JP2013152145A - Optical inspection device - Google Patents

Optical inspection device Download PDF

Info

Publication number
JP2013152145A
JP2013152145A JP2012013125A JP2012013125A JP2013152145A JP 2013152145 A JP2013152145 A JP 2013152145A JP 2012013125 A JP2012013125 A JP 2012013125A JP 2012013125 A JP2012013125 A JP 2012013125A JP 2013152145 A JP2013152145 A JP 2013152145A
Authority
JP
Japan
Prior art keywords
unit
light intensity
wavelength
light
multiplication constant
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2012013125A
Other languages
Japanese (ja)
Inventor
Nachito Yoshida
奈千人 吉田
Nariyuki Akase
成之 赤瀬
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sharp Corp
Original Assignee
Sharp Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sharp Corp filed Critical Sharp Corp
Priority to JP2012013125A priority Critical patent/JP2013152145A/en
Publication of JP2013152145A publication Critical patent/JP2013152145A/en
Pending legal-status Critical Current

Links

Images

Landscapes

  • Spectrometry And Color Measurement (AREA)
  • Testing Of Optical Devices Or Fibers (AREA)

Abstract

PROBLEM TO BE SOLVED: To provide an optical inspection device which can inspect a chromaticity value appropriately.SOLUTION: According to the present invention, an optical inspection device 10 includes: a calibration unit 13 which performs an arithmetic calculation, so as to calibrate a light intensity of each wavelength measured by a spectrum measurement unit 12; a chromaticity conversion unit 14 which converts a light intensity of each wavelength, calibrated by the calibration unit 13, to a chromaticity value; and a determination unit 15 which compares the chromaticity value obtained by conversion performed at the chromaticity conversion unit 14 with a predetermined inspection reference, so as to determine whether a light emitting product is good or not. The calibration unit 13 includes: a multiplication constant calculation unit 131 which calculates, before inspection of the light emitting product, a multiplication constant using a known light intensity of a reference light source and a measurement light intensity that is obtained when the reference light source is measured by the spectrum measurement unit 12; a difference calculation unit 132 which performs a calculation for each wavelength, before inspection of the light emitting product, to find a difference value between the known light intensity of the reference light source and the measurement light intensity multiplied by the multiplication constant; and an addition calculation unit 133 which multiplies, before inspection of the light emitting product, a light intensity of the light emitting product, measured by the spectrum measurement unit 12, by the multiplication constant and adds the difference value thereto.

Description

本発明は、光検査装置に関し、特に、測定誤差を数値演算処理により校正する光検査装置に関する。   The present invention relates to an optical inspection apparatus, and more particularly to an optical inspection apparatus that calibrates a measurement error by numerical calculation processing.

人間の眼が識別可能な色度差は、白色の場合、色度座標(x,y)で±0.01程度であると言われている。白色LED(Light Emitting Diode)において、励起光の波長や光強度のばらつき、蛍光体の塗布量のばらつきなどに起因する製造ばらつきは、現在のところ、これより大きい。そのため、白色LEDの生産工場や白色LEDを用いた液晶テレビなどの応用製品の生産工場では、白色LEDの色度値を高速に検査することで品質を管理している。このような検査には、光検査装置が利用されている。   It is said that the chromaticity difference that can be identified by human eyes is about ± 0.01 in chromaticity coordinates (x, y) in the case of white. In white LEDs (Light Emitting Diodes), manufacturing variations due to variations in the wavelength and intensity of excitation light, variations in the amount of phosphor applied, and the like are currently larger than this. Therefore, in white LED production factories and application factories such as liquid crystal televisions using white LEDs, the quality is controlled by inspecting the chromaticity values of the white LEDs at high speed. An optical inspection apparatus is used for such inspection.

光検査装置では、検査対象である発光製品の波長ごとの光強度を測定し、公知の変換式に基づいて、波長ごとの光強度から色度値を演算する。色度値としては、一般に、XYZ表色系における三刺激値X,Y,Zや色度座標(x,y)が用いられる。求めた色度値が予め定められた検査基準を満たすか否かによって、発光製品の良否が判定される。   In the optical inspection device, the light intensity for each wavelength of the light emitting product to be inspected is measured, and the chromaticity value is calculated from the light intensity for each wavelength based on a known conversion formula. As chromaticity values, tristimulus values X, Y, Z and chromaticity coordinates (x, y) in the XYZ color system are generally used. The quality of the luminescent product is determined based on whether or not the obtained chromaticity value satisfies a predetermined inspection standard.

以下、波長ごとの光強度から色度座標(x,y)を演算する方法について、図9〜図11を参照しながら簡単に説明する。   Hereinafter, a method for calculating the chromaticity coordinates (x, y) from the light intensity for each wavelength will be briefly described with reference to FIGS.

図9は、白色LEDの波長ごとの光強度を示す図である。
図9に示す波長ごとの光強度I(λ)(λは波長)をもつ白色LEDは、青色に発光する半導体素子と、青色の励起光を緑色や赤色に変換する蛍光体を用いたものである。光強度I(λ)は、380nm〜780nmの波長の範囲を1nm幅に分割しており、青色の範囲である440nm付近に急峻なピークをもち、緑色の範囲である530nm付近および赤色の範囲である640nm付近に比較的緩やかなピークをもつ。
FIG. 9 is a diagram illustrating the light intensity for each wavelength of the white LED.
A white LED having a light intensity I (λ) (λ is a wavelength) shown in FIG. 9 uses a semiconductor element that emits blue light and a phosphor that converts blue excitation light into green or red. is there. The light intensity I (λ) is obtained by dividing the wavelength range of 380 nm to 780 nm into 1 nm widths, has a steep peak near the blue range of 440 nm, and the green range of around 530 nm and the red range. It has a relatively gentle peak near a certain 640 nm.

図10は、XYZ表色系の等色関数x(λ),y(λ),z(λ)を示す図である。
図11は、XYZ表色系の三刺激値X,Y,Zを求める演算過程を説明する図である。
FIG. 10 is a diagram showing the color matching functions x (λ), y (λ), z (λ) of the XYZ color system.
FIG. 11 is a diagram illustrating a calculation process for obtaining tristimulus values X, Y, and Z of the XYZ color system.

図11に示す3つの関数{I(λ)×x(λ)},{I(λ)×y(λ)},{I(λ)×z(λ)}はそれぞれ、図9に示す波長ごとの光強度I(λ)と、図10に示す等色関数x(λ),y(λ),z(λ)とを波長ごとに乗算して求められる。そして、XYZ表色系の三刺激値X,Y,Zはそれぞれ、関数{I(λ)×x(λ)},{I(λ)×y(λ)},{I(λ)×z(λ)}を波長について積分することで、以下の式(1a)〜式(1c)で求められる。kは683lm/Wで与えられる定数である。   The three functions {I (λ) × x (λ)}, {I (λ) × y (λ)}, and {I (λ) × z (λ)} shown in FIG. 11 are the wavelengths shown in FIG. Each light intensity I (λ) is multiplied by the color matching function x (λ), y (λ), z (λ) shown in FIG. 10 for each wavelength. The tristimulus values X, Y, and Z of the XYZ color system are the functions {I (λ) × x (λ)}, {I (λ) × y (λ)}, and {I (λ) × z, respectively. By integrating (λ)} with respect to the wavelength, the following equations (1a) to (1c) are obtained. k is a constant given by 683 lm / W.

X=k∫{I(λ)×x(λ)}dλ ・・・(1a)
Y=k∫{I(λ)×y(λ)}dλ ・・・(1b)
Z=k∫{I(λ)×z(λ)}dλ ・・・(1c)
XYZ表色系の三刺激値X,Y,Zと色度座標(x,y)での色度値x,色度値yの間には、以下の式(2a),式(2b)が成り立つ。
X = k∫ {I (λ) × x (λ)} dλ (1a)
Y = k∫ {I (λ) × y (λ)} dλ (1b)
Z = k∫ {I (λ) × z (λ)} dλ (1c)
Between the tristimulus values X, Y, and Z of the XYZ color system and the chromaticity value x and chromaticity value y in the chromaticity coordinates (x, y), the following equations (2a) and (2b) are obtained. It holds.

x=X/(X+Y+Z) ・・・(2a)
y=Y/(X+Y+Z) ・・・(2b)
このようにして求められる色度値を高精度に検査するためには、基準光源を使用して光検査装置を校正してやる必要がある。
x = X / (X + Y + Z) (2a)
y = Y / (X + Y + Z) (2b)
In order to inspect the chromaticity value thus obtained with high accuracy, it is necessary to calibrate the optical inspection apparatus using a reference light source.

具体的に、特許文献1に、基準光源を使用して校正する分光測定装置が開示してある。特許文献1に記載する分光測定装置では、波長ごとの光強度が既知である校正用の基準光源を用いて、既知である波長ごとの光強度と、基準光源を当該分光測定装置で測定した場合に得られる受光部の出力電圧との間に成立する方程式を解くことにより、各受光素子の分光感度を求めて校正に使用している。   Specifically, Patent Document 1 discloses a spectroscopic measurement apparatus that performs calibration using a reference light source. In the spectroscopic measurement device described in Patent Document 1, when the light intensity for each known wavelength and the reference light source are measured with the spectroscopic measurement device using a reference light source for calibration whose light intensity for each wavelength is known The spectral sensitivity of each light receiving element is obtained by solving an equation established between the output voltage and the output voltage of the light receiving unit obtained in the above and used for calibration.

特開昭62−289736号公報JP-A-62-2899736

波長ごとの光強度が既知である基準光源を高精度の分光測定装置で測定して得られる波長ごとの光強度(以下、既知光強度P(λ)という)は、測定誤差が小さく信頼性が高いと考えられるため、光検査装置の校正の基準とする。   The light intensity for each wavelength (hereinafter referred to as known light intensity P (λ)) obtained by measuring a reference light source having a known light intensity for each wavelength with a high-accuracy spectroscopic measurement device has a small measurement error and is reliable. Because it is considered high, it is used as the standard for calibration of optical inspection equipment.

基準光源を光検査装置で測定して得られる波長ごとの光強度(以下、測定光強度Q(λ)という)を、基準とする既知光強度P(λ)と比較することで、光検査装置の分光測定部が有する誤差を抽出することができる。   By comparing the light intensity at each wavelength obtained by measuring the reference light source with the optical inspection apparatus (hereinafter referred to as measured light intensity Q (λ)) with the known light intensity P (λ) as a reference, the optical inspection apparatus The error of the spectroscopic measurement unit can be extracted.

特許文献1に示すような従来の光検査装置では、測定光強度Q(λ)を既知光強度P(λ)と比較する方法として、各波長における光強度の比を用いる。各波長における光強度の比を比例係数α(λ)として、以下の式(3)のように求める。   In the conventional optical inspection apparatus as shown in Patent Document 1, the ratio of the light intensity at each wavelength is used as a method for comparing the measured light intensity Q (λ) with the known light intensity P (λ). The ratio of the light intensity at each wavelength is determined as a proportional coefficient α (λ) as shown in the following equation (3).

α(λ)=P(λ)/Q(λ) ・・・(3)
発光製品を測定する際には、基準光源を用いて求めた比例係数α(λ)を、発光製品を光検査装置で測定して得られる波長ごとの光強度(以下、発光製品光強度R(λ)とする)に波長ごとに乗算することで校正する。校正後の光強度Rα(λ)は、以下の式(4)で表される。
α (λ) = P (λ) / Q (λ) (3)
When measuring a luminescent product, the proportionality coefficient α (λ) obtained using a reference light source is used to determine the light intensity for each wavelength obtained by measuring the luminescent product with an optical inspection device (hereinafter referred to as luminescent product light intensity R ( λ))) is multiplied for each wavelength to calibrate. The light intensity Rα (λ) after calibration is expressed by the following equation (4).

Rα(λ)=α(λ)×R(λ) ・・・(4)
しかしながら、従来の光検査装置は、波長に依存する比例係数α(λ)のみを用いて校正するため、白色LEDのように波長により光強度が急峻に変化する発光製品を検査する場合、校正により誤差がむしろ大きくなってしまうことがあった。光検査装置は、校正により誤差が大きくなり良品を不良品と判定してしまったり不良品を良品と判定してしまったりすると、発光製品の色度値を適切に検査することができないという問題があった。
Rα (λ) = α (λ) × R (λ) (4)
However, since the conventional optical inspection apparatus calibrates using only the proportionality coefficient α (λ) depending on the wavelength, when inspecting a light emitting product whose light intensity changes sharply depending on the wavelength, such as a white LED, The error sometimes became rather large. The optical inspection device has a problem that the chromaticity value of the luminescent product cannot be properly inspected if the error becomes large due to calibration and the non-defective product is determined to be defective or the defective product is determined to be non-defective. there were.

それゆえに、本発明は、上記問題点を解決するためになされたものであり、発光製品の色度値を適切に検査することができるように校正することが可能な光検査装置を提供することを目的とする。   Therefore, the present invention has been made to solve the above-described problems, and provides an optical inspection device capable of calibrating so that the chromaticity value of a luminescent product can be appropriately inspected. With the goal.

上記目的を達成するために、本発明のある局面に従うと、光検査装置は、発光製品からの光を分光する分光部と、分光部で分光した光を受光する受光部とを含む分光測定部と、分光測定部で測定した波長ごとの光強度を、数値演算処理により校正する校正部と、校正部で校正した波長ごとの光強度を、色度座標での色度値に変換する色度変換部と、色度変換部で変換した色度値と、予め定めてある検査基準とを比較して、発光製品の良否を判定する判定部とを備える。校正部は、発光製品の検査前に、基準光源の既知光強度と、基準光源を分光測定部で測定した場合に得られる測定光強度とにより乗算定数を演算する乗算定数演算部と、発光製品の検査前に、基準光源の既知光強度と、乗算定数を乗算した測定光強度との差分値を波長ごとに演算する差分演算部と、発光製品の検査時に、分光測定部で測定した発光製品の光強度に乗算定数を乗算し、差分値を加算して、発光製品の光強度を校正する加算演算部とを含む。   In order to achieve the above object, according to one aspect of the present invention, an optical inspection device includes a spectroscopic unit that splits light from a light emitting product and a light receiving unit that receives light dispersed by the spectroscopic unit. A calibration unit that calibrates the light intensity for each wavelength measured by the spectroscopic measurement unit by numerical calculation processing, and a chromaticity that converts the light intensity for each wavelength calibrated by the calibration unit into a chromaticity value in chromaticity coordinates. A conversion unit; and a determination unit that compares the chromaticity value converted by the chromaticity conversion unit with a predetermined inspection standard to determine whether the luminescent product is good or bad. The calibration unit includes a multiplication constant calculation unit that calculates a multiplication constant based on the known light intensity of the reference light source and the measurement light intensity obtained when the reference light source is measured by the spectroscopic measurement unit before the light emission product is inspected, and the light emission product Before the inspection, the difference calculation unit that calculates the difference value between the known light intensity of the reference light source and the measured light intensity multiplied by the multiplication constant for each wavelength, and the luminescent product measured by the spectroscopic measurement unit during the luminescent product inspection And an addition operation unit for calibrating the light intensity of the light emitting product by multiplying the light intensity by a multiplication constant and adding the difference value.

好ましくは、乗算定数は、波長によらず一定値である。
好ましくは、乗算定数演算部は、基準光源の既知光強度の最大値と、基準光源の測定光強度の最大値とが一致するように乗算定数を演算する。
Preferably, the multiplication constant is a constant value regardless of the wavelength.
Preferably, the multiplication constant calculation unit calculates the multiplication constant so that the maximum value of the known light intensity of the reference light source matches the maximum value of the measurement light intensity of the reference light source.

好ましくは、分光部は、波長ごとの受光感度が略一定である。
好ましくは、加算演算部は、分光測定部で測定した発光製品の光強度に乗算定数を乗算せず、校正部は、乗算定数演算部で演算した乗算定数により、基準光源の既知光強度の最大値と、基準光源の測定光強度の最大値とが一致するように受光部の出力を調整する。
Preferably, the light receiving section has a substantially constant light receiving sensitivity for each wavelength.
Preferably, the addition calculation unit does not multiply the light intensity of the luminescent product measured by the spectroscopic measurement unit by a multiplication constant, and the calibration unit calculates the maximum of the known light intensity of the reference light source by the multiplication constant calculated by the multiplication constant calculation unit. The output of the light receiving unit is adjusted so that the value matches the maximum value of the measurement light intensity of the reference light source.

本発明に係る光検査装置によれば、基準光源の既知の光強度と測定して得られた光強度との間に生じた誤差のうち、波長に依存しない誤差として乗算定数を算出し、波長に依存する誤差として差分値を算出する。そして、本発明に係る光検査装置は、波長に依存しない乗算定数を用いて、発光製品を測定した値を校正することで、白色LEDのように波長により光強度が急峻に変化する発光製品を検査する場合であっても、発光製品の色度値を適切に検査することができる。   According to the optical inspection apparatus of the present invention, the multiplication constant is calculated as an error independent of the wavelength among the errors generated between the known light intensity of the reference light source and the light intensity obtained by measurement, and the wavelength The difference value is calculated as an error that depends on. The optical inspection apparatus according to the present invention calibrates the measured value of the luminescent product using a multiplication constant that does not depend on the wavelength, so that the luminescent product whose light intensity changes sharply according to the wavelength like a white LED can be obtained. Even when inspecting, the chromaticity value of the luminescent product can be appropriately inspected.

本発明の実施の形態に係る光検査装置の構成を示すブロック図である。It is a block diagram which shows the structure of the optical inspection apparatus which concerns on embodiment of this invention. 本発明の実施の形態に係る光検査装置において、検査方法の処理の流れを示す検査フローチャートである。5 is an inspection flowchart showing a flow of processing of an inspection method in the optical inspection apparatus according to the embodiment of the present invention. 基準光源の既知の波長ごとの光強度と、基準光源を本発明の実施の形態に係る光検査装置で測定した場合に得られる波長ごとの光強度との関係を示す図である。It is a figure which shows the relationship between the light intensity for every known wavelength of a reference | standard light source, and the light intensity for every wavelength obtained when a reference | standard light source is measured with the optical inspection apparatus which concerns on embodiment of this invention. 本発明の実施の形態に係る光検査装置において、基準光源の既知の波長ごとの光強度と、基準光源を測定した場合に得られる波長ごとの光強度から求めた差分値を示す図である。In the optical inspection apparatus which concerns on embodiment of this invention, it is a figure which shows the difference value calculated | required from the light intensity for every known wavelength of a reference light source, and the light intensity for every wavelength obtained when a reference light source is measured. 本発明の実施の形態に係る光検査装置において、検査対象である発光製品の波長ごとの光強度と、校正後の波長ごとの光強度との関係を示す図である。In the optical inspection apparatus which concerns on embodiment of this invention, it is a figure which shows the relationship between the light intensity for every wavelength of the luminescent product which is a test object, and the light intensity for every wavelength after calibration. 本発明の実施の形態に係る光検査装置において、三刺激値を演算する過程で生じる誤差を示す図である。It is a figure which shows the error which arises in the process which calculates a tristimulus value in the optical inspection apparatus which concerns on embodiment of this invention. 本発明の実施の形態に係る光検査装置において、検査対象である発光製品を検査して得られた色度座標での色度値の誤差を示す図である。In the optical inspection apparatus which concerns on embodiment of this invention, it is a figure which shows the error of the chromaticity value in the chromaticity coordinate obtained by test | inspecting the luminescent product which is a test object. 分光測定部の波長ごとの受光感度を示す図である。It is a figure which shows the light reception sensitivity for every wavelength of a spectroscopic measurement part. 白色LEDの波長ごとの光強度を示す図である。It is a figure which shows the light intensity for every wavelength of white LED. XYZ表色系の等色関数x(λ),y(λ),z(λ)を示す図である。FIG. 4 is a diagram illustrating color matching functions x (λ), y (λ), and z (λ) of an XYZ color system. XYZ表色系の三刺激値X,Y,Zを求める演算過程を説明する図である。It is a figure explaining the calculation process which calculates | requires the tristimulus values X, Y, and Z of an XYZ color system. 従来の光検査装置において、比例係数が波長に依存する様子を示す図である。It is a figure which shows a mode that the proportionality coefficient is dependent on a wavelength in the conventional optical inspection apparatus. 従来の光検査装置において、検査対象である発光製品の波長ごとの光強度と、校正後の波長ごとの光強度との関係を示す図である。In the conventional optical inspection apparatus, it is a figure which shows the relationship between the light intensity for every wavelength of the luminescent product which is a test object, and the light intensity for every wavelength after calibration. 従来の光検査装置において、検査対象である発光製品を検査して得られた色度座標での色度値の誤差を示す図である。It is a figure which shows the error of the chromaticity value in the chromaticity coordinate obtained by test | inspecting the luminescent product which is a test object in the conventional optical inspection apparatus.

(実施の形態)
光源を光検査装置で検査して得られる波長ごとの光強度(以下、スペクトルとも言う)には、当該光検査装置の分光測定部に由来する誤差(分光測定部の誤差)と、測定者が任意に設定した測定条件に由来する誤差(測定条件の誤差)とが含まれている。
(Embodiment)
The light intensity for each wavelength (hereinafter also referred to as spectrum) obtained by inspecting the light source with the optical inspection device includes an error derived from the spectroscopic measurement unit of the optical inspection device (an error of the spectroscopic measurement unit) and a measurer. And errors derived from arbitrarily set measurement conditions (measurement condition errors).

分光測定部の誤差は、分光部の分光素子の波長分解能、分光素子の表面反射などで発生する迷光、受光部の受光素子の受光感度の広がり、受光素子の感度ばらつき、分光測定部の組み立て時の構成部品の取り付けばらつきなどに起因する。分光測定部の誤差は、光検査装置の出荷時には概ね定まったものである。   The error of the spectroscopic measurement unit is the wavelength resolution of the spectroscopic element of the spectroscopic unit, stray light generated by the surface reflection of the spectroscopic element, the spread of the light receiving sensitivity of the light receiving unit of the light receiving unit, the sensitivity variation of the light receiving unit, This is due to variations in the installation of the components. The error of the spectroscopic measurement unit is generally determined at the time of shipment of the optical inspection apparatus.

測定条件の誤差は、光源および受光部の設置条件(光源や受光部の位置や傾き、光源と受光部との距離や配置など)、光源の制御情報(光源に印加する電圧値や制限電流値など)、受光部の制御情報(受光素子の露光時間や増幅器の増幅率など)などに起因する。測定条件の誤差は、測定者が任意に調整することが可能である。   Measurement condition errors include light source and light receiving unit installation conditions (position and tilt of light source and light receiving unit, distance and arrangement of light source and light receiving unit, etc.), light source control information (voltage value and limit current value applied to light source) Etc.) and control information of the light receiving unit (such as the exposure time of the light receiving element and the amplification factor of the amplifier). The measurement condition error can be arbitrarily adjusted by the measurer.

このような要因で生じる誤差には、波長により誤差が大きくなったり小さくなったりする波長に依存する誤差と、波長によらず一定の誤差が生じるような波長に依存しない誤差とに区別することができる。なお、波長によらず一定の誤差は、測定される波長の範囲のすべての範囲において一定の誤差を生じる場合に限定されるものではなく、測定される波長の範囲を複数の範囲に分け、それぞれの範囲において一定の誤差を生じる場合であってもよい。   Errors caused by these factors can be distinguished from errors that depend on the wavelength, where the error increases or decreases depending on the wavelength, and errors that do not depend on the wavelength, where a certain error occurs regardless of the wavelength. it can. Note that the constant error regardless of the wavelength is not limited to the case where a constant error occurs in the entire range of the wavelength to be measured, and the range of the wavelength to be measured is divided into a plurality of ranges. It may be a case where a certain error occurs in the range.

本発明の実施の形態に係る光検査装置では、波長に依存しない誤差と、波長に依存する誤差とを考慮して、発光製品を測定した値を校正することで、発光製品の色度値を適切に検査することができる光検査装置を提供する。以下、本発明の実施の形態に係る光検査装置について、図面を参照しながら説明する。   In the optical inspection apparatus according to the embodiment of the present invention, the chromaticity value of the luminescent product is determined by calibrating the value measured for the luminescent product in consideration of the error that does not depend on the wavelength and the error that depends on the wavelength. Provided is an optical inspection device that can be appropriately inspected. Hereinafter, an optical inspection apparatus according to an embodiment of the present invention will be described with reference to the drawings.

図1は、本発明の実施の形態に係る光検査装置の構成を示すブロック図である。光源1は、スペクトルが既知である基準光源または検査対象である発光製品である。検査対象である発光製品とは、白色LEDなどの発光素子や発光素子を用いた応用製品である。   FIG. 1 is a block diagram showing a configuration of an optical inspection apparatus according to an embodiment of the present invention. The light source 1 is a reference light source having a known spectrum or a luminescent product to be inspected. The light emitting product to be inspected is a light emitting element such as a white LED or an applied product using the light emitting element.

図1に示す光検査装置10は、制御部11、分光測定部12、校正部13、色度変換部14、判定部15、データ保管部16を備える。分光測定部12は、導光部121、分光部122、受光部123を含む。校正部13は、乗算定数演算部131、差分演算部132、加算演算部133を含む。データ保管部16は、既知光強度保管部161、校正係数保管部162、検査基準保管部163、判定結果保管部164を含む。校正係数保管部162は、乗算定数保管部162aと差分保管部162bとを有する。   1 includes a control unit 11, a spectroscopic measurement unit 12, a calibration unit 13, a chromaticity conversion unit 14, a determination unit 15, and a data storage unit 16. The spectroscopic measurement unit 12 includes a light guide unit 121, a spectroscopic unit 122, and a light receiving unit 123. The calibration unit 13 includes a multiplication constant calculation unit 131, a difference calculation unit 132, and an addition calculation unit 133. The data storage unit 16 includes a known light intensity storage unit 161, a calibration coefficient storage unit 162, an inspection standard storage unit 163, and a determination result storage unit 164. The calibration coefficient storage unit 162 includes a multiplication constant storage unit 162a and a difference storage unit 162b.

制御部11は、測定者により予め設定された光源1の制御情報に基づき、光源1に印加する電圧値または電流値、電源を投入するタイミングなどを制御し、光源1を発光させる。また、制御部11は、測定者により予め設定された受光部123の制御情報に基づき、分光測定部12を制御して、分光測定部12に光源1の光を分光および受光させる。さらに、制御部11は、分光測定部12、校正部13、色度変換部14、判定部15、データ保管部16が、各種データを互いに送受信するなど連動して動作するよう制御する。   The control unit 11 controls the voltage value or current value applied to the light source 1, the timing of turning on the power, and the like based on the control information of the light source 1 preset by the measurer, and causes the light source 1 to emit light. Further, the control unit 11 controls the spectroscopic measurement unit 12 based on the control information of the light receiving unit 123 preset by the measurer, and causes the spectroscopic measurement unit 12 to split and receive the light of the light source 1. Furthermore, the control unit 11 controls the spectroscopic measurement unit 12, the calibration unit 13, the chromaticity conversion unit 14, the determination unit 15, and the data storage unit 16 to operate in conjunction with each other such as transmitting and receiving various data.

分光測定部12は、光源1が放射した光を波長ごとに分光し、得られたスペクトルを電気信号に変換して校正部13に送信する。   The spectroscopic measurement unit 12 splits the light emitted from the light source 1 for each wavelength, converts the obtained spectrum into an electrical signal, and transmits the electrical signal to the calibration unit 13.

導光部121は、光ファイバなどの導光素子(図示しない)を有し、光源1が放射した光を取り込み、取り込んだ光を減衰させることなく分光部122に導く。   The light guide unit 121 includes a light guide element (not shown) such as an optical fiber. The light guide unit 121 captures light emitted from the light source 1 and guides the captured light to the spectroscopic unit 122 without being attenuated.

分光部122は、回折格子、プリズム、光学フィルタなどの分光素子(図示しない)を有し、導光部121を通じて取り込んだ光を分光する。   The spectroscopic unit 122 includes spectroscopic elements (not shown) such as a diffraction grating, a prism, and an optical filter, and splits the light taken in through the light guide unit 121.

受光部123は、フォトダイオードアレイなどの配列された複数の受光素子(図示しない)と増幅器(図示しない)とを有し、受光素子の露光時間や増幅器の増幅率などの制御部11に設定された制御情報に基づき、分光部122が分光した光を電気信号に変換して校正部13に送信する。   The light receiving unit 123 includes a plurality of light receiving elements (not shown) and an amplifier (not shown) arranged such as a photodiode array, and is set in the control unit 11 such as the exposure time of the light receiving elements and the amplification factor of the amplifier. Based on the control information, the light split by the spectroscopic unit 122 is converted into an electrical signal and transmitted to the calibration unit 13.

校正部13は、受光部123から受信した光源1のスペクトルに対し、さまざまな数値演算処理をして、スペクトルを校正する。   The calibration unit 13 calibrates the spectrum by performing various numerical calculation processes on the spectrum of the light source 1 received from the light receiving unit 123.

乗算定数演算部131は、既知光強度保管部161に保管された、基準光源の既知のスペクトル(基準光源の既知光強度)(以下、既知光強度P(λ)とも言う)と、受光部123から受信した、基準光源を分光測定部12で測定した場合に得られるスペクトル(基準光源の測定光強度)(以下、測定光強度Q(λ)とも言う)に対し、後述する乗算定数を求める演算をする。   The multiplication constant calculator 131 stores the known spectrum of the reference light source (known light intensity of the reference light source) (hereinafter also referred to as known light intensity P (λ)) stored in the known light intensity storage unit 161 and the light receiving unit 123. For obtaining a multiplication constant, which will be described later, for a spectrum (measured light intensity of the reference light source) (hereinafter also referred to as measured light intensity Q (λ)) obtained when the reference light source is measured by the spectroscopic measurement unit 12 do.

差分演算部132は、受光部123から受信した測定光強度Q(λ)と、既知光強度保管部161に保管した既知光強度P(λ)に対し、乗算定数保管部162aに保管した乗算定数を用いて差分演算を行い、その結果を差分保管部162bに送信する。   The difference calculation unit 132 uses the multiplication constant stored in the multiplication constant storage unit 162a for the measured light intensity Q (λ) received from the light receiving unit 123 and the known light intensity P (λ) stored in the known light intensity storage unit 161. The difference calculation is performed using and the result is transmitted to the difference storage unit 162b.

加算演算部133は、受光部123から受信した、発光製品を分光測定部12で測定した場合に得られるスペクトル(発光製品の光強度)(以下、発光製品光強度R(λ)とも言う)に対し、乗算定数保管部162aに保管した乗算定数と、差分保管部162bに保管した差分値とを用いて加算演算を行い、その結果を色度変換部14に送信する。   The addition calculation unit 133 converts the light-emitting product received from the light-receiving unit 123 into a spectrum (light intensity of the light-emitting product) obtained when the spectroscopic measurement unit 12 measures the light-emitting product (hereinafter also referred to as light-emitting product light intensity R (λ)). On the other hand, an addition operation is performed using the multiplication constant stored in the multiplication constant storage unit 162 a and the difference value stored in the difference storage unit 162 b, and the result is transmitted to the chromaticity conversion unit 14.

色度変換部14は、加算演算部133から受信したスペクトルを色度値(色度座標での色度値)に変換し、変換結果を判定部15に送信する。   The chromaticity conversion unit 14 converts the spectrum received from the addition calculation unit 133 into chromaticity values (chromaticity values at chromaticity coordinates), and transmits the conversion result to the determination unit 15.

判定部15は、色度変換部14から受信した色度値と、検査基準保管部163に予め保管した検査基準とを比較して発光製品の良否を判定し、判定結果を判定結果保管部164に送信する。   The determination unit 15 compares the chromaticity value received from the chromaticity conversion unit 14 with the inspection standard stored in advance in the inspection standard storage unit 163 to determine the quality of the luminescent product, and determines the determination result as the determination result storage unit 164. Send to.

データ保管部16は、校正部13の数値演算処理や判定部15の判定に用いるさまざまなデータを供給したり、校正部13の演算結果や判定部15の判定結果を保管したりする。   The data storage unit 16 supplies various data used for the numerical calculation processing of the calibration unit 13 and the determination of the determination unit 15, and stores the calculation result of the calibration unit 13 and the determination result of the determination unit 15.

既知光強度保管部161は、既知光強度P(λ)を保管し、制御部11の制御に応じて乗算定数演算部131や差分演算部132に送信する。   The known light intensity storage unit 161 stores the known light intensity P (λ) and transmits it to the multiplication constant calculation unit 131 and the difference calculation unit 132 in accordance with the control of the control unit 11.

校正係数保管部162は、校正部13が演算した演算結果を保管する。
乗算定数保管部162aは、乗算定数演算部131が演算した乗算定数を保管し、制御部11の制御に応じて差分演算部132や加算演算部133に送信する。
The calibration coefficient storage unit 162 stores the calculation result calculated by the calibration unit 13.
The multiplication constant storage unit 162 a stores the multiplication constant calculated by the multiplication constant calculation unit 131 and transmits the multiplication constant to the difference calculation unit 132 and the addition calculation unit 133 according to the control of the control unit 11.

差分保管部162bは、差分演算部132が演算した差分値を保管し、制御部11の制御に応じて加算演算部133に送信する。   The difference storage unit 162 b stores the difference value calculated by the difference calculation unit 132 and transmits the difference value to the addition calculation unit 133 according to the control of the control unit 11.

検査基準保管部163は、発光製品の良否の判定に用いる検査基準を保管し、制御部11の制御に応じて判定部15に送信する。   The inspection standard storage unit 163 stores the inspection standard used for determining the quality of the luminescent product and transmits it to the determination unit 15 according to the control of the control unit 11.

判定結果保管部164は、判定部15が発光製品の良否を判定した結果を保管する。
以下、光検査装置10での検査方法について、図2を参照しながら説明する。
The determination result storage unit 164 stores the result of the determination unit 15 determining the quality of the light emitting product.
Hereinafter, an inspection method in the optical inspection apparatus 10 will be described with reference to FIG.

図2は、本発明の実施の形態に係る光検査装置10において、検査方法の処理の流れを示す検査フローチャートである。   FIG. 2 is an inspection flowchart showing a flow of processing of the inspection method in the optical inspection apparatus 10 according to the embodiment of the present invention.

まず、既知光強度P(λ)を既知光強度保管部161に保管する(S101)。既知光強度P(λ)とは、基準光源のスペクトルを、光検査装置10と比べて高精度に測定したもので、たとえば、国際規格に基づく認定を受けた試験所や校正機関が保有する高精度の分光測定装置を用いて測定したものである。既知光強度P(λ)は信頼性が高い測定値であるため、光検査装置10の校正の基準として使用する。   First, the known light intensity P (λ) is stored in the known light intensity storage unit 161 (S101). The known light intensity P (λ) is obtained by measuring the spectrum of the reference light source with higher accuracy than the optical inspection apparatus 10. For example, the known light intensity P (λ) is a high level possessed by a laboratory or calibration organization that has been certified based on international standards. It was measured using a precision spectrometer. Since the known light intensity P (λ) is a highly reliable measurement value, it is used as a reference for calibration of the optical inspection apparatus 10.

次に、制御部11は、測定者が予め設定した基準光源の制御情報に基づき、基準光源に電圧を印加し、基準光源を発光させる(S102)。基準光源の制御情報とは、基準光源に印加する電圧値や制限電流値、基準光源に電源を投入するタイミングやその長さなどである。   Next, the control unit 11 applies a voltage to the reference light source based on the control information of the reference light source preset by the measurer, and causes the reference light source to emit light (S102). The control information of the reference light source includes a voltage value and a limit current value applied to the reference light source, a timing when the power is supplied to the reference light source, and a length thereof.

続いて、制御部11は、測定者が予め設定した受光部123の制御情報に基づき、分光測定部12を制御し、測定光強度Q(λ)を取得する(S103)。受光部123の制御情報とは、受光部123の露光時間や露光を開始するタイミング、増幅器の増幅率などである。   Subsequently, the control unit 11 controls the spectroscopic measurement unit 12 based on the control information of the light receiving unit 123 preset by the measurer, and acquires the measurement light intensity Q (λ) (S103). The control information of the light receiving unit 123 includes the exposure time of the light receiving unit 123, the timing of starting exposure, the amplification factor of the amplifier, and the like.

次に、乗算定数演算部131は、ステップS101で既知光強度保管部161に保管した既知光強度P(λ)と、ステップS103で取得した測定光強度Q(λ)とを用いて、乗算定数Aを求める(S104)。乗算定数Aは波長によらず一定値であり、具体的に、測定光強度Q(λ)の最大値と既知光強度P(λ)の最大値とが一致するように定められる。すなわち、既知光強度P(λ),測定光強度Q(λ)が最大値をとる波長をそれぞれλp,λqとすると、乗算定数Aは以下の式(5)で表される。   Next, the multiplication constant calculation unit 131 uses the known light intensity P (λ) stored in the known light intensity storage unit 161 in step S101 and the measured light intensity Q (λ) acquired in step S103 to use the multiplication constant. A is obtained (S104). The multiplication constant A is a constant value regardless of the wavelength, and is specifically determined so that the maximum value of the measured light intensity Q (λ) matches the maximum value of the known light intensity P (λ). That is, assuming that the wavelengths at which the known light intensity P (λ) and the measured light intensity Q (λ) have the maximum values are λp and λq, respectively, the multiplication constant A is expressed by the following equation (5).

A=P(λp)/Q(λq) ・・・(5)
続いて、ステップS104で求めた乗算定数Aを乗算定数保管部162aに保管する(S105)。
A = P (λp) / Q (λq) (5)
Subsequently, the multiplication constant A obtained in step S104 is stored in the multiplication constant storage unit 162a (S105).

次に、差分演算部132は、ステップS103で取得した測定光強度Q(λ)にステップS104で求めた乗算定数Aを乗算したものと、ステップS101で既知光強度保管部161に保管した既知光強度P(λ)との差分を演算することにより、差分値β(λ)を求める(S106)。差分値β(λ)は、以下の式(6)で表される。   Next, the difference calculation unit 132 multiplies the measured light intensity Q (λ) acquired in step S103 by the multiplication constant A obtained in step S104, and the known light stored in the known light intensity storage unit 161 in step S101. A difference value β (λ) is obtained by calculating a difference from the intensity P (λ) (S106). The difference value β (λ) is expressed by the following equation (6).

β(λ)=P(λ)−A×Q(λ) ・・・(6)
続いて、ステップS106で求めた差分値β(λ)を差分保管部162bに保管する(S107)。
β (λ) = P (λ) −A × Q (λ) (6)
Subsequently, the difference value β (λ) obtained in step S106 is stored in the difference storage unit 162b (S107).

このようにして求めた差分値β(λ)を用いて、以下のように発光製品光強度R(λ)を校正する。   Using the difference value β (λ) thus obtained, the light emission product light intensity R (λ) is calibrated as follows.

まず、発光製品の検査基準を検査基準保管部163に保管する(S108)。検査基準は、発光製品の種類、用途、ランクなどに応じて定められる色度値の許容範囲であり、一般に、XYZ表色系における三刺激値X,Y,Zや色度座標(x,y)で表される。発光製品を光検査装置10で検査して得られる色度値が検査基準を満たす場合、発光製品を良品と判定し、満たさない場合、不良品と判定する。   First, the inspection standard of the luminescent product is stored in the inspection standard storage unit 163 (S108). The inspection standard is an allowable range of chromaticity values determined according to the type, application, rank, and the like of the luminescent product. Generally, tristimulus values X, Y, Z and chromaticity coordinates (x, y) in the XYZ color system are used. ). When the chromaticity value obtained by inspecting the luminescent product with the optical inspection device 10 satisfies the inspection standard, the luminescent product is determined as a non-defective product.

次に、制御部11は、測定者が予め設定した発光製品の制御情報に基づき、発光製品に電源を投入し、発光製品を発光させる(S109)。発光製品の制御情報は、発光製品に印加する電圧値や制限電流値、発光製品に電源を投入するタイミングやその長さなどであり、ステップS102で設定した基準光源の制御情報と同一でもよいが、一般には相違する。   Next, the control unit 11 turns on the light emitting product based on the control information of the light emitting product preset by the measurer, and causes the light emitting product to emit light (S109). The control information of the light emitting product includes a voltage value and a limiting current value applied to the light emitting product, a timing at which the power to the light emitting product is turned on, and a length thereof, and may be the same as the control information of the reference light source set in step S102. Generally, it is different.

続いて、制御部11は、測定者が予め設定した受光部123の制御情報に基づき、分光測定部12を制御し、発光製品光強度R(λ)を取得する(S110)。受光部123の制御情報は、受光部123の露光時間や露光を開始するタイミング、増幅器の増幅率などであり、ステップS103で設定した受光部123の制御情報と同一でもよいが、一般には相違する。   Subsequently, the control unit 11 controls the spectroscopic measurement unit 12 based on the control information of the light receiving unit 123 preset by the measurer, and acquires the light emission product light intensity R (λ) (S110). The control information of the light receiving unit 123 is the exposure time of the light receiving unit 123, the timing of starting exposure, the amplification factor of the amplifier, and the like, and may be the same as the control information of the light receiving unit 123 set in step S103, but generally different. .

次に、加算演算部133は、ステップS110で取得した発光製品光強度R(λ)に、ステップS105で乗算定数保管部162aに保管した乗算定数Aを乗算して、さらに、ステップS107で差分保管部162bに保管した差分値β(λ)との加算を演算することにより、校正後の光強度Rβ(λ)を求める(S111)。校正後の光強度Rβ(λ)は、以下の式(7)で表される。   Next, the addition operation unit 133 multiplies the light emission product light intensity R (λ) acquired in step S110 by the multiplication constant A stored in the multiplication constant storage unit 162a in step S105, and further stores the difference in step S107. The light intensity Rβ (λ) after calibration is obtained by calculating the addition with the difference value β (λ) stored in the unit 162b (S111). The light intensity Rβ (λ) after calibration is expressed by the following equation (7).

Rβ(λ)=A×R(λ)+β(λ) ・・・(7)
次に、色度変換部14が、校正後の光強度Rβ(λ)を、検査基準保管部163に保管された検査基準と同一の形式の色度値に変換する(S112)。色度値への変換は、図9〜図11を用いて、式(1a)〜式(1c)および式(2a),式(2b)で説明したように行う。
Rβ (λ) = A × R (λ) + β (λ) (7)
Next, the chromaticity conversion unit 14 converts the calibrated light intensity Rβ (λ) into a chromaticity value in the same format as the inspection standard stored in the inspection standard storage unit 163 (S112). Conversion to the chromaticity value is performed as described in the equations (1a) to (1c), the equations (2a), and (2b) with reference to FIGS.

次に、判定部15は、ステップS112で変換した色度値と、ステップS108で検査基準保管部163に保管した検査基準とを比較し、発光製品の良否を判定する(S113)。   Next, the determination unit 15 compares the chromaticity value converted in step S112 with the inspection standard stored in the inspection standard storage unit 163 in step S108, and determines the quality of the luminescent product (S113).

最後に、ステップS113で求めた判定結果を判定結果保管部164に保管する(S114)。このとき、判定結果に限らず、ステップS111で求めた校正後の光強度Rβ(λ)やステップS112で求めた色度値、ステップS109で使用した発光製品の制御情報なども、あわせて判定結果保管部164に保管してもよい。   Finally, the determination result obtained in step S113 is stored in the determination result storage unit 164 (S114). At this time, not only the determination result but also the light intensity Rβ (λ) after calibration obtained in step S111, the chromaticity value obtained in step S112, the control information of the light emitting product used in step S109, and the like are also determined. It may be stored in the storage unit 164.

なお、同一の検査基準をもつ発光製品についてさらに検査を続行する場合、ステップS101からステップS108までは省略でき、ステップS109から続行すればよい。異なる検査基準を持つ発光製品について検査する場合は、ステップS101からステップS107までは省略でき、ステップS108から続行すればよい。   When the inspection is continued for the light emitting product having the same inspection standard, the steps S101 to S108 can be omitted, and the process can be continued from step S109. When inspecting light emitting products having different inspection standards, steps S101 to S107 can be omitted, and it is sufficient to continue from step S108.

本発明の実施の形態に係る光検査装置10が、従来の光検査装置と比べて、高精度に色度値を求めることができる理由を、以下に説明する。まず、波長に依存しない乗算定数を乗算する演算処理により色度値を適切に検査することができる理由を、図3〜図5を参照しながら説明する。   The reason why the optical inspection device 10 according to the embodiment of the present invention can obtain the chromaticity value with higher accuracy than the conventional optical inspection device will be described below. First, the reason why the chromaticity value can be appropriately inspected by the arithmetic processing for multiplying by a multiplication constant independent of the wavelength will be described with reference to FIGS.

図3は、既知光強度P(λ)と測定光強度Q(λ)との関係を示す図である。
測定光強度Q(λ)を取得したところ、測定光強度Q(λ)は、既知光強度P(λ)と比べて全体が短波長側に1nmシフトしており、波長λqで最大値をとったする。さらに、測定光強度Q(λ)の各波長での光強度は、既知光強度P(λ)の対応する波長での光強度の90%であったとする。
FIG. 3 is a diagram showing the relationship between the known light intensity P (λ) and the measured light intensity Q (λ).
When the measurement light intensity Q (λ) was obtained, the measurement light intensity Q (λ) was shifted by 1 nm to the short wavelength side as a whole compared to the known light intensity P (λ), and took the maximum value at the wavelength λq. To do. Furthermore, it is assumed that the light intensity at each wavelength of the measured light intensity Q (λ) is 90% of the light intensity at the wavelength corresponding to the known light intensity P (λ).

光検査装置10では、測定光強度Q(λ)と既知光強度P(λ)との間に生じる誤差を、波長に依存する誤差と波長に依存しない誤差とに分けて取り扱い、始めに波長に依存しない誤差を校正する。   In the optical inspection apparatus 10, an error generated between the measured light intensity Q (λ) and the known light intensity P (λ) is divided into an error dependent on the wavelength and an error independent of the wavelength. Calibrate the independent error.

光検査装置10では、波長によらず一定値である乗算定数Aを乗算することで測定光強度Q(λ)の光強度方向(縦軸方向)の校正を行い、その基準として既知光強度P(λ)の最大値を用いる。すなわち、波長によらず一定値である乗算定数Aは、以下の式(8)のように、測定光強度Q(λ)のピーク波長λqにおける光強度Q(λq)と、既知光強度P(λ)のピーク波長λpにおける光強度P(λp)とが一致するように定められる。   The optical inspection apparatus 10 calibrates the measurement light intensity Q (λ) in the light intensity direction (vertical axis direction) by multiplying by a constant multiplication constant A regardless of the wavelength, and uses the known light intensity P as a reference. The maximum value of (λ) is used. That is, the multiplication constant A, which is a constant value regardless of the wavelength, is obtained from the light intensity Q (λq) at the peak wavelength λq of the measured light intensity Q (λ) and the known light intensity P ( The light intensity P (λp) at the peak wavelength λp of λ) is determined so as to match.

A=P(λp)/Q(λq)=1/0.90 ・・・(8)
続いて、以下の式(9)のように、既知光強度P(λ)と、乗算定数Aを乗算した測定光強度Q(λ)との差分を演算することで、差分値β(λ)を得る。波長に依存しない誤差は、波長によらず一定値である乗算定数Aを乗算することで校正してあるため、差分値β(λ)は、波長に依存する誤差を抽出したものになる。
A = P (λp) / Q (λq) = 1 / 0.90 (8)
Subsequently, the difference value β (λ) is calculated by calculating the difference between the known light intensity P (λ) and the measured light intensity Q (λ) multiplied by the multiplication constant A as shown in the following equation (9). Get. Since the error that does not depend on the wavelength is calibrated by multiplying the multiplication constant A that is a constant value regardless of the wavelength, the difference value β (λ) is obtained by extracting the error that depends on the wavelength.

β(λ)=P(λ)−A×Q(λ) ・・・(9)
図4は、本発明の実施の形態に係る光検査装置10において、測定光強度Q(λ)から求めた差分値β(λ)を示す図である。
β (λ) = P (λ) −A × Q (λ) (9)
FIG. 4 is a diagram showing the difference value β (λ) obtained from the measured light intensity Q (λ) in the optical inspection apparatus 10 according to the embodiment of the present invention.

このようにして求めた差分値β(λ)を用いて、発光製品光強度R(λ)を校正する。
発光製品は、一般に、基準光源と異なる種類の光源である。そこで、発光製品も基準光源と同様に青色の波長の範囲にピークをもつ白色LEDであるが、ピーク波長λrは、基準光源の既知光強度P(λ)のピーク波長λpと比べて、10nm短波長側にあったとする。
The light intensity R (λ) of the luminescent product is calibrated using the difference value β (λ) obtained in this way.
A luminescent product is generally a different type of light source than a reference light source. Therefore, the light emitting product is also a white LED having a peak in the blue wavelength range like the reference light source, but the peak wavelength λr is 10 nm shorter than the peak wavelength λp of the known light intensity P (λ) of the reference light source. Suppose that it is on the wavelength side.

乗算定数Aと差分値β(λ)とを以下の式(10)のように発光製品光強度R(λ)に演算することで、波長に依存する誤差を校正後の光強度Rβ(λ)に正しく反映できる。   By calculating the multiplication constant A and the difference value β (λ) to the light emission product light intensity R (λ) as in the following equation (10), the error depending on the wavelength is corrected to the light intensity Rβ (λ) after calibration. Can be reflected correctly.

Rβ(λ)=A×R(λ)+β(λ) ・・・(10)
図5は、本発明の実施の形態に係る光検査装置10において、発光製品光強度R(λ)と校正後の光強度Rβ(λ)との関係を示す図である。
Rβ (λ) = A × R (λ) + β (λ) (10)
FIG. 5 is a diagram showing a relationship between the light emission product light intensity R (λ) and the calibrated light intensity Rβ (λ) in the optical inspection apparatus 10 according to the embodiment of the present invention.

式(10)のように、発光製品光強度R(λ)に乗算定数Aを乗算することで波長に依存しない誤差を校正し、差分値β(λ)を加算することで波長に依存する誤差を校正できる。また、乗算定数Aを乗算することで、発光製品光強度R(λ)に対する差分値β(λ)の相対的な大きさを調整できる。よって、光検査装置10は、比例係数α(λ)のみを用いて校正する場合に比べて、波長が異なることによる校正への影響を緩和することができる。そのため、光検査装置10は、白色LEDのように波長により光強度が急峻に変化する発光製品を検査する場合であっても、校正により誤差が大きくなることを抑えることができる。   As shown in equation (10), the error independent of the wavelength is calibrated by multiplying the light emission product light intensity R (λ) by the multiplication constant A, and the error depending on the wavelength is added by adding the difference value β (λ). Can be calibrated. Further, by multiplying by the multiplication constant A, the relative magnitude of the difference value β (λ) with respect to the light emission product light intensity R (λ) can be adjusted. Therefore, the optical inspection apparatus 10 can mitigate the influence on the calibration due to the difference in wavelength, compared to the case where calibration is performed using only the proportionality coefficient α (λ). Therefore, the optical inspection device 10 can suppress an increase in error due to calibration even when inspecting a light emitting product whose light intensity changes sharply depending on the wavelength, such as a white LED.

以上、図3〜図5を参照して行った説明をまとめると、まず、波長に依存しない乗算定数Aを用いることで、基準光源の既知光強度P(λ)と測定光強度Q(λ)との間に生じた波長に依存しない誤差を校正する。次に、差分値β(λ)を求めることで、波長に依存する誤差を抽出できる。そして、検査対象である発光製品の光強度に、乗算定数Aを乗算し差分値β(λ)を加算することで、波長に依存する誤差と波長に依存しない誤差とを適切に反映させることができるため、光検査装置10は、従来の光検査装置より発光製品の色度値を適切に検査することができる。   The above description with reference to FIGS. 3 to 5 is summarized. First, the known light intensity P (λ) and the measured light intensity Q (λ) of the reference light source are used by using the multiplication constant A that does not depend on the wavelength. The error that does not depend on the wavelength generated between and is calibrated. Next, an error dependent on the wavelength can be extracted by obtaining the difference value β (λ). Then, by multiplying the light intensity of the light emitting product to be inspected by the multiplication constant A and adding the difference value β (λ), it is possible to appropriately reflect the wavelength dependent error and the wavelength independent error. Therefore, the optical inspection device 10 can appropriately inspect the chromaticity value of the luminescent product than the conventional optical inspection device.

次に、光検査装置10が、既知光強度P(λ)と測定光強度Q(λ)との間で差分をとる演算処理により、比を演算する従来の光検査装置と比べて色度値を適切に検査することができる理由を、図6を参照しながら説明する。   Next, the chromaticity value is compared with the conventional optical inspection apparatus in which the optical inspection apparatus 10 calculates a ratio by an arithmetic process that obtains a difference between the known light intensity P (λ) and the measured light intensity Q (λ). The reason why it can be properly inspected will be described with reference to FIG.

図6は、光検査装置10において、三刺激値を演算する過程で生じる誤差を示す図である。関数aは、右側の縦軸に対してプロットしてあり、関数bと関数cとは左側の縦軸に対してプロットしてある。関数a〜関数cは、同一の発光製品を測定して得られた結果である。   FIG. 6 is a diagram illustrating errors that occur in the process of calculating tristimulus values in the optical inspection device 10. Function a is plotted against the right vertical axis, and function b and function c are plotted against the left vertical axis. The functions a to c are results obtained by measuring the same light emitting product.

関数aは、高精度な分光測定装置で測定して得られた光強度J(λ)と、等色関数z(λ)との波長ごとの積である。関数aから求めた三刺激値Zは、式(1c)と同様に以下の式(11a)で表される。 The function a is a product for each wavelength of the light intensity J (λ) obtained by measurement with a high-accuracy spectrometer and the color matching function z (λ). The tristimulus value Z a obtained from the function a is expressed by the following equation (11a) as in the equation (1c).

=k∫{J(λ)×z(λ)}dλ ・・・(11a)
関数bは、光検査装置10で検査して得られた光強度と等色関数z(λ)との波長ごとの積を求めたときに、関数aとの間に生じた誤差Δ(λ)である。関数cは、従来の光検査装置で検査して得られた光強度と等色関数z(λ)との波長ごとの積を求めたときに、関数aとの間に生じた誤差Δ(λ)である。関数b,関数cから求めた三刺激値Z,Zは、以下の式(11b),式(11c)で表される。
Z a = k∫ {J (λ) × z (λ)} dλ (11a)
The function b is an error Δ b (λ generated between the function a and the product of the light intensity obtained by inspection with the optical inspection device 10 and the color matching function z (λ) for each wavelength. ). The function c is an error Δ c () generated between the function a and the product of the light intensity obtained by inspection with a conventional optical inspection apparatus and the color matching function z (λ) for each wavelength. λ). The tristimulus values Z b and Z c obtained from the functions b and c are expressed by the following equations (11b) and (11c).

=Z+k∫Δ(λ)dλ ・・・(11b)
=Z+k∫Δ(λ)dλ ・・・(11c)
まず、誤差Δ(λ)に着目すると、正の部分の面積と負の部分の面積とがほぼ等しいため、誤差Δ(λ)の積分値はほぼゼロになる。そのため、三刺激値Zは三刺激値Zとほぼ等しくなり、精度が高いと言える。一方、誤差Δ(λ)は負の部分の面積の方が正の部分の面積より大きいため、積分しても負の値が残ってしまう。
Z b = Z a + k∫Δ b (λ) dλ (11b)
Z c = Z a + k∫Δ c (λ) dλ (11c)
First, paying attention to the error Δ b (λ), since the area of the positive part and the area of the negative part are substantially equal, the integrated value of the error Δ b (λ) becomes substantially zero. Therefore, tristimulus values Z b is approximately equal to the tristimulus value Z a, it can be said that a high accuracy. On the other hand, since the error Δ c (λ) has a negative area larger than a positive area, a negative value remains even if integrated.

すなわち、本発明の実施の形態に係る光検査装置10では、校正によりスペクトルに生じる誤差が色度変換の演算の過程で相殺されるため、三刺激値の誤差が低減する。一方、従来の光検査装置においては、誤差が色度変換の演算過程で相殺される割合が小さいため、三刺激値の誤差が低減されにくい。したがって、光検査装置10の方が、従来の光検査装置より、色度値を適切に検査することができる。   That is, in the optical inspection device 10 according to the embodiment of the present invention, errors in the spectrum due to calibration are canceled out in the course of calculation of chromaticity conversion, so that errors in tristimulus values are reduced. On the other hand, in the conventional optical inspection apparatus, since the rate at which the error is canceled in the calculation process of chromaticity conversion is small, the error of the tristimulus value is difficult to reduce. Therefore, the optical inspection apparatus 10 can inspect the chromaticity value more appropriately than the conventional optical inspection apparatus.

図7は、本発明の実施の形態に係る光検査装置10において、検査対象である発光製品を検査して得られた色度座標での色度値の誤差を示す図である。   FIG. 7 is a diagram showing errors in chromaticity values at chromaticity coordinates obtained by inspecting a light-emitting product to be inspected in the optical inspection apparatus 10 according to the embodiment of the present invention.

色度値は色度座標(x,y)で表しており、横軸は、色度値xの真値と、光検査装置10で求めた色度値xとの差である。縦軸は、色度値yの真値と、光検査装置10で求めた色度値yとの差である。色度値xおよび色度値yの真値とは、光検査装置10と比べて高精度に色度値を測定可能な分光測定装置で同一の発光製品を測定して得られた色度値である。プロットしてあるのは、光検査装置10で特定の発光製品(サンプル数は1)を複数回検査(検査回数は50回)して得られた色度値である。   The chromaticity value is represented by chromaticity coordinates (x, y), and the horizontal axis represents the difference between the true value of the chromaticity value x and the chromaticity value x obtained by the optical inspection device 10. The vertical axis represents the difference between the true value of the chromaticity value y and the chromaticity value y obtained by the optical inspection device 10. The true value of the chromaticity value x and the chromaticity value y is a chromaticity value obtained by measuring the same luminescent product with a spectroscopic measurement device capable of measuring the chromaticity value with higher accuracy than the optical inspection device 10. It is. Plotted are chromaticity values obtained by inspecting a specific light emitting product (number of samples is 1) with the optical inspection device 10 a plurality of times (the number of inspections is 50).

図7に示す色度値の測定誤差は、色度値xは±0.0050以内にすべて収まっており、色度値yも±0.0020以内にほとんど収まっている。前述のように、人間の眼が識別可能な色度差は、±0.01程度である。光検査装置10では、色度値の誤差の最大値が、人間の眼が識別可能な色度差の半分以下になっていることがわかる。   In the measurement error of the chromaticity value shown in FIG. 7, the chromaticity value x is all within ± 0.0050, and the chromaticity value y is almost within ± 0.0020. As described above, the chromaticity difference that can be identified by the human eye is about ± 0.01. In the optical inspection device 10, it can be seen that the maximum value of the chromaticity value error is less than half of the chromaticity difference that can be identified by the human eye.

光検査装置10で色度値を適切に検査することができることを示すために、従来の光検査装置で同一の発光製品を検査して得られた発光製品光強度R(λ)を比例係数α(λ)を用いて校正し、検査結果の比較を行う。以下に、図12〜図14を参照しながら説明する。   In order to show that the chromaticity value can be properly inspected by the optical inspection apparatus 10, the light intensity R (λ) of the luminescent product obtained by inspecting the same luminescent product with the conventional optical inspection apparatus is expressed as a proportional coefficient α. Calibrate using (λ) and compare inspection results. Hereinafter, a description will be given with reference to FIGS.

従来の光検査装置においても光検査装置10と同様に、図3に示す測定光強度Q(λ)が得られたとする。従来の光検査装置では、比例係数α(λ)は前述の式(3)で求められる。比例係数α(λ)を用いて発光製品光強度R(λ)を校正して得られる校正後の光強度Rα(λ)は、前述の式(4)で表される。   In the conventional optical inspection apparatus, it is assumed that the measurement light intensity Q (λ) shown in FIG. In the conventional optical inspection apparatus, the proportionality coefficient α (λ) is obtained by the above-described equation (3). The light intensity Rα (λ) after calibration obtained by calibrating the light emitting product light intensity R (λ) using the proportionality coefficient α (λ) is expressed by the above-described equation (4).

図12は、従来の光検査装置において、比例係数α(λ)が波長に依存する様子を示す図である。   FIG. 12 is a diagram showing how the proportionality coefficient α (λ) depends on the wavelength in a conventional optical inspection apparatus.

図13は、従来の光検査装置において、発光製品光強度R(λ)と、校正後の光強度Rα(λ)との関係を示す図である。   FIG. 13 is a diagram showing a relationship between the light emission product light intensity R (λ) and the calibrated light intensity Rα (λ) in a conventional optical inspection apparatus.

このようにして求めた校正後の光強度Rα(λ)から、前述の式(1a)〜式(1c)、および式(2a),式(2b)に基づいて色度値を演算する。   From the light intensity Rα (λ) after calibration obtained in this way, the chromaticity value is calculated based on the above-described equations (1a) to (1c), and equations (2a) and (2b).

図14は、従来の光検査装置において、検査対象である発光製品を測定した場合に得られた色度座標での色度値の誤差を示す図である。   FIG. 14 is a diagram showing an error in chromaticity values in chromaticity coordinates obtained when a light emitting product to be inspected is measured in a conventional optical inspection apparatus.

色度値は色度座標(x,y)で表しており、横軸は、色度値xの真値と、従来の光検査装置で求めた色度値xとの差である。縦軸は、色度値yの真値と、従来の光検査装置で求めた色度値yとの差である。色度値xおよび色度値yの真値とは、従来の光検査装置と比べて高精度に色度値を測定可能な分光測定装置で同一の発光製品を測定して得られた色度値であり、図7での色度値xおよび色度値yの真値と同じ値である。図14と、図7に示した光検査装置10での検査結果とは、同一の発光製品(サンプル数は1)を同一回数検査(検査回数は50回)して得られたもので、数値演算処理のみが異なる。   The chromaticity value is represented by chromaticity coordinates (x, y), and the horizontal axis represents the difference between the true value of the chromaticity value x and the chromaticity value x obtained by a conventional optical inspection apparatus. The vertical axis represents the difference between the true value of the chromaticity value y and the chromaticity value y obtained by a conventional optical inspection apparatus. The true value of the chromaticity value x and the chromaticity value y is the chromaticity obtained by measuring the same luminescent product with a spectroscopic measurement device capable of measuring the chromaticity value with higher accuracy than a conventional optical inspection device. Which is the same value as the true value of the chromaticity value x and chromaticity value y in FIG. 14 and the inspection result in the optical inspection apparatus 10 shown in FIG. 7 are obtained by inspecting the same light emitting product (the number of samples is 1) the same number of times (inspection number is 50 times). Only the arithmetic processing is different.

図14に示す測定結果は、色度値xの誤差は+0.0070から−0.0040までの範囲に、色度値yの誤差は+0.016から−0.010までの範囲に分布しており、人間の眼が識別可能な色度差と同程度かそれより大きい誤差が生じてしまっている。   The measurement result shown in FIG. 14 shows that the error of the chromaticity value x is distributed in the range from +0.0070 to -0.0040, and the error of the chromaticity value y is distributed in the range from +0.016 to -0.010. As a result, an error equal to or greater than the chromaticity difference that can be identified by the human eye has occurred.

図6を図14と比べると、本発明の実施の形態に係る光検査装置10では色度値の誤差が大幅に低減していることがわかる。したがって、光検査装置10は、従来の光検査装置と比べて、色度値を適切に検査することができると言える。   Comparing FIG. 6 with FIG. 14, it can be seen that the error of the chromaticity value is greatly reduced in the optical inspection device 10 according to the embodiment of the present invention. Therefore, it can be said that the optical inspection device 10 can appropriately inspect the chromaticity value as compared with the conventional optical inspection device.

なお、上記の説明では、乗算定数Aはすべての波長の範囲で波長によらず一定値であるとしたが、これに限定されるものではなく、波長の範囲を、たとえば、青色、緑色、赤色などのいくつかの波長の範囲に分けて、それぞれの波長の範囲で異なる乗算定数を用いてもよい。   In the above description, the multiplication constant A is a constant value regardless of the wavelength in all wavelength ranges. However, the present invention is not limited to this, and the wavelength ranges are, for example, blue, green, red For example, different multiplication constants may be used for each wavelength range.

また、基準光源の既知光強度P(λ)の最大値と基準光源の測定光強度Q(λ)の最大値が一致するなど、測定光強度Q(λ)の光強度の大きさを調整する必要がない場合には、乗算定数Aを用いず、既知光強度P(λ)と測定光強度Q(λ)の差分値を演算するだけでよい。そうすることで、発光製品の検査時に、乗算定数Aを発光製品光強度R(λ)に波長ごとに乗算する演算処理が不要になるため、加算演算部133の演算処理量を減らすことができ、より高速に検査が可能な光検査装置10を実現できる。   Further, the magnitude of the light intensity of the measurement light intensity Q (λ) is adjusted such that the maximum value of the known light intensity P (λ) of the reference light source matches the maximum value of the measurement light intensity Q (λ) of the reference light source. If it is not necessary, it is only necessary to calculate the difference value between the known light intensity P (λ) and the measured light intensity Q (λ) without using the multiplication constant A. By doing so, it is not necessary to multiply the light emission product light intensity R (λ) for each wavelength by the multiplication constant A at the time of inspection of the light emitting product, so that it is possible to reduce the calculation processing amount of the addition operation unit 133. Therefore, it is possible to realize the optical inspection apparatus 10 capable of performing inspection at higher speed.

また、上記の説明では、既知光強度P(λ)の最大値と測定光強度Q(λ)の最大値とが一致するように乗算定数Aを求めたが、これに限定されるものではない。たとえば、既知光強度P(λ)の最小値と測定光強度Q(λ)の最小値とが一致するように乗算定数Aを求めてもよい。あるいは、任意の波長λsにおける既知光強度P(λs)と測定光強度Q(λs)とが一致するように、乗算定数Aを求めてもよい。また、既知光強度P(λ)の光強度の平均値と測定光強度Q(λ)の光強度の平均値とが一致するように乗算定数Aを求めてもよい。   In the above description, the multiplication constant A is obtained so that the maximum value of the known light intensity P (λ) matches the maximum value of the measured light intensity Q (λ). However, the present invention is not limited to this. . For example, the multiplication constant A may be obtained so that the minimum value of the known light intensity P (λ) matches the minimum value of the measured light intensity Q (λ). Alternatively, the multiplication constant A may be obtained so that the known light intensity P (λs) at the arbitrary wavelength λs matches the measured light intensity Q (λs). Alternatively, the multiplication constant A may be obtained so that the average value of the light intensity of the known light intensity P (λ) and the average value of the light intensity of the measurement light intensity Q (λ) match.

また、上記の説明では、式(9)に示したように、測定光強度Q(λ)に乗算定数Aを乗算して既知光強度P(λ)との差分値β(λ)を求めたが、これに限定されるものではない。乗算定数Aは、測定光強度Q(λ)と既知光強度P(λ)の光強度の大きさが一致するように任意に定めればよい。そのため、たとえば、以下の式(12a)〜式(12c)で表されるように、測定光強度Q(λ)ではなく既知光強度P(λ)に乗算定数Aを乗算して、測定光強度Q(λ)との差分値を演算してもよい。   In the above description, as shown in the equation (9), the measured light intensity Q (λ) is multiplied by the multiplication constant A to obtain the difference value β (λ) from the known light intensity P (λ). However, the present invention is not limited to this. The multiplication constant A may be arbitrarily determined so that the measured light intensity Q (λ) and the known light intensity P (λ) coincide with each other. Therefore, for example, as shown in the following formulas (12a) to (12c), the measured light intensity is multiplied not by the measured light intensity Q (λ) but by the multiplication constant A to the known light intensity P (λ). A difference value from Q (λ) may be calculated.

A=Q(λq)/P(λp) ・・・(12a)
β(λ)=Q(λ)−A×P(λ) ・・・(12b)
Rβ(λ)=A×R(λ)+β(λ) ・・・(12c)
あるいは、測定光強度Q(λ)と既知光強度P(λ)に、それぞれ異なる乗算定数を乗算することで光強度の大きさを調整しても構わない。
A = Q (λq) / P (λp) (12a)
β (λ) = Q (λ) −A × P (λ) (12b)
Rβ (λ) = A × R (λ) + β (λ) (12c)
Alternatively, the magnitude of the light intensity may be adjusted by multiplying the measured light intensity Q (λ) and the known light intensity P (λ) by different multiplication constants.

また、上記の説明では、青色を放射する半導体素子と、青色の励起光を緑色や赤色に変換する蛍光体とを用いて白色を生成する場合について説明をしたが、これに限定されるものではない。   In the above description, the case where white is generated using a semiconductor element that emits blue and a phosphor that converts blue excitation light into green or red has been described. However, the present invention is not limited to this. Absent.

ところで、光検査装置の分光測定部12は、受光部の材質などにより、一般に波長によって受光感度が異なる。   By the way, the spectroscopic measurement unit 12 of the optical inspection device generally has different light receiving sensitivities depending on wavelengths depending on the material of the light receiving unit.

図8は、分光測定部12の波長ごとの受光感度を示す図である。図8に示す関数dは、ある光検査装置の分光測定部の波長ごとの受光感度、関数eは、別の光検査装置の分光測定部の波長ごとの受光感度である。   FIG. 8 is a diagram showing the light receiving sensitivity for each wavelength of the spectroscopic measurement unit 12. The function d shown in FIG. 8 is the light reception sensitivity for each wavelength of the spectroscopic measurement unit of a certain optical inspection device, and the function e is the light reception sensitivity for each wavelength of the spectroscopic measurement unit of another optical inspection device.

関数eは波長ごとの受光感度差が最大3倍程度あるのに対し、関数dは、関数eと比べると波長ごとの受光感度差が小さく、ほぼ一定であると言える。白色LEDのように、広い波長の範囲に光強度が分布している発光製品を検査する場合、関数dのように波長ごとの受光感度がほぼ一定である分光測定部を用いる方が、発光製品の色度値を高精度に検査することができる。   The function e has a light reception sensitivity difference of up to about three times for each wavelength, whereas the function d has a smaller light reception sensitivity difference for each wavelength than the function e and can be said to be almost constant. When inspecting a light emitting product in which the light intensity is distributed over a wide wavelength range, such as a white LED, it is better to use a spectroscopic measurement unit whose light receiving sensitivity for each wavelength is substantially constant as in the function d. Can be inspected with high accuracy.

(変形例)
本発明の実施の形態に係る光検査装置10では、検査対象の発光製品光強度R(λ)を校正するにあたり、乗算定数Aを乗算した後に差分値β(λ)を加算する場合を説明したが、これに限定されるものではない。分光測定部12と校正部13とを以下のように制御することで、乗算定数Aを発光製品光強度R(λ)に乗算する演算処理を省略することができる。
(Modification)
In the optical inspection device 10 according to the embodiment of the present invention, the case where the difference value β (λ) is added after multiplying the multiplication constant A in calibrating the light emitting product light intensity R (λ) to be inspected has been described. However, the present invention is not limited to this. By controlling the spectroscopic measurement unit 12 and the calibration unit 13 as follows, the arithmetic processing for multiplying the light emission product light intensity R (λ) by the multiplication constant A can be omitted.

乗算定数演算部131は、既知光強度P(λ)の最大値と測定光強度Q(λ)の最大値とが一致するように乗算定数Aを求めると、受光部123に乗算定数Aを送信する。受光部123は、受光素子(図示しない)の露光時間や増幅器(図示しない)の増幅率を乗算定数Aに応じて変えることで出力電圧を調整する。   When the multiplication constant calculating unit 131 obtains the multiplication constant A so that the maximum value of the known light intensity P (λ) and the maximum value of the measured light intensity Q (λ) match, the multiplication constant A is transmitted to the light receiving unit 123. To do. The light receiving unit 123 adjusts the output voltage by changing the exposure time of the light receiving element (not shown) and the amplification factor of the amplifier (not shown) according to the multiplication constant A.

この場合、加算演算部133が乗算定数Aを乗算する演算処理が不要になり、加算演算部133の演算処理量を減らすことができる。したがって、より高速に検査が可能な光検査装置10を実現できる。   In this case, the calculation process in which the addition calculation unit 133 multiplies the multiplication constant A becomes unnecessary, and the calculation processing amount of the addition calculation unit 133 can be reduced. Therefore, it is possible to realize the optical inspection apparatus 10 capable of performing inspection at higher speed.

今回開示された実施の形態はすべての点で例示であって制限的なものではないと考えられるべきである。本発明の範囲は、上記した説明ではなく、特許請求の範囲によって示され、特許請求の範囲と均等の意味および範囲内でのすべての変更が含まれることが意図される。   The embodiment disclosed this time should be considered as illustrative in all points and not restrictive. The scope of the present invention is defined by the terms of the claims, rather than the description above, and is intended to include any modifications within the scope and meaning equivalent to the terms of the claims.

1 光源、10 光検査装置、11 制御部、12 分光測定部、121 導光部、122 分光部、123 受光部、13 校正部、131 乗算定数演算部、132 差分演算部、133 加算演算部、14 色度変換部、15 判定部、16 データ保管部、161 既知光強度保管部、162 校正係数保管部、162a 乗算定数保管部、162b 差分保管部、163 検査基準保管部、164 判定結果保管部。   DESCRIPTION OF SYMBOLS 1 Light source, 10 Optical inspection apparatus, 11 Control part, 12 Spectrometer part, 121 Light guide part, 122 Spectrometer part, 123 Light receiving part, 13 Calibration part, 131 Multiplication constant calculating part, 132 Difference calculating part, 133 Addition calculating part, 14 chromaticity conversion unit, 15 determination unit, 16 data storage unit, 161 known light intensity storage unit, 162 calibration coefficient storage unit, 162a multiplication constant storage unit, 162b difference storage unit, 163 inspection standard storage unit, 164 determination result storage unit .

Claims (5)

発光製品の良否を検査する光検査装置であって、
前記発光製品からの光を分光する分光部と、前記分光部で分光した光を受光する受光部とを含む分光測定部と、
前記分光測定部で測定した波長ごとの光強度を、数値演算処理により校正する校正部と、
前記校正部で校正した波長ごとの光強度を、色度座標での色度値に変換する色度変換部と、
前記色度変換部で変換した色度値と、予め定めてある検査基準とを比較して、前記発光製品の良否を判定する判定部と
を備え、
前記校正部は、
前記発光製品の検査前に、基準光源の既知光強度と、前記基準光源を前記分光測定部で測定した場合に得られる測定光強度とにより乗算定数を演算する乗算定数演算部と、
前記発光製品の検査前に、前記基準光源の前記既知光強度と、前記乗算定数を乗算した前記測定光強度との差分値を波長ごとに演算する差分演算部と、
前記発光製品の検査時に、前記分光測定部で測定した前記発光製品の光強度に前記乗算定数を乗算し、前記差分値を加算して、前記発光製品の光強度を校正する加算演算部と
を含む、光検査装置。
An optical inspection device for inspecting the quality of a luminescent product,
A spectroscopic measurement unit including a spectroscopic unit that splits light from the light emitting product; and a light receiving unit that receives the light split by the spectroscopic unit;
A calibration unit that calibrates the light intensity for each wavelength measured by the spectroscopic measurement unit by numerical calculation processing;
A chromaticity conversion unit that converts light intensity for each wavelength calibrated by the calibration unit into chromaticity values in chromaticity coordinates;
A determination unit that compares the chromaticity value converted by the chromaticity conversion unit with a predetermined inspection standard and determines the quality of the luminescent product, and
The calibration unit is
Before the inspection of the luminescent product, a multiplication constant calculation unit that calculates a multiplication constant based on a known light intensity of a reference light source and a measurement light intensity obtained when the reference light source is measured by the spectroscopic measurement unit;
Before the inspection of the luminescent product, a difference calculation unit that calculates a difference value between the known light intensity of the reference light source and the measured light intensity multiplied by the multiplication constant for each wavelength;
An addition operation unit that calibrates the light intensity of the luminescent product by multiplying the light intensity of the luminescent product measured by the spectroscopic measurement unit by the multiplication constant and adding the difference value when inspecting the luminescent product; Including optical inspection equipment.
前記乗算定数は、波長に依らず一定値である、請求項1に記載の光検査装置。   The optical inspection apparatus according to claim 1, wherein the multiplication constant is a constant value regardless of a wavelength. 前記乗算定数演算部は、前記基準光源の前記既知光強度の最大値と、前記基準光源の前記測定光強度の最大値とが一致するように前記乗算定数を演算する、請求項2に記載の光検査装置。   3. The multiplication constant calculation unit according to claim 2, wherein the multiplication constant calculation unit calculates the multiplication constant so that a maximum value of the known light intensity of the reference light source matches a maximum value of the measurement light intensity of the reference light source. Optical inspection device. 前記分光部は、波長ごとの受光感度が略一定である、請求項1に記載の光検査装置。   The optical inspection apparatus according to claim 1, wherein the light receiving unit has a substantially constant light receiving sensitivity for each wavelength. 前記加算演算部は、前記分光測定部で測定した前記発光製品の光強度に前記乗算定数を乗算せず、
前記校正部は、前記乗算定数演算部で演算した前記乗算定数により、前記基準光源の前記既知光強度の最大値と、前記基準光源の前記測定光強度の最大値とが一致するように前記受光部の出力を調整する、請求項1に記載の光検査装置。
The addition operation unit does not multiply the light intensity of the luminescent product measured by the spectroscopic measurement unit by the multiplication constant,
The calibration unit receives the light reception so that the maximum value of the known light intensity of the reference light source and the maximum value of the measurement light intensity of the reference light source coincide with each other according to the multiplication constant calculated by the multiplication constant calculation unit. The optical inspection apparatus according to claim 1, wherein the output of the unit is adjusted.
JP2012013125A 2012-01-25 2012-01-25 Optical inspection device Pending JP2013152145A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2012013125A JP2013152145A (en) 2012-01-25 2012-01-25 Optical inspection device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2012013125A JP2013152145A (en) 2012-01-25 2012-01-25 Optical inspection device

Publications (1)

Publication Number Publication Date
JP2013152145A true JP2013152145A (en) 2013-08-08

Family

ID=49048605

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2012013125A Pending JP2013152145A (en) 2012-01-25 2012-01-25 Optical inspection device

Country Status (1)

Country Link
JP (1) JP2013152145A (en)

Similar Documents

Publication Publication Date Title
US8699023B2 (en) Reflectivity measuring device, reflectivity measuring method, membrane thickness measuring device, and membrane thickness measuring method
JP6420807B2 (en) Methods for wavelength spectrum analysis for detecting various gases using processed tapes
KR102067883B1 (en) Method for calibrating a spectroradiometer
TW201643389A (en) Colorimetry system for display testing
TWI454679B (en) Optical detection system and optical property detection method
US9163985B2 (en) Spectral characteristic measurement apparatus and spectral characteristic measurement method
KR20090056858A (en) Apparatus for measuring optical property
KR102012219B1 (en) Apparatus and method for measuring skin color
KR101890944B1 (en) Spectral characteristic measurement method and spectral characteristic measurement apparatus
US20160258865A1 (en) Gloss Evaluation Method And Gloss Evaluation Device
US10408681B2 (en) Spectrocolorimetric device and spectral reflectance calculating method
JP2014134527A (en) Calibration method for led measuring instrument, and led measuring instrument using the same
JP2013152145A (en) Optical inspection device
WO2021208349A1 (en) Integrating sphere photometer spectral response measurement method and system
KR101418308B1 (en) LED Wavelength Comparator and Method thereof
JP6502195B2 (en) Measuring device and measuring method
JP2012018118A (en) Colorimetric device and colorimetric method
Neyezhmakov et al. Increasing the measurement accuracy of wide-aperture photometer based on digital camera
US10514300B2 (en) Spectrocolorimetric device and conversation rule setting method
JP6565174B2 (en) Stimulus value direct-reading colorimeter
US20240068870A1 (en) Optical characteristic measuring apparatus, wavelength shift correcting apparatus, wavelength shift correction method, and program
US11598668B2 (en) Method and apparatus for monitoring a spectral radiometer
JP7206576B2 (en) Measuring method and equipment
JPH09325088A (en) Method and apparatus for measuring luminous intensity of light-emitting semiconductor device
JP2016099176A (en) Color inspection method and color inspection device