JP2013148145A - Bearing device - Google Patents

Bearing device Download PDF

Info

Publication number
JP2013148145A
JP2013148145A JP2012008508A JP2012008508A JP2013148145A JP 2013148145 A JP2013148145 A JP 2013148145A JP 2012008508 A JP2012008508 A JP 2012008508A JP 2012008508 A JP2012008508 A JP 2012008508A JP 2013148145 A JP2013148145 A JP 2013148145A
Authority
JP
Japan
Prior art keywords
bearing
axial direction
pad
rotating shaft
surface portion
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2012008508A
Other languages
Japanese (ja)
Other versions
JP5954998B2 (en
Inventor
Tei Yamato
禎 大和
Yuki Sumi
侑樹 角
Naoto Tochitani
直人 杼谷
Takashi Nakano
隆 中野
Tadasuke Nishioka
忠相 西岡
Chihiro Yoshimine
千尋 吉峰
Yuichiro Waki
勇一朗 脇
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Heavy Industries Ltd
Original Assignee
Mitsubishi Heavy Industries Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Heavy Industries Ltd filed Critical Mitsubishi Heavy Industries Ltd
Priority to JP2012008508A priority Critical patent/JP5954998B2/en
Publication of JP2013148145A publication Critical patent/JP2013148145A/en
Application granted granted Critical
Publication of JP5954998B2 publication Critical patent/JP5954998B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16CSHAFTS; FLEXIBLE SHAFTS; ELEMENTS OR CRANKSHAFT MECHANISMS; ROTARY BODIES OTHER THAN GEARING ELEMENTS; BEARINGS
    • F16C2300/00Application independent of particular apparatuses
    • F16C2300/30Application independent of particular apparatuses related to direction with respect to gravity
    • F16C2300/34Vertical, e.g. bearings for supporting a vertical shaft

Landscapes

  • Sliding-Contact Bearings (AREA)

Abstract

PROBLEM TO BE SOLVED: To provide a bearing device that can prevent damage due to partial contact of a rotation shaft.SOLUTION: A bearing device includes: a supporting member 11 provided around a rotation shaft 2; a circular surface part 21 disposed between the rotation shaft 2 and the supporting member 11 and facing an outer circumferential surface of the rotation shaft 2; a pad member 12 having a back surface part 22 facing the supporting member 11; a pivot part 13 supporting the pad member 12 to be able to tilt in an axial direction of the rotation shaft 2 with respect to the supporting member 11; a lubricant supply part supplying a pressure oil for lubricating between the rotation shaft 2 and the surface part 21 so that an oil membrane is formed between the rotation shaft 21 and the surface part 21; and a tile regulation part 14 regulating the tile in the axial direction of the pad member 12.

Description

本発明は、蒸気タービンや圧縮機等の大型の回転機械を回転可能に支持する軸受け装置に関する。   The present invention relates to a bearing device that rotatably supports a large rotating machine such as a steam turbine or a compressor.

従来より、回転機械の回転軸の周囲に傾斜可能に複数のティルティングパッドを配置するとともに、回転軸とティルティングパッドとの間に油膜を形成し、ティルティングパッドによって回転軸を回転可能に支持するように構成した軸受け装置が知られている(例えば特許文献1参照)。この特許文献1記載の軸受け装置では、回転軸の傾きにティルティングパッドが追従できるように、ティルティングパッドをピボットによって回転軸の軸方向および周方向に傾斜可能に支持する。   Conventionally, a plurality of tilting pads can be tilted around the rotating shaft of a rotating machine, and an oil film is formed between the rotating shaft and the tilting pad, and the rotating shaft is rotatably supported by the tilting pad. A bearing device configured to do this is known (see, for example, Patent Document 1). In the bearing device described in Patent Document 1, the tilting pad is supported by the pivot so as to be able to tilt in the axial direction and the circumferential direction of the rotating shaft so that the tilting pad can follow the tilt of the rotating shaft.

特開2004−197890号公報JP 2004-197890 A

しかしながら、上記特許文献1記載の装置のようにティルティングパッドをピボットによって支持すると、潤滑油の供給開始時等において、回転軸とティルティングパッドとの間の油膜の厚さが軸方向にばらつくおそれがある。その結果、回転軸がティルティングパッドに片当りし、回転軸に焼き付き等の損傷が発生するおそれがある。   However, when the tilting pad is supported by the pivot as in the device described in Patent Document 1, the thickness of the oil film between the rotating shaft and the tilting pad may vary in the axial direction when the supply of lubricating oil is started. There is. As a result, the rotating shaft may come into contact with the tilting pad and damage such as seizure may occur on the rotating shaft.

本発明の目的は、回転軸の片当りによる損傷を防止することができる軸受け装置を提供することにある。   An object of the present invention is to provide a bearing device capable of preventing damage due to a single contact of a rotating shaft.

本発明の軸受け装置の一態様は、回転軸の周囲に設けられる支持部材と、回転軸と支持部材との間に配置され、回転軸の外周面に対向する円弧状の表面部と、支持部材に対向する背面部とを有するパッド部材と、パッド部材を支持部材に対して傾斜可能に支持するピボット部と、回転軸と表面部との間に油膜が形成されるように、回転軸と表面部との間に潤滑用圧油を供給する潤滑油供給部と、回転軸の軸方向に対するパッド部材の傾斜を規制する傾斜規制部と、を備えることを特徴とする。   One aspect of the bearing device of the present invention includes a support member provided around the rotation shaft, an arcuate surface portion that is disposed between the rotation shaft and the support member and faces the outer peripheral surface of the rotation shaft, and a support member The rotation shaft and the surface so that an oil film is formed between the rotation shaft and the surface portion. A lubricating oil supply part that supplies pressure oil for lubrication between the two parts and an inclination restricting part that restricts the inclination of the pad member with respect to the axial direction of the rotating shaft.

この構成によれば、パッド部材の表面部と回転軸との間に軸方向に不均一に潤滑油が供給されて、パッド部材が軸方向に対して傾斜した場合に、その軸方向に対する傾斜が規制される。したがって、回転軸の片当りによる損傷を防止することができる。   According to this configuration, when the lubricating oil is supplied unevenly in the axial direction between the surface portion of the pad member and the rotating shaft, and the pad member is inclined with respect to the axial direction, the inclination with respect to the axial direction is reduced. Be regulated. Therefore, it is possible to prevent damage due to the contact of the rotating shaft.

本発明の別の態様による軸受け装置では、潤滑油供給部が、表面部に開口し、回転軸の外周面に向けて潤滑油を供給する給油口と、給油口に連通して表面部に設けられた溝部と、を有し、溝部は、給油口の軸方向の両側に、互いに対称に形成されている。   In the bearing device according to another aspect of the present invention, the lubricating oil supply unit is provided on the surface portion, the oil supply port that opens to the surface portion, supplies the lubricating oil toward the outer peripheral surface of the rotating shaft, and communicates with the oil supply port. And the groove portions are formed symmetrically with each other on both sides in the axial direction of the fuel filler opening.

この構成によれば、潤滑油の供給開始時における、潤滑油圧が回転軸の外周面に作用する圧油面積を大きくすることができ、回転軸をパッド部材から容易に浮上させることができる。   According to this configuration, it is possible to increase the pressure oil area where the lubricating oil pressure acts on the outer peripheral surface of the rotating shaft at the start of supply of the lubricating oil, and the rotating shaft can be easily floated from the pad member.

本発明の別の態様による軸受け装置では、傾斜規制部が、支持部材からパッド部材を弾性支持する弾性支持部材を有する。   In the bearing device according to another aspect of the present invention, the inclination restricting portion includes an elastic support member that elastically supports the pad member from the support member.

この構成によれば、パッド部材が軸方向に傾くと、パッド部材に弾性部材からの反力が作用するため、パッド部材の軸方向の傾きを容易に修正することができる。   According to this configuration, when the pad member is tilted in the axial direction, the reaction force from the elastic member acts on the pad member, so that the tilt of the pad member in the axial direction can be easily corrected.

本発明の別の態様による軸受け装置では、傾斜規制部が、支持部材からパッド部材の背面部に向けて突設された突出部材を有する。   In the bearing device according to another aspect of the present invention, the inclination restricting portion includes a protruding member that protrudes from the support member toward the back surface portion of the pad member.

この構成によれば、パッド部材が所定量以上傾くと、パッド部材の背面部が突出部材の先端部に当接するため、パッド部材の最大傾斜を制限することができる。   According to this configuration, when the pad member is tilted by a predetermined amount or more, the back surface portion of the pad member comes into contact with the distal end portion of the protruding member, so that the maximum tilt of the pad member can be limited.

本発明の別の態様による軸受け装置では、傾斜規制部が、ピボット部の軸方向の両側に設けられている。   In the bearing device according to another aspect of the present invention, the tilt restricting portions are provided on both sides in the axial direction of the pivot portion.

この構成によれば、パッド部材の軸方向一方および軸方向他方への傾斜を効果的に抑制することができる。   According to this configuration, the inclination of the pad member in one axial direction and the other axial direction can be effectively suppressed.

本発明によれば、回転軸の片当りによる損傷を防止することができる。   According to the present invention, it is possible to prevent damage due to the contact of the rotating shaft.

図1は、本発明の実施形態に係る軸受け装置が適用される蒸気タービンの斜視図である。FIG. 1 is a perspective view of a steam turbine to which a bearing device according to an embodiment of the present invention is applied. 図2は、図1のII-II線断面図である。2 is a cross-sectional view taken along line II-II in FIG. 図3は、本発明の実施形態に係る軸受け装置を構成する軸受けパッドの構成を示す斜視図である。FIG. 3 is a perspective view showing a configuration of a bearing pad constituting the bearing device according to the embodiment of the present invention. 図4は、潤滑油による回転軸の浮上の様子を説明する図である。FIG. 4 is a diagram for explaining how the rotating shaft floats due to the lubricating oil. 図5は、軸受けパッドの傾斜の例を示す図である。FIG. 5 is a diagram illustrating an example of the inclination of the bearing pad. 図6は、本発明の第1の実施形態に係る軸受け装置の要部構成を概略的に示す図である。FIG. 6 is a diagram schematically showing a main configuration of the bearing device according to the first embodiment of the present invention. 図7は、本発明の第2の実施形態に係る軸受け装置の要部構成を概略的に示す図である。FIG. 7 is a diagram schematically showing a main configuration of a bearing device according to the second embodiment of the present invention. 図8は、本発明の変形例を示す図である。FIG. 8 is a diagram showing a modification of the present invention.

(第1の実施形態)
以下、図1〜図6を参照して本発明の第1の実施形態に係る軸受け装置について説明する。なお、以下では、一例として、蒸気タービンの回転軸を回転可能に支持する軸受け装置について説明する。蒸気タービンは、蒸気を用いて回転駆動することで発電を行う大型の回転機械であり、加圧水型原子炉等に用いられる。
(First embodiment)
Hereinafter, a bearing device according to a first embodiment of the present invention will be described with reference to FIGS. In the following, as an example, a bearing device that rotatably supports a rotating shaft of a steam turbine will be described. A steam turbine is a large-sized rotating machine that generates electricity by being rotationally driven using steam, and is used in a pressurized water reactor or the like.

図1は、本実施形態に係る軸受け装置が適用される蒸気タービン1の斜視図である。蒸気タービン1は、中心軸L0に沿って延在する一対の回転軸2,3と、一対の回転軸2,3の間に配置された翼部4とを有する。蒸気タービン1は、中心軸L0に対して対称形状をなしており、中心軸L0を中心に回転する。なお、図1では、翼部4を、回転軸2,3よりも大径の円筒形状で示しており、翼部4の詳細な図示を省略している。以下では、中心軸L0に平行な方向を軸方向、中心軸L0を中心とした円筒面の円周方向を周方向、および中心軸L0から円筒面に向かう方向あるいはその逆に円筒面から中心軸L0に向かう方向を径方向と定義する。回転軸2,3の外周面は円筒形状を呈しており、回転軸2,3の外周面の軸方向の接線は中心軸L0と平行である。   FIG. 1 is a perspective view of a steam turbine 1 to which a bearing device according to this embodiment is applied. The steam turbine 1 has a pair of rotating shafts 2 and 3 extending along a central axis L0 and a blade portion 4 disposed between the pair of rotating shafts 2 and 3. The steam turbine 1 has a symmetrical shape with respect to the central axis L0, and rotates around the central axis L0. In FIG. 1, the wing part 4 is shown in a cylindrical shape having a larger diameter than the rotation shafts 2 and 3, and detailed illustration of the wing part 4 is omitted. In the following, the direction parallel to the central axis L0 is the axial direction, the circumferential direction of the cylindrical surface around the central axis L0 is the circumferential direction, and the direction from the central axis L0 to the cylindrical surface or vice versa is the central axis from the cylindrical surface. The direction toward L0 is defined as the radial direction. The outer peripheral surfaces of the rotary shafts 2 and 3 have a cylindrical shape, and the tangent in the axial direction of the outer peripheral surfaces of the rotary shafts 2 and 3 is parallel to the central axis L0.

軸受け装置10は、潤滑油を介して回転軸2,3を摺動可能に支持する滑り軸受け装置であり、各回転軸2,3の外周面に面してそれぞれ一対設けられる。図2は、第1の実施形態に係る軸受け装置10の概略構成を示す断面図であり、中心軸L0に対し垂直な平面で切断した断面図(図1のII-II線断面図)である。なお、回転軸2の周囲の軸受け装置10と、回転軸3の周囲の軸受け装置10の構成は互いに等しく、以下では、主に回転軸2の周囲の軸受け装置10の構成について説明する。   The bearing device 10 is a sliding bearing device that slidably supports the rotating shafts 2 and 3 via lubricating oil, and a pair of bearing devices 10 are provided facing the outer peripheral surfaces of the rotating shafts 2 and 3. FIG. 2 is a cross-sectional view showing a schematic configuration of the bearing device 10 according to the first embodiment, and is a cross-sectional view taken along a plane perpendicular to the central axis L0 (a cross-sectional view taken along the line II-II in FIG. 1). . The configuration of the bearing device 10 around the rotary shaft 2 and the configuration of the bearing device 10 around the rotary shaft 3 are equal to each other, and the configuration of the bearing device 10 around the rotary shaft 2 will be mainly described below.

図2に示すように、軸受け装置10は、回転軸2の周囲に設けられる環状の軸受けハウジング11と、軸受けハウジング11の内周面と回転軸2の外周面との間に配置された一対の軸受けパッド12と、各軸受けパッド12を軸受けハウジング11から軸方向および周方向に揺動可能(傾斜可能)に支持するピボット13とを有する。軸受けパッド12は、回転軸2の周方向一部および軸方向一部を支持するように周方向および軸方向に延在する曲面を有する円弧状のパッド部材であり(図3参照)、ティルティングパッドとも呼ばれる。軸受けパッド12は、回転軸2の外周面に対向する表面部21と、軸受けハウジング11の内周面に対向する背面部22とを有する。   As shown in FIG. 2, the bearing device 10 includes an annular bearing housing 11 provided around the rotating shaft 2, and a pair of members disposed between the inner peripheral surface of the bearing housing 11 and the outer peripheral surface of the rotating shaft 2. A bearing pad 12 and a pivot 13 that supports each bearing pad 12 from the bearing housing 11 so as to be swingable (inclinable) in the axial direction and the circumferential direction. The bearing pad 12 is an arc-shaped pad member having a curved surface extending in the circumferential direction and the axial direction so as to support a part in the circumferential direction and a part in the axial direction of the rotating shaft 2 (see FIG. 3). Also called a pad. The bearing pad 12 has a surface portion 21 that faces the outer peripheral surface of the rotating shaft 2 and a back surface portion 22 that faces the inner peripheral surface of the bearing housing 11.

表面部21は、回転軸2の外周面に対応した所定曲率の凹状曲面によって形成されている。表面部21と回転軸2の外周面との間には潤滑油が供給され、表面部21は油膜30を介して回転軸2を回転可能に支持する。したがって、表面部21は軸受け装置10の摺動面を構成する。背面部22は、軸受けハウジング11の内周面に対応した所定曲率の凸状曲面によって形成されている。背面部22の周方向中央部かつ軸方向中央部は、ピボット13により支持されている。したがって、軸受けパッド12は、その中央部を支点にして周方向および軸方向に揺動可能である。   The surface portion 21 is formed by a concave curved surface having a predetermined curvature corresponding to the outer peripheral surface of the rotating shaft 2. Lubricating oil is supplied between the surface portion 21 and the outer peripheral surface of the rotating shaft 2, and the surface portion 21 supports the rotating shaft 2 through an oil film 30 in a rotatable manner. Therefore, the surface portion 21 constitutes a sliding surface of the bearing device 10. The back surface portion 22 is formed by a convex curved surface having a predetermined curvature corresponding to the inner peripheral surface of the bearing housing 11. The central portion in the circumferential direction and the central portion in the axial direction of the back surface portion 22 are supported by the pivot 13. Therefore, the bearing pad 12 can swing in the circumferential direction and the axial direction with the central portion as a fulcrum.

ピボット13は、中心軸L0を通って水平方向に延在する軸線L1の下方領域に、かつ、中心軸L0を通って鉛直方向に延在する軸線L2を挟んで周方向両側にそれぞれ設けられている。一方のピボット13の周方向中心部と中心軸L0とを結ぶ直線L3から軸線L2までのなす角度θ1は、例えば45度であり、他方のピボット13の周方向中心部と中心軸L0とを結ぶ直線L4から軸線L2までのなす角度θ2は、例えば−45度である。すなわち、回転軸2は、軸線L2に対し周方向対称位置に配置された2つの軸受けパッド12により支持されている。このように回転軸2を一対の軸受けパッド12によって支持することで、部品点数を削減できるとともに、部品の設置スペースを縮小できる。   The pivot 13 is provided in a region below the axis L1 extending in the horizontal direction through the central axis L0, and on both sides in the circumferential direction across the axis L2 extending in the vertical direction through the central axis L0. Yes. An angle θ1 formed between a straight line L3 connecting the circumferential center of one pivot 13 and the central axis L0 to the axis L2 is, for example, 45 degrees, and connects the circumferential central part of the other pivot 13 and the central axis L0. An angle θ2 formed by the straight line L4 and the axis L2 is, for example, −45 degrees. That is, the rotating shaft 2 is supported by the two bearing pads 12 arranged in a circumferentially symmetric position with respect to the axis L2. By supporting the rotating shaft 2 with the pair of bearing pads 12 in this way, the number of parts can be reduced and the installation space for the parts can be reduced.

図3は、軸受けパッド12の表面部21の構成を示す斜視図である。図3に示すように、表面部21の周方向中央部かつ軸方向中央部には給油口23が開口されている。給油口23は、軸受けパッド12を貫通する貫通孔24を介して図示しない潤滑油ポンプに連通し、潤滑油ポンプから吐出された潤滑油は、給油口23から回転軸2の外周面に向けて供給される。なお、軸受けパッド12の背面部22には、ピボット13によって支持される支持部が設けられているが、貫通孔24は、この支持部を避けて形成されている。   FIG. 3 is a perspective view showing the configuration of the surface portion 21 of the bearing pad 12. As shown in FIG. 3, an oil filler port 23 is opened at the center portion in the circumferential direction and the center portion in the axial direction of the surface portion 21. The oil supply port 23 communicates with a lubricating oil pump (not shown) through a through hole 24 that penetrates the bearing pad 12, and the lubricating oil discharged from the lubricating oil pump is directed from the oil supply port 23 toward the outer peripheral surface of the rotary shaft 2. Supplied. In addition, although the support part supported by the pivot 13 is provided in the back surface part 22 of the bearing pad 12, the through-hole 24 is formed avoiding this support part.

さらに軸受けパッド12の表面部21には、給油口23の軸方向両側に、所定深さの一対の溝部25が設けられている。各溝部25は、給油口23に対して互いに対称に形成されている。この実施形態では、溝部25は菱形形状を呈している。各溝部25の菱形の一の頂点は、給油口23と重なり、溝部25は給油口23に連通している。   Further, a pair of groove portions 25 having a predetermined depth are provided on the surface portion 21 of the bearing pad 12 on both sides in the axial direction of the oil filler 23. Each groove portion 25 is formed symmetrically with respect to the fuel filler opening 23. In this embodiment, the groove part 25 has a rhombus shape. One apex of the rhombus of each groove portion 25 overlaps with the fuel filler 23, and the groove 25 communicates with the fuel filler 23.

このように構成された軸受け装置10において、蒸気タービン1を回転させる前は、給油口23に潤滑油が供給されず、回転軸2,3は、各軸受けパッド12の表面部21に接触して支持されている。このとき、蒸気タービン1の自重による接触圧力の分布は、例えば図4(a)の領域P0で表される。   In the bearing device 10 configured as described above, before the steam turbine 1 is rotated, the lubricating oil is not supplied to the oil supply port 23, and the rotating shafts 2 and 3 are in contact with the surface portion 21 of each bearing pad 12. It is supported. At this time, the distribution of the contact pressure due to the weight of the steam turbine 1 is represented by, for example, a region P0 in FIG.

蒸気タービン1を回転させる際は、まず、潤滑油ポンプの起動により給油口23に潤滑油を供給する。供給された潤滑油は、給油口23から各溝部25に行き渡り、図4の(a)に示すように、各溝部25から回転軸2,3の外周面に回転軸2,3を浮上させるような圧力(浮上圧P)が発生する。潤滑油供給の初期段階では、蒸気タービン1の自重による軸受け荷重Wは、潤滑油圧が回転軸2,3の外周面に作用する面積(圧油面積S)に浮上圧Pを乗じた浮上力PT(圧油面積S×浮上圧P)よりも大きく、回転軸2,3は浮上しない。   When rotating the steam turbine 1, first, lubricating oil is supplied to the oil supply port 23 by starting the lubricating oil pump. The supplied lubricating oil spreads from the oil supply port 23 to the respective groove portions 25 and causes the rotary shafts 2 and 3 to float on the outer peripheral surfaces of the rotary shafts 2 and 3 from the respective groove portions 25 as shown in FIG. Pressure (levitation pressure P) is generated. In the initial stage of supplying the lubricating oil, the bearing load W due to the own weight of the steam turbine 1 is such that the floating force PT obtained by multiplying the area (pressure oil area S) where the lubricating oil pressure acts on the outer peripheral surfaces of the rotary shafts 2 and 3 by the floating pressure P. It is larger than (pressure oil area S × flying pressure P), and the rotary shafts 2 and 3 do not float.

その後、図4(b)に示すように、浮上圧Pが接触圧P0を超えると、回転軸2,3の外周面と表面部21との間に流路となる隙間が生じ、図4(b)の矢印aに示すように潤滑油が溝部25を越えてにじみ出す。これにより圧油面積Sが増加し、浮上力PT(=S×P)が増大する。図4(c)に示すように、浮上力PTが軸受け荷重Wを超えると、回転軸2,3は浮上を開始する。最終的には、潤滑油による浮上圧は図4(d)の領域R1に示すような静圧分布となり、回転軸2,3は、油膜30を介して軸受けパッド12からわずかに浮上した状態で支持される。この状態で、蒸気タービン1を回転駆動することにより、蒸気タービン1の回転開始時の回転軸2,3における焼き付きを防止できる。蒸気タービン1が回転すると、潤滑油ポンプの駆動を停止する。このとき回転軸2,3の外周面と表面部21との間には、動圧発生に必要なくさび状油膜が形成され、回転軸2,3の振動が減衰される。   Thereafter, as shown in FIG. 4 (b), when the flying pressure P exceeds the contact pressure P0, a gap is formed between the outer peripheral surface of the rotary shafts 2 and 3 and the surface portion 21, and FIG. As shown by the arrow a in b), the lubricating oil oozes out beyond the groove 25. As a result, the pressure oil area S increases and the levitation force PT (= S × P) increases. As shown in FIG. 4C, when the levitation force PT exceeds the bearing load W, the rotary shafts 2 and 3 start to float. Finally, the floating pressure due to the lubricating oil becomes a static pressure distribution as shown in the region R1 of FIG. Supported. In this state, the steam turbine 1 is rotationally driven to prevent seizure on the rotary shafts 2 and 3 when the steam turbine 1 starts to rotate. When the steam turbine 1 rotates, the drive of the lubricating oil pump is stopped. At this time, a rust-like oil film is formed between the outer peripheral surfaces of the rotary shafts 2 and 3 and the surface portion 21 without the need for dynamic pressure generation, and the vibrations of the rotary shafts 2 and 3 are attenuated.

このように軸受けパッド12の表面部21に溝部25を設けたことにより、潤滑油圧が作用する圧油面積Sを容易に増加させることができる。したがって、浮上圧Pを大幅に増加させなくても、浮上力PTを増大することが可能であり、蒸気タービン1等の大重量の大型の回転機械に用いて好適である。また、軸受けパッド12は、ピボット13により支持されているため、回転軸2,3の傾きに容易に追従することができる。   Thus, by providing the groove part 25 in the surface part 21 of the bearing pad 12, the pressure oil area S on which lubricating oil pressure acts can be increased easily. Therefore, the levitation force PT can be increased without significantly increasing the levitation pressure P, which is suitable for use in a large-sized large rotating machine such as the steam turbine 1. Further, since the bearing pad 12 is supported by the pivot 13, the bearing pad 12 can easily follow the inclination of the rotary shafts 2 and 3.

ところで、潤滑油の供給開始時に、例えば軸受けパッド12の周方向中央部を通る軸線La(図3)が中心軸L0(図1)と平行になっていれば、軸受けパッド12の初期姿勢は水平姿勢となる。この状態では、例えば回転軸2の接触面である図3の点線領域R2に潤滑油が均一に分布する。したがって、点線領域R2内の油膜30の厚さが均等となり、表面部21に対して回転軸2を平行に支持できる。   By the way, when the supply of the lubricating oil is started, for example, if the axis La (FIG. 3) passing through the central portion in the circumferential direction of the bearing pad 12 is parallel to the central axis L0 (FIG. 1), the initial posture of the bearing pad 12 is horizontal. Become posture. In this state, for example, the lubricating oil is uniformly distributed in the dotted line region R2 of FIG. Therefore, the thickness of the oil film 30 in the dotted line region R2 becomes uniform, and the rotating shaft 2 can be supported in parallel to the surface portion 21.

これに対し、軸受けパッド12の初期姿勢が軸方向に傾いた傾斜姿勢になっていると、表面部21と回転軸2の外周面との間の隙間が軸方向で不均一となり、隙間が大きい軸方向一方に、より多くの潤滑油が流れる。その結果、図5に示すように、潤滑油によって軸受けパッド12を傾けるようなモーメントMが発生し、回転軸2は軸受けパッド12に対して相対的に傾いて支持される。このとき、軸受けパッド12の周方向中央部を通る軸線Laと中心軸L0とは平行でない。この状態で蒸気タービン1を回転すると、回転軸2が軸受けパッド12に片当りし、摺動面に焼き付き等の損傷が発生するおそれがある。これを防止するため、第1の実施形態では、以下のように軸受け装置10を構成する。   On the other hand, when the initial posture of the bearing pad 12 is an inclined posture inclined in the axial direction, the gap between the surface portion 21 and the outer peripheral surface of the rotating shaft 2 becomes uneven in the axial direction, and the gap is large. More lubricating oil flows in one axial direction. As a result, as shown in FIG. 5, a moment M that tilts the bearing pad 12 by the lubricating oil is generated, and the rotary shaft 2 is supported while being inclined relative to the bearing pad 12. At this time, the axis line La passing through the circumferential center of the bearing pad 12 and the central axis L0 are not parallel. If the steam turbine 1 is rotated in this state, the rotating shaft 2 may come into contact with the bearing pad 12 and damage such as seizure may occur on the sliding surface. In order to prevent this, the bearing device 10 is configured as follows in the first embodiment.

図6は、第1の実施形態に係る軸受け装置10の要部構成を概略的に示す図である。図6に示すように、軸受けハウジング11は、円環状の周壁部11aと、周壁部11aの軸方向両端部から回転軸に向けて突出する一対の側壁部11bとを有する。軸受けパッド12は、これら周壁部11aと側壁部11bとによって形成された空間SPに、回転軸2の外周面に面して配置されている。   FIG. 6 is a diagram schematically illustrating a main configuration of the bearing device 10 according to the first embodiment. As shown in FIG. 6, the bearing housing 11 includes an annular peripheral wall portion 11 a and a pair of side wall portions 11 b that protrude from both axial ends of the peripheral wall portion 11 a toward the rotation shaft. The bearing pad 12 is disposed facing the outer peripheral surface of the rotating shaft 2 in the space SP formed by the peripheral wall portion 11a and the side wall portion 11b.

ピボット13の軸方向両側には、ピボット13を挟んで互いに対称位置にそれぞれ弾力性を有する防振ゴム14が設けられている。各防振ゴム14は互いに同一部品である。各防振ゴム14はそれぞれ径方向に延在し、径方向外側の一端部は、軸受けハウジング11の周壁部11aの内周面に固定され、径方向内側の他端部は、軸受けパッド12の背面部22の周方向中央部に固定されている。すなわち、一対のピボット13と防振ゴム14とは、それぞれ周方向同一位置に配置されている。   On both sides in the axial direction of the pivot 13, there are provided anti-vibration rubbers 14 having elasticity at symmetrical positions with respect to the pivot 13. The anti-vibration rubbers 14 are the same parts. Each anti-vibration rubber 14 extends in the radial direction, one end portion on the outer side in the radial direction is fixed to the inner peripheral surface of the peripheral wall portion 11 a of the bearing housing 11, and the other end portion on the inner side in the radial direction is on the bearing pad 12. The back portion 22 is fixed to the center portion in the circumferential direction. That is, the pair of pivots 13 and the anti-vibration rubber 14 are arranged at the same position in the circumferential direction.

図6に示すように軸受けパッド12の周方向中央部を通る軸線Laが中心軸L0と平行であれば、軸受けパッド12は水平姿勢となる。このとき、各防振ゴム14には圧縮力および引張力のいずれも作用せず、各防振ゴム14から軸受けパッド12に作用する反力(付勢力)は互いに等しく、0である。なお、各防振ゴム14を、予め互いに同一量だけ縮退あるいは伸張させた状態で背面部22と周壁部11aとの間に設けている場合には、各防振ゴム14に所定の初期荷重が作用するが、この場合も各防振ゴム14から軸受けパッド12に作用する反力は互いに等しい。   As shown in FIG. 6, if the axis line La passing through the central portion in the circumferential direction of the bearing pad 12 is parallel to the central axis L0, the bearing pad 12 is in a horizontal posture. At this time, neither the compressive force nor the tensile force acts on each anti-vibration rubber 14, and the reaction forces (biasing forces) acting on the bearing pads 12 from the anti-vibration rubbers 14 are equal to each other and zero. In addition, when each anti-vibration rubber 14 is provided between the back surface portion 22 and the peripheral wall portion 11a in a state where the anti-vibration rubbers 14 are previously contracted or expanded by the same amount, a predetermined initial load is applied to each anti-vibration rubber 14. In this case as well, the reaction forces acting on the bearing pads 12 from the antivibration rubbers 14 are equal to each other.

これに対し、軸受けパッド12が軸方向一方に傾いて軸受けパッド12の軸線Laが中心軸L0に対して傾斜すると、一方の防振ゴム14に圧縮力が、他方の防振ゴム14に引張力がそれぞれ作用する。これにより一方の防振ゴム14は、軸受けパッド12の軸方向一端部側に回転軸2に近づけるような反力を付与し、他方の防振ゴム14は、軸受けパッド12の軸方向他端部側に回転軸2から離れるような反力を付与する。その結果、軸受けパッド12の軸方向の傾きを低減することができ、軸受けパッド12を水平姿勢に矯正できる。   On the other hand, when the bearing pad 12 is tilted in one axial direction and the axis La of the bearing pad 12 is tilted with respect to the central axis L0, the compressive force is applied to one vibration isolating rubber 14 and the tensile force applied to the other anti-vibrating rubber 14 Each works. As a result, one vibration isolating rubber 14 applies a reaction force to approach one end of the bearing pad 12 in the axial direction, and the other anti-vibration rubber 14 is the other end in the axial direction of the bearing pad 12. A reaction force is applied to the side away from the rotary shaft 2. As a result, the inclination of the bearing pad 12 in the axial direction can be reduced, and the bearing pad 12 can be corrected to a horizontal posture.

第1の実施形態によれば以下のような作用効果を奏することができる。
(1)回転軸2,3と軸受けハウジング11との間に、回転軸2,3の外周面に対向する表面部21と軸受けハウジング11の周壁部11aに対向する背面部22とを有する軸受けパッド12を配置するとともに、軸受けパッド12をピボット13により軸受けハウジング11に対して周方向および軸方向にそれぞれ傾斜可能に支持し、回転軸2,3と表面部21との間に油膜30が形成されるように給油口23および溝部25を介して潤滑用圧油を供給するようにした。さらに、ピボット13を挟んで軸方向両側に一対の防振ゴム14を配置し、軸受けパッド12を防振ゴム14により軸受けハウジング11から弾性支持するようにした。これにより軸受けパッド12が軸方向に傾斜すると、軸受けパッド12に防振ゴム14から弾性力が作用することとなり、軸受けパッド12の軸方向の傾斜を修正できる。したがって、回転軸2,3が軸受けパッド12に片当りすることを防止することができ、回転軸2,3の焼き付き等の損傷を防ぐことができる。
According to 1st Embodiment, there can exist the following effects.
(1) A bearing pad having a surface portion 21 facing the outer peripheral surface of the rotating shafts 2 and 3 and a back surface portion 22 facing the peripheral wall portion 11a of the bearing housing 11 between the rotating shafts 2 and 3 and the bearing housing 11. 12, and the bearing pad 12 is supported by the pivot 13 so as to be able to incline in the circumferential direction and the axial direction with respect to the bearing housing 11, and an oil film 30 is formed between the rotary shafts 2 and 3 and the surface portion 21. Thus, the lubricating oil is supplied through the oil supply port 23 and the groove 25. Further, a pair of vibration isolating rubbers 14 are arranged on both sides in the axial direction with the pivot 13 interposed therebetween, and the bearing pad 12 is elastically supported from the bearing housing 11 by the vibration isolating rubber 14. As a result, when the bearing pad 12 is inclined in the axial direction, an elastic force is applied to the bearing pad 12 from the vibration isolating rubber 14, and the inclination of the bearing pad 12 in the axial direction can be corrected. Therefore, it is possible to prevent the rotating shafts 2 and 3 from hitting the bearing pad 12 and to prevent damage such as seizure of the rotating shafts 2 and 3.

(2)ピボット13の軸方向両側に一対の防振ゴム14を設けたので、軸受けパッド12が軸方向に傾くと、軸受けパッド12の軸方向一端側および軸方向他端側にそれぞれ反力が作用し、軸受けパッド12の傾きを早期に低減することができる。
(3)軸受けパッド12の表面部21に給油口23を開口するとともに、給油口23に連通して、かつ、給油口23の軸方向両側に互いに対称に溝部25を設けるようにした。これにより、潤滑油の供給開始時における、潤滑油圧が回転軸2,3の外周面に作用する圧油面積Sを大きくすることができ、回転軸2,3を軸受けパッド12から容易に浮上させることができる。
(2) Since the pair of anti-vibration rubbers 14 are provided on both sides of the pivot 13 in the axial direction, when the bearing pad 12 is tilted in the axial direction, reaction forces are applied to the one axial end and the other axial end of the bearing pad 12, respectively. It acts, and the inclination of the bearing pad 12 can be reduced at an early stage.
(3) The oil filler 23 is opened in the surface portion 21 of the bearing pad 12, and the grooves 25 are provided in communication with the oil filler 23 and symmetrically on both sides in the axial direction of the oil filler 23. As a result, the pressure oil area S on which the lubricating oil pressure acts on the outer peripheral surfaces of the rotating shafts 2 and 3 at the start of supply of the lubricating oil can be increased, and the rotating shafts 2 and 3 can be easily floated from the bearing pad 12. be able to.

(第2の実施形態)
図7を参照して本発明の第2の実施形態に係る軸受け装置について説明する。第2の実施形態が第1実施形態と異なるのは、軸受けパッド12の軸方向の傾斜を規制するための構成である。すなわち、第1の実施形態では、ピボット13の軸方向両側に防振ゴム14を設けて軸受けパッド12の傾斜を規制するようにしたが、第2の実施形態では、防振ゴム14の代わりにストッパー15を設けて軸方向の傾斜を規制する。
(Second Embodiment)
A bearing device according to a second embodiment of the present invention will be described with reference to FIG. The second embodiment differs from the first embodiment in the configuration for restricting the inclination of the bearing pad 12 in the axial direction. That is, in the first embodiment, the anti-vibration rubber 14 is provided on both sides in the axial direction of the pivot 13 so as to restrict the inclination of the bearing pad 12. However, in the second embodiment, instead of the anti-vibration rubber 14. A stopper 15 is provided to restrict the inclination in the axial direction.

図7は、第2の実施形態に係る軸受け装置10の要部構成を概略的に示す図である。なお、図6と同一の箇所には同一の符号を付し、以下では第1の実施形態との相違点を主に説明する。   FIG. 7 is a diagram schematically illustrating a main configuration of the bearing device 10 according to the second embodiment. In addition, the same code | symbol is attached | subjected to the location same as FIG. 6, and the difference with 1st Embodiment is mainly demonstrated below.

図7に示すように、軸受けハウジング11の周壁部11aと軸受けパッド12との間には、ピボット13を挟んで互いに対称位置に、かつ、ピボット13と周方向同一位置にそれぞれ一対のストッパー15が設けられている。ストッパー15は径方向に延在する棒状部材であり、径方向外側の一端部(基端部)は、軸受けハウジング11の周壁部11aの内周面に固定されている。ストッパー15の径方向内側の他端部(先端部)は、軸受けハウジング11の背面部22から離れている。各ストッパー15の長さは、図示のように軸受けパッド12が水平姿勢のときに、各ストッパー15の先端と回転軸2の外周面との間の隙間ΔLが互いに同一量となるように設定されている。   As shown in FIG. 7, a pair of stoppers 15 are provided between the peripheral wall portion 11 a of the bearing housing 11 and the bearing pad 12 so as to be symmetrical with each other with the pivot 13 interposed therebetween and at the same circumferential position as the pivot 13. Is provided. The stopper 15 is a rod-like member extending in the radial direction, and one end portion (base end portion) on the outer side in the radial direction is fixed to the inner peripheral surface of the peripheral wall portion 11 a of the bearing housing 11. The other end portion (tip portion) on the radially inner side of the stopper 15 is separated from the back surface portion 22 of the bearing housing 11. The length of each stopper 15 is set so that the gap ΔL between the tip of each stopper 15 and the outer peripheral surface of the rotating shaft 2 becomes the same amount when the bearing pad 12 is in a horizontal posture as shown in the figure. ing.

このような構成により、軸受けパッド12が軸方向一方に傾斜すると、背面部22が一方のストッパー15に当接し、軸受けパッド12が軸方向他方に傾斜すると、背面部22が他方のストッパー15に当接する。これにより軸受けパッド12の軸方向の傾斜が制限され、回転軸2,3の片当りによる損傷を防止することができる。   With such a configuration, when the bearing pad 12 is tilted in one axial direction, the back surface portion 22 comes into contact with one stopper 15, and when the bearing pad 12 is tilted in the other axial direction, the back surface portion 22 contacts the other stopper 15. Touch. Thereby, the inclination of the bearing pad 12 in the axial direction is limited, and damage due to the contact of the rotary shafts 2 and 3 can be prevented.

(変形例)
上記実施形態では、ピボット13の軸方向両側に防振ゴム14(図6)あるいはストッパー15(図7)を設けるようにしたが、図8に示すように防振ゴム14とストッパー15の両方を設けるようにしてもよい。これにより軸受けパッド12に軸方向の大きなモーメントが作用した場合に、軸受けパッド12の最大傾斜がストッパー15で制限されるとともに、防振ゴム14の弾性力によって軸受けパッド12の姿勢を早期に水平姿勢とすることができる。
(Modification)
In the above embodiment, the anti-vibration rubber 14 (FIG. 6) or the stopper 15 (FIG. 7) is provided on both sides of the pivot 13 in the axial direction, but both the anti-vibration rubber 14 and the stopper 15 are provided as shown in FIG. You may make it provide. As a result, when a large axial moment is applied to the bearing pad 12, the maximum inclination of the bearing pad 12 is limited by the stopper 15, and the posture of the bearing pad 12 is quickly lowered by the elastic force of the vibration isolating rubber 14. It can be.

上記実施形態では、回転軸2,3の周囲に軸受けハウジング11を設けて防振ゴム14およびストッパー15を支持するようにしたが、支持部材の構成はこれに限らない。回転軸2,3の外周面に対向する円弧状の表面部21と、軸受けハウジング11に対向する背面部22とを有する軸受けパッド12の構成は上述したものに限らない。すなわち、回転軸2,3と軸受けハウジング11との間に配置されて、油膜30を介して回転軸2,3を回転可能に支持するのであれば、パッド部材の構成はいかなるものでもよい。   In the above embodiment, the bearing housing 11 is provided around the rotary shafts 2 and 3 to support the anti-vibration rubber 14 and the stopper 15, but the configuration of the support member is not limited to this. The configuration of the bearing pad 12 having the arc-shaped surface portion 21 that faces the outer peripheral surface of the rotary shafts 2 and 3 and the back surface portion 22 that faces the bearing housing 11 is not limited to that described above. In other words, the pad member may have any configuration as long as it is disposed between the rotary shafts 2 and 3 and the bearing housing 11 and supports the rotary shafts 2 and 3 via the oil film 30 so as to be rotatable.

上記実施形態では、軸受けパッド12をピボット13によって周方向および軸方向に傾斜可能に支持するようにしたが、ピボット13を軸方向のみに傾斜可能に支持するものとしてもよく、ピボット部の構成は上述したものに限らない。上記実施形態では、軸受けパッド12の表面部21に給油口23と溝部25とを形成して回転軸2,3と表面部21との間に潤滑用圧油を供給するようにしたが、回転軸2,3と表面部21との間に油膜30を形成するための潤滑油供給部の構成はこれに限らない。給油口23の軸方向両側に菱形の溝部25を設けたが、溝部25は他の形状であってもよい。   In the above embodiment, the bearing pad 12 is supported by the pivot 13 so as to be tiltable in the circumferential direction and the axial direction. However, the pivot 13 may be supported so as to be tiltable only in the axial direction. It is not restricted to what was mentioned above. In the above embodiment, the oil supply port 23 and the groove portion 25 are formed in the surface portion 21 of the bearing pad 12 to supply the lubricating oil between the rotary shafts 2 and 3 and the surface portion 21. The configuration of the lubricating oil supply part for forming the oil film 30 between the shafts 2 and 3 and the surface part 21 is not limited to this. Although the diamond-shaped groove portions 25 are provided on both sides in the axial direction of the fuel filler opening 23, the groove portions 25 may have other shapes.

上記実施形態では、防振ゴム14およびストッパー15により、回転軸方向に対する軸受けパッド12の傾斜を規制するようにしたが、傾斜規制部の構成はこれに限らない。ここで、傾斜を規制するとは、図6に示すように中心軸L0と軸線Laとを含む平面上において、軸受けパッド12の軸方向両側端部(図6では左右両端部)における中心軸L0から軸線Laまでの距離の変化を抑えることを意味する。換言すると、図6の中心軸L0と軸線Laとのなす角が小さくなるようにすることを意味する。なお、中心軸L0と軸線Laとのなす角が最小となるのは、中心軸L0と軸線Laとが平行の場合である。   In the above-described embodiment, the inclination of the bearing pad 12 with respect to the rotation axis direction is restricted by the anti-vibration rubber 14 and the stopper 15, but the configuration of the inclination restriction part is not limited to this. Here, restricting the inclination means that, as shown in FIG. 6, from the central axis L0 at both axial ends of the bearing pad 12 (both left and right ends in FIG. 6) on the plane including the central axis L0 and the axis La. This means that the change in the distance to the axis La is suppressed. In other words, it means that the angle formed by the central axis L0 and the axis La in FIG. Note that the angle formed by the central axis L0 and the axis line La is minimized when the central axis L0 and the axis line La are parallel.

上記実施形態では、防振ゴム14およびストッパー15をピボット13の軸方向両側に設けたが、軸方向一方のみに設けるようにしてもよい。上記実施形態(図6)では、防振ゴム14により軸受けハウジング11から軸受けパッド12を弾性支持するようにした。すなわち、防振ゴム14を介して軸受けパッド12を軸受けハウジング11に弾性支持するようにしたが、防振ゴム14に代えて例えばばね等、他の弾性支持部材を用いることもできる。上記実施形態(図7)では、軸受けハウジング11から背面部22に向けてストッパー15を突設するようにしたが、突出部材の構成は上述したものに限らない。   In the above embodiment, the anti-vibration rubber 14 and the stopper 15 are provided on both sides of the pivot 13 in the axial direction, but may be provided only on one side in the axial direction. In the above embodiment (FIG. 6), the bearing pad 12 is elastically supported from the bearing housing 11 by the anti-vibration rubber 14. In other words, the bearing pad 12 is elastically supported on the bearing housing 11 via the vibration isolating rubber 14, but another elastic supporting member such as a spring can be used instead of the vibration isolating rubber 14. In the above embodiment (FIG. 7), the stopper 15 is projected from the bearing housing 11 toward the back surface portion 22, but the configuration of the protruding member is not limited to that described above.

上記実施形態は、蒸気タービン1に軸受け装置を適用したが、本発明の軸受け装置は、ガスタービンや圧縮機等、他の回転機械にも同様に適用することができる。   Although the said embodiment applied the bearing apparatus to the steam turbine 1, the bearing apparatus of this invention is applicable similarly to other rotating machines, such as a gas turbine and a compressor.

以上の説明はあくまで一例であり、本発明の特徴を損なわない限り、上述した実施形態および変形例により本発明が限定されるものではない。上記実施形態および変形例の構成要素には、発明の同一性を維持しつつ置換可能かつ置換自明なものが含まれる。すなわち、本発明の技術的思想の範囲内で考えられる他の形態についても、本発明の範囲内に含まれる。また、上記実施形態と変形例の1つまたは複数を任意に組み合わせることも可能である。   The above description is merely an example, and the present invention is not limited to the above-described embodiments and modifications unless the features of the present invention are impaired. The constituent elements of the embodiment and the modified examples include those that can be replaced while maintaining the identity of the invention and that are obvious for replacement. That is, other forms conceivable within the scope of the technical idea of the present invention are also included in the scope of the present invention. Moreover, it is also possible to arbitrarily combine one or more of the above-described embodiments and modified examples.

1 蒸気タービン
2,3 回転軸
10 軸受け装置
11 ハウジング
12 軸受けパッド
13 ピボット
14 防振ゴム
15 ストッパー
21 表面部
22 背面部
23 給油口
25 溝部
DESCRIPTION OF SYMBOLS 1 Steam turbine 2, 3 Rotating shaft 10 Bearing apparatus 11 Housing 12 Bearing pad 13 Pivot 14 Anti-vibration rubber 15 Stopper 21 Surface portion 22 Back surface portion 23 Oil supply port 25 Groove portion

Claims (5)

回転軸の周囲に設けられる支持部材と、
前記回転軸と前記支持部材との間に配置され、前記回転軸の外周面に対向する円弧状の表面部と、前記支持部材に対向する背面部とを有するパッド部材と、
前記パッド部材を前記支持部材に対して傾斜可能に支持するピボット部と、
前記回転軸と前記表面部との間に油膜が形成されるように、前記回転軸と前記表面部との間に潤滑用圧油を供給する潤滑油供給部と、
前記回転軸の軸方向に対する前記パッド部材の傾斜を規制する傾斜規制部と、を備えることを特徴とする軸受け装置。
A support member provided around the rotation shaft;
A pad member that is disposed between the rotating shaft and the support member and has an arcuate surface portion facing the outer peripheral surface of the rotating shaft, and a back surface portion facing the support member;
A pivot part for tiltingly supporting the pad member with respect to the support member;
A lubricating oil supply section that supplies pressure oil for lubrication between the rotating shaft and the surface portion so that an oil film is formed between the rotating shaft and the surface portion;
An inclination restricting portion for restricting an inclination of the pad member with respect to an axial direction of the rotating shaft.
請求項1に記載の軸受け装置において、
前記潤滑油供給部は、
前記表面部に開口し、前記回転軸の外周面に向けて潤滑油を供給する給油口と、
前記給油口に連通して前記表面部に設けられた溝部と、を有し、
前記溝部は、前記給油口の前記軸方向の両側に、互いに対称に形成されていることを特徴とする軸受け装置。
The bearing device according to claim 1,
The lubricating oil supply unit
An oil supply port that opens to the surface portion and supplies lubricating oil toward the outer peripheral surface of the rotating shaft;
A groove provided in the surface portion in communication with the oil filler,
The groove part is formed symmetrically with each other on both sides of the axial direction of the oil filler opening.
請求項1または2に記載の軸受け装置において、
前記傾斜規制部は、前記支持部材から前記パッド部材を弾性支持する弾性支持部材を有することを特徴とする軸受け装置。
The bearing device according to claim 1 or 2,
The said inclination control part has an elastic support member which elastically supports the said pad member from the said support member, The bearing apparatus characterized by the above-mentioned.
請求項1〜3のいずれか1項に記載の軸受け装置において、
前記傾斜規制部は、前記支持部材から前記パッド部材の前記背面部に向けて突設された突出部材を有することを特徴とする軸受け装置。
The bearing device according to any one of claims 1 to 3,
The said inclination control part has a protrusion member protrudingly provided toward the said back part of the said pad member from the said supporting member, The bearing apparatus characterized by the above-mentioned.
請求項1〜4のいずれか1項に記載の軸受け装置において、
前記傾斜規制部は、前記ピボット部の前記軸方向の両側に設けられていることを特徴とする軸受け装置。
In the bearing device according to any one of claims 1 to 4,
The inclination restricting portion is provided on both sides of the pivot portion in the axial direction.
JP2012008508A 2012-01-18 2012-01-18 Bearing device Active JP5954998B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2012008508A JP5954998B2 (en) 2012-01-18 2012-01-18 Bearing device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2012008508A JP5954998B2 (en) 2012-01-18 2012-01-18 Bearing device

Publications (2)

Publication Number Publication Date
JP2013148145A true JP2013148145A (en) 2013-08-01
JP5954998B2 JP5954998B2 (en) 2016-07-20

Family

ID=49045832

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2012008508A Active JP5954998B2 (en) 2012-01-18 2012-01-18 Bearing device

Country Status (1)

Country Link
JP (1) JP5954998B2 (en)

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS62118114A (en) * 1985-11-19 1987-05-29 Toshiba Corp Pad type journal bearing
JPH0791441A (en) * 1993-09-21 1995-04-04 Mitsubishi Heavy Ind Ltd Tilting pad thrust bearing
JPH07293556A (en) * 1994-04-20 1995-11-07 Toshiba Corp Submerged bearing device
JPH10213131A (en) * 1997-01-30 1998-08-11 Mitsubishi Heavy Ind Ltd Tilting pad thrust bearing
JP2001107747A (en) * 1999-10-12 2001-04-17 Mitsubishi Heavy Ind Ltd Steam cooling gas turbine and its bearing
JP2011179548A (en) * 2010-02-26 2011-09-15 Mitsubishi Heavy Ind Ltd Tilting pad bearing device

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS62118114A (en) * 1985-11-19 1987-05-29 Toshiba Corp Pad type journal bearing
JPH0791441A (en) * 1993-09-21 1995-04-04 Mitsubishi Heavy Ind Ltd Tilting pad thrust bearing
JPH07293556A (en) * 1994-04-20 1995-11-07 Toshiba Corp Submerged bearing device
JPH10213131A (en) * 1997-01-30 1998-08-11 Mitsubishi Heavy Ind Ltd Tilting pad thrust bearing
JP2001107747A (en) * 1999-10-12 2001-04-17 Mitsubishi Heavy Ind Ltd Steam cooling gas turbine and its bearing
JP2011179548A (en) * 2010-02-26 2011-09-15 Mitsubishi Heavy Ind Ltd Tilting pad bearing device

Also Published As

Publication number Publication date
JP5954998B2 (en) 2016-07-20

Similar Documents

Publication Publication Date Title
JP5767884B2 (en) Tilting pad journal bearing and steam turbine
JP4554583B2 (en) Thrust bearing device
JP6783534B2 (en) Radial bearing equipment and rotating machinery
EP2989336B1 (en) Rotating machinery with adaptive bearing journals and methods of operating
JP2011069491A (en) Bearing device, retention mechanism and method for retaining at least one pad
JP2002276646A (en) Radial bearing and transmittion using the radial bearing
WO2018105162A1 (en) Tilting pad, gas bearing device, and compressor
JP5954998B2 (en) Bearing device
JP2016098888A (en) Tilting pad bearing
EP2679842A1 (en) Hydrodynamic journal bearing - especially for the use in steam turbine and other rotary equipment
KR102442191B1 (en) Air foil bearing and air compressor having the same
JP7482000B2 (en) Tilting pad journal bearing and rotating machine equipped with same
JP5805869B2 (en) Radial bearings with inclined segments for uniaxial turbomachines
JP5800420B2 (en) Journal bearing
KR102371208B1 (en) Tilting pad bearing using multiple support methods
JP2019082233A (en) Tilting pad bearing
JP5812973B2 (en) Journal bearing and steam turbine
JP6151133B2 (en) Axial flow turbine
KR101945277B1 (en) journing bearing having double tilting pads and shaft supporting apparatus
JP2009168205A (en) Tilting pad bearing
JP6786230B2 (en) Journal bearing
KR20100116688A (en) Noise isolating rolling element bearing for a crankshaft
KR20190016212A (en) Vibration Reduced Airfoil Bearings
KR100760629B1 (en) Tilting-foil journal bearing
KR101067323B1 (en) The bearing to tilting the pad to the stability

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20141209

A711 Notification of change in applicant

Free format text: JAPANESE INTERMEDIATE CODE: A712

Effective date: 20150206

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20151029

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20151104

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20151222

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20160517

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20160614

R150 Certificate of patent or registration of utility model

Ref document number: 5954998

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

S533 Written request for registration of change of name

Free format text: JAPANESE INTERMEDIATE CODE: R313533

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350