、正極13aと円筒缶の内周面12aとの間に介在しており、正極13aと外装体15とを電気的に接続している。また、金属箔10b(第2金属箔)は、負極13bと集電体の軸部17aの間に介在しており、負極13bと集電体17とを電気的に接続している。金属箔10aは、図2に示すように帯状であって、電極体13と外装体15の間に90度間隔で、外装体15の軸方向に配置されている。また、金属箔10bは、集電体の軸部17aを囲むように配置されている。なお、金属箔10aは、外装体15の内面全面に配置されていてもよい。   The metal foil 10a (first metal foil) is interposed between the positive electrode 13a and the inner peripheral surface 12a of the cylindrical can, and electrically connects the positive electrode 13a and the outer package 15. The metal foil 10b (second metal foil) is interposed between the negative electrode 13b and the current collector shaft 17a, and electrically connects the negative electrode 13b and the current collector 17. As shown in FIG. 2, the metal foil 10 a has a belt shape, and is disposed between the electrode body 13 and the exterior body 15 at an interval of 90 degrees in the axial direction of the exterior body 15. Moreover, the metal foil 10b is arrange | positioned so that the axial part 17a of an electrical power collector may be enclosed. The metal foil 10a may be disposed on the entire inner surface of the exterior body 15.

円筒缶12の内径は、負極13bの外径と金属箔10aの厚みの和より大きく、負極の外縁部13bbは金属箔10aと接触しないので、負極13bと外装体15は電気的に絶縁された状態となっている。一方、円筒缶12の内径は、正極13aの外径と金属箔10aの厚みの和より小さく、正極の外縁部13abは金属箔10aを介して円筒缶の内面12aに接触して、正極13aと円筒缶12は電気的に接続されている。   The inner diameter of the cylindrical can 12 is larger than the sum of the outer diameter of the negative electrode 13b and the thickness of the metal foil 10a, and the outer edge portion 13bb of the negative electrode does not contact the metal foil 10a, so that the negative electrode 13b and the outer package 15 are electrically insulated. It is in a state. On the other hand, the inner diameter of the cylindrical can 12 is smaller than the sum of the outer diameter of the positive electrode 13a and the thickness of the metal foil 10a, and the outer edge portion 13ab of the positive electrode contacts the inner surface 12a of the cylindrical can via the metal foil 10a. The cylindrical can 12 is electrically connected.

軸部17aの外径と金属箔10bの厚みの和は、負極13bの中央に設けた穴の径より大きく、負極の穴の周縁部13baは金属箔10bを介して軸部17aと接触して、負極13bと集電体17は電気的に接続されている。一方、軸部17aの外径と金属箔10bの厚みの和は、正極13aの中央に設けられた穴の径より小さく、正極の穴の周縁部13aaは金属箔10bと接触することがなく、正極13aと集電体17は電気的に絶縁されている。   The sum of the outer diameter of the shaft portion 17a and the thickness of the metal foil 10b is larger than the diameter of the hole provided in the center of the negative electrode 13b, and the peripheral edge portion 13ba of the negative electrode hole is in contact with the shaft portion 17a via the metal foil 10b. The negative electrode 13b and the current collector 17 are electrically connected. On the other hand, the sum of the outer diameter of the shaft portion 17a and the thickness of the metal foil 10b is smaller than the diameter of the hole provided in the center of the positive electrode 13a, and the peripheral portion 13aa of the positive electrode hole does not contact the metal foil 10b. The positive electrode 13a and the current collector 17 are electrically insulated.

金属箔10a,10bの厚さは、特に限定されないが、正極13aもしくは負極13bの厚さよりも小さいことが好ましい。正極13aもしくは負極13bの厚さにもよるが、金属箔10a,10bの厚さは10〜100μmであることが好ましい。20〜50μmであることがより好ましい。 金属箔10a,10bの厚さが大きいと、電池の寸法が大きくなる。また、金属箔10a,10bの厚さが小さいと、金属箔がその機能を発揮しなくなる。
金属箔10a,10bは、その表面に突出するように形成された、多数の突起を有している。突起の形状は、特に限定されないが、例えば、図3に示すようなものが考えられる。図3において、(a)は金属箔Kの片面に突起41を有しており、(b)は金属箔Kの両面に突起51を有している。(c)は金属箔Kに針等で穴62を開けて突起61を形成したものであり、比較的加工が容易である。また、(d)は突起にカエシが設けられたものである。すなわち、金属箔Kに針等で穴72を開けて突起71を形成する。針等の貫通により、突起71の先端部が外側に開き、開口部73は突起71の先端に向かって広がる。金属箔を(d)のような形状とすることにより、金属箔10a、10bは、電極13a,13bに喰い込み、電極13a,13bとの接合性が向上する。
Although the thickness of metal foil 10a, 10b is not specifically limited, It is preferable that it is smaller than the thickness of the positive electrode 13a or the negative electrode 13b. Although depending on the thickness of the positive electrode 13a or the negative electrode 13b, the thickness of the metal foils 10a and 10b is preferably 10 to 100 μm. More preferably, it is 20-50 micrometers. When the thickness of the metal foils 10a and 10b is large, the size of the battery increases. Further, when the thickness of the metal foils 10a and 10b is small, the metal foil does not exhibit its function.
The metal foils 10a and 10b have a large number of protrusions formed so as to protrude on the surface thereof. The shape of the protrusion is not particularly limited, but for example, a shape as shown in FIG. 3 is conceivable. 3, (a) has protrusions 41 on one side of the metal foil K, and (b) has protrusions 51 on both sides of the metal foil K. (C) is a metal foil K in which a hole 62 is formed with a needle or the like to form a protrusion 61, which is relatively easy to process. Further, (d) is one in which a protrusion is provided on the protrusion. That is, the hole 71 is formed in the metal foil K with a needle or the like to form the protrusion 71. Through the penetration of the needle or the like, the tip of the protrusion 71 opens outward, and the opening 73 expands toward the tip of the protrusion 71. By making the metal foil into the shape as shown in (d), the metal foils 10a and 10b bite into the electrodes 13a and 13b, and the bondability with the electrodes 13a and 13b is improved.

このように突起を設けて、電極と外装体もしくは集電体との間に介在する金属箔を、三次元構造とする。この突起が電極に噛み込むことで、正極と外装体間または負極と集電体間の接合を確保することが可能になる。また、電池の充放電に伴い電極の体積に変化が生じても、突起が電極に噛み込んでいるため、電極と端子間との接触不良を抑制することが可能となる。これにより、サイクル寿命の特性が改善される。   Thus, a protrusion is provided and the metal foil interposed between an electrode and an exterior body or a current collector has a three-dimensional structure. When the protrusions bite into the electrodes, it is possible to ensure the bonding between the positive electrode and the outer package or between the negative electrode and the current collector. In addition, even if the volume of the electrode changes due to the charging / discharging of the battery, since the protrusion is engaged with the electrode, it is possible to suppress contact failure between the electrode and the terminal. This improves the cycle life characteristics.

本発明の積層電池の組立方法について、図2を用いて説明する。
(1)正極13a、負極13b及びセパレータ13cを所定の寸法にパンチで打ち抜く。そして、正極の外径より内径が少し大きい筒91の中心に負極の穴径よりも直径が少し小さい丸棒90を突き立てる。
(2)負極13b、セパレータ13c、正極13a、セパレータ13cを、順次丸棒90に通して、電極群を組立てる。
(3)次に、筒91から電極群を丸棒90と一緒に取り出し、電極群の側面に第1金属箔10aを貼り付け、軸方向に隣り合う正極同士を電気的に接続する。
(4)電極群から、丸棒90を抜きとり、負極13bの穴の内周面に第2金属箔を貼り付ける。
(5)金属箔10a,bを貼り付けた電極群を、円筒缶12に圧入する。
(6)次いで、集電体17を電極群の穴に圧入して、蓋部材(図示せず)を円筒缶12の開口部に嵌合する。そして、外装体内部の空気抜きを行ない、電解液を加えて密閉することで本発明の積層電池を製作する。
A method for assembling the laminated battery of the present invention will be described with reference to FIG.
(1) The positive electrode 13a, the negative electrode 13b, and the separator 13c are punched out to predetermined dimensions. Then, a round bar 90 having a slightly smaller diameter than the hole diameter of the negative electrode is protruded at the center of the cylinder 91 having a slightly larger inner diameter than the outer diameter of the positive electrode.
(2) The negative electrode 13b, the separator 13c, the positive electrode 13a, and the separator 13c are sequentially passed through the round bar 90 to assemble an electrode group.
(3) Next, the electrode group is taken out from the cylinder 91 together with the round bar 90, the first metal foil 10a is attached to the side surface of the electrode group, and the positive electrodes adjacent in the axial direction are electrically connected to each other.
(4) The round bar 90 is extracted from the electrode group, and the second metal foil is attached to the inner peripheral surface of the hole of the negative electrode 13b.
(5) The electrode group to which the metal foils 10a and 10b are attached is press-fitted into the cylindrical can 12.
(6) Next, the current collector 17 is press-fitted into the hole of the electrode group, and a lid member (not shown) is fitted into the opening of the cylindrical can 12. And the laminated battery of this invention is manufactured by ventilating the inside of an exterior body, adding electrolyte solution, and sealing.

<第二実施形態>
第一実施形態の一部を変更した、第二実施形態について、変更部分を中心に説明する。第二実施形態は、図4(a)に示すように、集電体27の側面にはネジ溝加工がされていてネジ部27cを構成している。すなわち、集電体27の側面は、谷の径がdであり、山の径がDであるネジ構造を有している(d<D)。ネジの仕様はJISにいうMネジであるがISO仕様であってもよい。
<Second embodiment>
A second embodiment in which a part of the first embodiment is changed will be described focusing on the changed portion. In the second embodiment, as shown in FIG. 4A, the side surface of the current collector 27 is threaded to form a screw portion 27c. That is, the side surface of the current collector 27 has a screw structure in which the trough diameter is d and the crest diameter is D (d <D). The specification of the screw is the M screw referred to in JIS, but may be the ISO specification.

図4(b)は、集電体27と電極体23の関係を模式的に表した断面図である。この図に示すように、負極23bと集電体27の間には第2金属箔25bが介在している。これにより、負極23bは金属箔25bと共に軸部27aに螺合されていて、負極23bと集電体27は電気的に接続されている。一方、正極23aは集電体27と接触しておらず、集電体27とは絶縁されている。   FIG. 4B is a cross-sectional view schematically showing the relationship between the current collector 27 and the electrode body 23. As shown in this figure, a second metal foil 25 b is interposed between the negative electrode 23 b and the current collector 27. Thereby, the negative electrode 23b is screwed together with the shaft portion 27a together with the metal foil 25b, and the negative electrode 23b and the current collector 27 are electrically connected. On the other hand, the positive electrode 23 a is not in contact with the current collector 27 and is insulated from the current collector 27.

集電体にネジ溝加工を施さない場合、電極の組立時に集電体と電極との結合が緩み、集電体と電極の密接な接触が阻害されることがある。このような課題を解決するために、集電体にネジ溝加工を施した。すなわち、第2電極が集電体に形成したネジのリードに沿って強く嵌め合い状態を維持することが可能となる。これにより、組立加工時に電極が集電体から抜けてしまうのを防止することが可能となる。   If the current collector is not subjected to thread groove processing, the connection between the current collector and the electrode may be loosened during assembly of the electrode, and intimate contact between the current collector and the electrode may be hindered. In order to solve such a problem, the current collector was subjected to thread groove processing. In other words, the second electrode can be strongly fitted along the lead of the screw formed on the current collector. As a result, it is possible to prevent the electrode from coming off the current collector during assembly processing.

図5に第二実施形態の変形例に係る集電体17’の平面図と側面図を示す。集電体17’は、側面軸方向にV字状の溝が設けられていて、その断面は鋸歯状となっている。鋸歯状の先端部は多少の丸みを帯びていてもよい。集電体の横断面が鋸歯状であるので、電極との接触面が大きく、電極を軸方向に圧密したとき、電極は溝に沿ってスライドして破損が生じにくい。また、充放電過程において電極が変形しても、電極が溝に沿ってスライドするので電極が破損することがない。   FIG. 5 shows a plan view and a side view of a current collector 17 ′ according to a modification of the second embodiment. The current collector 17 ′ is provided with a V-shaped groove in the direction of the side surface axis, and its cross section has a sawtooth shape. The serrated tip may be somewhat rounded. Since the current collector has a sawtooth cross section, the contact surface with the electrode is large, and when the electrode is consolidated in the axial direction, the electrode slides along the groove and is not easily damaged. Even if the electrode is deformed during the charge / discharge process, the electrode slides along the groove, so that the electrode is not damaged.

次に本実施形態の作用および効果について説明する。
<冷却構造について>
正極13aは金属箔10aを介して円筒缶の内面12aに強く押し当てられ、正極13aと外装体15は、密に接触している。正極13aで発生した熱は直接外装体15に伝えられる。また、負極13bで発生した熱はセパレータ13cを介して正極13aに伝えられる。セパレータ13cは熱を伝えにくいが、薄く、1枚のみであるので、熱の伝導に大きな妨げとならない。以上のようにして、正極13aと負極13bで発生した熱は小さな温度勾配で外装体15に伝えられ、積層電池内部の温度上昇を抑制することを可能にしている。
Next, the operation and effect of this embodiment will be described.
<About cooling structure>
The positive electrode 13a is strongly pressed against the inner surface 12a of the cylindrical can through the metal foil 10a, and the positive electrode 13a and the outer package 15 are in close contact with each other. The heat generated at the positive electrode 13 a is directly transmitted to the exterior body 15. The heat generated in the negative electrode 13b is transferred to the positive electrode 13a through the separator 13c. Although the separator 13c is difficult to transmit heat, it is thin and only one sheet does not hinder heat conduction. As described above, the heat generated in the positive electrode 13a and the negative electrode 13b is transmitted to the outer package 15 with a small temperature gradient, and it is possible to suppress the temperature rise inside the multilayer battery.

このような構造によれば、冷媒を流すためのパイプ等を電池内部に設ける必要がなく、コンパクトな構造で電池の温度上昇を抑えることができる。更には、外装体12は外部に露出しているので冷却は比較的容易に行うことができ、従来の捲回電池に比べて、効果的に温度上昇を抑えることが可能となる。ここで、本発明の実施形態に係る積層電池と従来型の捲回電池の温度上昇の相違を計算例で示す。   According to such a structure, it is not necessary to provide a pipe or the like for flowing a refrigerant inside the battery, and the temperature rise of the battery can be suppressed with a compact structure. Furthermore, since the exterior body 12 is exposed to the outside, it can be cooled relatively easily, and the temperature rise can be effectively suppressed as compared with the conventional wound battery. Here, the difference in temperature rise between the laminated battery according to the embodiment of the present invention and the conventional wound battery is shown as a calculation example.

捲回電池の総括熱伝達係数(U1)は、数1で示されるところ、本発明に係る積層電池の総括熱伝達係数(U2)は、数2で示される。
The overall heat transfer coefficient (U1) of the wound battery is expressed by Equation 1, and the overall heat transfer coefficient (U2) of the laminated battery according to the present invention is expressed by Equation 2.

ここで、18650型電池を例に取り計算してみる。捲回電池の諸元は、
t= 0.5mm , t+ = t- = ts = 10μm , k = k+= k- = 40Wm-2 deg-1
h0= 100 Wm-2 deg-1 , h1 = 1 Wm-2 deg-1, ks = 1 Wm-2 deg-1 , n = 9/0.03 = 300
となり、これらの値を数1に代入して、U1 = 0.0011 Wm-2 deg-1を得る。
Here, calculation will be made taking an 18650 type battery as an example. The specifications of the wound battery
t = 0.5mm, t + = t - = t s = 10μm, k = k + = k - = 40Wm -2 deg -1
h 0 = 100 Wm -2 deg -1 , h 1 = 1 Wm -2 deg -1 , k s = 1 Wm -2 deg -1 , n = 9 / 0.03 = 300
By substituting these values into Equation 1 , U 1 = 0.0011 Wm −2 deg −1 is obtained.

一方、本実施形態に係る積層電池に適用した場合の諸元は、
h0= 100 Wm-2 deg-1 , t = 0.5mm , k = 40Wm-2 deg-1
h1= 10000 Wm-2 deg-1 , t* = 0.009m , k*= 40Wm-2 deg-1
であるので、これらの値を数2に代入して、U2 = 100 Wm-2 deg-1を得る。
両者を比較すると、本発明に係る冷却構造は、従来の捲回電池比べて10万倍近く熱伝達に優れているといえる。
<活物質の量について>
本発明の実施形態に係る積層電池において、活物質の量については2つのタイプがある。一つは従来どおりの正極規制であり、もう一つは負極容量が正極容量よりも小さい負極規制である。本発明の実施例についていえば、正極規制のタイプの場合は、負極容量が正極容量の1.7倍となっている。一方、負極規制のタイプの場合は、負極容量が正極容量の80%となっている。正極容量はいずれの場合も1000mAhである。
On the other hand, the specifications when applied to the laminated battery according to this embodiment are:
h 0 = 100 Wm -2 deg -1 , t = 0.5mm, k = 40Wm -2 deg -1
h 1 = 10000 Wm -2 deg -1 , t * = 0.009m, k * = 40Wm -2 deg -1
Therefore, by substituting these values into Equation 2 , U 2 = 100 Wm −2 deg −1 is obtained.
Comparing the two, it can be said that the cooling structure according to the present invention is excellent in heat transfer nearly 100,000 times as compared with the conventional wound battery.
<About the amount of active material>
In the laminated battery according to the embodiment of the present invention, there are two types of the amount of the active material. One is the conventional positive electrode regulation, and the other is the negative electrode regulation in which the negative electrode capacity is smaller than the positive electrode capacity. In the embodiment of the present invention, in the case of the positive electrode regulation type, the negative electrode capacity is 1.7 times the positive electrode capacity. On the other hand, in the case of the negative electrode regulation type, the negative electrode capacity is 80% of the positive electrode capacity. The positive electrode capacity is 1000 mAh in all cases.

正極規制のタイプの電池は、1000mAh以上充電すると正極から酸素ガスが発生するが、負極から水素ガスが発生することはない。正極から発生した酸素ガスは負極に吸蔵されている水素と反応して水になるので、電池内部の圧力上昇が抑制され、電池の密閉化が可能となっている。   A battery of a positive electrode regulation type generates oxygen gas from the positive electrode when charged at 1000 mAh or more, but does not generate hydrogen gas from the negative electrode. Oxygen gas generated from the positive electrode reacts with hydrogen occluded in the negative electrode to become water, so that an increase in pressure inside the battery is suppressed and the battery can be sealed.

一方、負極規制のタイプの電池は、過充電状態になれば、負極から水素ガスが発生する。すなわち、800mAh以上充電すれば負極から水素ガスが発生する((1)の反応式参照)。発生した水素ガスは負極に吸蔵され満充電状態となるが、負極に吸蔵されない水素ガスは電池内部に蓄えられて電池内部の圧力が上昇する。水素ガス貯蔵室があれば、水素ガスは電池内に多く蓄積することができる。積層電池の外装体15は密閉構造となっているので、蓄積された水素ガスが外部に漏れることはない。   On the other hand, when the battery of the negative electrode regulation type is overcharged, hydrogen gas is generated from the negative electrode. That is, when charged at 800 mAh or more, hydrogen gas is generated from the negative electrode (see reaction formula (1)). The generated hydrogen gas is occluded in the negative electrode and becomes fully charged, but the hydrogen gas that is not occluded in the negative electrode is stored inside the battery and the pressure inside the battery rises. If there is a hydrogen gas storage chamber, a large amount of hydrogen gas can be accumulated in the battery. Since the outer package 15 of the laminated battery has a sealed structure, the accumulated hydrogen gas does not leak to the outside.

積層電池の放電に際して、負極に吸蔵されている水素が水素イオンと電子を放出するが、積層電池内に蓄積された水素ガスが水素吸蔵合金に吸蔵され、負極の満充電状態が続く(放電の際の反応式(2)参照)。水素ガスは放電に際してエネルギー源となるとなるので無駄になることはない。水素吸蔵合金はいわば触媒的な作用をするので、充放電において負極の体積変化は小さい。これにより、負極の劣化は防がれ、高寿命化が可能となる。   When the stacked battery is discharged, hydrogen stored in the negative electrode releases hydrogen ions and electrons. However, the hydrogen gas stored in the stacked battery is stored in the hydrogen storage alloy, and the fully charged state of the negative electrode continues. Reaction formula (2)). Since hydrogen gas becomes an energy source during discharge, it is not wasted. Since the hydrogen storage alloy has a catalytic action, the volume change of the negative electrode during charging and discharging is small. Thereby, the deterioration of the negative electrode is prevented and the life can be extended.

負極は電極価格の80%を占めるといわれており、高価である。本発明によれば、正極規制の電池が正極の1.7倍の負極を必要とするところ、負極の量を正極の80%とすることにより、電極の価格は1/2にすることが可能となる。負極の量を減らしても、過充電により蓄えられた水素ガスを利用することにより電池容量が低下することはない。   The negative electrode is said to account for 80% of the electrode price and is expensive. According to the present invention, the positive electrode-regulated battery requires a negative electrode 1.7 times as large as the positive electrode, but by setting the amount of the negative electrode to 80% of the positive electrode, the price of the electrode can be halved. It becomes. Even if the amount of the negative electrode is reduced, the battery capacity is not reduced by using the hydrogen gas stored by overcharging.

<主要諸元の検討>
本発明において、主要パラメータとなる金属箔および集電体の諸元について検討を行った。そして、電池としての性能評価試験を行ったので、これについて、以下に説明する。
<金属箔の検討>
性能評価試験に用いた金属箔の諸元を表1に示す。
金属箔1は、25μmの厚みのニッケル箔である。
金属箔2は、金属箔1に千鳥状の切れ目を入れ、引き伸ばしてひし形模様の網目状に加工したもので、加工後の金属箔の全体厚みは50μmである。
金属箔3は、金属箔1にローレット加工を施し、多数の突起を設けたものである。図6(a)に金属箔3の断面図を示し、図6(b)に金属箔3の平面図をそれぞれ示す。金属箔3は、図6(a)、(b)に示すように、突出するように形成された多数の突起21を有する。ここでは、25μmの厚み(h1)を有するニッケル箔を用いた。このニッケル箔は、構造上部L1および構造下部L2からなる四角錐台状の突起21が形成されている。突起21は、構造上部L1(突出部)の面積が、構造下部L2の面積よりも狭い四角錐台状に形成されている。構造下部L2の縦横長さ(図6のX、Y方向)はいずれも1mm、構造上部L1の縦横長さはいずれも0.3mmである。突起21を含む金属箔3の厚み(h2)は300μmである。
<Examination of main specifications>
In the present invention, the specifications of the metal foil and the current collector as the main parameters were examined. And since the performance evaluation test as a battery was done, this is demonstrated below.
<Examination of metal foil>
Table 1 shows the specifications of the metal foil used in the performance evaluation test.
The metal foil 1 is a nickel foil having a thickness of 25 μm.
The metal foil 2 is obtained by making staggered cuts on the metal foil 1 and stretching it into a rhombus-shaped mesh, and the total thickness of the metal foil after processing is 50 μm.
The metal foil 3 is obtained by knurling the metal foil 1 and providing a large number of protrusions. FIG. 6A shows a cross-sectional view of the metal foil 3, and FIG. 6B shows a plan view of the metal foil 3. As shown in FIGS. 6A and 6B, the metal foil 3 has a large number of protrusions 21 formed so as to protrude. Here, a nickel foil having a thickness (h1) of 25 μm was used. This nickel foil is formed with a quadrangular pyramid-shaped protrusion 21 composed of a structural upper portion L1 and a structural lower portion L2. The protrusion 21 is formed in a quadrangular frustum shape in which the area of the upper structure L1 (projection) is smaller than the area of the lower structure L2. The vertical and horizontal lengths (X and Y directions in FIG. 6) of the lower structure L2 are all 1 mm, and the vertical and horizontal lengths of the upper structure L1 are both 0.3 mm. The thickness (h2) of the metal foil 3 including the protrusions 21 is 300 μm.

金属箔4は、金属箔1にエンボスロール加工を施し、多数の突起と貫通孔を設け、かつ、カエシを設けたものである。図7(a)に金属箔4の断面図を示し、図7(b)に金属箔4の平面図をそれぞれ示す。金属箔4は、図7(a)、(b)に示すように、突出するように形成された多数の突起31を有している。突起31の頂部に貫通孔が設けられていて、開口部32を形成している。開口部32には、突起31と反対方向に伸びるカエシ33が設けられている。金属箔4は、25μmの厚み(h1)を有するニッケル箔を用いた。このニッケル箔に、構造上部L1および構造下部L2とからなる四角錐台状の突起31が形成している。構造下部L2の縦横長さ(図7のX、Y方向)はいずれも1mm、構造上部L1の縦横長さはいずれも0.5mmである。 突起31を含む金属箔4の厚み(h2)は0.5mmである。カエシ33の寸法(h3)は0.15mmである。
金属箔5は、金属箔4と同じ構造を有していて、材料がニッケルめっきを施した鋼材である。
The metal foil 4 is obtained by embossing the metal foil 1 to provide a large number of protrusions and through-holes, and also providing burrs. FIG. 7A shows a cross-sectional view of the metal foil 4 and FIG. 7B shows a plan view of the metal foil 4. As shown in FIGS. 7A and 7B, the metal foil 4 has a large number of protrusions 31 formed so as to protrude. A through hole is provided at the top of the projection 31 to form an opening 32. The opening 32 is provided with an edge 33 extending in the direction opposite to the protrusion 31. The metal foil 4 was a nickel foil having a thickness (h1) of 25 μm. On this nickel foil, a quadrangular pyramid-shaped projection 31 composed of an upper structure L1 and a lower structure L2 is formed. The vertical and horizontal lengths (X and Y directions in FIG. 7) of the lower structure L2 are both 1 mm, and the vertical and horizontal lengths of the upper structure L1 are both 0.5 mm. The thickness (h2) of the metal foil 4 including the protrusions 31 is 0.5 mm. The size (h3) of the barley 33 is 0.15 mm.
The metal foil 5 is a steel material having the same structure as the metal foil 4 and having a material plated with nickel.

<集電体の検討>
性能評価試験に用いた集電体の諸元を表2に示す。
集電体1〜5の材質は、パイプ部分を除き、いずれも、ニッケルめっきを施した鋼材である。
集電体1は、直径15.2mmの丸棒である。
集電体2は、外径15.2mm、内径14mmのパイプ(図8(a)参照)に、直径14.1mmのSUS製の杭を打ち込み、外径15.2mmの集電体としたものである(図8(b)参照)。
集電体3〜5は、側部にスリットを設けた内径10mmのパイプ(図9(a)参照)に、直径14.1mmの金属製の杭を打ち込み外径15.2mmの集電体としたものである(図9(b)参照)。
ここに、集電体3は、金属製の杭として銅を用いたものである。
集電体4は、銅製の杭を用いて、側面をローレット加工したものである。ローレット加工は、山と谷の角度を90°とし、山と谷のコーナーをそれぞれ半径0.06mmの円弧から繋がる形状になるよう加工を施した。
集電体5は、銅製の杭を用いて、側面をネジ加工したものである。ネジ加工は、M16(ISO基準寸法)であり、ネジピッチは2mm、外径は16.0mm、内径は14.9mmとした。
<Examination of current collector>
Table 2 shows the specifications of the current collector used in the performance evaluation test.
The materials of the current collectors 1 to 5 are all steel materials subjected to nickel plating except for the pipe portion.
The current collector 1 is a round bar having a diameter of 15.2 mm.
The current collector 2 was obtained by driving a 14.1 mm diameter SUS pile into a pipe having an outer diameter of 15.2 mm and an inner diameter of 14 mm (see FIG. 8A) to form a current collector with an outer diameter of 15.2 mm. (See FIG. 8B).
The current collectors 3 to 5 are formed by driving a metal pile having a diameter of 14.1 mm into a pipe having an inner diameter of 10 mm (see FIG. 9A) provided with slits on the side portions, and a current collector having an outer diameter of 15.2 mm. (See FIG. 9B).
Here, the current collector 3 uses copper as a metal pile.
The current collector 4 is obtained by knurling the side surface using a copper pile. In the knurling, the angle between the peaks and valleys was 90 °, and the corners of the peaks and valleys were processed so as to be connected to each other from an arc having a radius of 0.06 mm.
The current collector 5 has a side surface threaded using a copper pile. The screw machining was M16 (ISO standard dimension), the screw pitch was 2 mm, the outer diameter was 16.0 mm, and the inner diameter was 14.9 mm.

<電池としての性能評価試験>
本発明の積層電池の温度上昇試験を行う前に、電池としての性能を調べた。試験に採用した金属箔と集電体の組合わせを表3に示す。なお、電池は第二実施形態の積層電池であって、外装体には公称径500mmの円筒缶を用いた。
<Performance evaluation test as a battery>
Before conducting the temperature rise test of the laminated battery of the present invention, the performance as a battery was examined. Table 3 shows combinations of the metal foil and current collector employed in the test. The battery is a laminated battery according to the second embodiment, and a cylindrical can having a nominal diameter of 500 mm was used as the outer package.

電池の性能評価試験は、所定の電流密度(0.5C、1C、2C、5C、8C)でSOCが100%となるよう充電を行った後に、0.2C放電をして行った。すなわち、放電電気量を計測して、各充電レートにおける充電効率を算出した。なお、0.5C充電後に、0.2C放電により得られた電気容量を電池容量100%とした。測定条件としては、放電カットオフ電圧が0.8V、周囲温度が15℃、送風条件が1m/sとした。
表4に、実施例1〜10および参考例1、2の電池について、各充電レートにおける充電効率をまとめた。
The battery performance evaluation test was performed by discharging 0.2C after charging the SOC to 100% at a predetermined current density (0.5C, 1C, 2C, 5C, 8C). That is, the amount of discharged electricity was measured, and the charging efficiency at each charging rate was calculated. In addition, the electric capacity obtained by 0.2 C discharge after 0.5 C charge was made into battery capacity 100%. As measurement conditions, the discharge cut-off voltage was 0.8 V, the ambient temperature was 15 ° C., and the blowing condition was 1 m / s.
Table 4 summarizes the charging efficiency at each charging rate for the batteries of Examples 1 to 10 and Reference Examples 1 and 2.

表4から、第1電極と外装体内面間に第1金属箔を介在させることで、充電効率特性が向上していることがわかる。加えて、第2電極と集電体間に第2金属箔を介在させることで、さらに充電効率特性が向上していることがわかる。   From Table 4, it can be seen that the charging efficiency characteristics are improved by interposing the first metal foil between the first electrode and the inner surface of the exterior body. In addition, it can be seen that the charging efficiency characteristics are further improved by interposing the second metal foil between the second electrode and the current collector.

金属箔1〜5のうち、エンボスロール加工を施し、多数の突起(凸凹形状)と貫通孔を設け、かつ、カエシを設けた金属箔4および金属箔5がもっとも性能が良好であった。   Among the metal foils 1 to 5, the metal foil 4 and the metal foil 5 which were embossed roll processed, provided with a large number of protrusions (irregular shapes) and through holes, and provided with burrs were the best.

集電体1〜5のうち、集電体側面に凸凹形状を施したのものが、充電効率特性が向上していることがわかる。特に、側面をネジ加工したもの(集電体5)が、もっとも性能が良好であった。   It can be seen that among the current collectors 1 to 5, the current collector side surface provided with an uneven shape has improved charging efficiency characteristics. In particular, the one with the threaded side surface (current collector 5) had the best performance.

<温度上昇試験結果>
本発明に係る積層電池の冷却能力を、試験により確かめたので、その結果を以下に説明する。試験は、最も充電効率特性が良好であった実施例5の電池(表4参照)を用いて行った。すなわち、0.5C〜8Cで充電を行い、満充電後に積層電池の内部温度と表面温度を調べた。温度計測は、電池内部温度については集電体に熱電対を取付けて計測し、表面温度については積層電池の外装体の表面に熱電対を取り付けて行った。なお、室温は15℃で、1m/sの送風状態で計測を行った。
<Temperature rise test results>
Since the cooling capacity of the laminated battery according to the present invention was confirmed by a test, the result will be described below. The test was performed using the battery of Example 5 (see Table 4) that had the best charging efficiency characteristics. That is, charging was performed at 0.5 C to 8 C, and the internal temperature and surface temperature of the laminated battery were examined after full charging. The temperature was measured by attaching a thermocouple to the current collector for the battery internal temperature, and attaching the thermocouple to the surface of the exterior body of the laminated battery for the surface temperature. In addition, room temperature was 15 degreeC and it measured in the ventilation state of 1 m / s.

表5に、各充電レート(0.5C、1C、2C、5C、8C)でSOCが100%となるように充電した後の、電池の温度計測結果を示す。すなわち、表5の左の欄は電池表面温度と室温との差(=側温−室温)で最も大きかった値であり、右の欄は電池内部温度と室温との差(=芯温−室温)で最も大きかった値である。いずれの充電レートにおいても、SOCが80%を超えた付近から、電池温度と室温との温度差は急上昇した。2C以下の充電レートにおいて、電池の温度差(側温−室温、芯温−室温)は、いずれも5℃未満であった。また、8C充電においては、これらの温度差は30℃未満であった。   Table 5 shows the battery temperature measurement results after charging so that the SOC becomes 100% at each charge rate (0.5C, 1C, 2C, 5C, 8C). That is, the left column of Table 5 shows the largest difference between the battery surface temperature and room temperature (= side temperature−room temperature), and the right column shows the difference between the battery internal temperature and room temperature (= core temperature−room temperature). ) Is the largest value. At any charge rate, the temperature difference between the battery temperature and room temperature rose rapidly from the vicinity where the SOC exceeded 80%. At a charge rate of 2C or less, the battery temperature difference (side temperature-room temperature, core temperature-room temperature) was less than 5 ° C. Moreover, in 8C charge, these temperature differences were less than 30 degreeC.

表6は、所定の電流密度で充電を行った後、電池の外装体の温度(側温)と中心部の温度(芯温)の温度差が最も大きかった値をまとめたものである。3C以下で充電を行っても、電池の側温と芯温の温度差は、3.5℃以下であり、電池内部に蓄熱がしにくい特徴を有することがわかる。   Table 6 shows a summary of values where the temperature difference between the temperature (side temperature) of the battery outer body and the temperature (core temperature) of the central portion was the largest after charging at a predetermined current density. Even when charging is performed at 3C or less, the temperature difference between the side temperature and the core temperature of the battery is 3.5 ° C. or less, and it can be seen that the battery has a feature that it is difficult to store heat.

図10に充電レートをパラメータにとり、充電後の電池内部温度と室温の差をグラフにしたものを示す。すなわち、図10は、縦軸は温度差を摂氏で目盛り、横軸は経過時間を分で目盛ってある。2C以下の充電レートでは、電池内部温度と室温との差(温度上昇)は4℃以下であり、非常に小さいことがわかる。これは、充電に伴う発熱と同時に放熱しているため、電池内部に蓄熱が行われなかったためと思われる。   FIG. 10 is a graph showing the difference between the battery internal temperature after charging and the room temperature using the charging rate as a parameter. That is, in FIG. 10, the vertical axis indicates the temperature difference in degrees Celsius, and the horizontal axis indicates the elapsed time in minutes. It can be seen that at a charge rate of 2C or less, the difference (temperature rise) between the battery internal temperature and room temperature is 4 ° C. or less, which is very small. This seems to be because heat is not stored inside the battery because heat is released simultaneously with heat generated by charging.

5C充電と8C充電においては、電池内部温度と室温との差が認められる。しかし、20分足らずで、電池内部温度と室温との差は5℃未満に低下している。極めて放熱性に優れていることがわかる。
この試験結果から、本発明に係る積層電池は、電池内の熱伝導度が大きく、例え充電により温度が上昇しても、短時間で電池内部の温度が低下することがわかった。
In 5C charging and 8C charging, a difference between the battery internal temperature and room temperature is recognized. However, in less than 20 minutes, the difference between the battery internal temperature and room temperature has dropped below 5 ° C. It can be seen that the heat dissipation is extremely excellent.
From this test result, it was found that the laminated battery according to the present invention has a large thermal conductivity in the battery, and even if the temperature rises due to charging, the temperature inside the battery decreases in a short time.

本発明に係る積層電池は、産業用のみならず民生用の二次電池として好適に用いることができる。   The laminated battery according to the present invention can be suitably used as a secondary battery not only for industrial use but also for consumer use.

10 金属箔(a:正極側、b:負極側)
11 円筒型積層電池
12 円筒缶(a:円筒缶内径、b:円筒缶底部、c:開口部)
13 電極体(a:正極、aa:正極内径、ab:正極外径、
b:負極、ba:負極内径、bb:負極外径、
c:セパレータ)
14 絶縁板
15 外装体
16 蓋部材
17 集電体(a:棒状の軸部、b:止め部、c:ネジ部、d:正極端子)
18 軸受
20 金属箔3
21 突起部
25 第2金属箔
30 金属箔4(h1:金属箔厚み、h2:構造厚み、h3:、カエシ寸法、
L1:構造上部、L2:構造下部、P:構造ピッチ)
31 突起部
32 開口部
33 カエシ
34 カエシの下端部
41、51、61、71 突起
62、72 穴
73 開口部
10 Metal foil (a: positive electrode side, b: negative electrode side)
11 Cylindrical laminated battery 12 Cylindrical can (a: cylindrical can inner diameter, b: cylindrical can bottom, c: opening)
13 electrode body (a: positive electrode, aa: positive electrode inner diameter, ab: positive electrode outer diameter,
b: negative electrode, ba: negative electrode inner diameter, bb: negative electrode outer diameter,
c: Separator)
14 Insulating plate 15 Exterior body 16 Lid member 17 Current collector (a: rod-shaped shaft portion, b: stopper portion, c: screw portion, d: positive electrode terminal)
18 Bearing 20 Metal foil 3
21 Protrusion 25 Second metal foil 30 Metal foil 4 (h1: metal foil thickness, h2: structure thickness, h3: cache size,
L1: structure upper part, L2: structure lower part, P: structure pitch)
31 Projection 32 Opening 33 Snap 34 Lower edge 41, 51, 61, 71 Root 62, 72 Hole 73 Open

前記した課題を達成するために、本発明に係る積層電池は、筒状の外装体の内部に、正極と、負極とが、セパレータを介して、前記外装体の軸方向に積層されている電池であって、導電性の集電体が、前記正極と前記負極と前記セパレータとを前記外装体の軸方向に貫通しており、前記正極もしくは前記負極のいずれか一方の電極が前記外装体に電気的に接続されている第1電極であり、他方の電極が前記外装体に電気的に接続されていない第2電極であり、かつ、前記第2電極が第2金属箔を介して前記集電体に電気的に接続されていて、前記第1電極が前記集電体に電気的に接続されていない。 In order to achieve the above-described problems, a laminated battery according to the present invention is a battery in which a positive electrode and a negative electrode are laminated in the axial direction of the outer casing through a separator inside a cylindrical outer casing. The conductive current collector passes through the positive electrode, the negative electrode, and the separator in the axial direction of the outer package, and either the positive electrode or the negative electrode is connected to the outer package. a first electrode which is electrically connected, a second electrode and the other electrode not electrically connected to the outer body, and the second electrodes via the second metal foil It is electrically connected to the current collector, and the first electrode is not electrically connected to the current collector.

本発明に係る積層電池は、前記第2金属箔の少なくとも片面に、複数の突起を有していることが好ましい。
この構成によれば、これら金属箔は、その表面に突出するように形成された多数の突起を有するよう三次元加工が施されている。二次電池の充放電に伴ない、電極に体積変化が生じるが、金属箔に設けた突起は、第1電極と外装体間、および第2電極と集電体間の接触が悪くなるのを防ぐことを可能にする。電池のサイクル寿命特性を改善することができる。
Stacked battery according to the present invention, on at least one surface of the front Stories second metal foil preferably has a plurality of projections.
According to this configuration, these metal foils are three-dimensionally processed so as to have a large number of protrusions formed so as to protrude on the surface thereof. As the secondary battery is charged / discharged, the volume of the electrode changes, but the protrusions provided on the metal foil deteriorate the contact between the first electrode and the exterior body and between the second electrode and the current collector. Makes it possible to prevent. The cycle life characteristics of the battery can be improved.

本発明に係る積層電池は、前記第2金属箔に設けた前記突起が、底部の面積が頂部の面積より大きい錐台状となっていることが好ましい。
この構成によれば、金属箔の表面には凹凸を設けることにより、突起を形成することが可能である。この場合、金属箔の両面に突起が形成させることになる。金属箔の凹凸の凸部に着目すれば、その形状は錐台状となる。具体的には、多角錐台もしくは円錐台である。突起の突き出ている方(頂部)の面積は、突起の底部の面積より小さく、その縦断面は台形状となっている。電極は錐台状の突起に食い込み、第1電極と外装体間および第2電極と集電体間の接触を良好に保つのに有効に働く。底部の面積が頂部の面積より大きいので、電極が安定的に金属箔の突起に食い込む。
Stacked battery according to the present invention, the protrusion front SL provided on the second metal foil, it is preferable that the area of the bottom portion is larger frustum than the area of the top.
According to this configuration, protrusions can be formed by providing irregularities on the surface of the metal foil. In this case, protrusions are formed on both surfaces of the metal foil. If attention is paid to the convex and concave portions of the metal foil, the shape thereof becomes a frustum shape. Specifically, it is a polygonal frustum or a truncated cone. The area of the protrusion (top) of the protrusion is smaller than the area of the bottom of the protrusion, and the longitudinal section thereof is trapezoidal. The electrode bites into the frustum-shaped protrusion, and effectively works to keep good contact between the first electrode and the outer package and between the second electrode and the current collector. Since the area of the bottom is larger than the area of the top, the electrode stably bites into the protrusion of the metal foil.

本発明に係る積層電池は、前記第2金属箔に設けられた前記突起の先端部が突起と反対方向に折り曲げられていることが好ましい。
この構成によれば、金属箔は、突起の先端部が突起と反対方向に折り曲げられた「カエシ」を有している。このカエシは、電極に喰い込み引っかかりを生じることで、充放電に伴う電極の膨張・収縮に関わらず第1電極と外装体間および第2電極と集電体間の接触を確実にする。
Stacked battery according to the present invention, it is preferable that the tip portion of the projection provided on prior Symbol second metal foil is bent in the direction opposite to the protrusion.
According to this configuration, the metal foil has a “cache” in which the tip of the protrusion is bent in the direction opposite to the protrusion. This bite causes the electrode to bite and catch, thereby ensuring contact between the first electrode and the exterior body and between the second electrode and the current collector regardless of the expansion and contraction of the electrode accompanying charging and discharging.

本発明に係る積層電池は、前記第2金属箔に設けられた前記突起の先端部に穴が設けられていて、当該穴の周縁から外方に突出する外縁を有することが好ましい。
この構成によれば、突起の先端部もしくは頂部にカエシを容易に設けることが可能となる。
Stacked battery according to the present invention, prior SL have holes provided at the distal end portion of the projection provided on the second metal foil preferably has an outer edge that projects outwardly from the periphery of the hole.
According to this configuration, it is possible to easily provide a cache at the tip or top of the protrusion.

本発明に係る積層電池は、前記セパレータの外縁が前記第1電極により覆われており、前記第2電極の外縁が前記セパレータにより覆われており、前記第1電極の前記集電体が貫通する穴の周縁が前記セパレータにより覆われており、前記セパレータの前記集電体を貫通する穴の周縁が前記第2電極により覆われている。 In the laminated battery according to the present invention, the outer edge of the separator is covered with the first electrode, the outer edge of the second electrode is covered with the separator, and the current collector of the first electrode penetrates. periphery of the hole is covered by the separator, the peripheral edge of the hole through the collector of the separator that is covered by the second electrode.

本発明に係る積層電池は、前記集電体がパイプ状の側部を有することが好ましい。
この構成において、集電体の側部の一部もしくは全部がパイプで覆われているので、集電体と電極との結合が緩んだ折に、集電体のパイプ部分に、パイプの内径より少し大きめの杭を打ち込むことで、集電体の外径を広げることが可能となる。これにより、集電体と電極との結合を強固にすることができる。
Stacked battery according to the present invention, the current collector is not preferable to have a pipe-like side.
In this configuration, part or all of the side part of the current collector is covered with the pipe, so when the connection between the current collector and the electrode is loose, the pipe part of the current collector is connected to the inner diameter of the pipe. By driving a slightly larger pile, the outer diameter of the current collector can be increased. Thereby, the coupling | bonding of a collector and an electrode can be strengthened.

本発明に係る積層電池は、前記集電体のパイプ状側部の軸方向にスリットが設けられていることが好ましい。
この構成によれば、集電体のパイプ部分に、パイプの内径よりも少し大きめの杭を打ち込むと、スリットが広がる。これにより、小さな抵抗で集電体の外径を広げ、集電体と電極との結合を締め付けることができる。集電体のパイプ部分にスリットがないと、集電体の肉厚が大きいと、集電体に杭を打ち込む際、集電体の外径が広がりにくい。肉厚が薄いと、集電体の導電性が悪くなる。
Stacked battery according to the present invention, it is not preferable that slits the axial direction of the pipe-shaped sides of the current collector is provided.
According to this configuration, when a pile slightly larger than the inner diameter of the pipe is driven into the pipe portion of the current collector, the slit is widened. Thereby, the outer diameter of the current collector can be widened with a small resistance, and the coupling between the current collector and the electrode can be tightened. If there is no slit in the pipe portion of the current collector, the outer diameter of the current collector is difficult to expand when a pile is driven into the current collector if the current collector is thick. When the wall thickness is thin, the electrical conductivity of the current collector becomes poor.

本発明に係る積層電池は、前記集電体の側面が凸凹形状を有することが好ましい。
この構成によれば、集電体の側面には凸凹形状を有する。そして、第2電極に設けた集電体が貫通する穴の径は集電体の凹の径と第2金属箔の厚さの和より小さい。これにより、充放電に伴い電極の体積が変化しても、凸凹の形状によるアンカー効果によって、第2電極と集電体の接触を十分確保することが可能になる。凸凹形状を設ける手法としては、エッチング加工、ローレット加工、ナール加工、エンボス加工、ネジ加工、レーザー加工など既存のものが挙げられる。
Stacked battery according to the present invention, the side surface of the current collector is not preferable to have an irregular shape.
According to this configuration, the current collector has an uneven shape on the side surface. The diameter of the hole through which the current collector provided in the second electrode passes is smaller than the sum of the concave diameter of the current collector and the thickness of the second metal foil. Thereby, even if the volume of the electrode changes with charge / discharge, it becomes possible to ensure sufficient contact between the second electrode and the current collector by the anchor effect due to the uneven shape. Examples of the method for providing the uneven shape include existing methods such as etching, knurling, knurling, embossing, screwing, and laser processing.

本発明に係る積層電池は、前記集電体の側面に溝加工が施されていて、前記集電体の溝の谷の径と前記第2金属箔の厚さの和は前記第2電極に設けた前記集電体が貫通する穴の径より大きく、前記集電体の溝の山の径と前記第2金属箔の厚さの和は前記第1電極に設けた前記集電体が貫通する穴の径より小さいことが好ましい。
この構成によれば、集電体の側面に設けられた溝は、ネジ溝であることが好ましい。溝の谷とは、集電体のもっとも細い部分をいう。そして、第2電極が第2金属箔を介して、ネジ溝に密着している。溝の山とは、集電体のもっとも太い部分をいう。そして、第1電極は集電体に接触していない。
In the laminated battery according to the present invention, a groove is formed on a side surface of the current collector, and a sum of a groove trough diameter of the current collector and a thickness of the second metal foil is applied to the second electrode. The diameter of the groove of the current collector and the sum of the thickness of the second metal foil are larger than the diameter of the hole through which the current collector is provided, and the current collector provided in the first electrode penetrates. it is not preferable smaller than the diameter of holes.
According to this configuration, the groove provided on the side surface of the current collector is preferably a screw groove. The groove valley is the thinnest part of the current collector. The second electrode is in close contact with the screw groove via the second metal foil. Groove mountain is the thickest part of the current collector. The first electrode is not in contact with the current collector.

本発明に係る積層電池は、前記負極の充電容量が前記正極の充電容量よりも小さいことが好ましい。一般にアルカリ二次電池において、密閉化を行うために正極規制を採用しており、正極容量に比べて多くの負極容量を必要としている。しかし、当該積層電池は、いわゆる負極規制となっている。ここに、各充電容量は、単に、正極容量もしくは負極容量と称されることがある。 Stacked battery according to the present invention, the charge capacity of the negative electrode is not preferable to be less than the charge capacity of the positive electrode. Generally, in an alkaline secondary battery, positive electrode regulation is adopted for sealing, and a larger negative electrode capacity is required than a positive electrode capacity. However, the laminated battery is a so-called negative electrode regulation. Here, each charge capacity may be simply referred to as a positive electrode capacity or a negative electrode capacity.

本発明に係る積層電池は、前記外装体の内部に、前記負極で発生する水素ガスを貯蔵する水素貯蔵室を備えていることが好ましい。この構成では、水素貯蔵室は、独立した空間であってもよい。また、水素貯蔵室は、独立した空間でなく、電極あるいはセパレータの隙間であってもよい。事実、水素は、正極活物質あるいは水素吸蔵合金の間に貯蔵されることが可能である。 Stacked battery according to the present invention, the inside of the exterior body, it is not preferable that includes a hydrogen storage chamber for storing hydrogen gas generated at the negative electrode. In this configuration, the hydrogen storage chamber may be an independent space. Further, the hydrogen storage chamber is not an independent space but may be a gap between electrodes or separators. In fact, hydrogen can be stored between the positive electrode active material or the hydrogen storage alloy.

本発明に係る積層電池は、前記水素貯蔵室に貯蔵された水素ガス用いて前記負極に含まれる水素吸蔵合金を充電することが好ましい。この構成によれば、過充電で発生した水素ガスは負極を充電して有効に利用される。負極に含まれる水素吸蔵合金は、いわば、触媒として作用する。 Stacked battery according to the present invention, it is not preferable to charge the hydrogen storage alloy contained by using hydrogen gas stored in the hydrogen storage chamber to the negative electrode. According to this configuration, the hydrogen gas generated by overcharging is used effectively by charging the negative electrode. The hydrogen storage alloy contained in the negative electrode functions as a catalyst.

本発明に係る積層電池の組み立て方法は、前記第1電極の外径より内径が少し大きい筒の中心に前記第2電極の内径よりも少し小さい丸棒を突き立てて、前記丸棒に前記第1電極と前記第2電極の間に前記セパレータが介在するように順次挿入して電極を積み重ねた後、前記筒から積み重ねた電極群と前記丸棒を一体に取り出し、前記第1電極の外周に第1金属箔を貼り付け、軸方向に隣り合う第1電極同士を電気的に接続し、前記電極群から、前記丸棒を抜き取り、前記第2電極の内周に第2金属箔を貼り付け、前記第1および第2金属箔を貼り付けた前記電極群を前記外装体に圧入し、前記第2電極の内径より大きい前記集電体を前記電極群に圧入して、空気抜きを行い、電解液を注入する。
この組立方法によれば、有底の円筒缶からなる外装体に電極集合体を圧入して、電解液を注入後に円筒缶を蓋部材で封印して、電池の密閉化を図る。
In the method for assembling the laminated battery according to the present invention, a round bar slightly smaller than the inner diameter of the second electrode is projected at the center of a cylinder having an inner diameter slightly larger than the outer diameter of the first electrode , and the round bar is in contact with the first electrode . After sequentially inserting the separator so that the separator is interposed between one electrode and the second electrode and stacking the electrodes, the electrode group stacked from the cylinder and the round bar are taken out integrally, and the outer periphery of the first electrode is A first metal foil is affixed, first electrodes adjacent in the axial direction are electrically connected, the round bar is extracted from the electrode group, and a second metal foil is affixed to the inner periphery of the second electrode The electrode group on which the first and second metal foils are pasted is press-fitted into the exterior body, the current collector having a larger inner diameter than the second electrode is press-fitted into the electrode group, and air is vented. It injects the liquid.
According to this assembling method, the electrode assembly is press-fitted into an exterior body composed of a cylindrical can with a bottom, and after the electrolyte is injected, the cylindrical can is sealed with the lid member to seal the battery.

10 金属箔(a:正極側、b:負極側)
11 円筒型積層電池
12 円筒缶(a:円筒缶内径、b:円筒缶底部、c:開口部)
13 電極体(a:正極、aa:正極内径、ab:正極外径、
b:負極、ba:負極内径、bb:負極外径、
c:セパレータ)
14 絶縁板
15 外装体
16 蓋部材
17 集電体(a:棒状の軸部、b:止め部、c:ネジ部、d:正極端子)
18 軸受
20 金属箔3
21 突起部
25 第2金属箔
30 金属箔4(h1:金属箔厚み、h2:構造厚み、h3:、カエシ寸法、
L1:構造上部、L2:構造下部、P:構造ピッチ)
31 突起部
32 開口部
33 カエシ
41、51、61、71 突起
62、72 穴
73 開口部
10 Metal foil (a: positive electrode side, b: negative electrode side)
11 Cylindrical laminated battery 12 Cylindrical can (a: cylindrical can inner diameter, b: cylindrical can bottom, c: opening)
13 electrode body (a: positive electrode, aa: positive electrode inner diameter, ab: positive electrode outer diameter,
b: negative electrode, ba: negative electrode inner diameter, bb: negative electrode outer diameter,
c: Separator)
14 Insulating plate 15 Exterior body 16 Lid member 17 Current collector (a: rod-shaped shaft portion, b: stopper portion, c: screw portion, d: positive electrode terminal)
18 Bearing 20 Metal foil 3
21 Protrusion 25 Second metal foil 30 Metal foil 4 (h1: metal foil thickness, h2: structure thickness, h3: cache size,
L1: structure upper part, L2: structure lower part, P: structure pitch)
31 Protrusion 32 Opening 33 Root 41, 51, 61, 71 Protrusion 62, 72 Hole 73 Opening

Claims (15)

筒状の外装体の内部に、正極と、負極とが、セパレータを介して、前記外装体の軸方向に積層されている電池であって、
導電性の集電体が、前記正極と前記負極と前記セパレータとを前記外装体の軸方向に貫通しており、
前記正極もしくは前記負極のいずれか一方の電極が第1金属箔を介して前記外装体に電気的に接続されている第1電極であり、他方の電極が前記外装体に電気的に接続されていない第2電極であり、かつ、
前記第2電極が第2金属箔を介して前記集電体に電気的に接続されていて、前記第1電極が前記集電体に電気的に接続されていない積層電池。
A battery in which a positive electrode and a negative electrode are laminated in the axial direction of the outer casing through a separator inside a cylindrical outer casing,
A conductive current collector passes through the positive electrode, the negative electrode, and the separator in the axial direction of the exterior body,
Either the positive electrode or the negative electrode is a first electrode electrically connected to the exterior body via a first metal foil, and the other electrode is electrically connected to the exterior body. No second electrode, and
A laminated battery in which the second electrode is electrically connected to the current collector through a second metal foil, and the first electrode is not electrically connected to the current collector.
前記第1金属箔もしくは第2金属箔の少なくとも片面に、複数の突起を有している請求項1に記載の積層電池。   The multilayer battery according to claim 1, wherein a plurality of protrusions are provided on at least one surface of the first metal foil or the second metal foil. 前記第1金属箔もしくは第2金属箔に設けた前記突起が、底部の面積が頂部の面積より大きい錐台状となっている請求項2に記載の積層電池。   The laminated battery according to claim 2, wherein the protrusion provided on the first metal foil or the second metal foil has a frustum shape in which the area of the bottom is larger than the area of the top. 前記第1金属箔もしくは第2金属箔に設けられた前記突起の先端部が突起と反対方向に折り曲げられている請求項2または3のいずれか一項に記載の積層電池。   4. The laminated battery according to claim 2, wherein a tip portion of the protrusion provided on the first metal foil or the second metal foil is bent in a direction opposite to the protrusion. 5. 前記第1金属箔もしくは第2金属箔に設けられた前記突起の先端部に穴が設けられていて、当該穴の周縁から外方に突出する外縁を有する請求項2または3のいずれか一項に記載の積層電池。   The hole is provided in the front-end | tip part of the said protrusion provided in the said 1st metal foil or the 2nd metal foil, and it has an outer edge which protrudes outward from the periphery of the said hole. The laminated battery described in 1. 前記セパレータの外縁が前記第1電極により覆われており、前記第2電極の外縁が前記セパレータにより覆われており、前記第1電極の前記集電体が貫通する穴の周縁が前記セパレータにより覆われており、前記セパレータの前記集電体を貫通する穴の周縁が前記第2電極により覆われている請求項1または2のいずれか一項に記載の積層電池。   The outer edge of the separator is covered with the first electrode, the outer edge of the second electrode is covered with the separator, and the periphery of the hole through which the current collector of the first electrode passes is covered with the separator. 3. The stacked battery according to claim 1, wherein a peripheral edge of a hole penetrating the current collector of the separator is covered with the second electrode. 前記集電体がパイプ状の側部を有するしている請求項1に記載の積層電池。   The laminated battery according to claim 1, wherein the current collector has a pipe-like side portion. 前記集電体のパイプ状側部の軸方向にスリットが設けられた請求項7に記載の積層電池。   The laminated battery according to claim 7, wherein a slit is provided in an axial direction of the pipe-like side portion of the current collector. 前記集電体の側面が凸凹形状を有する請求項1に記載の積層電池。   The laminated battery according to claim 1, wherein a side surface of the current collector has an uneven shape. 前記集電体の側面に溝加工が施されていて、前記集電体の溝の谷の径と前記第2金属箔の厚さの和は前記第2電極に設けた前記集電体が貫通する穴の径より大きく、前記集電体の溝の山の径と前記第2金属箔の厚さの和は前記第1電極に設けた前記集電体が貫通する穴の径より小さい請求項1に記載の積層電池。   Groove processing is applied to the side surface of the current collector, and the sum of the groove trough diameter and the thickness of the second metal foil passes through the current collector provided in the second electrode. A sum of a groove crest diameter of the current collector and a thickness of the second metal foil is smaller than a diameter of a hole penetrating the current collector provided in the first electrode. 1. The laminated battery according to 1. 前記負極が水素吸蔵合金を含む請求項1〜10のいずれか一項に記載の積層電池。   The laminated battery according to claim 1, wherein the negative electrode includes a hydrogen storage alloy. 前記負極の充電容量が前記正極の充電容量よりも小さい請求項11に記載の積層電池。   The laminated battery according to claim 11, wherein a charge capacity of the negative electrode is smaller than a charge capacity of the positive electrode. 前記外装体の内部に、前記負極で発生する水素ガスを貯蔵する水素貯蔵室を備えている請求項12に記載の積層電池。   The laminated battery according to claim 12, further comprising a hydrogen storage chamber for storing hydrogen gas generated at the negative electrode inside the outer package. 前記水素貯蔵室に貯蔵された水素ガス用いて前記負極に含まれる水素吸蔵合金を充電する請求項13に記載の積層電池。   The laminated battery according to claim 13, wherein the hydrogen storage alloy contained in the negative electrode is charged using hydrogen gas stored in the hydrogen storage chamber. 前記正極の外径より内径が少し大きい筒の中心に前記負極の内径よりも少し小さい丸棒を突き立てて、前記丸棒に前記正極と前記負極の間に前記セパレータが介在するように順次挿入して電極を積み重ねた後、前記筒から積み重ねた電極群と前記丸棒を一体に取り出し、前記正極の外周に第1金属箔を貼り付け、軸方向に隣り合う正極同士を電気的に接続し、前記電極群から、前記丸棒を抜き取り、前記負極の内周に第2金属箔を貼り付け、前記第1および第2金属箔を貼り付けた前記電極群を前記外装体に圧入し、前記負極の内径より大きい前記集電体を前記電極群に圧入して、空気抜きを行い、電解液を注入する積層電池の組立て方法。


A round bar slightly smaller than the inner diameter of the negative electrode is protruded from the center of the cylinder whose inner diameter is slightly larger than the outer diameter of the positive electrode, and sequentially inserted so that the separator is interposed between the positive electrode and the negative electrode. After the electrodes are stacked, the electrode group stacked from the cylinder and the round bar are integrally taken out, the first metal foil is attached to the outer periphery of the positive electrode, and the positive electrodes adjacent in the axial direction are electrically connected to each other. The round bar is extracted from the electrode group, a second metal foil is attached to the inner periphery of the negative electrode, the electrode group to which the first and second metal foils are attached is press-fitted into the exterior body, A method for assembling a laminated battery, in which the current collector larger than the inner diameter of the negative electrode is press-fitted into the electrode group, air is vented, and an electrolytic solution is injected.


JP2012215527A 2012-09-28 2012-09-28 Laminated battery Active JP5417579B1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2012215527A JP5417579B1 (en) 2012-09-28 2012-09-28 Laminated battery

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2012215527A JP5417579B1 (en) 2012-09-28 2012-09-28 Laminated battery

Publications (2)

Publication Number Publication Date
JP5417579B1 JP5417579B1 (en) 2014-02-19
JP2014071972A true JP2014071972A (en) 2014-04-21

Family

ID=50287166

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2012215527A Active JP5417579B1 (en) 2012-09-28 2012-09-28 Laminated battery

Country Status (1)

Country Link
JP (1) JP5417579B1 (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2017174519A (en) * 2016-03-21 2017-09-28 エクセルギー・パワー・システムズ株式会社 Electrode for battery, manufacturing method of electrode for battery and laminated battery
JP2017220370A (en) * 2016-06-08 2017-12-14 トヨタ自動車株式会社 Layered cell
US10249919B2 (en) 2014-08-21 2019-04-02 Lg Chem, Ltd. Battery cell having improved cooling performance

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN104319414B (en) * 2014-09-30 2017-04-19 惠州金源精密自动化设备有限公司 Battery shaping device

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH05217607A (en) * 1991-10-28 1993-08-27 Globe Union Inc Metal oxide hydrogen battery
JP2000048854A (en) * 1998-07-31 2000-02-18 Toshiba Battery Co Ltd Cylindrical secondary battery

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH05217607A (en) * 1991-10-28 1993-08-27 Globe Union Inc Metal oxide hydrogen battery
JP2000048854A (en) * 1998-07-31 2000-02-18 Toshiba Battery Co Ltd Cylindrical secondary battery

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
JPN6012039966; Bokkyu Choi,外3名: 'Development of NiMH-based Fuel Cell/Battery(FCB) system: Characterization of Ni(OH)2/MnO2 positive e' Journal of Power Sources Vol.194 No.2, 20091201, Page.1150-1155 *

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US10249919B2 (en) 2014-08-21 2019-04-02 Lg Chem, Ltd. Battery cell having improved cooling performance
JP2017174519A (en) * 2016-03-21 2017-09-28 エクセルギー・パワー・システムズ株式会社 Electrode for battery, manufacturing method of electrode for battery and laminated battery
JP2017220370A (en) * 2016-06-08 2017-12-14 トヨタ自動車株式会社 Layered cell

Also Published As

Publication number Publication date
JP5417579B1 (en) 2014-02-19

Similar Documents

Publication Publication Date Title
US10381676B2 (en) Layer cell, assembled battery including layer cell, and method for assembling layer cell
US10388982B2 (en) Electrode block, layered cell, and assembly method for layered cell
JP5564278B2 (en) Secondary battery
JP5531220B2 (en) Stacked battery and stacked battery system
JP2006351512A (en) Sealed secondary battery and its manufacturing method
JP5776005B2 (en) Sealed secondary battery
JP2007018962A (en) Sealed secondary battery
JP5135071B2 (en) Battery
CN102210041A (en) Sealed battery
JP7383501B2 (en) Power storage device and power storage module
JP2002134161A (en) Spiral electrode group for battery and battery
JP5417579B1 (en) Laminated battery
JP5186647B2 (en) Secondary battery
KR101709560B1 (en) Secondary Battery with Electrode Tab Having Low Resistance
US20180342723A1 (en) Energy storage device and method of manufacturing energy storage device
US9660245B2 (en) Battery cell
JP2012084541A (en) Film-enclosed battery
JP5110889B2 (en) Nickel metal hydride secondary battery
KR20070096651A (en) Electrode assembly for cylinderical lithium rechargeable battery and cylinderical lithium rechargeable battery using the same
JP2020077527A (en) Storage battery module
US20230039284A1 (en) Terminal component and secondary battery and assembled battery each including the terminal component
RU2575480C1 (en) Layered element, assembled battery, including layered element, and method of assembling layered element
KR20240058929A (en) energy storage elements
JP2023090192A (en) secondary battery
JPH11283662A (en) Cylindrical nickel-hydrogen secondary battery

Legal Events

Date Code Title Description
TRDD Decision of grant or rejection written
R150 Certificate of patent or registration of utility model

Ref document number: 5417579

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313531

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250