JP2013152034A - Heat exchanger and method for making the same - Google Patents

Heat exchanger and method for making the same Download PDF

Info

Publication number
JP2013152034A
JP2013152034A JP2012011922A JP2012011922A JP2013152034A JP 2013152034 A JP2013152034 A JP 2013152034A JP 2012011922 A JP2012011922 A JP 2012011922A JP 2012011922 A JP2012011922 A JP 2012011922A JP 2013152034 A JP2013152034 A JP 2013152034A
Authority
JP
Japan
Prior art keywords
base
pipe
heat exchange
outer peripheral
peripheral surface
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2012011922A
Other languages
Japanese (ja)
Other versions
JP5899960B2 (en
Inventor
Kazushige Koiwai
一茂 小岩井
Seiji Saeki
誠司 佐伯
Akira Nakazumi
晃 中住
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Kobelco Construction Machinery Co Ltd
Original Assignee
Kobelco Construction Machinery Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kobelco Construction Machinery Co Ltd filed Critical Kobelco Construction Machinery Co Ltd
Priority to JP2012011922A priority Critical patent/JP5899960B2/en
Publication of JP2013152034A publication Critical patent/JP2013152034A/en
Application granted granted Critical
Publication of JP5899960B2 publication Critical patent/JP5899960B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Abstract

PROBLEM TO BE SOLVED: To enhance positional accuracy of a heat exchanging pipe to thereby enhance efficiency of heat exchange, while adopting a system casting the heat exchanging pipe in a thermoconductive body.SOLUTION: A cooling pipe 8 through which a cooling medium is passed is helically wound and fixed around an outer peripheral surface of a cylindrical base 7 and a motor housing H of a motor is constituted by casting and shaping a housing body 4 in an outer peripheral side of the base 7 with the cooling pipe 8 buried. Gaps between the pipe 8 and the base outer peripheral surface are filled with a casting material by arranging a plurality of recessed grooves 9 in the base outer peripheral surface while crossing the cooling pipe 8.

Description

本発明は電動機のモータハウジング等として用いられる熱交換器、及びその製作方法に関するものである。   The present invention relates to a heat exchanger used as a motor housing or the like of an electric motor, and a manufacturing method thereof.

電動機のモータハウジングを例にとって背景技術を説明する。   The background art will be described taking a motor housing of an electric motor as an example.

電動機は、電動機シャフトを中心として回転するロータと、このロータの外周に配置されたステータと、このステータが内周側に取付けられた円筒状のモータハウジングと、このモータハウジングの開口を塞ぐカバーとによって構成される。   An electric motor includes a rotor that rotates about an electric motor shaft, a stator disposed on an outer periphery of the rotor, a cylindrical motor housing on which the stator is attached on the inner peripheral side, and a cover that closes an opening of the motor housing. Consists of.

この電動機は、運転中にステータコアの鉄損及びステータコイルの銅損によって発熱するため、このステータ熱をモータハウジングを通じて外部に放出するようにしている。   Since this electric motor generates heat during operation due to iron loss of the stator core and copper loss of the stator coil, the stator heat is discharged to the outside through the motor housing.

この場合、熱交換効率(冷却効率)を上げるために、特許文献1に示されるようにモータハウジングの肉厚内に螺旋状等の熱交換パイプが埋設され、水、油等の冷媒(熱交換媒体)がこの熱交換パイプに通されることによってモータハウジングが冷却される。   In this case, in order to increase the heat exchange efficiency (cooling efficiency), as shown in Patent Document 1, a heat exchange pipe such as a spiral is embedded in the thickness of the motor housing, and a coolant such as water or oil (heat exchange) The motor housing is cooled by passing the medium) through the heat exchange pipe.

いいかえれば、伝熱体としてのモータハウジング本体と、この本体を冷却する熱交換パイプとによって一つの熱交換器としてのモータハウジングが構成されている。   In other words, a motor housing as one heat exchanger is constituted by a motor housing main body as a heat transfer body and a heat exchange pipe for cooling the main body.

実開平6−44378号ACT 6-44378

特許文献1に示された公知技術では、熱交換パイプの埋設方法として、同パイプを鋳型内に配置し、モータハウジング本体の鋳型成形時に同本体内に鋳込む方法がとられている。   In the known technique disclosed in Patent Document 1, as a method for embedding a heat exchange pipe, a method is adopted in which the pipe is arranged in a mold and cast into the main body during molding of the motor housing main body.

ところが、この鋳込み時に、熱交換パイプの位置固定が十分できないため、鋳込み湯(溶融材料)の流入圧力によって熱交換パイプが長さ方向や径方向に動き易く、パイプ位置の精度を保つことが困難で、設計通りの熱交換効果が得られなくなるという問題があった。   However, since the position of the heat exchange pipe cannot be sufficiently fixed at the time of casting, the heat exchange pipe easily moves in the length direction and radial direction due to the inflow pressure of the casting water (molten material), and it is difficult to maintain the accuracy of the pipe position. Thus, there is a problem that the heat exchange effect as designed cannot be obtained.

このような問題は、電動機のモータハウジングに限らず、たとえばショベル等の建設機械に搭載された電気・電子機器を冷却または暖機するための熱交換器を含め、熱交換パイプを鋳込みによって伝熱体に埋設する熱交換器全般にあり、この点の解決が待たれていた。   Such problems are not limited to the motor housing of an electric motor, but include heat exchangers for cooling or warming up electric and electronic devices mounted on construction machines such as excavators, for example, to transfer heat by casting heat exchange pipes. It is in general heat exchangers embedded in the body, and the solution of this point was awaited.

そこで本発明は、熱交換パイプを伝熱体に鋳込む方式をとりながら、同パイプの位置精度を高めて熱交換効率を向上させることができる熱交換器及びその製作方法を提供するものである。   Therefore, the present invention provides a heat exchanger that can improve the heat exchange efficiency by improving the position accuracy of the pipe while casting the heat exchange pipe into the heat transfer body, and a method for manufacturing the heat exchanger. .

上記課題を解決する手段として、請求項1の発明(熱交換器)においては、熱交換媒体が通される熱交換パイプをベースのパイプ取付面に固定し、このベースの上記パイプ取付面側に伝熱体を、上記熱交換パイプが埋設される状態で鋳型成形して成るものである。   As means for solving the above problems, in the invention (heat exchanger) according to claim 1, a heat exchange pipe through which a heat exchange medium is passed is fixed to a pipe mounting surface of a base, and the pipe mounting surface side of the base is fixed to the base. The heat transfer body is formed by molding in a state where the heat exchange pipe is embedded.

この構成によれば、熱交換パイプがベースに固定され、鋳込み時に鋳込み湯の流入圧力によってベースが動かない限り熱交換パイプも動かないこと、及びベースの位置固定はパイプと比べて容易かつ確実に行うことができることにより、鋳込み時の熱交換パイプの動きを防止し、その位置精度を保つことができる。   According to this configuration, the heat exchange pipe is fixed to the base, the heat exchange pipe does not move unless the base moves due to the inflow pressure of the casting water during casting, and the position of the base is fixed easily and reliably compared to the pipe. By being able to perform, the movement of the heat exchange pipe at the time of casting can be prevented, and the position accuracy can be maintained.

これにより、熱交換器として設計通りの熱交換効果を得ることができる。   Thereby, the heat exchange effect as designed as a heat exchanger can be acquired.

ここで、電動機のモータハウジングのような円筒状の熱交換器においては、上記ベースを円筒状とし、このベースの上記パイプ取付面としての外周面に、上記熱交換パイプを上記外周面に沿った曲がり状態で固定し、かつ、上記伝熱体(モータハウジングの場合はハウジング本体)を円筒状に鋳型成形すればよい(請求項2,3)。   Here, in a cylindrical heat exchanger such as a motor housing of an electric motor, the base is cylindrical, and the heat exchange pipe extends along the outer peripheral surface on the outer peripheral surface of the base as the pipe mounting surface. The heat transfer body (housing main body in the case of a motor housing) may be molded into a cylindrical shape while being fixed in a bent state (claims 2 and 3).

この場合、上記熱交換パイプを上記円筒状ベースの外周面に螺旋状に巻き付けて固定するのが望ましい(請求項3)。   In this case, it is desirable that the heat exchange pipe is spirally wound around and fixed to the outer peripheral surface of the cylindrical base.

こうすれば、全周に亘って熱交換作用が働くことに加えて、熱交換パイプの内周側が円筒状のベースによって規制され、同パイプの拡径方向の動きさえ防止できればよいため、熱交換パイプの固定が簡単となるとともに、その位置精度をより高めることができる。   In this way, in addition to the heat exchange action acting on the entire circumference, the inner circumference side of the heat exchange pipe is restricted by the cylindrical base, and it is only necessary to prevent movement of the pipe in the diameter increasing direction. The pipe can be easily fixed and the positional accuracy can be further increased.

また、本発明において、上記ベースのパイプ取付面に、上記熱交換パイプと交差する複数の凹溝を設けるのが望ましい(請求項4)。   In the present invention, it is preferable that a plurality of concave grooves intersecting with the heat exchange pipe are provided on the pipe mounting surface of the base.

この構成によれば、鋳込み時に、鋳込み湯が凹溝に充填され、この凹溝と熱交換パイプが交差する部分で、凹溝から溢れた湯が同パイプとベースのパイプ取付面との間に形成される隙間に入り込んで充填される。   According to this configuration, at the time of casting, the casting hot water is filled into the concave groove, and at the portion where the concave groove and the heat exchange pipe intersect, the hot water overflowing from the concave groove is between the pipe and the pipe mounting surface of the base. It fills in the gaps that are formed.

これにより、上記隙間に空気層(空気の巣)ができることを防止し、伝熱面積を増やして熱交換効率を上げることができる。   As a result, it is possible to prevent an air layer (air nest) from being formed in the gap, increase the heat transfer area, and increase the heat exchange efficiency.

一方、請求項5,6の発明(製作方法)においては、熱交換媒体が通される熱交換パイプをベースのパイプ取付面に固定し、上記ベースを鋳型の一つとして用いてベースのパイプ取付面側に伝熱体を鋳型成形することによって、上記熱交換パイプが埋設された熱交換器を製作するものである。   On the other hand, in the inventions (manufacturing methods) of claims 5 and 6, the heat exchange pipe through which the heat exchange medium is passed is fixed to the pipe attachment surface of the base, and the base is attached as one of the molds. A heat exchanger in which the heat exchange pipe is embedded is manufactured by molding a heat transfer body on the surface side.

この方法によれば、ベースを鋳型の一つとして用いて伝熱体を鋳型成形するため、鋳型構成の簡素化、成形の容易化を実現することができる。   According to this method, since the heat transfer body is molded using the base as one of the molds, the mold configuration can be simplified and the molding can be facilitated.

この場合、電動機のモータハウジングのような円筒状の熱交換器にあっては、上記ベースを円筒状とし、このベースの上記パイプ取付面としての外周面に、上記熱交換パイプを外周面に沿った曲がり状態で固定し、上記ベースを内型として上記ベースの外周面側に円筒状の伝熱体を鋳型成形すればよい(請求項6)。   In this case, in a cylindrical heat exchanger such as a motor housing of an electric motor, the base is cylindrical, and the heat exchange pipe is provided along the outer peripheral surface on the outer peripheral surface of the base as the pipe mounting surface. The base plate may be fixed in a bent state, and a cylindrical heat transfer body may be molded on the outer peripheral surface side of the base using the base as an inner mold.

本発明によると、熱交換パイプの位置精度を高めて熱交換効率を向上させることができる。   According to the present invention, the heat exchange efficiency can be improved by increasing the positional accuracy of the heat exchange pipe.

モータハウジングを適用対象とした本発明の第1実施形態を示す電動機全体の断面図である。It is sectional drawing of the whole electric motor which shows 1st Embodiment of this invention which applied the motor housing. 図1のII−II線断面図である。It is the II-II sectional view taken on the line of FIG. 第1実施形態に係る熱交換器としてのモータハウジングを構成するベース及び冷却パイプの斜視図である。It is a perspective view of the base and cooling pipe which constitute the motor housing as a heat exchanger concerning a 1st embodiment. モータハウジングの鋳型成形状態を示す断面図である。It is sectional drawing which shows the mold forming state of a motor housing. 本発明の第2実施形態を示す電動機全体の断面図である。It is sectional drawing of the whole electric motor which shows 2nd Embodiment of this invention. 本発明の第3実施形態に係るモータハウジングを構成するベース及び冷却パイプの斜視図である。It is a perspective view of the base and cooling pipe which comprise the motor housing which concerns on 3rd Embodiment of this invention. 電気・電子機器用熱交換器を適用対象とした本発明の第4実施形態に係るベース及び冷却パイプの斜視図である。It is a perspective view of the base and cooling pipe which concern on 4th Embodiment of this invention which applied the heat exchanger for electrical / electronic devices. 第4実施形態に係る熱交換器の断面図である。It is sectional drawing of the heat exchanger which concerns on 4th Embodiment.

図1〜図6は電動機のモータハウジングを適用対象とした第1〜第3実施形態、図7,8は電気・電子機器の冷却または暖機用の熱交換器を適用対象とした第4実施形態をそれぞれ示す。   1 to 6 are first to third embodiments in which a motor housing of an electric motor is applied, and FIGS. 7 and 8 are fourth embodiments in which a heat exchanger for cooling or warming up electric / electronic devices is applied. Each form is shown.

第1実施形態(図1〜図4参照)
図1,2に示す電動機は、電動機シャフト1を中心として回転するロータ2と、このロータ2の外周に配置されたステータ3と、このステータ3が内周側に取付けられた円筒状のモータハウジングHと、このモータハウジングHの軸方向の両端に装着されたカバー5,6とによって構成される。
1st Embodiment (refer FIGS. 1-4)
The electric motor shown in FIGS. 1 and 2 includes a rotor 2 that rotates about an electric motor shaft 1, a stator 3 that is disposed on the outer periphery of the rotor 2, and a cylindrical motor housing in which the stator 3 is attached to the inner peripheral side. H and covers 5 and 6 attached to both ends of the motor housing H in the axial direction.

図1中、3aはステータ3のコイルである。   In FIG. 1, 3 a is a coil of the stator 3.

モータハウジングHは、アルミニウム等の伝熱性材料によって鋳型成形された円筒状のモータハウジング本体4と、同本体4の内周側に一体に設けられた鋳鉄、鋼、ステンレス等の高強度材料からなる強度部材としての円筒状のベース7と、このベース7の外周面に軸方向ほぼ全長部分に亘って螺旋状に巻き付けられた状態でハウジング肉厚内に埋設された熱交換パイプとしての冷却パイプ(丸パイプ)8とによって構成されている。   The motor housing H is made of a cylindrical motor housing main body 4 molded by a heat conductive material such as aluminum, and a high-strength material such as cast iron, steel, and stainless steel integrally provided on the inner peripheral side of the main body 4. A cylindrical base 7 as a strength member, and a cooling pipe (a heat exchange pipe embedded in the thickness of the housing in a spirally wound state on the outer peripheral surface of the base 7 over almost the entire length in the axial direction ( Round pipe) 8.

以下、モータハウジングHを「ハウジング」、モータハウジング本体4を「ハウジング本体」とそれぞれ略記する。   Hereinafter, the motor housing H is abbreviated as “housing”, and the motor housing main body 4 is abbreviated as “housing main body”.

冷却パイプ8の両端部8a,8bは、一方が冷媒入口、他方が冷媒出口としてハウジング本体4外に導出され、外部から供給される水、油等の冷媒が冷却パイプ8を冷媒通路として通されることによってハウジング本体4が冷却される。   Both ends 8a and 8b of the cooling pipe 8 are led out of the housing body 4 with one being a refrigerant inlet and the other being a refrigerant outlet, and refrigerant such as water and oil supplied from the outside is passed through the cooling pipe 8 as a refrigerant passage. As a result, the housing body 4 is cooled.

いいかえれば、伝熱体としてのハウジング本体4と、ベース7と、冷却パイプ8とによって一つの熱交換器としてのハウジングHが構成され、ステータ熱がこのハウジングHによって吸収され、あるいはハウジングHを通して外部に放出される。   In other words, the housing body 4 as the heat transfer body, the base 7 and the cooling pipe 8 constitute a housing H as one heat exchanger, and the stator heat is absorbed by the housing H or externally through the housing H. To be released.

また、ベース7の外周面に、ベース軸方向の全長に亘る多数の凹溝9…が周方向に一定間隔を置いて設けられている。   In addition, a large number of concave grooves 9 extending over the entire length in the base axial direction are provided on the outer peripheral surface of the base 7 at regular intervals in the circumferential direction.

冷却パイプ8は、ベース外周面に沿った曲がり状態で凹溝9…と交差してベース外周面に巻き付けられるとともに、長さ方向の複数個所(全長部分もよい)で溶接等によって固定され、この状態でハウジング本体4の鋳型成形時に同本体4に鋳込まれる。   The cooling pipe 8 is wound around the base outer peripheral surface in a bent state along the outer peripheral surface of the base and is wound around the base outer peripheral surface, and is fixed by welding or the like at a plurality of locations in the length direction (or the full length portion is also acceptable). In this state, the housing body 4 is cast into the main body 4 during molding.

すなわち、図4に示すように、鋳型の外型10内に、冷却パイプ8が巻き付け固定されたベース7を内型として同心配置し、かつ、位置固定した状態で、外型10とベース7の間にハウジング本体4の原材料としての鋳込み湯4Aを注入・充填し、固化させる。   That is, as shown in FIG. 4, in the outer mold 10 of the mold, the base 7 on which the cooling pipe 8 is wound and fixed is concentrically arranged as the inner mold, and the position of the outer mold 10 and the base 7 is fixed. In the meantime, casting water 4A as a raw material of the housing body 4 is poured and filled to be solidified.

図4中、11は外型10の上面開口を塞ぐ蓋である。   In FIG. 4, reference numeral 11 denotes a lid that closes the upper surface opening of the outer mold 10.

ベース7の位置固定は、たとえば図示のように外型10の底面に凸部10aを設け、ベース7の下部をこの凸部10aに嵌め込むことによって行うことができる。   The position of the base 7 can be fixed, for example, by providing a convex portion 10a on the bottom surface of the outer mold 10 and fitting the lower portion of the base 7 into the convex portion 10a as shown in the figure.

これにより、円筒状のハウジング本体4が成形されると同時に、同本体4の内周側にベース7が一体化され、かつ、冷却パイプ8が肉厚内に螺旋状に埋め込まれた、図1,2に示す熱交換器としてのハウジングHが構成される。   As a result, the cylindrical housing main body 4 is molded, and at the same time, the base 7 is integrated on the inner peripheral side of the main body 4 and the cooling pipe 8 is spirally embedded in the wall thickness. , 2 as a heat exchanger is configured.

この場合、冷却パイプ8がベース7に固定され、鋳込み時にベース7が動かない限り冷却パイプ8も動かないこと、及びベース7の型内への位置固定は、図例の凸部10a等によりパイプと比べて容易かつ確実に行い得ることにより、鋳込み時の冷却パイプ8の動きを確実に防止し、その位置精度を保つことができる。   In this case, the cooling pipe 8 is fixed to the base 7, and the cooling pipe 8 does not move unless the base 7 moves at the time of casting, and the position of the base 7 in the mold is fixed by the convex portion 10a in the figure. As a result, the movement of the cooling pipe 8 during casting can be reliably prevented, and the positional accuracy can be maintained.

これにより、熱交換器として設計通りの熱交換効果を得ることができる。   Thereby, the heat exchange effect as designed as a heat exchanger can be acquired.

また、冷却パイプ8をベース7の外周面に螺旋状に巻き付け固定しているため、全周に亘って熱交換(冷却)作用が働くことに加えて、冷却パイプ8の内周側が円筒状のベース7によって規制され、同パイプ8の拡径方向の動きさえ防止できればよいことから、冷却パイプ8の固定が簡単となるとともに、その位置精度をより高めることができる。   Further, since the cooling pipe 8 is spirally wound and fixed around the outer peripheral surface of the base 7, in addition to the heat exchanging (cooling) action acting on the entire circumference, the inner peripheral side of the cooling pipe 8 is cylindrical. Since it is only necessary to be restricted by the base 7 and prevent the movement of the pipe 8 in the diameter-expanding direction, the cooling pipe 8 can be easily fixed and the positional accuracy can be further increased.

さらに、ベース7の外周面(パイプ取付面)に、冷却パイプ8と交差する複数の凹溝9…を設けているため、鋳込み時に、図4に示すように鋳込み湯4Aが凹溝9…に充填され、この凹溝9…と熱交換パイプが交差するすべての部分で、凹溝9…から溢れた湯が同パイプ8とベース外周面との間に形成される隙間に入り込んで充填される。   Further, since a plurality of concave grooves 9 intersecting with the cooling pipe 8 are provided on the outer peripheral surface (pipe mounting surface) of the base 7, at the time of casting, the casting water 4A is formed into the concave grooves 9 as shown in FIG. Filled and filled in the gaps formed between the pipes 8 and the outer peripheral surface of the base, the hot water overflowing from the grooves 9 is filled at all portions where the grooves 9 and the heat exchange pipe intersect. .

これにより、上記隙間に空気層(空気の巣)ができることを防止し、その分、伝熱面積を増やして熱交換効率を上げることができる。   This prevents the formation of an air layer (air nest) in the gap, thereby increasing the heat transfer area and increasing the heat exchange efficiency.

一方、ハウジング製作方法としての効果として、ベース7を鋳型の一つ(ここでは内型)として用いてベース外周面にハウジング本体4を鋳型成形するため、鋳型構成の簡素化、成形の容易化を実現することができる。   On the other hand, as an effect of the housing manufacturing method, since the housing body 4 is molded on the outer peripheral surface of the base using the base 7 as one of the molds (in this case, the inner mold), the mold configuration is simplified and the molding is facilitated. Can be realized.

第2、第3実施形態(図5,6参照)
第1実施形態との相違点のみを説明する。
Second and third embodiments (see FIGS. 5 and 6)
Only differences from the first embodiment will be described.

図5に示す第2実施形態においては、冷却パイプ8が角パイプによって形成され、第1実施形態と同様にベース7の外周面に螺旋状に巻き付け固定されている。   In the second embodiment shown in FIG. 5, the cooling pipe 8 is formed of a square pipe, and is wound around and fixed to the outer peripheral surface of the base 7 in a spiral manner as in the first embodiment.

こうすれば、ベース7の外周面と冷却パイプ8の接触面積を大きくとり、冷却効率を上げることができる。   In this way, the contact area between the outer peripheral surface of the base 7 and the cooling pipe 8 can be increased, and the cooling efficiency can be increased.

図6に示す第3実施形態においては、冷却パイプ8がベース外周面に対し、全周に亘る螺旋状ではなく、円周方向の一定角度範囲内(図例ではほぼ半周部分)でベース軸方向に複数回折り返された曲折状態で、かつ、ベース外周面に密着する状態で固定されている。   In the third embodiment shown in FIG. 6, the cooling pipe 8 is not spiral around the entire circumference of the base outer peripheral surface, but within a certain angular range in the circumferential direction (substantially a half-circular portion in the example), and the base axial direction. Are fixed in a state of being bent back and forth and in close contact with the outer peripheral surface of the base.

この場合、凹溝9…はベース外周面の円周方向に設けられる。   In this case, the concave grooves 9 are provided in the circumferential direction of the outer peripheral surface of the base.

こうすれば、レイアウト上の制約等によって冷却パイプ8をベース全周部分に巻き付けることができない場合でも、残された範囲で冷媒通路を確保することができる。   In this way, even when the cooling pipe 8 cannot be wound around the entire circumference of the base due to layout restrictions or the like, the refrigerant passage can be secured in the remaining range.

なお、冷却パイプ8をベース外周面に対し円周方向に複数回折り返された曲折状態で固定してもよい。   Note that the cooling pipe 8 may be fixed in a bent state in which the cooling pipe 8 is bent back and forth in the circumferential direction with respect to the outer peripheral surface of the base.

この場合、凹溝9…はベース外周面の軸方向に設けられる。   In this case, the concave grooves 9 are provided in the axial direction of the outer peripheral surface of the base.

第4実施形態(図7,8参照)
第4実施形態においては、ショベルに搭載されるインバータやコントローラ、蓄電器等の電気・電子機器を冷却または暖機するための熱交換器を適用対象としている。
Fourth embodiment (see FIGS. 7 and 8)
In the fourth embodiment, a heat exchanger for cooling or warming up an electric / electronic device such as an inverter, a controller, and a capacitor mounted on a shovel is an application target.

すなわち、厚板状のベース12の片面(パイプ取付面)に複数の凹溝13…が一定間隔を置いて平行に設けられるとともに、熱交換パイプ14が凹溝13…と交差する複数回折り返し状態で固定され、このベース12の片面側に伝熱体としての伝熱板15が鋳型成形されることによって、熱交換パイプ14が肉厚内に埋設された熱交換器16が構成されている。   That is, a plurality of concave grooves 13 are provided in parallel on a single surface (pipe mounting surface) of the thick plate-like base 12 at a predetermined interval, and the heat exchange pipe 14 intersects the concave grooves 13. And a heat exchanger plate 15 in which the heat exchange pipe 14 is embedded in the wall thickness is formed by molding a heat transfer plate 15 as a heat transfer body on one side of the base 12.

図7中、14a,14bは熱交換パイプ13の熱交換媒体入口または出口としての両側端部である。   In FIG. 7, reference numerals 14 a and 14 b denote both end portions as heat exchange medium inlets or outlets of the heat exchange pipe 13.

この熱交換器16によっても、モータハウジングの場合と同様に、鋳込み湯の流入圧力による熱交換パイプ14の動きを防止してその位置精度を保つことができる。   As with the motor housing, the heat exchanger 16 can also prevent the movement of the heat exchange pipe 14 due to the inflow pressure of the poured hot water and maintain its positional accuracy.

また、凹溝13…を熱交換パイプ14と交差して設けることにより、熱交換パイプ14とベース12との隙間に鋳込み湯を行き渡らせて伝熱面積を増加させることができる点、及びベース12を鋳型の一部(たとえば下型)として利用できる点は第1〜第3実施形態の場合と同じである。   Further, by providing the concave grooves 13 intersecting with the heat exchange pipe 14, it is possible to increase the heat transfer area by spreading cast hot water over the gap between the heat exchange pipe 14 and the base 12, and the base 12. The point that can be used as a part of the mold (for example, the lower mold) is the same as in the first to third embodiments.

この場合、第2実施形態と同様に、熱交換パイプ14を角パイプとしてもよい。   In this case, similarly to the second embodiment, the heat exchange pipe 14 may be a square pipe.

ところで、本発明は上記実施形態以外に、床暖房用の熱交換シート等、熱交換パイプが埋設される熱交換器に広く適用することができる。   By the way, this invention can be widely applied to the heat exchanger with which a heat exchange pipe is embed | buried, such as a heat exchange sheet | seat for floor heating other than the said embodiment.

H モータハウジング
4 伝熱体としてのハウジング本体
4A 鋳込み湯
7 ベース
8 熱交換パイプとしての冷却パイプ
9 凹溝
10 外型
10a ベース位置固定用の凸部
12 ベース
13 凹溝
14 熱交換パイプ
15 伝熱板
16 熱交換器
H motor housing 4 housing main body as heat transfer body 4A pouring hot water 7 base 8 cooling pipe as heat exchange pipe 9 concave groove 10 outer mold 10a convex portion for fixing base position 12 base 13 concave groove 14 heat exchange pipe 15 heat transfer Board 16 heat exchanger

Claims (6)

熱交換媒体が通される熱交換パイプをベースのパイプ取付面に固定し、このベースの上記パイプ取付面側に伝熱体を、上記熱交換パイプが埋設される状態で鋳型成形して成ることを特徴とする熱交換器。   A heat exchange pipe through which a heat exchange medium is passed is fixed to a pipe mounting surface of a base, and a heat transfer body is molded on the pipe mounting surface side of the base while the heat exchange pipe is embedded. A heat exchanger characterized by 上記ベースを円筒状とし、このベースの上記パイプ取付面としての外周面に、上記熱交換パイプを上記外周面に沿った曲がり状態で固定し、かつ、上記伝熱体を円筒状に鋳型成形したことを特徴とする請求項1記載の熱交換器。   The base is cylindrical, the heat exchange pipe is fixed to the outer peripheral surface of the base as the pipe mounting surface in a bent state along the outer peripheral surface, and the heat transfer body is molded into a cylindrical shape. The heat exchanger according to claim 1. 上記熱交換パイプを上記円筒状ベースの外周面に螺旋状に巻き付けて固定したことを特徴とする請求項2記載の熱交換器。   The heat exchanger according to claim 2, wherein the heat exchange pipe is fixed by being spirally wound around an outer peripheral surface of the cylindrical base. 上記ベースのパイプ取付面に、上記熱交換パイプと交差する複数の凹溝を設けたことを特徴とする請求項1〜3のいずれか1項に記載の熱交換器。   The heat exchanger according to any one of claims 1 to 3, wherein a plurality of concave grooves intersecting with the heat exchange pipe are provided on a pipe mounting surface of the base. 熱交換媒体が通される熱交換パイプをベースのパイプ取付面に固定し、上記ベースを鋳型の一つとして用いてベースのパイプ取付面側に伝熱体を鋳型成形することによって、上記熱交換パイプが埋設された熱交換器を製作することを特徴とする熱交換器の製作方法。   The heat exchange pipe through which the heat exchange medium is passed is fixed to the pipe mounting surface of the base, and the heat exchange is performed by molding the heat transfer body on the pipe mounting surface side of the base using the base as one of the molds. A method of manufacturing a heat exchanger, characterized by manufacturing a heat exchanger in which a pipe is embedded. 上記ベースを円筒状とし、このベースの上記パイプ取付面としての外周面に、上記熱交換パイプを外周面に沿った曲がり状態で固定し、上記ベースを内型として上記ベースの外周面側に円筒状の伝熱体を鋳型成形することを特徴とする請求項5記載の熱交換器の製作方法。   The base is cylindrical, the heat exchange pipe is fixed to the outer peripheral surface of the base as the pipe mounting surface in a bent state along the outer peripheral surface, and the base is used as an inner mold and is cylindrical on the outer peripheral surface side of the base 6. The method of manufacturing a heat exchanger according to claim 5, wherein the heat transfer body is molded.
JP2012011922A 2012-01-24 2012-01-24 Heat exchanger and manufacturing method thereof Active JP5899960B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2012011922A JP5899960B2 (en) 2012-01-24 2012-01-24 Heat exchanger and manufacturing method thereof

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2012011922A JP5899960B2 (en) 2012-01-24 2012-01-24 Heat exchanger and manufacturing method thereof

Publications (2)

Publication Number Publication Date
JP2013152034A true JP2013152034A (en) 2013-08-08
JP5899960B2 JP5899960B2 (en) 2016-04-06

Family

ID=49048517

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2012011922A Active JP5899960B2 (en) 2012-01-24 2012-01-24 Heat exchanger and manufacturing method thereof

Country Status (1)

Country Link
JP (1) JP5899960B2 (en)

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20160047809A (en) * 2014-10-23 2016-05-03 현대모비스 주식회사 Manufacturing method of motor comprising stator-core and housing integrally formed
KR101825887B1 (en) 2017-09-06 2018-02-05 이현환 Casing of heat radiating device in which a refrigerant pipe is embedded, an apparatus for manufacturing the same, and a manufacturing method thereof
WO2019050122A1 (en) * 2017-09-06 2019-03-14 이현환 Heat-radiating device casing having refrigerant pipe embedded therein and apparatus and method for manufacturing same
KR20190029806A (en) * 2017-09-11 2019-03-21 현대자동차주식회사 Apparatus for cooling motor of hybrid vehicles
KR20190090561A (en) * 2018-01-25 2019-08-02 엠에이치기술개발 주식회사 Method for manufacturing motor housing cooling device and motor housing cooling device manufactured by the manufacturing method
KR102018231B1 (en) * 2018-07-11 2019-09-04 엘지전자 주식회사 Electric motor
KR20190103609A (en) * 2018-02-28 2019-09-05 엠에이치기술개발 주식회사 Method for manufacturing motor housing cooling device and motor housing cooling device manufactured by the manufacturing method
WO2023283772A1 (en) * 2021-07-10 2023-01-19 浙江尔格科技股份有限公司 Semi-direct drive wind turbine rotor cooler and cooling method therefor

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20200025456A1 (en) * 2018-07-17 2020-01-23 Haier Us Appliance Solutions, Inc. Rotating heat exchanger with tube coil

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS60174246A (en) * 1984-02-20 1985-09-07 Nakamura Kinzoku Kogyosho:Kk Insert casting method of pipe or the like
JPS6444258A (en) * 1987-08-08 1989-02-16 Toshiba Machine Co Ltd Cylinder for molding machine
JP2002013847A (en) * 2000-06-27 2002-01-18 Hoshizaki Electric Co Ltd Cooling unit, and method of manufacturing the cooling unit
JP2002018566A (en) * 2000-07-07 2002-01-22 Toshiba Mach Co Ltd Injection sleeve for die casting machine

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS60174246A (en) * 1984-02-20 1985-09-07 Nakamura Kinzoku Kogyosho:Kk Insert casting method of pipe or the like
JPS6444258A (en) * 1987-08-08 1989-02-16 Toshiba Machine Co Ltd Cylinder for molding machine
JP2002013847A (en) * 2000-06-27 2002-01-18 Hoshizaki Electric Co Ltd Cooling unit, and method of manufacturing the cooling unit
JP2002018566A (en) * 2000-07-07 2002-01-22 Toshiba Mach Co Ltd Injection sleeve for die casting machine

Cited By (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR102372292B1 (en) * 2014-10-23 2022-03-08 현대모비스 주식회사 Manufacturing method of motor comprising stator-core and housing integrally formed
KR20160047809A (en) * 2014-10-23 2016-05-03 현대모비스 주식회사 Manufacturing method of motor comprising stator-core and housing integrally formed
KR101825887B1 (en) 2017-09-06 2018-02-05 이현환 Casing of heat radiating device in which a refrigerant pipe is embedded, an apparatus for manufacturing the same, and a manufacturing method thereof
WO2019050122A1 (en) * 2017-09-06 2019-03-14 이현환 Heat-radiating device casing having refrigerant pipe embedded therein and apparatus and method for manufacturing same
KR102416587B1 (en) 2017-09-11 2022-07-05 현대자동차주식회사 Apparatus for cooling motor of hybrid vehicles
KR20190029806A (en) * 2017-09-11 2019-03-21 현대자동차주식회사 Apparatus for cooling motor of hybrid vehicles
KR20190090561A (en) * 2018-01-25 2019-08-02 엠에이치기술개발 주식회사 Method for manufacturing motor housing cooling device and motor housing cooling device manufactured by the manufacturing method
KR102559730B1 (en) * 2018-01-25 2023-07-26 엠에이치기술개발 주식회사 Method for manufacturing motor housing cooling device and motor housing cooling device manufactured by the manufacturing method
KR20190103609A (en) * 2018-02-28 2019-09-05 엠에이치기술개발 주식회사 Method for manufacturing motor housing cooling device and motor housing cooling device manufactured by the manufacturing method
KR102591381B1 (en) 2018-02-28 2023-10-19 엠에이치기술개발 주식회사 Method for manufacturing motor housing cooling device and motor housing cooling device manufactured by the manufacturing method
KR102018231B1 (en) * 2018-07-11 2019-09-04 엘지전자 주식회사 Electric motor
WO2020013466A1 (en) * 2018-07-11 2020-01-16 엘지전자 주식회사 Motor
WO2023283772A1 (en) * 2021-07-10 2023-01-19 浙江尔格科技股份有限公司 Semi-direct drive wind turbine rotor cooler and cooling method therefor

Also Published As

Publication number Publication date
JP5899960B2 (en) 2016-04-06

Similar Documents

Publication Publication Date Title
JP5899960B2 (en) Heat exchanger and manufacturing method thereof
EP3116107B1 (en) Electric motor
JP5261052B2 (en) Rotating electric machine and rotating electric machine cooling system
JP4673911B2 (en) Rotating electric machine and rotating electric machine cooling system
JP2012518376A5 (en)
JP6570734B2 (en) Cooling system for electric machine
JP2013543369A (en) Electric machine
US20120216995A1 (en) Motor water-cooling structure and manufacturing method thereof
JP6336342B2 (en) Heat exchanger
CN107623390B (en) motor with cooling pipeline
TW201725835A (en) Compact hydrostatic assembly with cooling
JP6452284B2 (en) motor
CN104467243B (en) A kind of disk type electric machine stator cooling structure
EP2684003B1 (en) Heat transfer pipe for heat exchanger
JP6383540B2 (en) Spinning molding equipment
JP5348476B2 (en) Linear motor, linear motor armature, and method of manufacturing linear motor armature
JP2011064142A (en) Water jacket structure
JP6374797B2 (en) Cooling structure of rotating electric machine
JP6153605B2 (en) EGR device
JP6877315B2 (en) Cooling structure of rotary electric machine
CN107623391B (en) Motor cooling pipeline and forced air cooling motor
JP2013185740A (en) Heat insulation material for hot water storage tank and hot water storage type water heater
JP2010252612A (en) Split stator and stator
JP7415008B2 (en) Rotating electrical machine cooling frame and method for manufacturing the rotating electrical machine cooling frame
JP5601504B2 (en) Rotating electric machine

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20141113

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20150814

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20150818

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20151009

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20160209

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20160222

R150 Certificate of patent or registration of utility model

Ref document number: 5899960

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150