JP2013149843A - Semiconductor light emitting device - Google Patents

Semiconductor light emitting device Download PDF

Info

Publication number
JP2013149843A
JP2013149843A JP2012010132A JP2012010132A JP2013149843A JP 2013149843 A JP2013149843 A JP 2013149843A JP 2012010132 A JP2012010132 A JP 2012010132A JP 2012010132 A JP2012010132 A JP 2012010132A JP 2013149843 A JP2013149843 A JP 2013149843A
Authority
JP
Japan
Prior art keywords
metal pattern
semiconductor light
resin
light emitting
substrate
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2012010132A
Other languages
Japanese (ja)
Other versions
JP5914006B2 (en
Inventor
Mayo Morimoto
真代 盛本
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Stanley Electric Co Ltd
Original Assignee
Stanley Electric Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Stanley Electric Co Ltd filed Critical Stanley Electric Co Ltd
Priority to JP2012010132A priority Critical patent/JP5914006B2/en
Publication of JP2013149843A publication Critical patent/JP2013149843A/en
Application granted granted Critical
Publication of JP5914006B2 publication Critical patent/JP5914006B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/42Wire connectors; Manufacturing methods related thereto
    • H01L2224/47Structure, shape, material or disposition of the wire connectors after the connecting process
    • H01L2224/48Structure, shape, material or disposition of the wire connectors after the connecting process of an individual wire connector
    • H01L2224/4805Shape
    • H01L2224/4809Loop shape
    • H01L2224/48091Arched
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/42Wire connectors; Manufacturing methods related thereto
    • H01L2224/47Structure, shape, material or disposition of the wire connectors after the connecting process
    • H01L2224/48Structure, shape, material or disposition of the wire connectors after the connecting process of an individual wire connector
    • H01L2224/484Connecting portions
    • H01L2224/48463Connecting portions the connecting portion on the bonding area of the semiconductor or solid-state body being a ball bond
    • H01L2224/48465Connecting portions the connecting portion on the bonding area of the semiconductor or solid-state body being a ball bond the other connecting portion not on the bonding area being a wedge bond, i.e. ball-to-wedge, regular stitch

Landscapes

  • Led Device Packages (AREA)

Abstract

PROBLEM TO BE SOLVED: To provide a semiconductor light emitting device which is unlikely to cause failures that damage the confidence of users even in a high temperature atmosphere of solder melting heat at a solder reflow process during substrate mounting.SOLUTION: A base substrate 30 is formed by bonding an upper substrate 10 to a lower substrate 20 with an insulative bonding member, and a semiconductor light emitting element 3 die-bonded in a recessed part 11 of the base substrate 30 is covered by a phosphor containing resin 5 filling the recessed part 11. Then, the phosphor containing resin 5 is covered by a resin having a thermal expansion coefficient smaller than that of the phosphor containing resin 5 to form a sealing resin part 6. Concurrently, an annular metal pattern 12a is formed so as to enclose an upper edge of the recessed part 11 on a front surface of the base substrate 30, and the entire annular metal pattern 12a is covered by the sealing resin part 6. In this structure, expansion stress caused by thermal expansion of the phosphor containing resin 5 is relaxed by the annular metal pattern 12a in a high temperature atmosphere at a solder reflow process and cracks are prevented from occurring in the sealing resin part 6 positioned at the upper side.

Description

本発明は、半導体発光装置に関するものであり、詳しくは、基板実装時の半田リフロー工程において、半導体発光素子を封止する封止樹脂にクラックを生じないような構成とした半導体発光装置に関する。   The present invention relates to a semiconductor light-emitting device, and more particularly to a semiconductor light-emitting device having a configuration in which a crack is not generated in a sealing resin for sealing a semiconductor light-emitting element in a solder reflow process during substrate mounting.

従来、半導体発光装置としては、図16(a(平面図)、b(aのA−A断面図))に示す構成のものが提案されている。   Conventionally, as a semiconductor light emitting device, a semiconductor light emitting device having a structure shown in FIG. 16 (a (plan view), b (a sectional view taken along line AA) in FIG. 16) has been proposed.

それは、貫通孔を有する上部基板80と下部基板81とを貼り合わせて発光素子実装基板82を形成し、(貫通孔による)凹部83の(下部基板の上面による)底面から凹部83の内側面及び上部基板80の上面を経て発光素子実装基板82の側面及び下部基板81の下面に回り込む第1電極84と、上部基板80の上面を経て発光素子実装基板82の側面及び下部基板81の下面に回り込む第2電極85とが、互いに分離独立して形成されている。   That is, an upper substrate 80 having a through hole and a lower substrate 81 are bonded together to form a light emitting element mounting substrate 82, and the inner surface of the recess 83 from the bottom surface (by the upper surface of the lower substrate) of the recess 83 (by the through hole) and The first electrode 84 goes around the side surface of the light emitting element mounting substrate 82 and the lower surface of the lower substrate 81 via the upper surface of the upper substrate 80, and goes around the side surface of the light emitting element mounting substrate 82 and the lower surface of the lower substrate 81 via the upper surface of the upper substrate 80. The second electrode 85 is formed separately from each other.

そして、凹部83底面に位置する第1電極84上に発光素子86をダイボンディングして発光素子86の下部電極と第1電極84との電気的導通を図ると共に、第2電極85と発光素子86の上部電極とをボンディングワイヤ87でワイヤボンディングして発光素子86の上部電極と第2電極85との電気的導通を図っている。   Then, the light emitting element 86 is die-bonded on the first electrode 84 located on the bottom surface of the recess 83 to achieve electrical connection between the lower electrode of the light emitting element 86 and the first electrode 84, and the second electrode 85 and the light emitting element 86 are connected. The upper electrode of the light emitting element 86 and the second electrode 85 are electrically connected by wire bonding with the upper electrode of the light emitting element 86.

さらに、凹部83内を埋めると共に上部基板80の上面に位置する第1電極84及び第2電極85の夫々の一部を覆うようにエポキシ樹脂等の光透過性樹脂からなるパッケージ88が形成され、該パッケージ88によって発光素子86及びボンディングワイヤ87が樹脂封止されている(参考文献1参照)。   Furthermore, a package 88 made of a light-transmitting resin such as an epoxy resin is formed so as to fill the recess 83 and cover a part of each of the first electrode 84 and the second electrode 85 located on the upper surface of the upper substrate 80, The light emitting element 86 and the bonding wire 87 are resin-sealed by the package 88 (see Reference 1).

特開2001−127345号公報JP 2001-127345 A

ところで、半導体発光装置は近年、車両用灯具や家庭用照明器具等の光源として用いられ、その場合、白色光を出射する白色半導体発光装置が求められる。   By the way, in recent years, the semiconductor light-emitting device is used as a light source for a vehicle lamp, a household lighting fixture, and the like. In that case, a white semiconductor light-emitting device that emits white light is required.

そこで、上記半導体発光装置を基本構成として白色半導体発光装置を実現するためには、例えば、発光素子に青色光を発光する青色発光素子を用い、凹部83内に光透過性樹脂に蛍光体を含有してなる蛍光体含有樹脂89を充填することにより該青色発光素子を蛍光体含有樹脂で樹脂封止するものである。   Therefore, in order to realize a white semiconductor light-emitting device based on the semiconductor light-emitting device, for example, a blue light-emitting element that emits blue light is used as the light-emitting element, and a phosphor is contained in the light-transmitting resin in the recess 83. The blue light-emitting element is sealed with the phosphor-containing resin by filling the phosphor-containing resin 89 formed as described above.

この場合、例えば、蛍光体は、青色光で励起されて黄色光に波長変換する黄色蛍光体、或いは青色光で励起されて赤色光に波長変換する赤色蛍光体と青色光で励起されて緑色光に波長変換する緑色蛍光体との混合蛍光体が用いられる。但し、蛍光体の種類及び混合数はこれに限られるものではなく、求められる光色を実現するための最適な選択が行われる。   In this case, for example, the phosphor is excited by blue light and converted to yellow light, or converted to yellow light, or red light that is excited by blue light and converted to red light and red light and excited by blue light and green light. A mixed phosphor with a green phosphor for wavelength conversion is used. However, the type and the number of the phosphors are not limited to this, and an optimum selection for realizing the required light color is performed.

そして、凹部83内に充填された蛍光体含有樹脂89及び上部基板80の上面に位置する第1電極84及び第2電極85の夫々の一部を覆うようにエポキシ樹脂等の光透過性樹脂からなるパッケージ88が形成される。   The phosphor-containing resin 89 filled in the recess 83 and the light-transmitting resin such as an epoxy resin so as to cover a part of each of the first electrode 84 and the second electrode 85 located on the upper surface of the upper substrate 80. A package 88 is formed.

ところで、蛍光体を含有する光透過性樹脂がパッケージを形成するエポキシ樹脂よりも熱膨張係数が大きい場合、具体的にはシリコーン樹脂の場合、シリコーン樹脂とエポキシ樹脂とでは熱膨張係数が大きく異なる。   By the way, when the light-transmitting resin containing the phosphor has a larger thermal expansion coefficient than the epoxy resin forming the package, specifically, in the case of a silicone resin, the thermal expansion coefficient differs greatly between the silicone resin and the epoxy resin.

そこで、半導体発光装置を半田リフローによって基板実装すると、半田リフロー時の半田溶融熱によって凹部83内の蛍光体含有樹脂89が熱膨張し、該蛍光体含有樹脂89の上に位置する、蛍光体を含有する光透過性樹脂よりも熱膨張係数が小さいエポキシ樹脂からなるパッケージ88に上向きの膨張応力が加わる。   Therefore, when the semiconductor light emitting device is mounted on the substrate by solder reflow, the phosphor-containing resin 89 in the recess 83 is thermally expanded by the solder melting heat at the time of solder reflow, and the phosphor located on the phosphor-containing resin 89 is obtained. An upward expansion stress is applied to the package 88 made of an epoxy resin having a smaller thermal expansion coefficient than the light-transmitting resin contained.

そのため、パッケージ88の、蛍光体含有樹脂89が充填された凹部83上に位置する部分が上方に押し上げられ、その押し上げ力は凹部83の上部から放射状に広がってその周辺にまで及ぶ。その結果、第1電極84の、凹部83上縁を囲むように環状に位置する部分(環状部)84aであって蛍光体含有樹脂89で覆われていない領域とパッケージ88との界面で剥離が生じ、その剥離は、第1電極84の環状部84aからパッケージ88外まで延長されたランド部84bに沿ってパッケージ88の外周まで進行する。   Therefore, a portion of the package 88 located on the concave portion 83 filled with the phosphor-containing resin 89 is pushed upward, and the pushing force spreads radially from the upper portion of the concave portion 83 to the periphery thereof. As a result, the first electrode 84 is peeled at the interface between the package 88 and a region (annular portion) 84a that is annularly positioned so as to surround the upper edge of the recess 83 and is not covered with the phosphor-containing resin 89. The separation occurs and proceeds to the outer periphery of the package 88 along the land portion 84b extending from the annular portion 84a of the first electrode 84 to the outside of the package 88.

すると、半田リフロー工程を経て基板実装された半導体発光装置は、使用環境下において存在する水分、塩分や塵埃等が第1電極84のランド部84b及び環状部84aに沿って形成された剥離空間内をパッケージ88の中央部に向かって進入し、最終的には発光素子86に至る。   Then, in the semiconductor light emitting device mounted on the substrate through the solder reflow process, moisture, salt, dust, etc. existing in the use environment are formed in the separation space where the first electrode 84 is formed along the land portion 84b and the annular portion 84a. Enters toward the center of the package 88 and finally reaches the light emitting element 86.

その結果、発光素子86の劣化が促進されて光度低下あるいは不点灯等による光学性能の低下を招くと共に、素子寿命を短縮することにも繋がる。換言すると、半導体発光装置の信頼性を損なうものとなる。   As a result, the deterioration of the light-emitting element 86 is promoted, leading to a decrease in optical performance due to a decrease in luminous intensity or non-lighting, and a reduction in element life. In other words, the reliability of the semiconductor light emitting device is impaired.

このような問題は、特に、融点が200℃付近の鉛半田に対して融点がそれよりも高い260℃付近の鉛フリー半田においては顕著に現れ深刻な問題となる。   Such a problem is particularly noticeable and serious in lead-free solder having a melting point of about 260 ° C., which is higher than that of lead solder having a melting point of about 200 ° C.

そこで、本発明は上記問題に鑑みて創案なされたもので、その目的とするところは、基板搭載時の半田リフロー工程における半田溶融熱の高温雰囲気中にあっても、信頼性を損なうような不具合を生じないような半導体発光装置を提供することにある。   Accordingly, the present invention was devised in view of the above problems, and the object of the present invention is to have a defect that impairs reliability even in a high temperature atmosphere of solder melting heat in a solder reflow process when mounting a board. It is an object of the present invention to provide a semiconductor light emitting device that does not cause the above.

上記課題を解決するために、本発明の請求項1に記載された発明は、実装基板と、前記実装基板上に配置された、貫通孔を有する上部基板と、前記貫通孔内の前記実装基板上にダイボンディングされた半導体発光素子と、前記貫通孔内に充填された第1の樹脂と、前記第1の樹脂及び前記上部基板の上面を覆う第2の樹脂を備え、前記上部基板は、上面に前記貫通孔の上縁或いは上縁近傍から該貫通孔の外側に向かって形成された導電パターンを有し、前記第1の樹脂は、前記導電パターンと接し、前記導電パターンは、外縁全体が前記第2の樹脂に覆われていることを特徴とするものである。   In order to solve the above-mentioned problem, the invention described in claim 1 of the present invention includes a mounting substrate, an upper substrate having a through hole disposed on the mounting substrate, and the mounting substrate in the through hole. A semiconductor light emitting device die-bonded on top, a first resin filled in the through hole, a second resin covering the first resin and the upper surface of the upper substrate, the upper substrate, The upper surface has a conductive pattern formed from the upper edge of the through hole or near the upper edge toward the outside of the through hole, the first resin is in contact with the conductive pattern, and the conductive pattern is the entire outer edge. Is covered with the second resin.

また、本発明の請求項2に記載された発明は、請求項1において、前記第1の樹脂は前記第2の樹脂よりも熱膨張係数が大きいこと特徴とするものである。   The invention described in claim 2 of the present invention is characterized in that, in claim 1, the first resin has a thermal expansion coefficient larger than that of the second resin.

また、本発明の請求項3に記載された発明は、請求項1又は請求項2において、前記第1の樹脂は波長変換部材を含有してなることを特徴とするものである。   The invention described in claim 3 of the present invention is characterized in that in claim 1 or 2, the first resin contains a wavelength conversion member.

また、本発明の請求項4に記載された発明は、請求項1〜請求項3のいずれかにおいて、前記導電パターンは、前記貫通孔の上縁を囲むように環状に形成されていることを特徴とするものである。   Further, in the invention described in claim 4 of the present invention, in any one of claims 1 to 3, the conductive pattern is formed in an annular shape so as to surround an upper edge of the through hole. It is a feature.

また、本発明の請求項5に記載された発明は、請求項1〜請求項4のいずれかにおいて、前記導電パターンの外縁は、曲線状に形成されていることを特徴とするものである。   The invention described in claim 5 of the present invention is characterized in that, in any one of claims 1 to 4, the outer edge of the conductive pattern is formed in a curved shape.

また、本発明の請求項6に記載された発明は、請求項4又は請求項5において、前記上部基板は、上面に前記導電パターンと離間して形成された受電用パターンと、前記半導体発光素子の電極と前記受電用パターンとを接続する導電ワイヤを備え、前記導電パターンは、前記貫通孔の内側面と前記半導体発光素子の各側面とで挟まれた領域における前記第1の樹脂の樹脂量が多い方向、で且つ、前記導電ワイヤが配線されている方向以外の方向の少なくとも一方向に、前記貫通孔の上縁或いは上縁近傍から外縁までの幅が他の部分よりも広い領域を有していることを特徴とするものである。   According to a sixth aspect of the present invention, in the fourth or fifth aspect, the upper substrate has a power receiving pattern formed on the upper surface so as to be separated from the conductive pattern, and the semiconductor light emitting device. A conductive wire connecting the electrode and the power receiving pattern, wherein the conductive pattern is a resin amount of the first resin in a region sandwiched between an inner side surface of the through hole and each side surface of the semiconductor light emitting element There is a region where the width from the upper edge of the through hole or the vicinity of the upper edge to the outer edge is wider than the other part in at least one direction other than the direction in which the conductive wire is wired. It is characterized by that.

本発明の半導体発光装置は、貫通孔と該貫通孔の上縁或いは上縁近傍から外側に向かう金属パターンを有する上部基板を実装基板上に配置し、該貫通孔内にダイボンディングした半導体発光素子を貫通孔内に充填した第1の樹脂で覆い、第1の樹脂よりも熱膨張係数が小さい第2の樹脂で第1の樹脂全体及び金属パターン全体を覆った。   The semiconductor light-emitting device of the present invention is a semiconductor light-emitting element in which an upper substrate having a through hole and a metal pattern directed outward from the upper edge or near the upper edge of the through hole is disposed on the mounting substrate, and die-bonded in the through hole Was covered with a first resin filled in the through holes, and the entire first resin and the entire metal pattern were covered with a second resin having a smaller thermal expansion coefficient than that of the first resin.

その結果、半導体発光装置の基板実装時の半田リフロー工程において、半田溶融熱の高温雰囲気中における第1の樹脂の熱膨張による膨張応力が金属パターン部で緩和され、上方に位置する第2の樹脂に対するクラックの発生が抑制される。   As a result, in the solder reflow process at the time of mounting the substrate of the semiconductor light emitting device, the expansion stress due to the thermal expansion of the first resin in the high temperature atmosphere of the solder melting heat is relieved by the metal pattern portion, and the second resin located above The generation of cracks against is suppressed.

実施形態の半導体発光装置の上面図である。It is a top view of the semiconductor light emitting device of the embodiment. 図1のA−A断面図である。It is AA sectional drawing of FIG. 実施形態の半導体発光装置の斜視図である。It is a perspective view of the semiconductor light-emitting device of an embodiment. 半導体発光装置の製造工程の説明図である。It is explanatory drawing of the manufacturing process of a semiconductor light-emitting device. 同じく、製造工程の説明図である。Similarly, it is explanatory drawing of a manufacturing process. 同じく、製造工程の説明図である。Similarly, it is explanatory drawing of a manufacturing process. 同じく、製造工程の説明図である。Similarly, it is explanatory drawing of a manufacturing process. 同じく、製造工程の説明図である。Similarly, it is explanatory drawing of a manufacturing process. 同じく、製造工程の説明図である。Similarly, it is explanatory drawing of a manufacturing process. 同じく、製造工程の説明図である。Similarly, it is explanatory drawing of a manufacturing process. 同じく、製造工程の説明図である。Similarly, it is explanatory drawing of a manufacturing process. 同じく、製造工程の説明図である。Similarly, it is explanatory drawing of a manufacturing process. 他の実施形態を説明する上面図である。It is a top view explaining other embodiment. 環状金属パターンの説明図である。It is explanatory drawing of a cyclic | annular metal pattern. 他の実施形態の説明図である。It is explanatory drawing of other embodiment. 従来例の説明図である。It is explanatory drawing of a prior art example.

以下、この発明の好適な実施形態を図1〜図15を参照しながら、詳細に説明する(同一部分については同じ符号を付す)。尚、以下に述べる実施形態は、本発明の好適な具体例であるから、技術的に好ましい種々の限定が付されているが、本発明の範囲は、以下の説明において特に本発明を限定する旨の記載がない限り、これらの実施形態に限られるものではない。   Hereinafter, preferred embodiments of the present invention will be described in detail with reference to FIGS. 1 to 15 (the same reference numerals are given to the same portions). The embodiments described below are preferable specific examples of the present invention, and thus various technically preferable limitations are given. However, the scope of the present invention particularly limits the present invention in the following description. Unless stated to the effect, the present invention is not limited to these embodiments.

図1は本発明に係わる実施形態の上面図、図2は図1のA−A断面図、図3は斜視図である。   1 is a top view of an embodiment according to the present invention, FIG. 2 is a cross-sectional view taken along the line AA of FIG. 1, and FIG. 3 is a perspective view.

半導体発光装置1は、貫通孔11を有すると共に一方の面(表側面)に金属パターン(表側金属パターン12)を形成した略長方形状の上部基板10と、両面(表側面及び裏側面)の夫々に金属パターン(表側金属パターン21及び裏側金属パターン22)を形成した略長方形状の下部基板20の2枚の基板で構成され、上部基板10の裏側面と下部基板20の表側面が絶縁接着剤あるいは絶縁接着シート等の絶縁接着部材で貼り合わされた2層構造を有しており、この2層構造によってベース基板30が構成されている。   The semiconductor light emitting device 1 includes a substantially rectangular upper substrate 10 having a through hole 11 and a metal pattern (front side metal pattern 12) formed on one side (front side), and both sides (front side and back side). Are formed of two substrates of a substantially rectangular lower substrate 20 having a metal pattern (a front-side metal pattern 21 and a back-side metal pattern 22) formed thereon. The back side surface of the upper substrate 10 and the front side surface of the lower substrate 20 are insulating adhesives. Or it has the 2 layer structure bonded together by insulating adhesive members, such as an insulating adhesive sheet, and the base substrate 30 is comprised by this 2 layer structure.

そのうち、上部基板10の表側金属パターン12は、円柱状の貫通孔(ベース基板30としては円柱状の凹部)11の上縁を囲むように環状に形成された環状金属パターン12aと、上部基板10の互いに対向する両縁から内側に向けて形成された一対の表側縁部金属パターン12b、12cと、表側縁部金属パターン12cから内側に突出して延成されたワイヤボンディングパッド12dとからなっている。環状金属パターン12aと、表側縁部金属パターン12b、12cとは、上部基板10上において離間して形成されている。   Among them, the front-side metal pattern 12 of the upper substrate 10 includes an annular metal pattern 12 a formed in an annular shape so as to surround the upper edge of a cylindrical through hole (a cylindrical recess as the base substrate 30) 11, and the upper substrate 10. Are formed of a pair of front side edge metal patterns 12b and 12c formed inwardly from both opposite edges, and a wire bonding pad 12d extending inwardly protruding from the front side edge metal pattern 12c. . The annular metal pattern 12 a and the front side edge metal patterns 12 b and 12 c are formed on the upper substrate 10 so as to be separated from each other.

また、下部基板20の表側金属パターン21は、上部基板10と下部基板20とで挟まれた位置にあり、凹部11の底面をなすように形成されている。   The front metal pattern 21 of the lower substrate 20 is located between the upper substrate 10 and the lower substrate 20 and is formed so as to form the bottom surface of the recess 11.

一方、下部基板20の裏側金属パターン22は、上方に位置する上部基板10の表側縁部金属パターン12b、12cと同様に、下部基板20の互いに対向する両縁から内側に向けて形成された一対の裏側縁部金属パターン22b、22cからなり、表側縁部金属パターン12bと裏側縁部金属パターン22b、及び、表側縁部金属パターン12cと裏側縁部金属パターン22cは、互いに上下方向の対向する位置に位置している。   On the other hand, the back-side metal pattern 22 of the lower substrate 20 is a pair formed inwardly from the opposite edges of the lower substrate 20 like the front-side edge metal patterns 12b and 12c of the upper substrate 10 positioned above. The front side edge metal pattern 12b and the back side edge metal pattern 22b, and the front side edge metal pattern 12c and the back side edge metal pattern 22c are opposed to each other in the vertical direction. Is located.

なお、裏側縁部金属パターン22bと裏側縁部金属パターン22cは、半導体発光装置1を基板に実装するときに、基板に形成された電極パターンに接合されて該半導体発光装置1を基板に固定支持する固定支持部の働き及び外部からの電力を半導体発光装置1に取り込む受電電極の働きを行う。つまり、裏側縁部金属パターン22bと裏側縁部金属パターン22cが、はんだリフロー工程などにより、はんだを介して回路基板等の基板上に接合される。   The back side edge metal pattern 22b and the back side edge metal pattern 22c are bonded to the electrode pattern formed on the substrate to fix the semiconductor light emitting device 1 to the substrate when the semiconductor light emitting device 1 is mounted on the substrate. It functions as a fixed support portion that performs the function of a power receiving electrode that takes in electric power from the outside to the semiconductor light emitting device 1. That is, the back side edge metal pattern 22b and the back side edge metal pattern 22c are joined to a substrate such as a circuit board through solder by a solder reflow process or the like.

凹部11は、内側面に金属パターン(凹面金属パターン12e)が形成されており、凹部11の上縁を囲む環状金属パターン12aと凹部11の底面となる表側金属パターン21が凹面金属パターン12eを介して接続されている。   The concave portion 11 has a metal pattern (concave metal pattern 12e) formed on the inner surface, and an annular metal pattern 12a surrounding the upper edge of the concave portion 11 and a front side metal pattern 21 serving as a bottom surface of the concave portion 11 via the concave metal pattern 12e. Connected.

更に、表側縁部金属パターン12bと表側金属パターン21と裏側縁部金属パターン22bとが、ベース基板30の側面に形成された側面金属パターン31bを介して接続され、表側縁部金属パターン12cと裏側縁部金属パターン22cとが、側面金属パターン31bが形成された側面に対向する側面に形成された側面金属パターン31cを介して接続されている。   Furthermore, the front side edge metal pattern 12b, the front side metal pattern 21, and the back side edge metal pattern 22b are connected via a side metal pattern 31b formed on the side surface of the base substrate 30, and the front side edge metal pattern 12c and the back side. The edge metal pattern 22c is connected via a side metal pattern 31c formed on the side surface opposite to the side surface on which the side metal pattern 31b is formed.

つまり、ベース基板30は、環状金属パターン12a、凹面金属パターン12e、表側金属パターン21、表側縁部金属パターン12b、裏側縁部金属パターン22b及び側面金属パターン31bが接続状態にあり、表側縁部金属パターン12c、裏側縁部金属パターン22c及び側面金属パターン31cが接続状態にある。   That is, in the base substrate 30, the annular metal pattern 12a, the concave metal pattern 12e, the front side metal pattern 21, the front side edge metal pattern 12b, the back side edge metal pattern 22b, and the side surface metal pattern 31b are in a connected state, and the front side edge metal The pattern 12c, the back side edge metal pattern 22c, and the side surface metal pattern 31c are in a connected state.

そして、凹部11の底面に位置する表側金属パターン21上に半導体発光素子3をダイボンディングして半導体発光素子3の下部電極と表側金属パターン21との電気的導通を図ると共に、表側縁部金属パターン12cから延成されたワイヤボンディングパッド12dと半導体発光素子3の上部電極とをボンディングワイヤ4でワイヤボンディングして半導体発光素子3の上部電極と表側縁部金属パターン12cとの電気的導通を図っている。   Then, the semiconductor light emitting element 3 is die-bonded on the front side metal pattern 21 positioned on the bottom surface of the recess 11 to achieve electrical conduction between the lower electrode of the semiconductor light emitting element 3 and the front side metal pattern 21, and the front side edge metal pattern. The wire bonding pad 12d extended from 12c and the upper electrode of the semiconductor light emitting element 3 are wire-bonded by the bonding wire 4 to achieve electrical conduction between the upper electrode of the semiconductor light emitting element 3 and the front side edge metal pattern 12c. Yes.

凹部11内には、光透過性樹脂に蛍光体を含有してなる蛍光体含有樹脂5が環状金属パターン12aの上面とほぼ面一となるように充填され、凹部11内にダイボンディングされた半導体発光素子3全体が蛍光体含有樹脂5によって覆われている。なお、蛍光体含有樹脂5の上面は、後述する図15bに示すように、凹部11内から盛り上がるように形成されてもよい。ここで、蛍光体含有樹脂5は、凹部の上縁あるいは上縁近傍から凹部の外側に向かって形成されている、環状金属パターン12aあるいは環状金属パターンに連続して形成されている凹面金属パターン12eに接するように充填される。なお、環状金属パターン12aは、上部基板10の貫通孔11の上縁の上に必ずしも形成されなくてもよく、該上縁より外側に形成されてもよいが、この場合には、蛍光体含有樹脂5は、環状金属パターン12aに接するように充填する。さらに、凹面金属パターン12eは、任意に形成することができるが、蛍光体含有樹脂5を凹部11の上面まで充填しない場合には、環状金属パターン12aに連続した凹面金属パターン12eを形成し、蛍光体含有樹脂5を凹面金属パターン12eに接するように充填する。   The recess 11 is filled with a phosphor-containing resin 5 containing a phosphor in a light-transmitting resin so as to be substantially flush with the upper surface of the annular metal pattern 12a, and is die-bonded in the recess 11 The entire light emitting element 3 is covered with the phosphor-containing resin 5. The upper surface of the phosphor-containing resin 5 may be formed so as to rise from the inside of the recess 11 as shown in FIG. Here, the phosphor-containing resin 5 is formed from the upper edge or the vicinity of the upper edge of the concave portion toward the outside of the concave portion, and the concave metal pattern 12e formed continuously from the annular metal pattern 12a. It is filled so that it touches. The annular metal pattern 12a is not necessarily formed on the upper edge of the through hole 11 of the upper substrate 10, and may be formed outside the upper edge. In this case, however, the phosphor-containing pattern The resin 5 is filled in contact with the annular metal pattern 12a. Further, the concave metal pattern 12e can be arbitrarily formed, but when the phosphor-containing resin 5 is not filled up to the upper surface of the concave portion 11, a concave metal pattern 12e continuous with the annular metal pattern 12a is formed, and fluorescent The body-containing resin 5 is filled in contact with the concave metal pattern 12e.

そこで、上記半導体発光装置1を白色光を照射する白色半導体発光装置とすると、半導体発光素子3に例えば、青色光を発光する青色半導体発光素子を用い、蛍光体含有樹脂5を構成する蛍光体に例えば、青色半導体発光素子から発せられた青色光で励起されて黄色光に波長変換する黄色蛍光体、或いは青色光で励起されて赤色光に波長変換する赤色蛍光体と青色光で励起されて緑色光に波長変換する緑色蛍光体との混合蛍光体が用いられる。但し、蛍光体の種類及び混合数はこれに限られるものではなく、半導体発光装置1に求められる光色を実現するために最適な選択が行われる。   Therefore, when the semiconductor light emitting device 1 is a white semiconductor light emitting device that emits white light, for example, a blue semiconductor light emitting device that emits blue light is used as the semiconductor light emitting device 3, and the phosphor constituting the phosphor-containing resin 5 is used. For example, a yellow phosphor that is excited by blue light emitted from a blue semiconductor light emitting element and converts the wavelength to yellow light, or a red phosphor that is excited by blue light and wavelength-converts to red light and excited by blue light and green A mixed phosphor with a green phosphor that converts wavelength into light is used. However, the type and the number of the phosphors are not limited to this, and an optimal selection is performed to realize the light color required for the semiconductor light emitting device 1.

上部基板10(ベース基板30)の表側面上には、光透過性樹脂による封止樹脂部6が形成され、中央部の半導体発光素子3上に凸状のレンズ部6aが形成されている。封止樹脂部6は、凹部11内に充填された蛍光体含有樹脂5の表面全体、環状金属パターン12aの全体、表側縁部金属パターン12bの一部、及びワイヤボンディングパッド12d全体を含む表側縁部金属パターン12cの一部を覆っている。   On the front side surface of the upper substrate 10 (base substrate 30), a sealing resin portion 6 made of a light-transmitting resin is formed, and a convex lens portion 6a is formed on the semiconductor light emitting element 3 in the central portion. The sealing resin portion 6 includes the entire surface of the phosphor-containing resin 5 filled in the recess 11, the entire annular metal pattern 12a, a portion of the front edge metal pattern 12b, and the front edge including the entire wire bonding pad 12d. A portion of the partial metal pattern 12c is covered.

なお、封止樹脂部6を形成する光透過性樹脂と蛍光体含有樹脂5を構成する光透過性樹脂は異なる素材が用いられ、蛍光体含有樹脂5を構成する光透過性樹脂の方が封止樹脂部6を形成する光透過性樹脂よりも熱膨張係数が大きい素材が用いられる。具体的には、例えば、蛍光体含有樹脂5を構成する光透過性樹脂の素材にシリコーン樹脂が用いられ、封止樹脂部6を形成する光透過性樹脂の素材にエポキシ樹脂が用いられる。   Note that different materials are used for the light-transmitting resin forming the sealing resin portion 6 and the light-transmitting resin forming the phosphor-containing resin 5, and the light-transmitting resin forming the phosphor-containing resin 5 is sealed. A material having a larger thermal expansion coefficient than that of the light-transmitting resin forming the stop resin portion 6 is used. Specifically, for example, a silicone resin is used as a light transmissive resin material constituting the phosphor-containing resin 5, and an epoxy resin is used as a light transmissive resin material forming the sealing resin portion 6.

なお、図1〜図3からわかるように、凹部11の上縁を囲むように環状に形成された環状金属パターン12aは、その幅が均一ではなく、凹部11に対してボンディングワイヤ4が配線された側と反対側に向かって幅広となっており、換言すると、表側縁部金属パターン12bの方向に延長された幅広延長部12aaを有する形状となっている。   As can be seen from FIGS. 1 to 3, the annular metal pattern 12 a formed in an annular shape so as to surround the upper edge of the recess 11 is not uniform in width, and the bonding wire 4 is wired to the recess 11. In other words, it has a shape having a wide extension 12aa extending in the direction of the front edge metal pattern 12b.

このような構成の半導体発光装置1を、基板実装のために半田リフロー工程の高温雰囲気(鉛フリー半田を用いた場合は260℃付近の温度)中に投入すると、凹部11内に充填された熱膨張係数が大きい蛍光体含有樹脂5が熱膨張によってその上に位置する、蛍光体含有樹脂5よりも熱膨張係数が小さい封止樹脂部6に上向きの膨張応力を加える。   When the semiconductor light emitting device 1 having such a configuration is put into a high temperature atmosphere (a temperature around 260 ° C. when lead-free solder is used) in a solder reflow process for board mounting, the heat filled in the recess 11 An upward expansion stress is applied to the sealing resin portion 6 having a smaller thermal expansion coefficient than that of the phosphor-containing resin 5 on which the phosphor-containing resin 5 having a large expansion coefficient is located due to thermal expansion.

すると、封止樹脂部6の、蛍光体含有樹脂5が充填された凹部11上に位置する部分が上方に押し上げられ、その押し上げ力は凹部11の上部から放射状に広がってその周辺にまで及ぶ。   Then, a portion of the sealing resin portion 6 located on the concave portion 11 filled with the phosphor-containing resin 5 is pushed upward, and the pushing force spreads radially from the upper portion of the concave portion 11 to the periphery thereof.

このとき、半導体発光装置が、「背景技術」で説明した従来構造の半導体発光装置であると、上述したように、第1電極84の、凹部83上縁を囲むように環状に位置する部分(環状部)84aであって蛍光体含有樹脂89で覆われていない領域とパッケージ88との界面で剥離が生じ、その剥離は、第1電極84の環状部84aからパッケージ88外まで延長されたランド部84bに沿ってパッケージ88の外周まで進行する。   At this time, if the semiconductor light-emitting device is the semiconductor light-emitting device having the conventional structure described in “Background Art”, as described above, the portion of the first electrode 84 positioned in an annular shape so as to surround the upper edge of the recess 83 ( The annular portion 84a is peeled off at the interface between the package 88 and the region not covered with the phosphor-containing resin 89, and the peeling is a land extended from the annular portion 84a of the first electrode 84 to the outside of the package 88. It progresses to the outer periphery of the package 88 along the part 84b.

すると、半田リフロー工程を経て基板実装された半導体発光装置は、使用環境下において存在する水分、塩分や塵埃等が第1電極84のランド部84b及び環状部84aに沿って形成された剥離空間内をパッケージ88の中央部に向かって進入し、最終的には発光素子86に至る。   Then, in the semiconductor light emitting device mounted on the substrate through the solder reflow process, moisture, salt, dust, etc. existing in the use environment are formed in the separation space where the first electrode 84 is formed along the land portion 84b and the annular portion 84a. Enters toward the center of the package 88 and finally reaches the light emitting element 86.

また、剥離箇所を起点としてパッケージ88内にクラックを発生させることもある。それにより、半導体発光素子の破損やボンディングワイヤの切断等の機械的な損傷を受ける恐れもある。   Further, a crack may be generated in the package 88 starting from the peeled portion. This may cause mechanical damage such as breakage of the semiconductor light emitting element and cutting of the bonding wire.

その結果、発光素子86の劣化が促進されて光度低下あるいは不点灯等による光学性能の低下を招くと共に、素子寿命を短縮することにも繋がる。換言すると、半導体発光装置の信頼性を損なうものとなる(図16参照)。   As a result, the deterioration of the light-emitting element 86 is promoted, leading to a decrease in optical performance due to a decrease in luminous intensity or non-lighting, and a reduction in element life. In other words, the reliability of the semiconductor light emitting device is impaired (see FIG. 16).

それに対し、本発明の半導体発光装置1は、凹部11の上縁を囲むように環状に形成された環状金属パターン12aがその全体を封止樹脂部6によって覆われており、封止樹脂部6外までは延びていない。   On the other hand, in the semiconductor light emitting device 1 of the present invention, the annular metal pattern 12a formed in an annular shape so as to surround the upper edge of the recess 11 is entirely covered with the sealing resin portion 6, and the sealing resin portion 6 It does not extend to the outside.

そのため、凹部11内に充填された蛍光体含有樹脂5が半田リフロー工程における半田溶融熱によって熱膨張すると、熱膨張による膨張応力が封止樹脂部6の、蛍光体含有樹脂5が充填された凹部11上に位置する部分に加わり、その部分が上方に押し上げられる。すると、その押し上げ力は封止樹脂部6の、凹部11の上部から放射状に広がり、凹部11上縁を囲むように環状に位置する環状金属パターン12a上の部分にも加わる。   Therefore, when the phosphor-containing resin 5 filled in the recess 11 is thermally expanded by the solder melting heat in the solder reflow process, the expansion stress due to the thermal expansion is the recess of the sealing resin portion 6 filled with the phosphor-containing resin 5. 11 is added to the part located on the top, and the part is pushed upward. Then, the pushing force spreads radially from the top of the recess 11 of the sealing resin portion 6 and is also applied to a portion on the annular metal pattern 12 a that is annularly positioned so as to surround the upper edge of the recess 11.

その結果、押し上げ力を受けた封止樹脂部6は、環状金属パターン12aとの接着力により、蛍光体含有樹脂5との接着力が強いため、環状金属パターン12aと封止樹脂部6との間で界面剥離が生じ、該界面剥離が生じることによって蛍光体含有樹脂5で発生した膨張応力の大部分は緩和されることになり、封止樹脂部6におけるクラックの発生が抑制される。この界面剥離は、凹部の上縁あるいは上縁近傍から凹部の外側に向かって形成されている、環状金属パターン12a上あるいは環状金属パターンに連続して形成されている凹面金属パターン12e上における、封止樹脂部6に覆われた端部(つまり、蛍光体含有樹脂5に覆われた端部との境)を起点として、凹部11の外側方向へ生じる。   As a result, the sealing resin part 6 that has received the pushing-up force has a strong adhesive force with the phosphor-containing resin 5 due to the adhesive force with the annular metal pattern 12a, and therefore the annular metal pattern 12a and the sealing resin part 6 Interfacial delamination occurs, and most of the expansion stress generated in the phosphor-containing resin 5 due to the interfacial delamination is alleviated, and the generation of cracks in the sealing resin portion 6 is suppressed. This interfacial peeling is performed on the annular metal pattern 12a formed on the annular metal pattern 12a or the concave metal pattern 12e formed continuously with the annular metal pattern from the upper edge or the vicinity of the upper edge to the outside of the depression. It starts in the outward direction of the recess 11 starting from the end covered with the stop resin portion 6 (that is, the boundary with the end covered with the phosphor-containing resin 5).

更に、環状金属パターン12aはその形状が、環状全周に亘って均一な幅で形成されているものではなく、凹部11に対してボンディングワイヤ4が配線された側と反対側に向かって幅広となっており、表側縁部金属パターン12bの方向に延長された幅広延長部12aaを有する形状となっている。   Furthermore, the shape of the annular metal pattern 12a is not formed with a uniform width over the entire circumference of the annular shape, and is wider toward the side opposite to the side where the bonding wire 4 is wired with respect to the recess 11. It has a shape having a wide extension 12aa extended in the direction of the front side edge metal pattern 12b.

この環状金属パターン12aの幅広延長部12aaの延長方向は、円柱状の凹部11の内側面と該凹部11内にダイボンディングされた略正方形状の半導体発光素子3の各側面との間の距離が長い方向の少なくとも一つとされる。換言すると、凹部11の内側面と半導体発光素子3の各側面とで挟まれた領域における体積の大きい方向の少なくとも一つとされ、その領域は充填された蛍光体含有樹脂5の樹脂量が多い方向でもある。   The extending direction of the wide extension portion 12aa of the annular metal pattern 12a is such that the distance between the inner side surface of the cylindrical recess 11 and each side surface of the substantially square semiconductor light emitting element 3 die-bonded in the recess 11 is as follows. At least one of the long directions. In other words, it is at least one of the directions in which the volume is large in a region sandwiched between the inner side surface of the recess 11 and each side surface of the semiconductor light emitting element 3, and the region has a direction in which the amount of the phosphor-containing resin 5 filled is large But there is.

これにより、半田リフロー工程における半田溶融熱によって熱膨張する凹部11内の蛍光体含有樹脂5は、充填樹脂量の多い領域が熱膨張による膨張応力が最も大きい領域となり、この方向に環状金属パターン12aの幅広延長部12aaが形成されている。   Thereby, in the phosphor-containing resin 5 in the recess 11 that thermally expands due to the solder melting heat in the solder reflow process, the region where the amount of the filled resin is large becomes the region where the expansion stress due to thermal expansion is the largest, and the annular metal pattern 12a in this direction. Wide extension portion 12aa is formed.

その結果、蛍光体含有樹脂5の熱膨張による強い膨張応力が、環状金属パターン12aの面積の大きい部分である幅広延長部12aaに加わることになる。すると、強い膨張応力は環状金属パターン12aの他の部分よりも面積の大きい幅広延長部12aaに封止樹脂6との間の界面剥離を発生させ、蛍光体含有樹脂5による膨張応力の大部分はこの幅広延長部12aaで緩和されることになり、封止樹脂部6におけるクラックの発生が抑制される。   As a result, strong expansion stress due to thermal expansion of the phosphor-containing resin 5 is applied to the wide extension portion 12aa which is a portion having a large area of the annular metal pattern 12a. Then, the strong expansion stress causes interface peeling between the wide extension portion 12aa having a larger area than the other portions of the annular metal pattern 12a and the sealing resin 6, and most of the expansion stress due to the phosphor-containing resin 5 is The wide extension portion 12aa will alleviate the occurrence of cracks in the sealing resin portion 6.

このように、ダイボンディングした半導体発光素子3を覆うように蛍光体含有樹脂5が充填されてなる凹部11の上縁を囲むように環状に形成された環状金属パターン12a全体を封止樹脂部6によって覆うことにより、基板実装時の半田リフロー工程における半田溶融熱の高温雰囲気中における蛍光体含有樹脂5の熱膨張による膨張応力が、封止樹脂部6の、環状金属パターン12a上の部分にも加わり、環状金属パターン12aと封止樹脂部6との間で界面剥離が生じ、該界面剥離が生じることによって蛍光体含有樹脂5で発生した膨張応力の大部分は緩和されることになり、封止樹脂部6におけるクラックの発生が抑制される。そして、環状金属パターン12aは表側縁部金属パターン12b、12cと離間して形成され、かつ、環状金属パターン12aの外縁は封止樹脂部6の内部に納まるように形成されているため、界面剥離は、最大でも環状金属パターン12a上での発生に留まり、封止樹脂部6の外まで通じることがない。   In this way, the entire annular metal pattern 12a formed in an annular shape so as to surround the upper edge of the recess 11 filled with the phosphor-containing resin 5 so as to cover the die-bonded semiconductor light emitting element 3 is sealed in the sealing resin portion 6. The expansion stress due to the thermal expansion of the phosphor-containing resin 5 in the high-temperature atmosphere of the solder melting heat in the solder reflow process at the time of mounting on the substrate is also applied to the portion of the sealing resin portion 6 on the annular metal pattern 12a. In addition, interface peeling occurs between the annular metal pattern 12a and the sealing resin portion 6, and most of the expansion stress generated in the phosphor-containing resin 5 due to the interface peeling is alleviated. The occurrence of cracks in the stop resin portion 6 is suppressed. The annular metal pattern 12a is formed so as to be separated from the front side edge metal patterns 12b and 12c, and the outer edge of the annular metal pattern 12a is formed so as to be accommodated in the sealing resin portion 6. Is not generated on the annular metal pattern 12a at the maximum and does not lead to the outside of the sealing resin portion 6.

その上、環状金属パターン12aの形状を、環状全周に亘って均一な幅で形成するのではなく、凹部11の内側面と半導体発光素子3の各側面とで挟まれた領域における蛍光体含有樹脂5の樹脂量が多い方向に、面積の広い幅広延長部12aaを設けることにより、蛍光体含有樹脂5の膨張応力は環状金属パターン12aの他の部分よりも面積の大きい幅広延長部12aaにも封止樹脂6との界面剥離を発生させ、蛍光体含有樹脂5による膨張応力の大部分はこの幅広延長部12aaで緩和されることになり、封止樹脂部6におけるクラックの発生が更に確実に抑制される。そして、封止樹脂部に発生するクラックは、金属パターンと封止樹脂部との界面における界面剥離部分が起点となる傾向があるが、ワイヤ側から遠い位置に幅広延長部12aaを設けることにより、ワイヤ近傍でのクラック発生率を低減することができ、ワイヤの断線を抑制することができる。   In addition, the shape of the annular metal pattern 12a is not formed with a uniform width over the entire circumference of the annular shape, but contains phosphors in a region sandwiched between the inner side surface of the recess 11 and each side surface of the semiconductor light emitting element 3. By providing the wide extension portion 12aa having a large area in the direction in which the resin amount of the resin 5 is large, the expansion stress of the phosphor-containing resin 5 is also applied to the wide extension portion 12aa having a larger area than the other portions of the annular metal pattern 12a. Interfacial peeling with the sealing resin 6 occurs, and most of the expansion stress due to the phosphor-containing resin 5 is alleviated by the wide extension portion 12aa, and the generation of cracks in the sealing resin portion 6 is further ensured. It is suppressed. And although the crack which generate | occur | produces in a sealing resin part has the tendency for the interface peeling part in the interface of a metal pattern and a sealing resin part to start, by providing the wide extension part 12aa in the position far from a wire side, The crack generation rate in the vicinity of the wire can be reduced, and wire breakage can be suppressed.

更に、封止樹脂部に発生するクラックは、一般的に金属パターンと封止樹脂部との界面における界面剥離部分を起点として発生する傾向がある。そのため、実施形態の環状金属パターン12aの外縁を直線部分のない曲線状に形成することにより、クラックの発生を抑制している。   Furthermore, the crack generated in the sealing resin portion generally tends to occur starting from an interface peeling portion at the interface between the metal pattern and the sealing resin portion. Therefore, the generation of cracks is suppressed by forming the outer edge of the annular metal pattern 12a of the embodiment in a curved shape without a straight line portion.

しかも、上記、環状金属パターン12aと封止樹脂部6との間の界面剥離は、半導体発光装置の照射光の光学特性に何ら影響を及ぼすものではなく、且つ半導体発光素子に対して損傷を与えたりボンディングワイヤを破断したりすることはない。したがって、光学的及び機械的な信頼性を損なうものとはならない。   Moreover, the interface peeling between the annular metal pattern 12a and the sealing resin portion 6 does not affect the optical characteristics of the irradiation light of the semiconductor light emitting device and damages the semiconductor light emitting element. And the bonding wire is not broken. Therefore, the optical and mechanical reliability is not impaired.

なお、本実施例において、環状金属パターン12aの幅広延長部12aaを表側縁部金属パターン12bの方向(凹部11を挟んだワイヤボンディングパッド12dと反対方向)にのみ設けたのは、ワイヤボンディングパッド12d方向には該ワイヤボンディングパッドが延成されており、凹部11を挟んだ両側に夫々幅広延長部12aaとワイヤボンディングパッド12dを設けることにより半導体発光素子3がダイボンディングされた凹部11を半導体発光装置1の中央部に位置させることができると共に半導体発光装置1を小型化することが可能となるためである。   In this embodiment, the wide extension portion 12aa of the annular metal pattern 12a is provided only in the direction of the front side edge metal pattern 12b (the direction opposite to the wire bonding pad 12d with the concave portion 11 in between). The wire bonding pad extends in the direction, and the wide light extending portion 12aa and the wire bonding pad 12d are provided on both sides of the concave portion 11, respectively, so that the semiconductor light emitting device 3 is provided with the concave portion 11 to which the semiconductor light emitting element 3 is die bonded. This is because the semiconductor light emitting device 1 can be reduced in size while being able to be positioned at the central portion of the semiconductor device 1.

同様に、本実施例では、小型化を阻害することがないように、ワイヤボンディングパッド12dと環状金属パターン12aの幅広延長部12aaとを結ぶ方向に垂直な方向にも幅広延長部を設けていない。   Similarly, in this embodiment, the wide extension is not provided in the direction perpendicular to the direction connecting the wire bonding pad 12d and the wide extension 12aa of the annular metal pattern 12a so as not to hinder downsizing. .

次に、上記構成の半導体発光装置1の製造方法について、図4〜図12を参照して説明する。なお、図4〜図6、図12は上面図、図7〜図11は断面図を示している。   Next, a method for manufacturing the semiconductor light emitting device 1 having the above configuration will be described with reference to FIGS. 4 to 6 and 12 are top views, and FIGS. 7 to 11 are cross-sectional views.

まず、図4の上部基板10(図4(a))と下部基板20(図4(b))の準備工程において、片側の面(表側面)の全面に表側金属層15が形成された多数個取りの上部基板10と、両側の面(表側面と裏側面)の夫々の全面に表側金属層25と裏側金属層26が形成された多数個取りの下部基板20の両基板の同一の位置に、夫々所定の幅の複数の貫通溝16、27を所定の間隔で平行に並設する。上部基板10及び下部基板20には、例えばガラスエポキシ基板などの絶縁基板を用いることができる。   First, in the preparation process of the upper substrate 10 (FIG. 4A) and the lower substrate 20 (FIG. 4B) in FIG. 4, the front side metal layer 15 was formed on the entire surface of one side (front side). The same position of both substrates of the multi-piece upper substrate 10 and the multi-piece lower substrate 20 in which the front-side metal layer 25 and the back-side metal layer 26 are formed on the entire surfaces of both sides (front side and back side). In addition, a plurality of through grooves 16, 27 each having a predetermined width are arranged in parallel at predetermined intervals. For the upper substrate 10 and the lower substrate 20, for example, an insulating substrate such as a glass epoxy substrate can be used.

次に、図5の上部基板10(図5(a))と下部基板20(図5(b))の金属パターン形成工程において、上部基板10の表側金属層15の不要な部分をエッチングにより除去して所望の表側金属パターン12を形成し、同様に、下部基板20の表側金属層25及び裏側金属層26の夫々の不要な部分をエッチングにより除去して所望の表側金属パターン21及び裏側金属パターン22を形成する。   Next, in the metal pattern forming process of the upper substrate 10 (FIG. 5A) and the lower substrate 20 (FIG. 5B) of FIG. 5, unnecessary portions of the front metal layer 15 of the upper substrate 10 are removed by etching. Then, the desired front side metal pattern 12 is formed, and similarly, unnecessary portions of the front side metal layer 25 and the back side metal layer 26 of the lower substrate 20 are removed by etching, and the desired front side metal pattern 21 and the back side metal pattern are formed. 22 is formed.

このとき、上部基板10の表側金属パターン12は、隣接する貫通溝16で挟まれた領域の中央部に、後に環状金属パターン12aとなる略楕円状の複数の中央金属パターン17が所定の間隔で分離独立して直線状に形成され、その両側に後の表側縁部金属パターン12b、12cが夫々繋がった状態で形成されている。また、表側縁部金属パターン12cからは各中央金属パターン17に向かうワイヤボンディングパッド12dが突出して延成されている。   At this time, the front-side metal pattern 12 of the upper substrate 10 has a plurality of substantially elliptical central metal patterns 17 that later become the annular metal patterns 12a at predetermined intervals in the center of the region sandwiched between the adjacent through grooves 16. Separately and independently, it is formed in a straight line shape, and is formed in a state where the following front side edge metal patterns 12b and 12c are connected to both sides thereof. Further, a wire bonding pad 12d extending toward the center metal pattern 17 is extended from the front side edge metal pattern 12c.

なお、略楕円状の中央金属パターン17はその中心が、対向する貫通溝16間の中間位置よりも表側縁部金属パターン12b側に位置している。   The center of the substantially elliptical central metal pattern 17 is located closer to the front edge metal pattern 12 b than the intermediate position between the opposing through grooves 16.

一方、下部基板20の表側金属パターン21は、一方の貫通溝27から対向する他方の貫通孔27に向かって所定の幅及び所定の長さで所定の間隔をもって複数個形成されている。また、下部基板20の裏側金属パターン22は、後の裏側縁部金属パターン22b、22cが、対向する夫々の貫通溝27から所定の幅で該貫通溝27に沿って繋がった状態で形成されている。   On the other hand, a plurality of front side metal patterns 21 of the lower substrate 20 are formed with a predetermined width and a predetermined length with a predetermined interval from one through groove 27 toward the other through hole 27 facing each other. Further, the back side metal pattern 22 of the lower substrate 20 is formed in a state in which the back side edge metal patterns 22b and 22c are connected along the through groove 27 with a predetermined width from the respective through grooves 27 facing each other. Yes.

次に、図6の上部基板の貫通孔形成工程において、上部基板10の、対向する貫通溝16間の中間位置に、各中央金属パターン17が環状に残るように該中央金属パターン17及び上部基板10を貫通する貫通孔11を形成する。   Next, in the through hole forming step of the upper substrate in FIG. 6, the central metal pattern 17 and the upper substrate so that each central metal pattern 17 remains in an annular shape at an intermediate position between the opposing through grooves 16 of the upper substrate 10. A through hole 11 penetrating 10 is formed.

このとき、中央金属パターン17の中心は貫通孔11の中心よりも表側縁部金属パターン12b側に位置している。そのため、貫通孔11の上縁を囲むように環状に残った環状金属パターン12aは、その幅が均一ではなく、貫通孔11に対して表側縁部金属パターン12b側に向かって幅広となっており、表側縁部金属パターン12bの方向に延長された幅広延長部12aaを有する形状となっている。   At this time, the center of the central metal pattern 17 is located closer to the front edge metal pattern 12 b than the center of the through hole 11. Therefore, the annular metal pattern 12a that remains in an annular shape so as to surround the upper edge of the through hole 11 is not uniform in width, and is wider toward the front edge metal pattern 12b side than the through hole 11. The shape has a wide extension portion 12aa extended in the direction of the front side edge metal pattern 12b.

次に、図7の貼り合わせ工程において、上部基板10と下部基板20を互いの貫通溝16、27同士が重なり合うように縁接着材あるいは絶縁接着シート等の絶縁接着部材で貼り合わせ、2枚の基板10、20からなり貫通溝16、27を貫通する貫通溝32を有する2層構造のベース基板30を作製する。   Next, in the bonding step of FIG. 7, the upper substrate 10 and the lower substrate 20 are bonded with an insulating adhesive member such as an edge adhesive or an insulating adhesive sheet so that the through grooves 16 and 27 overlap each other. A base substrate 30 having a two-layer structure including the substrates 10 and 20 and having the through grooves 32 penetrating the through grooves 16 and 27 is manufactured.

このとき、下部基板20の表側金属パターン21は、上部基板10と下部基板20とで挟まれた位置に位置し、上方に位置する上部基板10の表側縁部金属パターン12b側に位置する貫通溝32から対向する他方の貫通孔32に向かって上部基板10の貫通孔11の下部位置よりも先方まで延成されており、これにより貫通孔11の底面をなしている。   At this time, the front-side metal pattern 21 of the lower substrate 20 is located at a position sandwiched between the upper substrate 10 and the lower substrate 20, and the through-groove located on the front-side edge metal pattern 12b side of the upper substrate 10 located above. 32 extends from the lower position of the through-hole 11 of the upper substrate 10 toward the other opposing through-hole 32, thereby forming the bottom surface of the through-hole 11.

次に、図8のメッキ工程において、上部基板10と下部基板20が貼り合わされたベース基板30の各凹部(貫通孔)11の内側面及び、上部基板10の貫通溝16と下部基板20の貫通溝27とで構成された、ベース基板30の貫通溝32の内側面に無電解メッキによる金属パターンを形成し、夫々凹部金属パターン12e及び側面金属パターン31b、31cを設ける。   Next, in the plating process of FIG. 8, the inner surface of each recess (through hole) 11 of the base substrate 30 to which the upper substrate 10 and the lower substrate 20 are bonded, and the through groove 16 of the upper substrate 10 and the lower substrate 20 are penetrated. A metal pattern by electroless plating is formed on the inner surface of the through groove 32 of the base substrate 30 formed by the groove 27, and a concave metal pattern 12e and side metal patterns 31b and 31c are provided, respectively.

これにより、ベース基板30は、環状金属パターン12a、凹面金属パターン12e、表側金属パターン21、表側縁部金属パターン12b、裏側縁部金属パターン22b及び側面金属パターン31bが接続状態になり、表側縁部金属パターン12c、裏側縁部金属パターン22c及び側面金属パターン31cが接続状態になる。   As a result, the base substrate 30 is connected to the annular metal pattern 12a, the concave metal pattern 12e, the front side metal pattern 21, the front side edge metal pattern 12b, the back side edge metal pattern 22b, and the side metal pattern 31b. The metal pattern 12c, the back side edge metal pattern 22c, and the side surface metal pattern 31c are connected.

次に、図9のボンディング工程において、凹部11の底面に位置する表側金属パターン21上に半導体発光素子3を導電接合部材を介してダイボンディングし、半導体発光素子3の下部電極と表側金属パターン21との電気的導通を図る。その後、表側縁部金属パターン12cから延成されたワイヤボンディングパッド12dと半導体発光素子3の上部電極とをボンディングワイヤ4でワイヤボンディングして半導体発光素子3の上部電極と表側縁部金属パターン12cとの電気的導通を図る。   Next, in the bonding step of FIG. 9, the semiconductor light emitting element 3 is die-bonded on the front side metal pattern 21 positioned on the bottom surface of the recess 11 via a conductive bonding member, and the lower electrode of the semiconductor light emitting element 3 and the front side metal pattern 21 are bonded. To establish electrical continuity. Thereafter, the wire bonding pad 12d extended from the front side edge metal pattern 12c and the upper electrode of the semiconductor light emitting element 3 are wire-bonded by the bonding wire 4, and the upper electrode of the semiconductor light emitting element 3 and the front side edge metal pattern 12c are formed. To ensure electrical continuity.

次に、図10の蛍光体含有樹脂の充填工程において、シリコーン樹脂等の光透過性樹脂に蛍光体を含有してなる蛍光体含有樹脂5を凹部11内に環状金属パターン12aの上面とほぼ面一となるように充填し、凹部11内にダイボンディングされた半導体発光素子3全体を蛍光体含有樹脂5によって覆う。   Next, in the step of filling the phosphor-containing resin in FIG. 10, the phosphor-containing resin 5 formed by containing the phosphor in a light-transmitting resin such as a silicone resin is placed in the concave portion 11 so as to substantially face the upper surface of the annular metal pattern 12 a. The entire semiconductor light emitting element 3 that is filled so as to be united and die-bonded in the recess 11 is covered with the phosphor-containing resin 5.

次に、図11の樹脂封止工程において、ベース基板30の表側面上にエポキシ樹脂等の光透過性樹脂による封止樹脂部6をトランスファ成形等により形成し、凹部11内に充填された蛍光体含有樹脂5の表面全体、環状金属パターン12aの全体、表側縁部金属パターン12bの一部及びワイヤボンディングパッド12d全体を含む表側縁部金属パターン12cの一部を覆う。   Next, in the resin sealing step of FIG. 11, the sealing resin portion 6 made of a light transmissive resin such as an epoxy resin is formed on the front side surface of the base substrate 30 by transfer molding or the like, and the fluorescent material filled in the recess 11 is formed. The entire surface of the body-containing resin 5, the entire annular metal pattern 12a, a part of the front side edge metal pattern 12b, and a part of the front side edge metal pattern 12c including the whole wire bonding pad 12d are covered.

このとき、封止樹脂部6は、各凹部11の上方に凸状のレンズ部6aが形成され、それにより半導体発光素子3から発せられて蛍光体含有樹脂5を通過した光の光路制御を行って所望の配光特性を得るようにしている。   At this time, the sealing resin portion 6 is formed with a convex lens portion 6 a above each concave portion 11, thereby performing optical path control of light emitted from the semiconductor light emitting element 3 and passing through the phosphor-containing resin 5. Thus, a desired light distribution characteristic is obtained.

最後に、図12のダイシング工程において、ベース基板30と封止樹脂部6を所定の間隔のダイシンググライン33に沿って一括して切断し、複数の半導体発光装置1に個片化する。これにより、半導体発光装置の製造工程が終了して所望の半導体発光装置1が完成する。   Finally, in the dicing process of FIG. 12, the base substrate 30 and the sealing resin portion 6 are collectively cut along dicing lines 33 with a predetermined interval, and separated into a plurality of semiconductor light emitting devices 1. Thereby, the manufacturing process of the semiconductor light emitting device is completed, and the desired semiconductor light emitting device 1 is completed.

ところで上述の実施形態は、半導体発光素子を略正方形の形状としたが、目的や用途等によって必ずしも正方形に限られるものではなく、例えば、長方形の形状のものも考えられる。   In the above-described embodiment, the semiconductor light emitting element has a substantially square shape. However, the semiconductor light emitting element is not necessarily limited to a square depending on the purpose, application, or the like. For example, a rectangular shape may be considered.

その場合、基板実装時の半田リフロー工程における半田溶融熱の高温雰囲気中にあっても封止樹脂部6のクラックを効果的に抑制できる環状金属パターン12aの最適形状が、図13(他の実施形態を説明する上面図)に示されている。図13に示す実施形態では、半導体発光素子3としてフリップチップ実装型のものを用いた場合を示している。そのため、ベース基板30の表側面上にワイヤボンディング用の導電パターンを設ける必要がない。   In this case, the optimum shape of the annular metal pattern 12a that can effectively suppress cracks in the sealing resin portion 6 even in a high-temperature atmosphere of solder melting heat in the solder reflow process at the time of board mounting is shown in FIG. It is shown in the top view explaining the form. In the embodiment shown in FIG. 13, a case where a flip chip mounting type is used as the semiconductor light emitting element 3 is shown. Therefore, it is not necessary to provide a conductive pattern for wire bonding on the front side surface of the base substrate 30.

封止樹脂部6のクラックを効果的に抑制できる環状金属パターンの形成条件は、上述のように、凹部11の内側面と半導体発光素子3の各側面とで挟まれた領域における蛍光体含有樹脂5の樹脂量が多い方向に、面積の広い幅広延長部12aaを設けることにより、蛍光体含有樹脂5の膨張応力は環状金属パターン12aの他の部分よりも面積の大きい幅広延長部12aaにも封止樹脂6との界面剥離を発生させ、蛍光体含有樹脂5による膨張応力の大部分はこの幅広延長部12aaで緩和されることになり、封止樹脂部6におけるクラックの発生が抑制されることになる。   As described above, the formation condition of the annular metal pattern capable of effectively suppressing the crack of the sealing resin portion 6 is the phosphor-containing resin in the region sandwiched between the inner side surface of the recess 11 and each side surface of the semiconductor light emitting element 3. 5 is provided in the direction in which the amount of the resin 5 is large, the expansion stress of the phosphor-containing resin 5 is sealed in the wide extension portion 12aa having a larger area than the other portions of the annular metal pattern 12a. Interfacial peeling from the stop resin 6 occurs, and most of the expansion stress due to the phosphor-containing resin 5 is alleviated by the wide extension portion 12aa, and the generation of cracks in the sealing resin portion 6 is suppressed. become.

この条件を、長方形の半導体発光素子3を用いた場合に適用すると、半導体発光素子3の長辺側の側面と凹部11の内側面とで挟まれた領域(A)が、半導体発光素子3の短辺側の側面と凹部11の内側面とで挟まれた領域(B)や半導体発光素子3の角側面と凹部11の内側面とで挟まれた領域(C)などと比較して、蛍光体含有樹脂5の樹脂量が多い部分であり、したがって、環状金属パターン12aを領域(A)の方向に幅広延長部12aaを設けた形状とすることにより、膨張応力を効率的に緩和して、封止樹脂部6におけるクラック発生の抑制効果が高い。   When this condition is applied when the rectangular semiconductor light emitting element 3 is used, a region (A) sandwiched between the side surface on the long side of the semiconductor light emitting element 3 and the inner side surface of the recess 11 is formed on the semiconductor light emitting element 3. Compared with a region (B) sandwiched between the side surface on the short side and the inner surface of the recess 11, a region (C) sandwiched between the corner side surface of the semiconductor light emitting element 3 and the inner surface of the recess 11, etc. The body-containing resin 5 is a portion having a large amount of resin. Therefore, by forming the annular metal pattern 12a in a shape in which the wide extension portion 12aa is provided in the direction of the region (A), the expansion stress is efficiently relieved, The effect of suppressing the occurrence of cracks in the sealing resin portion 6 is high.

また、例えば、図14(環状金属パターンの説明図)に示すように、環状金属パターン12aを半導体発光素子3の各側面側の4方向に幅広延長部12aaを設けた略十字形状とすることができる。   Further, for example, as shown in FIG. 14 (an explanatory diagram of an annular metal pattern), the annular metal pattern 12a is formed into a substantially cross shape in which wide extending portions 12aa are provided in four directions on each side of the semiconductor light emitting element 3. it can.

これにより、蛍光体含有樹脂5の熱膨張による膨張応力が4箇所の幅広延長部12aaで緩和されることになり、封止樹脂部6におけるクラックの発生を確実に抑制することが可能となる。   Thereby, the expansion stress due to the thermal expansion of the phosphor-containing resin 5 is relieved by the four wide extension portions 12aa, and the occurrence of cracks in the sealing resin portion 6 can be reliably suppressed.

また、上述の実施形態は、上部基板10と下部基板20とを絶縁接着部材で貼り合わせてなる2層構造のベース基板30を用いたが、必ずしも2層構造に限られるものではなく、例えば図15(a(他の実施形態を説明する上面図)、b(aのB−B断面図))に示すように、上部基板10と下部基板20との間に中間基板40を設けた3層構造のベース基板50とすることも可能である。更には、上部基板10と金属パターン21に代えて、金属薄板などを用いることにより、実質的に一層構造のベース基板とすることも可能である。   In the above-described embodiment, the base substrate 30 having a two-layer structure in which the upper substrate 10 and the lower substrate 20 are bonded together with an insulating adhesive member is used. However, the base substrate 30 is not necessarily limited to the two-layer structure. 15 (a (a top view for explaining another embodiment), b (a BB cross-sectional view of a)), three layers in which an intermediate substrate 40 is provided between the upper substrate 10 and the lower substrate 20 A base substrate 50 having a structure may be used. Further, a base substrate having a substantially one-layer structure can be obtained by using a metal thin plate or the like instead of the upper substrate 10 and the metal pattern 21.

3層構造のベース基板50とする場合、上部基板10と中間基板40を貫通する貫通部45aと上部基板10のみを貫通する貫通部45bとからなる凹部45を有し、貫通部45aの底面を下部基板20の表側金属パターン21で形成し、貫通部45bの底面を中間基板40の表側金属パターン41で形成する。そして、下部基板20の表側金属パターン21上に導電性接合部材を介して半導体発光素子3をダイボンディングし、中間基板40の表側金属パターン41上に一方の端部を半導体発光素子3の電極に接続されたボンディングワイヤ4の他方の端部をワイヤボンディングする。   When the base substrate 50 has a three-layer structure, the base substrate 50 has a concave portion 45 including a through portion 45a that penetrates the upper substrate 10 and the intermediate substrate 40 and a through portion 45b that penetrates only the upper substrate 10, and a bottom surface of the through portion 45a is formed. The bottom metal pattern 21 of the lower substrate 20 is formed, and the bottom surface of the through portion 45 b is formed of the front metal pattern 41 of the intermediate substrate 40. Then, the semiconductor light emitting element 3 is die-bonded on the front side metal pattern 21 of the lower substrate 20 via a conductive bonding member, and one end portion is used as an electrode of the semiconductor light emitting element 3 on the front side metal pattern 41 of the intermediate substrate 40. The other end of the connected bonding wire 4 is wire-bonded.

そして、凹部45内に蛍光体含有樹脂5を充填し、ベース基板50の表側面上に光透過性樹脂による封止樹脂部6を形成して、凹部45内に充填された蛍光体含有樹脂5の表面全体、環状金属パターン12aの全体及び表側縁部金属パターン12b、12cの夫々の一部を覆うのは上記実施形態と同様である。   Then, the phosphor-containing resin 5 is filled in the concave portion 45, the sealing resin portion 6 made of a light transmitting resin is formed on the front side surface of the base substrate 50, and the phosphor-containing resin 5 filled in the concave portion 45. The entire surface, the entire annular metal pattern 12a, and a part of each of the front edge metal patterns 12b and 12c are covered in the same manner as in the above embodiment.

なお、環状金属パターン12aの幅広延長部21aaを設ける方向も、上記実施例と同様に、凹部45に対してボンディングワイヤ4が配線された側と反対側に向かって設けられている。幅広延長部21aaによる膨張応力の緩和効果は実施形態と同様である。   The direction in which the wide extension portion 21aa of the annular metal pattern 12a is provided is also provided toward the side opposite to the side where the bonding wire 4 is wired with respect to the concave portion 45, as in the above embodiment. The relaxation effect of the expansion stress by the wide extension 21aa is the same as in the embodiment.

この場合の金属パターンの接続は、少なくとも、上部基板10の表側縁部金属パターン12b、下部基板20の表側金属パターン21及び下部基板20の裏側縁部金属パターン22bが側面金属パターン51bを介して接続され、上部基板10の表側縁部金属パターン12c、中間基板40の表側金属パターン41及び下部基板20の裏側縁部金属パターン22cが側面金属パターン51cを介して接続されている。   In this case, at least the front side edge metal pattern 12b of the upper substrate 10, the front side metal pattern 21 of the lower substrate 20, and the back side edge metal pattern 22b of the lower substrate 20 are connected via the side metal pattern 51b. Then, the front side edge metal pattern 12c of the upper substrate 10, the front side metal pattern 41 of the intermediate substrate 40, and the back side edge metal pattern 22c of the lower substrate 20 are connected via the side metal pattern 51c.

但し、凹部45の内側面には金属パターンが設けられておらず、環状金属パターン12aはベース基板50の表側面上に分離独立して形成されている。この状態においても、幅広延長部21aaを有する環状金属パターン12aによる膨張応力の緩和効果は確実に確保できる。   However, a metal pattern is not provided on the inner side surface of the recess 45, and the annular metal pattern 12 a is formed separately and independently on the front side surface of the base substrate 50. Even in this state, the effect of alleviating the expansion stress by the annular metal pattern 12a having the wide extension 21aa can be reliably ensured.

1… 半導体発光装置
3… 半導体発光素子
4… ボンディングワイヤ
5… 蛍光体含有樹脂
6… 封止樹脂部
6a… レンズ部
10… 上部基板
11… 貫通孔(凹部)
12… 表側金属パターン
12a… 環状金属パターン
12aa… 幅広延長部
12b… 表側縁部金属パターン
12c… 表側縁部金属パターン
12d… ワイヤボンディングパッド
12e… 凹面金属パターン
15… 表側金属層
16… 貫通溝
17… 中央金属パターン
20… 下部基板
21… 表側金属パターン
22… 裏側金属パターン
22b… 裏側縁部金属パターン
22c… 裏側縁部金属パターン
25… 表側金属層
26… 裏側金属層
27… 貫通溝
30… ベース基板
31b… 側面金属パターン
31c… 側面金属パターン
32… 貫通溝
33… ダイシングライン
40… 中間基板
41… 表側金属パターン
45… 凹部
45a… 貫通部
45b… 貫通部
50… ベース基板
51b… 側面金属パターン
51c… 側面金属パターン
DESCRIPTION OF SYMBOLS 1 ... Semiconductor light-emitting device 3 ... Semiconductor light-emitting element 4 ... Bonding wire 5 ... Phosphor containing resin 6 ... Sealing resin part 6a ... Lens part 10 ... Upper substrate 11 ... Through-hole (concave part)
DESCRIPTION OF SYMBOLS 12 ... Front side metal pattern 12a ... Ring metal pattern 12aa ... Wide extension part 12b ... Front side edge metal pattern 12c ... Front side edge metal pattern 12d ... Wire bonding pad 12e ... Concave metal pattern 15 ... Front side metal layer 16 ... Through groove 17 ... Center metal pattern 20 ... Lower substrate 21 ... Front side metal pattern 22 ... Back side metal pattern 22b ... Back side edge metal pattern 22c ... Back side edge metal pattern 25 ... Front side metal layer 26 ... Back side metal layer 27 ... Through groove 30 ... Base substrate 31b Side metal pattern 31c Side metal pattern 32 ... Through groove 33 ... Dicing line 40 ... Intermediate substrate 41 ... Front side metal pattern 45 ... Recess 45a ... Through portion 45b ... Through portion 50 ... Base substrate 51b ... Side metal pattern 51c ... Side metal pattern

Claims (6)

実装基板と、
前記実装基板上に配置された、貫通孔を有する上部基板と、
前記貫通孔内の前記実装基板上にダイボンディングされた半導体発光素子と、
前記貫通孔内に充填された第1の樹脂と、
前記第1の樹脂及び前記上部基板の上面を覆う第2の樹脂を備え、
前記上部基板は、上面に前記貫通孔の上縁或いは上縁近傍から該貫通孔の外側に向かって形成された導電パターンを有し、
前記第1の樹脂は、前記導電パターンと接し、
前記導電パターンは、外縁全体が前記第2の樹脂に覆われていることを特徴とする半導体発光装置。
A mounting board;
An upper substrate having a through hole disposed on the mounting substrate;
A semiconductor light emitting device die-bonded on the mounting substrate in the through hole;
A first resin filled in the through hole;
A second resin covering the first resin and the upper surface of the upper substrate;
The upper substrate has a conductive pattern formed on the upper surface from the upper edge of the through hole or near the upper edge toward the outside of the through hole,
The first resin is in contact with the conductive pattern,
The semiconductor light-emitting device, wherein the conductive pattern is entirely covered with the second resin.
前記第1の樹脂は前記第2の樹脂よりも熱膨張係数が大きいこと特徴とする請求項1に記載の半導体発光装置。   The semiconductor light emitting device according to claim 1, wherein the first resin has a thermal expansion coefficient larger than that of the second resin. 前記第1の樹脂は波長変換部材を含有してなることを特徴とする請求項1又は請求項2に記載の半導体発光装置。   The semiconductor light-emitting device according to claim 1, wherein the first resin contains a wavelength conversion member. 前記導電パターンは、前記貫通孔の上縁を囲むように環状に形成されていることを特徴とする請求項1〜請求項3のいずれかに記載の半導体発光装置。   The semiconductor light-emitting device according to claim 1, wherein the conductive pattern is formed in an annular shape so as to surround an upper edge of the through hole. 前記導電パターンの外縁は、曲線状に形成されていることを特徴とする請求項1〜請求項4のいずれかに記載の半導体発光装置。   The semiconductor light emitting device according to claim 1, wherein an outer edge of the conductive pattern is formed in a curved shape. 前記上部基板は、上面に前記導電パターンと離間して形成された受電用パターンと、
前記半導体発光素子の電極と前記受電用パターンとを接続する導電ワイヤを備え、
前記導電パターンは、前記貫通孔の内側面と前記半導体発光素子の各側面とで挟まれた領域における前記第1の樹脂の樹脂量が多い方向、で且つ、前記導電ワイヤが配線されている方向以外の方向の少なくとも一方向に、前記貫通孔の上縁或いは上縁近傍から外縁までの幅が他の部分よりも広い領域を有していることを特徴とする請求項4又は請求項5に記載の半導体発光装置。
The upper substrate has a power receiving pattern formed on the upper surface so as to be separated from the conductive pattern;
A conductive wire connecting the electrode of the semiconductor light emitting element and the power receiving pattern;
The conductive pattern is a direction in which the amount of the first resin is large in a region sandwiched between an inner side surface of the through hole and each side surface of the semiconductor light emitting element, and a direction in which the conductive wire is wired The width from the upper edge or the vicinity of the upper edge to the outer edge of the through hole in at least one of the other directions is wider than the other part. The semiconductor light-emitting device as described.
JP2012010132A 2012-01-20 2012-01-20 Semiconductor light emitting device Active JP5914006B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2012010132A JP5914006B2 (en) 2012-01-20 2012-01-20 Semiconductor light emitting device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2012010132A JP5914006B2 (en) 2012-01-20 2012-01-20 Semiconductor light emitting device

Publications (2)

Publication Number Publication Date
JP2013149843A true JP2013149843A (en) 2013-08-01
JP5914006B2 JP5914006B2 (en) 2016-05-11

Family

ID=49047051

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2012010132A Active JP5914006B2 (en) 2012-01-20 2012-01-20 Semiconductor light emitting device

Country Status (1)

Country Link
JP (1) JP5914006B2 (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2018523918A (en) * 2015-08-06 2018-08-23 オスラム オプト セミコンダクターズ ゲゼルシャフト ミット ベシュレンクテル ハフツングOsram Opto Semiconductors GmbH Electronics devices
CN110021557A (en) * 2017-12-01 2019-07-16 美光科技公司 Semiconductor device package and related method
CN113841237A (en) * 2019-05-30 2021-12-24 三菱电机株式会社 Power semiconductor module and power conversion device

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH09148629A (en) * 1995-11-17 1997-06-06 Stanley Electric Co Ltd Led dot matrix indicator
JPH11345999A (en) * 1998-06-01 1999-12-14 Matsushita Electron Corp Photoelectric conversion device
JP2009259913A (en) * 2008-04-14 2009-11-05 Sharp Corp Chip component type led
JP2010021420A (en) * 2008-07-11 2010-01-28 Denka Agsp Kk Substrate for mounting light-emitting element, light-emitting element panel, light-emitting element package, and method of manufacturing substrate for mounting light-emitting element

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH09148629A (en) * 1995-11-17 1997-06-06 Stanley Electric Co Ltd Led dot matrix indicator
JPH11345999A (en) * 1998-06-01 1999-12-14 Matsushita Electron Corp Photoelectric conversion device
JP2009259913A (en) * 2008-04-14 2009-11-05 Sharp Corp Chip component type led
JP2010021420A (en) * 2008-07-11 2010-01-28 Denka Agsp Kk Substrate for mounting light-emitting element, light-emitting element panel, light-emitting element package, and method of manufacturing substrate for mounting light-emitting element

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2018523918A (en) * 2015-08-06 2018-08-23 オスラム オプト セミコンダクターズ ゲゼルシャフト ミット ベシュレンクテル ハフツングOsram Opto Semiconductors GmbH Electronics devices
US10483446B2 (en) 2015-08-06 2019-11-19 Osram Opto Semiconductors Gmbh Electronic device
CN110021557A (en) * 2017-12-01 2019-07-16 美光科技公司 Semiconductor device package and related method
CN110021557B (en) * 2017-12-01 2024-03-12 美光科技公司 Semiconductor device package and related method
CN113841237A (en) * 2019-05-30 2021-12-24 三菱电机株式会社 Power semiconductor module and power conversion device

Also Published As

Publication number Publication date
JP5914006B2 (en) 2016-05-11

Similar Documents

Publication Publication Date Title
JP5891133B2 (en) Semiconductor light emitting device
US10177283B2 (en) LED packages and related methods
CN107689408B (en) Light emitting diode flip chip die and display
WO2013168802A1 (en) Led module
TWI505519B (en) Light-emitting diode light bar and the method for manufacturing the same
JP5294902B2 (en) Manufacturing method of surface mounted light emitting device
JP2006054209A (en) Light emitting device
JP2009135381A (en) Chip-type led and method of manufacturing the same
TWM484188U (en) Light-emitting device
JP2009283653A (en) Light-emitting device and production method therefor
JP2013115368A (en) Led module
TWI513050B (en) Mothed for manufacturing led package
JP2014522129A (en) LED mixing chamber with a reflective wall formed in the slot
JP6128367B2 (en) LIGHT EMITTING DEVICE AND WIRING BOARD MANUFACTURING METHOD
JP5914006B2 (en) Semiconductor light emitting device
WO2018105448A1 (en) Light emitting device
JP5227693B2 (en) Semiconductor light emitting device
JP5126127B2 (en) Method for manufacturing light emitting device
JP2007335734A (en) Semiconductor device
JP2015185685A (en) Light emitting device manufacturing method and light device
JP2014064006A (en) Light-emitting diode package and method for manufacturing the same
JP2008235764A (en) Light emitting device and its manufacturing method
KR20080005851A (en) Light-emitting device
KR20130077058A (en) Led package and method for manufacturing the same
KR20140110257A (en) Light emitting device package

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20150109

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20151127

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20151208

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20160202

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20160308

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20160404

R150 Certificate of patent or registration of utility model

Ref document number: 5914006

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250