JPH09325088A - Method and apparatus for measuring luminous intensity of light-emitting semiconductor device - Google Patents

Method and apparatus for measuring luminous intensity of light-emitting semiconductor device

Info

Publication number
JPH09325088A
JPH09325088A JP14332296A JP14332296A JPH09325088A JP H09325088 A JPH09325088 A JP H09325088A JP 14332296 A JP14332296 A JP 14332296A JP 14332296 A JP14332296 A JP 14332296A JP H09325088 A JPH09325088 A JP H09325088A
Authority
JP
Japan
Prior art keywords
light
semiconductor device
emitting semiconductor
light emitting
optical
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP14332296A
Other languages
Japanese (ja)
Inventor
Akira Suzuki
明 鈴木
Hiroyuki Kawae
裕之 川栄
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sanken Electric Co Ltd
Original Assignee
Sanken Electric Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sanken Electric Co Ltd filed Critical Sanken Electric Co Ltd
Priority to JP14332296A priority Critical patent/JPH09325088A/en
Publication of JPH09325088A publication Critical patent/JPH09325088A/en
Pending legal-status Critical Current

Links

Abstract

PROBLEM TO BE SOLVED: To measure a luminous intensity with sufficient accuracy, by using an optical power meter for measuring an optical output at a peak wavelength of an emitted light, an optical spectrum analyzer for measuring relative spectral characteristics of a light-emitting semiconductor device, etc. SOLUTION: A light-emitting semiconductor device 1 (LED) is arranged to face a photodetecting part 2. The LED 1 is let to emit light at areas of all operation wavelengths including a peak wavelength. The light is detected at the photodetecting part 2 with a sufficiently small solid angle ω. An optical output of the emitted light is measured by an optical power meter 3, and a relative spectral characteristic by which the peak wavelength of the LED 1 is 1 is measured by an optical spectrum analyzer 6. Then, an output of the optical spectrum analyzer 6 is connected to an operating device 7 to which a relative spectral photosensitivity characteristic and a standard spectral luminous efficiency by which a peak wavelength of the optical power meter 3 is 1 are input, thereby to determine a luminous intensity of the LED 1 through operations. Accordingly, the light-emitting semiconductor device 1 emitting light with a uniform luminous intensity is selected and a highly reliable apparatus is manufactured.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【発明の属する技術分野】本発明は、光度測定技術、特
に発光半導体装置の光度測定方法及び測定装置に関する
ものである。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a photometric technique, and more particularly to a photometric method and a photometric device for a light emitting semiconductor device.

【0002】[0002]

【従来の技術】日本工業規格JIS7526には一般用
光度標準電球用の標準光源が規定されている。日本電子
機械工業会(EIAJ)の規格ED−4911に規定さ
れた「発光ダイオード測定方法」では、規定の条件のも
とでLEDの光度を測定することを目的として光度(I
v)を測定することが定められている。この測定法の測
定原理は、図5に示すように、標準光源20の発光面2
0aと測光器21の受光面21aの中心を通る直線22
に対し、発光面20aと受光面21aが垂直になるよう
に標準光源20と測光器21とを設置する。標準光源2
0は光度が計量法の規定によって検定(JIS752
6)されている。測光器21の相対分光感度は標準比視
感度に近似し、測光器21の出力は入射光束に対し良好
に比例するように調整される。標準光源20の光中心と
測光器21の受光面21aとの測光距離Sは、発光面2
0a又は受光面21aのいずれか大きい方の最大寸法の
10倍以上にとる。標準光源20の光度をIVS、測定距
離をSSとすると、測光器21の受光面21a上の照度
VSは次式から求まる。
2. Description of the Related Art Japanese Industrial Standard JIS7526 defines a standard light source for general-purpose luminous intensity standard bulbs. In the "Light-Emitting Diode Measuring Method" defined in the Japan Electronic Machinery Manufacturers Association (EIAJ) standard ED-4911, the luminous intensity (I) is measured for the purpose of measuring the luminous intensity of the LED under specified conditions.
It is defined to measure v). As shown in FIG. 5, the measuring principle of this measuring method is as follows:
0a and a straight line 22 passing through the center of the light receiving surface 21a of the photometer 21
On the other hand, the standard light source 20 and the photometer 21 are installed so that the light emitting surface 20a and the light receiving surface 21a are perpendicular to each other. Standard light source 2
0 indicates that the luminous intensity is certified according to the provisions of the Measurement Law (JIS752
6) Has been done. The relative spectral sensitivity of the photometer 21 approximates the standard relative luminous efficiency, and the output of the photometer 21 is adjusted so as to be in good proportion to the incident light flux. The photometric distance S between the light center of the standard light source 20 and the light receiving surface 21a of the photometer 21 is equal to the light emitting surface 2
0a or the light-receiving surface 21a, whichever is larger, is 10 times or more the maximum dimension. When the luminous intensity of the standard light source 20 is I VS and the measurement distance is S S , the illuminance E VS on the light receiving surface 21a of the photometer 21 can be obtained from the following equation.

【数3】 また、このときの測光器21の読みをiVSとするとEVS
=α・iVS(αは係数)で測光器21出力の目感定を行
うことができる。この測光系を用いて光源20の光度を
測定するには、光源20と測光器21を適正に設定し
て、測光距離STを測り、測光器21の読みiVSを求め
れば、次式から光度を計算することができる。
(Equation 3) If the reading of the photometer 21 at this time is i VS , then E VS
= Α · i VS (α is a coefficient) can be used to visually determine the output of the photometer 21. In order to measure the luminous intensity of the light source 20 using this photometric system, the light source 20 and the photometer 21 are properly set, the photometric distance S T is measured, and the reading i VS of the photometer 21 is obtained. The luminosity can be calculated.

【数4】 なお、測光器21の相対分光感度が標準比視感度に一致
しないとき、PT(λ)を被測光源の分光分布、PS(λ)を
標準光源20の分光分布、V(λ)を標準比視感度、S
(λ)を測光器21の相対分光感度として、測光器21の
読みに次式の色補正係数kを乗じる。
(Equation 4) When the relative spectral sensitivity of the photometer 21 does not match the standard relative luminous efficiency, P T (λ) is the spectral distribution of the light source to be measured, P S (λ) is the spectral distribution of the standard light source 20, and V (λ) is Standard relative luminous efficiency, S
(λ) is the relative spectral sensitivity of the photometer 21, and the reading of the photometer 21 is multiplied by the color correction coefficient k of the following equation.

【数5】 (Equation 5)

【0003】[0003]

【発明が解決しようとする課題】このように、従来の光
度測定法では、光度標準電球と測光器21が必要となる
が、現在のところ、日本国内の試験機関である日本電気
計器検定所にて、光度校正試験を行う標準電球は10C
d以上の光度を対象とし、10mCd程度の小光度の発
光体は校正試験の対象外となる。また、図6に示すよう
に、標準電球の発光スペクトル分布は可視光から赤外光
への広範囲な帯域にわたる。測光器21においても標準
比視感度V(λ)と確実に一致するものは無い。同様の方
法で、LED(発光ダイオード)の光度測定に適用する
と、求めるLEDの光度は標準電球よりはるかに低い1
0mCd程度の光度レベルである。またLEDの発光ス
ペクトル分布は幅狭で、しかも各種のピーク波長を有
し、複雑な色補正が必要である。しかるに、標準電球の
光度でLEDの標準光度を求めるには直接的でなく、ま
た、大きな誤差を生じる。そこで本発明は、十分な確度
で光度を測定できる発光半導体装置の光度測定方法及び
測定装置を提供することを目的とする。
As described above, in the conventional photometric method, the photometric standard bulb and the photometric instrument 21 are required, but at present, the Nippon Electric Meters Inspection Center, which is a testing institute in Japan, is required. The standard light bulb for the photometric calibration test is 10C
A luminous body with a luminous intensity of d or more and a small luminous intensity of about 10 mCd is excluded from the calibration test. Further, as shown in FIG. 6, the emission spectrum distribution of the standard light bulb covers a wide band from visible light to infrared light. Also in the photometer 21, there is no one that surely matches the standard relative luminous efficiency V (λ). In a similar manner, when applied to LED (light emitting diode) luminosity measurements, the required LED luminosity is much lower than standard bulbs.
The luminous intensity level is about 0 mCd. Further, the emission spectrum distribution of the LED is narrow and has various peak wavelengths, and complicated color correction is required. However, it is not direct to obtain the standard luminous intensity of the LED with the luminous intensity of the standard light bulb, and a large error occurs. Therefore, it is an object of the present invention to provide a luminous intensity measuring method and a measuring device for a light emitting semiconductor device capable of measuring luminous intensity with sufficient accuracy.

【0004】[0004]

【課題を解決するための手段】本発明による発光半導体
装置の光度測定方法は、受光部(2)に対向して発光半
導体装置(1)を配置する過程と、ピーク波長を含む発
光半導体装置(1)の全動作波長領域で発光半導体装置
(1)を発光させる過程と、発光半導体装置(1)から照
射された光を十分小さい立体角ωで受光部(2)により
受光する過程と、受光部(2)に接続された光パワーメ
ータ(3)により照射された光の光出力PTを測定する過
程と、光スペクトルアナライザ(6)により発光半導体
装置(1)のピーク波長が1となる相対分光特性p(λ)
を測定する過程と、光パワーメータ(3)のピーク波長
が1となる相対分光受光感度特性S(λ)及び標準比視感
度特性V(λ)が入力された演算器に光スペクトルアナラ
イザ(6)の出力p(λ)を接続し、最大比視感度をKm
として下式:
A light intensity measuring method for a light emitting semiconductor device according to the present invention comprises a step of disposing a light emitting semiconductor device (1) facing a light receiving portion (2) and a light emitting semiconductor device including a peak wavelength ( The process of causing the light-emitting semiconductor device (1) to emit light over the entire operating wavelength range of 1), the process of receiving the light emitted from the light-emitting semiconductor device (1) by the light receiving unit (2) at a sufficiently small solid angle ω, and the process of receiving light. The process of measuring the optical output P T of the light emitted by the optical power meter (3) connected to the section (2) and the peak wavelength of the light emitting semiconductor device (1) become 1 by the optical spectrum analyzer (6). Relative spectral characteristic p (λ)
In the process of measuring the optical power meter (3) and the relative spectral light-receiving sensitivity characteristic S (λ) where the peak wavelength of the optical power meter (3) is 1 and the standard relative luminous efficiency characteristic V (λ) are input to the optical spectrum analyzer (6 ) Output p (λ) is connected, and the maximum relative luminous efficiency is Km
As the following formula:

【数6】 の演算を行って発光半導体装置の光度Ivを決定する過
程とを含む。本発明による発光半導体装置の光度測定装
置は、発光半導体装置(1)に電流を供給して、ピーク
波長を含む発光半導体装置(1)の全動作波長領域で発
光半導体装置(1)を発光させる電源回路(8)と、発光
半導体装置(1)に対向して配置されかつ発光半導体装
置(1)から照射された光を十分小さい立体角ωで受光
する受光部(2)と、受光部(2)に接続され且つ照射さ
れた光のピーク波長での光出力PTを測定する光パワー
メータ(3)と、発光半導体装置(1)の相対分光特性p
(λ)を測定する光スペクトルアナライザ(6)と、光パ
ワーメータ(3)及び光スペクトルアナライザ(6)に接
続された演算器(7)とを備えている。光パワーメータ
(3)の相対分光受光感度特性S(λ)及び標準比視感度
特性V(λ)が入力された光スペクトルアナライザ(6)
の出力p(λ)を接続し、最大比視感度をKmとして下
式:
(Equation 6) And determining the luminous intensity Iv of the light emitting semiconductor device. A photometric device for a light emitting semiconductor device according to the present invention supplies a current to the light emitting semiconductor device (1) to cause the light emitting semiconductor device (1) to emit light in the entire operating wavelength region including the peak wavelength. A power supply circuit (8), a light receiving section (2) arranged to face the light emitting semiconductor device (1) and receiving light emitted from the light emitting semiconductor device (1) at a sufficiently small solid angle ω; The relative spectral characteristic p of the optical power meter (3) connected to 2) and measuring the optical output P T at the peak wavelength of the emitted light, and the light emitting semiconductor device (1).
An optical spectrum analyzer (6) for measuring (λ) and an arithmetic unit (7) connected to the optical power meter (3) and the optical spectrum analyzer (6) are provided. An optical spectrum analyzer (6) to which the relative spectral light receiving sensitivity characteristic S (λ) and the standard relative luminous efficiency characteristic V (λ) of the optical power meter (3) are input.
The output p (λ) of is connected, and the maximum relative luminous efficiency is Km.

【数7】 の演算を行って発光半導体装置の光度Ivを決定する。(Equation 7) Is calculated to determine the luminous intensity Iv of the light emitting semiconductor device.

【0005】このように、光スペクトルアナライザ
(6)により発光半導体装置(1)の相対分光特性p(λ)
を測定しかつ光パワーメータ(3)の相対分光受光感度
特性S(λ)及び標準比視感度特性V(λ)により発光半導
体装置(1)の光度を正確かつ容易に測定することがで
きる。使用される全計測器を日本の検定機関で校正試験
測定装置で測定すれば、十分な確度で発光半導体装置
(1)の光度標準の光度標準を得ることができる。ま
た、全て校正試験された計測器のみにて校正された測定
装置から得られた光度値は、校正試験(トレーサビリテ
ィー)されている。
In this way, the relative spectral characteristic p (λ) of the light emitting semiconductor device (1) is measured by the optical spectrum analyzer (6).
And the luminous intensity of the light emitting semiconductor device (1) can be accurately and easily measured by the relative spectral light receiving sensitivity characteristic S (λ) and the standard relative luminous efficiency characteristic V (λ) of the optical power meter (3). If all of the measuring instruments used are measured by a calibration test measuring device at a Japanese inspection agency, the luminous intensity standard of the luminous semiconductor device (1) can be obtained with sufficient accuracy. In addition, the luminous intensity values obtained from the measuring device calibrated only by the measuring instruments that are all calibrated and tested have been calibrated (traceability).

【0006】[0006]

【発明の実施の形態】以下、可視光発光ダイオードに適
用した本発明による発光半導体装置の光度測定方法及び
測定装置の実施形態を図1〜図5について説明する。図
1に示すように、暗ボックス5内に配置した発光半導体
装置としてのLED1を標準校正試験された電源回路8
により点灯させて、LED1の光を受光部2により受光
する。LED1から受光部2に照射する光の立体角ωは
ω=0.001srである。受光部2で受光した光量を
光パワーメータ3に表示する。また、光ファイバ4を介
してLED1の光を光スペクトルアナライザ6に供給
し、光スペクトルアナライザ6の出力を演算器7に付与
し、演算器7により光パワーメータ3及び光スペクトル
アナライザ6の数値を使用して演算する。本発明による
発光半導体装置の光度測定方法では、標準電球を用いず
に測定する方法を試みた。測光距離は立体角が0.00
1srになるよう距離を置いてLED1の放射強度から
光度の換算を行う。kをピーク波長での光出力、p
(λ)を相対分光特性(ピーク波長で1)、被測LED
1の絶対分光特性をP(λ)とすると、下式が成立す
る。
DETAILED DESCRIPTION OF THE PREFERRED EMBODIMENTS An embodiment of a luminous intensity measuring method and a measuring device of a light emitting semiconductor device according to the present invention applied to a visible light emitting diode will be described below with reference to FIGS. As shown in FIG. 1, an LED 1 as a light emitting semiconductor device arranged in a dark box 5 is subjected to a standard calibration test on a power supply circuit 8
The light of the LED 1 is received by the light receiving section 2. The solid angle ω of the light emitted from the LED 1 to the light receiving unit 2 is ω = 0.001 sr. The amount of light received by the light receiving unit 2 is displayed on the optical power meter 3. Further, the light of the LED 1 is supplied to the optical spectrum analyzer 6 via the optical fiber 4, the output of the optical spectrum analyzer 6 is given to the arithmetic unit 7, and the numerical values of the optical power meter 3 and the optical spectrum analyzer 6 are calculated by the arithmetic unit 7. Use and calculate. As the light intensity measuring method of the light emitting semiconductor device according to the present invention, a method of measuring without using a standard light bulb was tried. The photometric distance has a solid angle of 0.00
The distance is set to 1 sr and the luminous intensity is converted from the emission intensity of the LED 1. k is the optical output at the peak wavelength, p
(Λ) relative spectral characteristics (1 at peak wavelength), measured LED
When the absolute spectral characteristic of 1 is P (λ), the following equation holds.

【0007】[0007]

【数8】 (Equation 8)

【0008】図2に示すように、波長λでのLED1の
明るさはP(λ)に微小波長長さを掛けて得られた面積に
波長λでの相対分光受光感度S(λ)を掛けた値で示さ
れ、光の波長の変化に対する受光感度S(λ)の変化を図
3に示す。よって、受光感度S(λ)の光パワーメータ3
で測定したLED1の光出力PTは下式で表される。
As shown in FIG. 2, the brightness of the LED 1 at the wavelength λ is obtained by multiplying the area obtained by multiplying P (λ) by the minute wavelength length by the relative spectral light receiving sensitivity S (λ) at the wavelength λ. 3 shows the change in the light receiving sensitivity S (λ) with respect to the change in the wavelength of light. Therefore, the optical power meter 3 with the light receiving sensitivity S (λ)
The light output P T of the LED 1 measured in step 1 is expressed by the following equation.

【0009】[0009]

【数9】 [Equation 9]

【0010】ここで数式9の(λ)を数式8より変換
すると下式となる。
Here, when P (λ) in Expression 9 is converted from Expression 8, the following expression is obtained.

【0011】[0011]

【数10】 (Equation 10)

【0012】kは定数であるから次式となる。Since k is a constant, the following equation is obtained.

【0013】[0013]

【数11】 [Equation 11]

【0014】数式11をkについて表すと下式となる。The following equation can be obtained by expressing the equation 11 with respect to k.

【0015】[0015]

【数12】 (Equation 12)

【0016】ここで数式8に数式12のkを代入すると
次式となる。
Substituting k in Equation 12 into Equation 8 gives the following equation.

【0017】[0017]

【数13】 (Equation 13)

【0018】一方、LED1の光束Φvは、最大比視感
度Kmと図4に示す標準比視感度V(λ)により次式で表
される。
On the other hand, the luminous flux Φv of the LED 1 is represented by the following equation by the maximum specific luminous efficiency Km and the standard specific luminous efficiency V (λ) shown in FIG.

【0019】[0019]

【数14】 [Equation 14]

【0020】ここでP(λ)に数式9より変換して下式
を得る。
Here, the following expression is obtained by converting into P (λ) from Expression 9.

【0021】[0021]

【数15】 (Equation 15)

【0022】PTは測光値定数であり、また整理して次
式となる。
P T is a photometric value constant, which can be rearranged into the following equation.

【0023】[0023]

【数16】 (Equation 16)

【0024】本測光系の受光条件が立体角ωであるので
LED1の光度Ivは下式で表される。
Since the light receiving condition of this photometric system is the solid angle ω, the luminous intensity Iv of the LED 1 is expressed by the following equation.

【0025】[0025]

【数17】 [Equation 17]

【0026】よって次式が得られる。Therefore, the following equation is obtained.

【0027】[0027]

【数18】 (Equation 18)

【0028】数式18の光度Ivは、最大比視感度Km
とLED1の光出力PTとの積に、相対分光特性p
(λ)と標準比視感度V(λ)との積を波長について積
分した積分値(L)を相対分光特性p(λ)と受光感度
S(λ)との積を波長について積分した積分値で割った
値を積し、立体角ωで除算した値である。放射量と測光
量を結びつける係数である最大比視感度Kmは、Km=
683(lm/w)とすると、11mcdの標準LED
の実測値の例を下記に示す。
The luminous intensity Iv of the equation 18 is the maximum specific luminous efficiency Km.
The product of the LED1 of the light output P T, the relative spectral characteristic p
The integral value (L) obtained by integrating the product of (λ) and the standard relative luminous efficiency V (λ) with respect to wavelength, the integral value obtained by integrating the product of the relative spectral characteristic p (λ) and the light receiving sensitivity S (λ) with respect to wavelength. It is the value obtained by multiplying by the value divided by and dividing by the solid angle ω. The maximum specific luminous efficiency Km, which is a coefficient that links the radiation amount and the photometric amount, is Km =
683 (lm / w), 11mcd standard LED
An example of the actual measurement value of is shown below.

【0029】[0029]

【数19】 [Equation 19]

【0030】本発明の実施形態では下記の利点が得られ
る。 1 光スペクトルアナライザにより前記発光半導体装置
の相対分光特性p(λ)を測定しかつ光パワーメータの相
対分光受光感度S(λ)により発光半導体装置の光度を正
確かつ容易に測定することができる。 2 標準電球を標準比視感度V(λ)フィルター組み込
みの測光器を使用しない。 3 使用される全計測器を日本の検定機関で校正試験測
定装置で測定すれば、十分な確度で発光半導体装置の光
度標準の光度標準を得ることができる。 4 また、全て校正試験された計測器のみにて校正され
た測定装置から得られた光度値は、校正試験(トレーサ
ビリティー)されている。
Embodiments of the present invention provide the following advantages. 1. The relative spectral characteristic p (λ) of the light emitting semiconductor device can be measured by an optical spectrum analyzer, and the luminous intensity of the light emitting semiconductor device can be accurately and easily measured by the relative spectral light receiving sensitivity S (λ) of the optical power meter. 2 Do not use a standard bulb as a photometer with a standard relative luminous efficiency V (λ) filter. 3. If all the measuring instruments used are measured by a calibration test measuring device at a Japanese inspection agency, the luminous intensity standard of the luminous semiconductor device can be obtained with sufficient accuracy. 4 In addition, the luminous intensity values obtained from the measuring device calibrated only by the measuring instruments that are all calibrated and tested have been calibrated (traceability).

【0031】[0031]

【発明の効果】本発明では発光半導体装置の光度を容易
に検出して、均一な光度で発光する発光半導体装置を選
択することができる。このため、発光半導体装置を使用
して信頼性の高い装置を製造することができる。また、
全て校正試験を施された市販の光学測定機を用いて発光
半導体装置の光度標準値を容易に算出し、発光半導体装
置の校正試験された光度値を表示することができる。
According to the present invention, it is possible to easily detect the luminous intensity of the light emitting semiconductor device and select the light emitting semiconductor device which emits light with a uniform luminous intensity. Therefore, a highly reliable device can be manufactured using the light emitting semiconductor device. Also,
It is possible to easily calculate the luminous intensity standard value of the light emitting semiconductor device by using a commercially available optical measuring instrument that has been subjected to the calibration test, and display the luminous intensity value of the light emitting semiconductor device subjected to the calibration test.

【図面の簡単な説明】[Brief description of drawings]

【図1】 本発明によるLEDの光度測定装置の概略図FIG. 1 is a schematic view of an LED photometric device according to the present invention.

【図2】 光の波長と放射束の分光密度との関係を示す
グラフ
FIG. 2 is a graph showing the relationship between the wavelength of light and the spectral density of radiant flux.

【図3】 光の波長の変化に対する受光感度の変化を示
すグラフ
FIG. 3 is a graph showing changes in photosensitivity with respect to changes in wavelength of light.

【図4】 光の波長と標準比視感度との関係を示すグラ
FIG. 4 is a graph showing the relationship between the wavelength of light and standard luminous efficiency.

【図5】 標準光源を使用してLEDの光度を測定する
従来の光度測定装置の概略図
FIG. 5 is a schematic diagram of a conventional photometric device for measuring the luminous intensity of an LED using a standard light source.

【図6】 標準電球及びLEDの発光スペクトル分布を
示すグラフ
FIG. 6 is a graph showing emission spectrum distributions of a standard light bulb and an LED.

【符号の説明】[Explanation of symbols]

1・・LED、 2・・受光部、 3・・光パワーメー
タ、 4・・光ファイバ、 5・・暗ボックス、 6・
・光スペクトルアナライザ、 7・・演算器、
1 ... LED, 2 ... Light receiving part, 3 ... Optical power meter, 4 ... Optical fiber, 5 ... Dark box, 6 ...
・ Optical spectrum analyzer, 7 ・ ・ Calculator,

Claims (2)

【特許請求の範囲】[Claims] 【請求項1】 受光部に対向して発光半導体装置を配置
する過程と、 ピーク波長を含む前記発光半導体装置の全動作波長領域
で前記発光半導体装置を発光させる過程と、 前記発光半導体装置から照射された光を十分小さい立体
角ωで受光部により受光する過程と、 前記受光部に接続された光パワーメータにより照射され
た前記光の光出力PTを測定する過程と、 光スペクトルアナライザにより前記発光半導体装置のピ
ーク波長が1となる相対分光特性p(λ)を測定する過程
と、 前記光パワーメータのピーク波長が1となる相対分光受
光感度特性S(λ)及び標準比視感度特性V(λ)が入力さ
れた演算器に前記光スペクトルアナライザの出力p(λ)
を接続し、最大比視感度をKmとして、 【数1】 により前記発光半導体装置の光度Ivを決定する過程と
を含むことを特徴とする発光半導体装置の光度測定方
法。
1. A process of disposing a light emitting semiconductor device facing a light receiving part, a process of causing the light emitting semiconductor device to emit light in the entire operation wavelength region of the light emitting semiconductor device including a peak wavelength, and irradiation from the light emitting semiconductor device. The received light with a sufficiently small solid angle ω by the light receiving unit, the process of measuring the optical output P T of the light emitted by the optical power meter connected to the light receiving unit, and the optical spectrum analyzer The process of measuring the relative spectral characteristic p (λ) at which the peak wavelength of the light emitting semiconductor device is 1, and the relative spectral light receiving sensitivity characteristic S (λ) and the standard relative luminous efficiency characteristic V at which the peak wavelength of the optical power meter is 1. The output p (λ) of the optical spectrum analyzer is input to the arithmetic unit to which (λ) is input.
, And the maximum relative luminous efficiency is Km. And the step of determining the luminous intensity Iv of the light emitting semiconductor device according to the above method.
【請求項2】 発光半導体装置に電流を供給して、ピー
ク波長を含む前記発光半導体装置の全動作波長領域で前
記発光半導体装置を発光させる電源回路と、 前記発光半導体装置に対向して配置されかつ前記発光半
導体装置から照射された光を十分小さい立体角ωで受光
する受光部と、 該受光部に接続され且つ照射された前記光のピーク波長
での光出力PTを測定する光パワーメータと、 前記発光半導体装置の相対分光特性p(λ)を測定する光
スペクトルアナライザと、 前記光パワーメータ及び前記光スペクトルアナライザに
接続された演算器とを備え、 前記光パワーメータの相対分光受光感度特性S(λ)及び
標準比視感度特性V(λ)が入力された演算器に前記光ス
ペクトルアナライザの出力p(λ)を接続し、最大比視感
度をKmとして、 【数2】 の演算を行って前記発光半導体装置の光度Ivを決定す
ることを特徴とする発光半導体装置の光度測定装置。
2. A power supply circuit for supplying a current to the light emitting semiconductor device to cause the light emitting semiconductor device to emit light in the entire operating wavelength region of the light emitting semiconductor device including a peak wavelength, and a power supply circuit arranged to face the light emitting semiconductor device. Further, a light receiving portion for receiving the light emitted from the light emitting semiconductor device at a sufficiently small solid angle ω, and an optical power meter connected to the light receiving portion for measuring an optical output P T at the peak wavelength of the emitted light. And an optical spectrum analyzer for measuring a relative spectral characteristic p (λ) of the light emitting semiconductor device, and an arithmetic unit connected to the optical power meter and the optical spectrum analyzer. The output p (λ) of the optical spectrum analyzer is connected to a calculator into which the characteristic S (λ) and the standard relative luminous efficiency characteristic V (λ) are input, and the maximum relative luminous efficiency is set to Km. The light intensity measuring device for a light emitting semiconductor device, wherein the light intensity Iv of the light emitting semiconductor device is determined by performing the above calculation.
JP14332296A 1996-06-05 1996-06-05 Method and apparatus for measuring luminous intensity of light-emitting semiconductor device Pending JPH09325088A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP14332296A JPH09325088A (en) 1996-06-05 1996-06-05 Method and apparatus for measuring luminous intensity of light-emitting semiconductor device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP14332296A JPH09325088A (en) 1996-06-05 1996-06-05 Method and apparatus for measuring luminous intensity of light-emitting semiconductor device

Publications (1)

Publication Number Publication Date
JPH09325088A true JPH09325088A (en) 1997-12-16

Family

ID=15336099

Family Applications (1)

Application Number Title Priority Date Filing Date
JP14332296A Pending JPH09325088A (en) 1996-06-05 1996-06-05 Method and apparatus for measuring luminous intensity of light-emitting semiconductor device

Country Status (1)

Country Link
JP (1) JPH09325088A (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007132705A (en) * 2005-11-08 2007-05-31 Nagano Science Kk Method and device for measuring irradiance by radiation intensity meter,
CN103674494A (en) * 2013-12-12 2014-03-26 江苏德厚机电有限公司 LED light performance test bedstand
CN106840396A (en) * 2016-12-13 2017-06-13 鸿利智汇集团股份有限公司 A kind of spectrum test method of adjustment and testing and debugging device

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007132705A (en) * 2005-11-08 2007-05-31 Nagano Science Kk Method and device for measuring irradiance by radiation intensity meter,
JP4705457B2 (en) * 2005-11-08 2011-06-22 ナガノサイエンス株式会社 Irradiance measuring method and irradiance measuring apparatus using radiation intensity meter
CN103674494A (en) * 2013-12-12 2014-03-26 江苏德厚机电有限公司 LED light performance test bedstand
CN106840396A (en) * 2016-12-13 2017-06-13 鸿利智汇集团股份有限公司 A kind of spectrum test method of adjustment and testing and debugging device

Similar Documents

Publication Publication Date Title
JP3682528B2 (en) Method and apparatus for measuring absolute fluorescence quantum efficiency of solid sample
US4040740A (en) Opto-electronic sensor
US4904088A (en) Method and apparatus for determining radiation wavelengths and wavelength-corrected radiation power of monochromatic light sources
JP4418731B2 (en) Photoluminescence quantum yield measurement method and apparatus used therefor
CN101183025A (en) Color measurement color difference instrument and color measurement method thereof
JP2604754B2 (en) Spectrophotometer
Fiorentin et al. Detector-based calibration for illuminance and luminance meters—Experimental results
JPH10508984A (en) Temperature compensation method for optoelectronic devices, especially for optoelectronic semiconductor devices
JPH0347450B2 (en)
CN100414272C (en) Integrating light radiation degree measuring system and method with spectrum analysis correction
JPH09325088A (en) Method and apparatus for measuring luminous intensity of light-emitting semiconductor device
Neyezhmakov et al. Increasing the measurement accuracy of wide-aperture photometer based on digital camera
US20150137008A1 (en) Device and method for determining the concentration of fluorophores in a sample
GB2201798A (en) Electric current measurement
Sametoglu Influence of the spectral power distribution of a LED on the illuminance responsivity of a photometer
US11598668B2 (en) Method and apparatus for monitoring a spectral radiometer
JP4336775B2 (en) Optical measurement method, light emitting element measuring method, and light emitting element measuring apparatus
JP3974317B2 (en) Photon number counting device and quantum efficiency measuring device
JPH04332841A (en) Inspecting method of semiconductor light-emitting device
JPH02173532A (en) Chromaticity meter
RU2038585C1 (en) Photocolorimetric gas analyzer
JPH0545213A (en) Method and device for detecting error of light quantity measuring device
Estrada-Hernández et al. Luminous flux and correlated color temperature determination for LED sources
JPS62137527A (en) Spectral distribution inspecting device
JPS6085339A (en) Hue selecting device of light emitting element