JP2001107747A - Steam cooling gas turbine and its bearing - Google Patents

Steam cooling gas turbine and its bearing

Info

Publication number
JP2001107747A
JP2001107747A JP28922099A JP28922099A JP2001107747A JP 2001107747 A JP2001107747 A JP 2001107747A JP 28922099 A JP28922099 A JP 28922099A JP 28922099 A JP28922099 A JP 28922099A JP 2001107747 A JP2001107747 A JP 2001107747A
Authority
JP
Japan
Prior art keywords
bearing
gap
steam
lubricating oil
shaft
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Withdrawn
Application number
JP28922099A
Other languages
Japanese (ja)
Inventor
Takeaki Oya
武明 大矢
Katsunori Tanaka
克則 田中
Kazuharu Hirokawa
一晴 廣川
Naoya Kagawa
直也 加川
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Heavy Industries Ltd
Original Assignee
Mitsubishi Heavy Industries Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Heavy Industries Ltd filed Critical Mitsubishi Heavy Industries Ltd
Priority to JP28922099A priority Critical patent/JP2001107747A/en
Publication of JP2001107747A publication Critical patent/JP2001107747A/en
Withdrawn legal-status Critical Current

Links

Abstract

PROBLEM TO BE SOLVED: To protect a bearing from the thermal deformation of a shaft part due to cooling steam. SOLUTION: In a steam cooling gas turbine, a steam passage 16 for penetrating the shaft part 14 of the rotor tail end part 10 in an axial direction is provided, and a bearing 12 for rotatably supporting the shaft part 14 measures a gap G between the shaft part 14 and the bearing 12, to control lubricating oil flow rate supplied to the gap G so as to make the gap G have a given value, thereby preventing the damage to the bearing 12 based on the thermal deformation of the shaft part due to cooling steam flowing in the passage 16.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】本発明は、蒸気冷却ガスター
ビンおよびその軸受に関する。
The present invention relates to a steam-cooled gas turbine and its bearing.

【0002】[0002]

【従来の技術】ガスタービンの高効率化のために、ガス
タービンの燃焼ガスの膨張機入口温度は年々上昇を続け
ており、近時この温度を1500°Cとしたガスタービ
ンが提案されている。こうした高温の燃焼ガスからガス
タービンの静翼および動翼を保護するために、従来の空
気冷却に代えて比較的低温の蒸気にて冷却する所謂蒸気
冷却ガスタービンの開発が行われている。
2. Description of the Related Art In order to increase the efficiency of a gas turbine, the temperature of the expansion gas inlet of the combustion gas of the gas turbine has been increasing year by year, and a gas turbine having a temperature of 1500 ° C. has recently been proposed. . In order to protect the stationary blades and the moving blades of the gas turbine from such high-temperature combustion gas, a so-called steam-cooled gas turbine that cools with relatively low-temperature steam instead of conventional air cooling has been developed.

【0003】図3を参照すると、蒸気冷却ガスタービン
のロータ尾端部の中心軸に垂直な断面図が示されてい
る。図3(a)は、蒸気冷却ガスタービンが休止中の所
謂コールド状態を示し、図3(b)は、起動後、蒸気冷
却ガスタービンが所定の作動温度まで上昇した所謂ホッ
ト状態を示している。図3において、ロータ尾端部の軸
部100は、ティルティングパッドを形成する軸受10
4により回転自在に支持されており、かつ、動翼を冷却
する蒸気(以下、単に冷却蒸気と記載する)を供給する
ための蒸気通路102が、その中心軸線に沿って形成さ
れている。
Referring to FIG. 3, there is shown a cross-sectional view perpendicular to the central axis of a rotor tail end of a steam-cooled gas turbine. FIG. 3A shows a so-called cold state in which the steam-cooled gas turbine is stopped, and FIG. 3B shows a so-called hot state in which the steam-cooled gas turbine rises to a predetermined operating temperature after startup. . In FIG. 3, the shaft portion 100 at the tail end of the rotor is a bearing 10 forming a tilting pad.
A steam passage 102 rotatably supported by 4 and for supplying steam for cooling the moving blades (hereinafter simply referred to as cooling steam) is formed along the center axis thereof.

【0004】蒸気冷却ガスタービンが起動すると、冷却
蒸気が蒸気通路102を通して動翼(図示せず)まで供
給される。この冷却蒸気のためにロータ尾端部の軸部1
00が加熱され軸部100が熱膨張し、その程度は、従
前の空気冷却ガスタービン、すなわち、ガスタービンの
圧縮機により圧縮された燃焼用空気の一部により冷却す
る空気冷却ガスタービンと比較して著しく大きなものと
なっている。
[0004] When the steam-cooled gas turbine is started, cooling steam is supplied to the moving blades (not shown) through the steam passage 102. The shaft 1 at the tail end of the rotor
00 is heated and the shaft portion 100 thermally expands, in comparison with a conventional air-cooled gas turbine, that is, an air-cooled gas turbine cooled by a part of combustion air compressed by a compressor of the gas turbine. Significantly larger.

【0005】[0005]

【発明が解決しようとする課題】軸部100の熱膨張に
より、軸部100と軸受104の間の間隙が変化する。
つまり、ホット状態の間隙G1 (図3(b))は、コー
ルド状態における間隙G0 (図3(a))よりも小さく
なる。これは、空気冷却ガスタービンであっても、ガス
タービンのロータの軸部はガスタービンの作動により温
度上昇するために、一般的に、ガスタービンのロータの
軸部と軸受の間の間隙は軸部の熱膨張を考慮して決定さ
れている。然しながら、既述したように蒸気冷却ガスタ
ービンでは、ロータ尾端部の軸部は冷却蒸気により一般
的なロータの軸部よりも大きく熱膨張するために、軸部
と軸受の間の間隙の変化、つまり、G0 とG1 の差の絶
対値の変化は、空気冷却ガスタービンにおける変化と比
較して著しく大きくなっている。そのために、ホット状
態で最適となるように軸部100と軸受104の間の間
隙G1 を選択するとコールド状態において間隙G0 が大
きくなり過ぎるため、軸受に作用する面圧が大きくなり
軸受が損傷する問題を生じる。
The gap between the shaft portion 100 and the bearing 104 changes due to the thermal expansion of the shaft portion 100.
That is, the gap G1 in the hot state (FIG. 3B) is smaller than the gap G0 in the cold state (FIG. 3A). This is because, even in an air-cooled gas turbine, since the shaft of the gas turbine rotor rises in temperature due to the operation of the gas turbine, the gap between the shaft of the gas turbine rotor and the bearing generally has a shaft. It is determined in consideration of the thermal expansion of the part. However, as described above, in the steam-cooled gas turbine, the shaft at the tail end of the rotor thermally expands more than the general rotor shaft due to the cooling steam, so that the gap between the shaft and the bearing changes. That is, the change in the absolute value of the difference between G0 and G1 is significantly greater than in an air-cooled gas turbine. Therefore, if the gap G1 between the shaft portion 100 and the bearing 104 is selected so as to be optimal in the hot state, the gap G0 becomes too large in the cold state, so that the surface pressure acting on the bearing becomes large and the bearing is damaged. Is generated.

【0006】本発明は、こうした従来技術の問題点を解
決することを技術課題としており、冷却蒸気による軸部
の熱変形から軸受を保護することを目的としている。
An object of the present invention is to solve such problems of the prior art, and to protect a bearing from thermal deformation of a shaft portion caused by cooling steam.

【0007】[0007]

【課題を解決するための手段】請求項1に記載の本発明
は、蒸気冷却ガスタービンにおいて、前記蒸気冷却ガス
タービンは、そのロータ尾端部の軸部に軸方向に貫通す
る蒸気通路が形成されており、前記軸部を回転自在に支
持する軸受が、前記軸部と前記軸受との間の間隙を測定
する手段と、前記間隙が所定値となるように前記間隙に
供給する潤滑油流量を制御する手段とを具備し、前記蒸
気通路を流通する冷却蒸気による軸部の熱変形に基づく
軸受の損傷を防止した蒸気冷却ガスタービンを要旨とす
る。
According to a first aspect of the present invention, there is provided a steam-cooled gas turbine, wherein the steam-cooled gas turbine is provided with a steam passage extending axially through a shaft at a tail end portion of the rotor. A bearing for rotatably supporting the shaft portion, means for measuring a gap between the shaft portion and the bearing, and a lubricating oil flow rate supplied to the gap so that the gap has a predetermined value. And a means for controlling the temperature of the shaft, thereby preventing damage to the bearing due to thermal deformation of the shaft caused by cooling steam flowing through the steam passage.

【0008】請求項1に記載の本発明によれば、軸部と
軸受との間の間隙を監視して、外間隙が所定値となるよ
うに、前記間隙に供給する潤滑油の流量を制御している
ために、軸部に形成された蒸気通路を流通する冷却蒸気
による軸部の熱変形変形を考慮して、ホット状態にある
軸部の直径に基づき軸受の内径を最適寸法としたときで
も、蒸気冷却ガスタービンをコールド状態から起動した
ときに、軸受に過大な面圧が作用して軸受が損傷するこ
とを防止できる。
According to the present invention, the gap between the shaft portion and the bearing is monitored, and the flow rate of the lubricating oil supplied to the gap is controlled so that the outer gap has a predetermined value. In consideration of the thermal deformation of the shaft due to the cooling steam flowing through the steam passage formed in the shaft, the inner diameter of the bearing is optimized based on the diameter of the shaft in the hot state. However, when the steam-cooled gas turbine is started from the cold state, it is possible to prevent the bearing from being damaged due to excessive surface pressure acting on the bearing.

【0009】前記間隙は前記軸部の外表面と所定の3つ
の測定点との間の距離から、前記軸部の直径および中心
を求め、それらに基づいて求めることができる。また、
前記軸受に半径方向に油路を貫通、形成し、外油路を介
して軸受外部から前記間隙に潤滑油を供給するようにし
てもよい。
The gap can be determined from the distance between the outer surface of the shaft and three predetermined measurement points to determine the diameter and the center of the shaft, and based on them. Also,
An oil passage may be penetrated and formed in the bearing in the radial direction, and lubricating oil may be supplied to the gap from outside the bearing via an external oil passage.

【0010】本発明の他の特徴によれば、上述した蒸気
冷却ガスタービン用軸受が提供される。
In accordance with another aspect of the present invention, there is provided a bearing for a steam-cooled gas turbine as described above.

【0011】[0011]

【発明の実施の形態】以下、図1、2を参照して本発明
の好ましい実施形態を説明する。ロータ尾端部10の軸
部14は、ティルティングパッドを形成する軸受12に
より回転自在に支持されており、かつ、動翼冷却用蒸気
を供給するための蒸気通路16が、その中心軸線に沿っ
て形成されている。軸受12には、軸受パッドを半径方
向に貫通する油路12aが形成されており、潤滑油回収
供給装置20により加圧された潤滑油を油路12aを介
して外部から間隙Gに供給するようになっている。軸部
14の表面にクロームメッキ等の表面処理を施し、軸受
12に対する潤滑性を高めても良い。
DETAILED DESCRIPTION OF THE PREFERRED EMBODIMENTS Hereinafter, a preferred embodiment of the present invention will be described with reference to FIGS. The shaft portion 14 of the rotor tail end portion 10 is rotatably supported by a bearing 12 forming a tilting pad, and a steam passage 16 for supplying steam for cooling the moving blade is formed along a central axis thereof. It is formed. The bearing 12 is formed with an oil passage 12a penetrating through the bearing pad in the radial direction, so that the lubricating oil pressurized by the lubricating oil recovery and supply device 20 is supplied to the gap G from outside via the oil passage 12a. It has become. The surface of the shaft portion 14 may be subjected to a surface treatment such as chrome plating to enhance the lubricity of the bearing 12.

【0012】また、ロータ尾端部10の軸部14の外周
面近傍には、軸部14と軸受12の間隙Gを測定する手
段としてのセンサ30が配設されている。潤滑油回収供
給装置20は、間隙Gに供給された潤滑油を集め貯留す
るオイルパン22、油圧ポンプ24、潤滑油クーラ2
6、潤滑油流量を制御する手段としての流量制御装置2
8を主要な構成要素として含んでいる。潤滑油クーラ2
6は、前記間隙Gに供給される潤滑油の温度を検知する
温度センサ、潤滑油の温度を低下させるための熱交換器
および冷凍サイクル等を含み、フィードバック制御等の
制御手法により間隙Gに供給される潤滑油の温度を所定
の温度レベルに維持する。
A sensor 30 as a means for measuring a gap G between the shaft portion 14 and the bearing 12 is provided near the outer peripheral surface of the shaft portion 14 of the rotor tail end portion 10. The lubricating oil collecting and supplying device 20 includes an oil pan 22, a hydraulic pump 24, and a lubricating oil cooler 2 that collect and store the lubricating oil supplied to the gap G.
6. Flow control device 2 as means for controlling lubricating oil flow
8 as a major component. Lubricating oil cooler 2
Reference numeral 6 includes a temperature sensor for detecting the temperature of the lubricating oil supplied to the gap G, a heat exchanger for lowering the temperature of the lubricating oil, a refrigeration cycle, and the like. The temperature of the lubricating oil to be maintained is maintained at a predetermined temperature level.

【0013】センサ30は、光や超音波を用いた非接触
式の距離センサとすることができる。また、センサ30
は流量制御装置28に接続されており、流量制御装置2
8は、各センサ30により測定されたセンサ30と軸部
14の表面との間の距離から、間隙Gの値を求め、間隙
Gの値が所定値となるように、潤滑油の流量を制御す
る。ここで、センサ30により測定されたセンサ30と
軸部14の表面との間の距離から、軸部14の中心(軸
芯)座標および直径を求めることにより間隙Gを求める
ことができる。更に、軸部14の中心座標と直径の変化
の間には強い相関が認められ、軸部14の中心座標と直
径の何れか一方のみの値によっても、間隙Gの値を予測
することができるので、単に軸部14の中心座標と直径
の何れか一方の値によって潤滑油の流量を制御しても良
い。
The sensor 30 can be a non-contact type distance sensor using light or ultrasonic waves. In addition, the sensor 30
Is connected to the flow control device 28 and the flow control device 2
8 obtains the value of the gap G from the distance between the sensor 30 measured by each sensor 30 and the surface of the shaft portion 14, and controls the flow rate of the lubricating oil so that the value of the gap G becomes a predetermined value. I do. Here, from the distance between the sensor 30 and the surface of the shaft portion 14 measured by the sensor 30, the gap (G) can be obtained by obtaining the center (axial center) coordinate and the diameter of the shaft portion 14. Further, a strong correlation is recognized between the center coordinate of the shaft portion 14 and the change of the diameter, and the value of the gap G can be predicted by only one of the center coordinate and the diameter of the shaft portion 14. Therefore, the flow rate of the lubricating oil may be controlled simply by one of the center coordinate and the diameter of the shaft portion 14.

【0014】流量制御装置28は、流量制御弁、弁駆動
装置、前記センサ30による測定値に基づいて該弁駆動
装置を制御する制御装置を主要な構成要素として含むこ
とができる。前記制御装置は、例えば、センサ30およ
び前記弁駆動装置に接続されたデジタル/アナログ変換
器、該デジタル/アナログ変換器に接続された入出力ポ
ート、CUP(中央演算素子)、ROM、RAM、前記
入出力ポート、および前記CUP(中央演算素子)、R
OM、RAMを接続する双方向バス等を含むことができ
る。また、軸受12の内周面には、図2に示すように、
油路12aにおいて間隙Gに開口する端部を囲繞する凹
所12b、および、該凹所12bに連通する概ね8の字
状の凹溝12cが形成されている。
The flow control device 28 can include, as main components, a flow control valve, a valve drive device, and a control device for controlling the valve drive device based on the measurement value of the sensor 30. The control device includes, for example, a digital / analog converter connected to the sensor 30 and the valve driving device, an input / output port connected to the digital / analog converter, a CUP (central processing element), a ROM, a RAM, A writing output port, and the CUP (central processing element), R
It can include a bidirectional bus for connecting the OM and the RAM. Also, as shown in FIG. 2, on the inner peripheral surface of the bearing 12,
In the oil passage 12a, a concave portion 12b surrounding an end opening to the gap G and a substantially 8-shaped concave groove 12c communicating with the concave portion 12b are formed.

【0015】以下、本実施形態の作用を蒸気冷却ガスタ
ービンが完全に停止したコールド状態から起動し、定格
作動状態を経て再び停止するまでの手順を追って説明す
る。コールド状態にあるときは、従来技術の説明で既述
したように、ロータ尾端部10の軸部14は収縮してお
り、軸部14と軸受12との間隙Gは広くなっている。
従って、軸受12に負荷される面荷重は高くなってお
り、この状態でロータが回転を開始すると軸受12を損
傷する。そこで、蒸気冷却ガスタービンの起動に先立っ
て油圧ポンプ24を起動し、比較的高圧の潤滑油を油路
12aを介して軸部14と軸受12の間隙Gに供給し、
潤滑油の静圧により軸受12に対して軸部14を浮上さ
せる。このとき、軸受12の内周面に凹所12bおよび
凹溝12cが形成されているために、油圧を間隙Gの全
体に作用させることができ、軸部14を効果的に浮上さ
れることが可能となる。
Hereinafter, the operation of the present embodiment will be described step by step from the cold state in which the steam-cooled gas turbine is completely stopped, to the operation after the rated operation state, and again to the stop. When in the cold state, the shaft portion 14 of the rotor tail end portion 10 is contracted and the gap G between the shaft portion 14 and the bearing 12 is wide, as described in the description of the related art.
Therefore, the surface load applied to the bearing 12 is high, and if the rotor starts rotating in this state, the bearing 12 is damaged. Therefore, prior to the start of the steam-cooled gas turbine, the hydraulic pump 24 is started, and relatively high-pressure lubricating oil is supplied to the gap G between the shaft portion 14 and the bearing 12 via the oil passage 12a.
The shaft portion 14 floats with respect to the bearing 12 by the static pressure of the lubricating oil. At this time, since the concave portion 12b and the concave groove 12c are formed on the inner peripheral surface of the bearing 12, hydraulic pressure can be applied to the entire gap G, and the shaft portion 14 can be effectively levitated. It becomes possible.

【0016】この軸部14の浮上は、センサ30により
検知され、浮上が確認されると、蒸気冷却ガスタービン
が起動する。その後、蒸気冷却ガスタービンは、低速で
回転する所謂ターニング状態を経て、回転数が約700
rpmまでの所謂スピン状態へ移行する。この間、セン
サ30は、軸部14との間の距離を監視し続けており、
これに基づいて流量制御装置28が、軸部14と軸受1
2の間の間隙Gの値が所定値となるように、間隙Gに供
給される潤滑油の供給量を制御する。ロータの回転数が
増加すると間隙Gから排出される潤滑油の量が増加する
ために、間隙Gへの潤滑油供給量は回転数の増加と共に
漸増する。
The floating of the shaft portion 14 is detected by the sensor 30, and when the floating is confirmed, the steam-cooled gas turbine is started. After that, the steam-cooled gas turbine goes through a so-called turning state in which the turbine rotates at a low speed, and the rotation speed becomes about 700
The state shifts to a spin state up to rpm. During this time, the sensor 30 continues to monitor the distance to the shaft portion 14,
Based on this, the flow control device 28 determines that the shaft portion 14 and the bearing 1
The supply amount of the lubricating oil supplied to the gap G is controlled so that the value of the gap G between the two becomes a predetermined value. When the number of rotations of the rotor increases, the amount of lubricating oil discharged from the gap G increases. Therefore, the amount of lubricating oil supplied to the gap G gradually increases as the number of rotations increases.

【0017】スピン状態で蒸気冷却ガスタービンの回転
が安定すると、蒸気冷却ガスタービンは、定格回転速
度、例えば3000rpmまたは3600rpmへ向け
て昇速を開始する。この間、軸部14は間隙Gを流動す
る潤滑油の動圧による浮上作用の影響を受けるが、流量
制御装置28は、センサ30の測定値に基づいて、軸部
14と軸受12の間の間隙Gが所定値となるように潤滑
油の供給量を制御する。軸部14の回転速度が次第に高
くなるので、間隙Gから排出される潤滑油量が増加し、
軸部14の浮上量を維持するために必要となる潤滑油の
供給量は増加するが、間隙Gにおける潤滑油も高速で流
動するので間隙Gにおける圧力(静圧)が低下し、前記
供給量を維持するために必要な潤滑油の供給圧力(静
圧)は低下する。また、潤滑油の粘性抵抗により潤滑油
の温度が漸増するが、潤滑油クーラ26が間隙Gに供給
される潤滑油の温度を所定温度に維持する。
When the rotation of the steam-cooled gas turbine is stabilized in the spin state, the steam-cooled gas turbine starts increasing its speed to a rated rotation speed, for example, 3000 rpm or 3600 rpm. During this time, the shaft portion 14 is affected by the floating action due to the dynamic pressure of the lubricating oil flowing through the gap G, but the flow control device 28 determines the gap between the shaft portion 14 and the bearing 12 based on the measurement value of the sensor 30. The supply amount of the lubricating oil is controlled so that G becomes a predetermined value. Since the rotation speed of the shaft portion 14 gradually increases, the amount of lubricating oil discharged from the gap G increases,
Although the supply amount of the lubricating oil required to maintain the floating amount of the shaft portion 14 increases, since the lubricating oil in the gap G also flows at a high speed, the pressure (static pressure) in the gap G decreases and the supply amount increases. The supply pressure (static pressure) of the lubricating oil required to maintain the pressure decreases. Further, although the temperature of the lubricating oil gradually increases due to the viscous resistance of the lubricating oil, the lubricating oil cooler 26 maintains the temperature of the lubricating oil supplied to the gap G at a predetermined temperature.

【0018】ロータの回転速度が定格値に到達した後に
も、流量制御装置28は、センサ30による測定値に基
づいて、軸部14と軸受12の間の間隙Gが所定値とな
るように潤滑油の供給量を制御し続ける。
Even after the rotation speed of the rotor has reached the rated value, the flow control device 28 lubricates the gap G between the shaft portion 14 and the bearing 12 to a predetermined value based on the value measured by the sensor 30. Keep controlling oil supply.

【0019】蒸気冷却ガスタービンが定格値にて回転し
ている状態から停止させる間、ロータの回転速度が漸減
すると、間隙Gを流動する潤滑油の動圧による軸部14
の浮上作用が漸減する。流量制御装置28が、センサ3
0の測定値に基づいて、軸部14と軸受12の間の間隙
Gが所定値となるように潤滑油の供給量を制御している
ために、潤滑油の動圧による軸部14の浮上作用の低下
は、潤滑油回収供給装置20から供給される潤滑油によ
り補償される。すなわち、潤滑油の供給量は漸減する
が、その供給圧力(静圧)は漸増する。そして、ロータ
が停止すると、所定の軸間Gを維持するために必要な最
小流量の潤滑油が供給され、このとき潤滑油の供給圧力
は最大となる。
When the rotation speed of the rotor gradually decreases while the steam-cooled gas turbine is stopped from rotating at the rated value, the shaft portion 14 due to the dynamic pressure of the lubricating oil flowing through the gap G
The levitation effect of is gradually reduced. The flow control device 28 detects the sensor 3
Since the supply amount of the lubricating oil is controlled based on the measured value of 0 so that the gap G between the shaft portion 14 and the bearing 12 becomes a predetermined value, the floating of the shaft portion 14 by the dynamic pressure of the lubricating oil is performed. The decrease in operation is compensated for by the lubricating oil supplied from the lubricating oil recovery and supply device 20. That is, the supply amount of the lubricating oil gradually decreases, but the supply pressure (static pressure) gradually increases. Then, when the rotor stops, the minimum flow rate of the lubricating oil required to maintain the predetermined gap G is supplied, and at this time, the lubricating oil supply pressure becomes maximum.

【図面の簡単な説明】[Brief description of the drawings]

【図1】本発明実施形態による蒸気冷却ガスタービンの
ロータ尾端部の軸部の中心軸に垂直な断面図である。
FIG. 1 is a cross-sectional view of a steam-cooled gas turbine according to an embodiment of the present invention, which is perpendicular to a center axis of a shaft at a tail end of a rotor.

【図2】軸受内周面の平面図である。FIG. 2 is a plan view of an inner peripheral surface of a bearing.

【図3】従来技術によるロータ尾端部の軸部の図1と同
様の断面図であり、(a)は、コールド状態にある軸部
と軸受の間隙を示しており、(b)は、ホット状態にあ
る軸部と軸受の間隙を示している。
FIG. 3 is a sectional view similar to FIG. 1 of a shaft portion at a rotor tail end according to the prior art, (a) showing a gap between the shaft portion and a bearing in a cold state, and (b) showing a gap between the shaft portion and the bearing in a cold state; The gap between the shaft and the bearing in the hot state is shown.

【符号の説明】[Explanation of symbols]

10…ロータ尾端部 12…軸受 14…軸部 12a…油路 16…蒸気通路 20…潤滑油回収供給装置 22…オイルパン 24…油圧ポンプ 26…潤滑油クーラ 28…流量制御装置 30…センサ DESCRIPTION OF SYMBOLS 10 ... Rotor tail end part 12 ... Bearing 14 ... Shaft part 12a ... Oil passage 16 ... Steam passage 20 ... Lubricating oil collection and supply device 22 ... Oil pan 24 ... Hydraulic pump 26 ... Lubricating oil cooler 28 ... Flow control device 30 ... Sensor

───────────────────────────────────────────────────── フロントページの続き (51)Int.Cl.7 識別記号 FI テーマコート゛(参考) F16C 17/03 F16C 17/03 17/22 17/22 33/10 33/10 Z (72)発明者 廣川 一晴 兵庫県高砂市荒井町新浜2丁目1番1号 三菱重工業株式会社高砂製作所内 (72)発明者 加川 直也 兵庫県高砂市荒井町新浜2丁目1番1号 三菱重工業株式会社高砂製作所内 Fターム(参考) 3J011 AA08 BA14 JA02 KA02 LA06 MA26 ──────────────────────────────────────────────────続 き Continued on the front page (51) Int.Cl. 7 Identification symbol FI Theme coat ゛ (Reference) F16C 17/03 F16C 17/03 17/22 17/22 33/10 33/10 Z (72) Inventor Hirokawa Kazunari 2-1-1, Aramachi-cho, Niihama, Takasago City, Hyogo Prefecture Mitsubishi Heavy Industries, Ltd. Takasago Works (72) Inventor Naoya Kagawa 2-1-1, Araimachi Shinhama, Takasago City, Hyogo Prefecture F-term in Takasago Works, Mitsubishi Heavy Industries, Ltd. Reference) 3J011 AA08 BA14 JA02 KA02 LA06 MA26

Claims (7)

【特許請求の範囲】[Claims] 【請求項1】 蒸気冷却ガスタービンにおいて、 前記蒸気冷却ガスタービンは、そのロータ尾端部の軸部
に軸方向に貫通する蒸気通路が形成されており、前記軸
部を回転自在に支持する軸受が、前記軸部と前記軸受と
の間の間隙を測定する手段と、前記間隙が所定値となる
ように前記間隙に供給する潤滑油流量を制御する手段と
を具備し、前記蒸気通路を流通する冷却蒸気による軸部
の熱変形に基づく軸受の損傷を防止した蒸気冷却ガスタ
ービン。
1. A steam-cooled gas turbine, wherein the steam-cooled gas turbine is formed with a steam passage penetrating in an axial direction in a shaft portion at a rotor tail end, and a bearing rotatably supporting the shaft portion. Has a means for measuring a gap between the shaft portion and the bearing, and a means for controlling a flow rate of lubricating oil supplied to the gap so that the gap has a predetermined value. A steam-cooled gas turbine that prevents damage to bearings caused by thermal deformation of the shaft due to cooling steam.
【請求項2】 前記間隙を測定する手段は、前記軸部の
外表面と所定の3つの測定点との間の距離から、前記軸
部の直径および中心を求め、それらに基づいて、前記軸
受と軸部との間の間隙を演算する請求項1に記載の蒸気
冷却ガスタービン。
2. The means for measuring the gap determines a diameter and a center of the shaft from a distance between an outer surface of the shaft and three predetermined measurement points, and based on the distance, determines the bearing. The steam-cooled gas turbine according to claim 1, wherein a gap between the shaft and the shaft is calculated.
【請求項3】 前記軸受に半径方向に油路を貫通、形成
し、外油路を介して軸受外部から前記間隙に潤滑油を供
給する請求項1または2に記載の蒸気冷却ガスタービ
ン。
3. The steam-cooled gas turbine according to claim 1, wherein an oil passage penetrates and is formed in the bearing in a radial direction, and lubricating oil is supplied to the gap from outside the bearing via an external oil passage.
【請求項4】 更に、前記間隙から排出される潤滑油を
集めて一時的に貯留するオイルパンと、前記オイルパン
から潤滑油を吸引し所定圧力にて吐き出す油圧ポンプ
と、前記油圧ポンプからの潤滑油を所定温度に温度調節
する潤滑油クーラと、前記センサによる測定値に基づき
前記間隙に供給する潤滑油流量を制御する流量制御装置
とを含む請求項1から3の何れか1項に記載の蒸気冷却
ガスタービン。
4. An oil pan for collecting and temporarily storing lubricating oil discharged from the gap, a hydraulic pump for sucking lubricating oil from the oil pan and discharging the lubricating oil at a predetermined pressure, The lubricating oil cooler that adjusts the temperature of the lubricating oil to a predetermined temperature, and a flow control device that controls a lubricating oil flow supplied to the gap based on a value measured by the sensor. Steam-cooled gas turbine.
【請求項5】 軸方向に貫通する蒸気通路が形成された
蒸気冷却ガスタービンのロータ尾端部の軸部を回転自在
に支持する軸受において、 前記軸部と前記軸受との間の間隙を測定し、前記間隙が
所定値となるように前記間隙に供給する潤滑油流量を制
御し、以て、前記蒸気通路を流通する冷却蒸気による軸
部の熱変形に基づく軸受の損傷を防止した蒸気冷却ガス
タービンの軸受。
5. A bearing rotatably supporting a shaft at a tail end of a rotor of a steam-cooled gas turbine having a steam passage formed therethrough in an axial direction, wherein a gap between the shaft and the bearing is measured. Steam cooling that controls the flow rate of lubricating oil supplied to the gap so that the gap has a predetermined value, thereby preventing damage to the bearing due to thermal deformation of the shaft caused by cooling steam flowing through the steam passage. Gas turbine bearings.
【請求項6】 前記軸部の外表面と所定の3つの測定点
との間の距離から、前記軸部の直径および中心を求め、
それらに基づいて、前記軸受と軸部との間の間隙を演算
するようにした請求項5に記載の軸受。
6. A diameter and a center of the shaft portion are obtained from a distance between an outer surface of the shaft portion and three predetermined measurement points,
The bearing according to claim 5, wherein a gap between the bearing and the shaft is calculated based on the calculated values.
【請求項7】 前記軸受は、半径方向に貫通する油路が
形成されている請求項5または6に記載の軸受。
7. The bearing according to claim 5, wherein the bearing has an oil passage that penetrates in a radial direction.
JP28922099A 1999-10-12 1999-10-12 Steam cooling gas turbine and its bearing Withdrawn JP2001107747A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP28922099A JP2001107747A (en) 1999-10-12 1999-10-12 Steam cooling gas turbine and its bearing

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP28922099A JP2001107747A (en) 1999-10-12 1999-10-12 Steam cooling gas turbine and its bearing

Publications (1)

Publication Number Publication Date
JP2001107747A true JP2001107747A (en) 2001-04-17

Family

ID=17740350

Family Applications (1)

Application Number Title Priority Date Filing Date
JP28922099A Withdrawn JP2001107747A (en) 1999-10-12 1999-10-12 Steam cooling gas turbine and its bearing

Country Status (1)

Country Link
JP (1) JP2001107747A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2013148145A (en) * 2012-01-18 2013-08-01 Mitsubishi Heavy Ind Ltd Bearing device
JP2015121138A (en) * 2013-12-24 2015-07-02 三鷹光器株式会社 Heat insulation bearing structure

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2013148145A (en) * 2012-01-18 2013-08-01 Mitsubishi Heavy Ind Ltd Bearing device
JP2015121138A (en) * 2013-12-24 2015-07-02 三鷹光器株式会社 Heat insulation bearing structure

Similar Documents

Publication Publication Date Title
US9234522B2 (en) Hybrid bearing turbomachine
US5113670A (en) Bearing cooling arrangement for air cycle machine
JP4604099B2 (en) Journal bearing device
EP2546471B1 (en) Tip clearance control for turbine blades
US20160201557A1 (en) Gas turbine engine thermal management system
US9022659B2 (en) Arrangement to control the clearance of a sliding bearing
US20020009361A1 (en) Shaft bearing for a turbomachine, turbomachine, and method of operating a turbomachine
JP6130842B2 (en) Dynamically lubricated bearing and method of dynamically lubricating a bearing
JP4107829B2 (en) Turbomachine
CA2370219C (en) Shroud assembly and method of machining same
EP3112607B1 (en) Gas turbine cool-down phase operation methods
JP6776092B2 (en) Steam turbine and temperature control method
US20100226602A1 (en) Bearing Play Adjustment
US4184720A (en) Air-supported bearing for turbine engines
EP3163102B1 (en) Thrust bearing and rotating machine
US7118321B2 (en) Air cooled bearing
JP2005163641A (en) Turbocharger
JP2001107747A (en) Steam cooling gas turbine and its bearing
JPH11166549A (en) Lubricating oil quantity control device of bearing part
US11002181B2 (en) Method and system for determining a characteristic of a rotating machine
JP2006138353A (en) Slide bearing and rotary electric machine including slide bearing
JP2007127006A (en) Two-shaft gas turbine, method of operating two-shaft gas turbine, method of controlling two-shaft gas turbine, and method of cooling two-shaft gas turbine
JP6390493B2 (en) Balance inspection device
JP6944866B2 (en) Bearing equipment and rotating machinery
JP2011122557A (en) Oil feeder for thrust bearing and exhaust turbine supercharger provided with the same

Legal Events

Date Code Title Description
RD04 Notification of resignation of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7424

Effective date: 20060308

A300 Withdrawal of application because of no request for examination

Free format text: JAPANESE INTERMEDIATE CODE: A300

Effective date: 20070109