JP2006138353A - Slide bearing and rotary electric machine including slide bearing - Google Patents

Slide bearing and rotary electric machine including slide bearing Download PDF

Info

Publication number
JP2006138353A
JP2006138353A JP2004326786A JP2004326786A JP2006138353A JP 2006138353 A JP2006138353 A JP 2006138353A JP 2004326786 A JP2004326786 A JP 2004326786A JP 2004326786 A JP2004326786 A JP 2004326786A JP 2006138353 A JP2006138353 A JP 2006138353A
Authority
JP
Japan
Prior art keywords
metal layer
low
bearing
hardness metal
hardness
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2004326786A
Other languages
Japanese (ja)
Inventor
Kazunori Ikeda
和徳 池田
Hitoshi Sakakida
均 榊田
Masayuki Ichimonji
正幸 一文字
Toshio Hirano
俊夫 平野
Hideki Chiba
英樹 千葉
Kenichi Kase
賢一 加瀬
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toshiba Corp
Original Assignee
Toshiba Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toshiba Corp filed Critical Toshiba Corp
Priority to JP2004326786A priority Critical patent/JP2006138353A/en
Publication of JP2006138353A publication Critical patent/JP2006138353A/en
Pending legal-status Critical Current

Links

Images

Abstract

<P>PROBLEM TO BE SOLVED: To prevent damage of a low-hardness metal layer by reducing thermal stress generated in a bearing body during the operation of a rotary electric machine. <P>SOLUTION: In this slide bearing, the low-hardness metal layer 2 is formed on the inner peripheral surface of a back plate 1, and an eccentricity increasing groove 4 is provided on the inner peripheral surface of the low-hardness metal layer 2. An axial piercing clearance 7 is provided in the boundary part between the low-hardness metal layer 2 and the back plate 1 corresponding to the circumferential position of the low-hardness metal layer 2 which becomes high temperatures, and a hole for guiding some of lubricating oil flowing through the eccentricity increasing groove 4 to the interior of the clearance 7 is provided between the bottom of the eccentricity increasing groove 4 and the clearance 7. <P>COPYRIGHT: (C)2006,JPO&NCIPI

Description

本発明は、回転電機の運転時に発生する軸受本体の熱応力を低減可能なすべり軸受及びこのすべり軸受を備えた回転電機に関する。   The present invention relates to a sliding bearing capable of reducing the thermal stress of a bearing body generated during operation of the rotating electrical machine, and a rotating electrical machine including the sliding bearing.

一般にタービン、発電機、電動機などの回転電機の軸受としては、すべり軸受が用いられている。   In general, a sliding bearing is used as a bearing of a rotating electrical machine such as a turbine, a generator, or an electric motor.

図14は従来のすべり軸受の構造を示し、(a)は径方向断面図、(b)は軸方向断面図である。   14A and 14B show the structure of a conventional plain bearing, wherein FIG. 14A is a radial sectional view and FIG. 14B is an axial sectional view.

図14に示すように裏金1の内周面に低硬度金属層2を形成して軸受本体を構成している。この軸受本体において、低硬度金属層2が形成されている理由は、万一回転電機の運転中に軸受潤滑油に異物が混入している場合、補修の容易な軸受表面を変形させることで、回転軸3の表面に損傷が発生しないようにするためである。   As shown in FIG. 14, a low hardness metal layer 2 is formed on the inner peripheral surface of the backing metal 1 to constitute a bearing body. In this bearing body, the reason why the low-hardness metal layer 2 is formed is that if foreign matter is mixed in the bearing lubricant during operation of the rotating electrical machine, the bearing surface that is easy to repair is deformed, This is to prevent damage to the surface of the rotating shaft 3.

ここで、裏金1の材料としては、例えばSS400等の構造用鋼が使用され、また低硬度金属層2の材料としては、例えばホワイトメタル等が用いられている。   Here, as the material of the back metal 1, for example, structural steel such as SS400 is used, and as the material of the low hardness metal layer 2, for example, white metal or the like is used.

すべり軸受では、回転電機の運転中に回転軸3が自重により下側に偏心して、回転軸3と低硬度金属層2との間に潤滑油が巻き込まれ、くさび膜効果で油膜圧力が発生して回転軸3の荷重を支える構造となっている。   In the sliding bearing, the rotating shaft 3 is decentered downward due to its own weight during operation of the rotating electrical machine, and lubricating oil is caught between the rotating shaft 3 and the low-hardness metal layer 2, and an oil film pressure is generated due to the wedge film effect. Thus, the load on the rotary shaft 3 is supported.

すべり軸受の中には、下半部の低硬度金属層2の表面に周方向に伸びる溝(偏心量増加用溝)4を設けたものもある。この溝4を設ける理由は、回転軸3の偏心量を大きくして、軸系の振動安定性を向上させるためである。   Some of the plain bearings are provided with a groove (eccentricity increasing groove) 4 extending in the circumferential direction on the surface of the lower hardness metal layer 2 in the lower half. The reason for providing the groove 4 is to increase the eccentric amount of the rotating shaft 3 and improve the vibration stability of the shaft system.

なお、低硬度金属層2の表面のうち、溝4を除き、実際に回転軸3の荷重支持に寄与する部分を軸受摺動面と呼ぶ。   Of the surface of the low-hardness metal layer 2, the portion that actually contributes to the load support of the rotating shaft 3 excluding the groove 4 is called a bearing sliding surface.

このような偏心量増加用溝4を有する軸受においては、図14に示すように当該溝4によって軸方向に分けられた2つの軸受摺動面5を有する。   The bearing having such an eccentricity increasing groove 4 has two bearing sliding surfaces 5 which are divided in the axial direction by the groove 4 as shown in FIG.

ところで、回転軸3と低硬度金属層2との間に生成される軸受油膜6の厚さは、軸受本体の内径と比較して非常に薄く、また回転軸3は50rpsあるいは60rpsといった高速で回転するため、軸受油膜6では大きな軸受損失が発生する。この軸受損失による発熱量は、潤滑油に取り去られるほか、軸受構造物の温度上昇に費やされる。   By the way, the thickness of the bearing oil film 6 generated between the rotating shaft 3 and the low hardness metal layer 2 is very thin compared to the inner diameter of the bearing body, and the rotating shaft 3 rotates at a high speed of 50 rps or 60 rps. Therefore, a large bearing loss occurs in the bearing oil film 6. The amount of heat generated by this bearing loss is not only removed by the lubricating oil but also spent on the temperature rise of the bearing structure.

図15は、回転電機の定格運転時における軸受本体の周方向と半径方向の温度分布の一例を示す図である。この温度分布から明らかなように軸受損失は油膜厚さ最小位置で最大となるので、油膜厚さ最小位置を通過した高温の潤滑油で低硬度金属層2が加熱され、表面温度は油膜厚さ最小位置からやや回転後流側で最高となることが分かる。   FIG. 15 is a diagram illustrating an example of the temperature distribution in the circumferential direction and the radial direction of the bearing body during rated operation of the rotating electrical machine. As apparent from this temperature distribution, the bearing loss becomes maximum at the minimum position of the oil film thickness. Therefore, the low-hardness metal layer 2 is heated by the high-temperature lubricating oil that has passed the minimum position of the oil film thickness, and the surface temperature is equal to the oil film thickness. It turns out that it becomes the highest on the downstream side slightly after the minimum position.

図15の例では、油膜厚さ最小位置を基準に回転下流側25°から回転上流側10°の範囲が高温領域となっている。また、半径方向には、Hを軸受本体の内周半径と外周半径の差とすると、低硬度金属層2の表面からH/4の範囲が高温領域となっている。   In the example of FIG. 15, the range from the rotation downstream side 25 ° to the rotation upstream side 10 ° is the high temperature region with reference to the minimum oil film thickness position. Further, in the radial direction, when H is the difference between the inner peripheral radius and the outer peripheral radius of the bearing body, the range of H / 4 from the surface of the low hardness metal layer 2 is a high temperature region.

図16は、回転電機の定格運転時における軸受本体の周方向と軸方向の温度分布の一例を示す図である。これは、軸受本体の軸方向中央に偏心量増加用溝4を持つすべり軸受の温度分布であり、溝4を挟んで2つの軸受摺動面5を有している。   FIG. 16 is a diagram illustrating an example of the temperature distribution in the circumferential direction and the axial direction of the bearing body during rated operation of the rotating electrical machine. This is a temperature distribution of a plain bearing having an eccentricity increasing groove 4 at the axial center of the bearing body, and has two bearing sliding surfaces 5 with the groove 4 interposed therebetween.

この温度分布から明らかなように、各軸受摺動面5の軸方向長さをLとすると、各軸受摺動面5の中央で温度が最高となり、各軸受摺動面5の中央を基準として、軸方向に±L/4の範囲が高温領域となっていることが分かる。   As apparent from this temperature distribution, when the axial length of each bearing sliding surface 5 is L, the temperature is highest at the center of each bearing sliding surface 5, and the center of each bearing sliding surface 5 is used as a reference. It can be seen that the range of ± L / 4 in the axial direction is a high temperature region.

このように回転電機の運転中に軸受本体があまり高温になると、荷重負荷能力の低下や低硬度金属層(メタル)の損傷などの問題が発生する。   Thus, if the bearing body becomes too hot during operation of the rotating electrical machine, problems such as a decrease in load carrying capacity and damage to the low-hardness metal layer (metal) occur.

因みに、軸受温度を低減させる手段として、高温の潤滑油を給油孔の手前で排出し、油膜の温度を低減させるなど種々提案されているが(例えば、特許文献1)、いずれも十分期待できる効果が得られていないのが現状である。
特開2002−122143号公報
Incidentally, as means for reducing the bearing temperature, various proposals have been made such as discharging high-temperature lubricating oil before the oil supply hole and reducing the temperature of the oil film (for example, Patent Document 1), and all of them can be expected sufficiently. Is not obtained.
JP 2002-122143 A

上述したように従来のすべり軸受においては、回転電機の定格運転時に軸受構造物の温度が高くなり、軸受本体を構成する裏金と低硬度金属層が熱膨張すると、これら両者の線膨張係数の違いから熱応力が発生する。すなわち、低硬度金属層の方の線膨張係数が大きいため、裏金よりも大きく膨張しようとするが、両者は境界面にて密着しているため、低硬度金属層に圧縮応力が働く。もし、低硬度金属層に働く圧縮応力を超えると、1回の起動停止により低硬度金属層に塑性ひずみが発生する。特に、頻繁に起動停止を行うプラントでは、塑性ひずみが徐々に大きくなり、低硬度金属層が損傷するなどの問題に発展するおそれがある。   As described above, in the conventional plain bearing, when the temperature of the bearing structure becomes high during rated operation of the rotating electrical machine, and the back metal and the low-hardness metal layer constituting the bearing body are thermally expanded, the difference between the linear expansion coefficients of the two is different. Thermal stress is generated. That is, since the coefficient of linear expansion of the low-hardness metal layer is larger, it tends to expand more than the back metal, but since they are in close contact with each other at the interface, compressive stress acts on the low-hardness metal layer. If the compressive stress acting on the low-hardness metal layer is exceeded, plastic strain is generated in the low-hardness metal layer by one start and stop. In particular, in a plant that frequently starts and stops, the plastic strain gradually increases, which may lead to problems such as damage to the low-hardness metal layer.

本発明は上記のような問題点を解消するため、回転電機の運転時に軸受本体に発生する熱応力を低減し、低硬度金属層の損傷を防止することができるすべり軸受及びすべり軸受を備えた回転電機を提供することを目的とする。   In order to solve the above-described problems, the present invention includes a slide bearing and a slide bearing that can reduce thermal stress generated in the bearing body during operation of the rotating electrical machine and prevent damage to the low-hardness metal layer. An object is to provide a rotating electrical machine.

本発明は上記の目的を達成するため、次のような手段によりすべり軸受及びすべり軸受を備えた回転電機を構成する。   In order to achieve the above object, the present invention constitutes a sliding bearing and a rotating electrical machine including the sliding bearing by the following means.

(1)本発明は、裏金の内周面に低硬度金属層が形成された構造のすべり軸受において、高温となる低硬度金属層の周方向位置に対応する低硬度金属層と裏金との境界部分に軸方向に貫通する隙間を設ける。 (1) The present invention provides a sliding bearing having a structure in which a low-hardness metal layer is formed on the inner peripheral surface of a back metal, and a boundary between the low-hardness metal layer and the back metal corresponding to the circumferential position of the low-hardness metal layer that becomes high temperature. A gap penetrating in the axial direction is provided in the portion.

(2)本発明は、裏金の内周面に低硬度金属層が形成され、該低硬度金属層の内周面に偏心量増加用溝を有するすべり軸受において、高温となる低硬度金属層の周方向位置に対応する低硬度金属層と裏金との境界部分に軸方向に貫通する隙間を設けると共に、前記偏心量増加用溝の底面と前記隙間との間に、前記偏心量増加用溝内を流れる潤滑油の一部を前記隙間内に導く孔を設ける。 (2) The present invention provides a slide bearing having a low hardness metal layer formed on the inner peripheral surface of a back metal and having an eccentricity increasing groove on the inner peripheral surface of the low hardness metal layer. A gap passing through in the axial direction is provided at the boundary between the low hardness metal layer and the back metal corresponding to the circumferential position, and between the bottom of the eccentricity increasing groove and the gap, A hole for guiding a part of the lubricating oil flowing through the gap into the gap is provided.

(3)本発明は、裏金の内周面に低硬度金属層が形成された構造のすべり軸受において、高温となる裏金の周方向および半径方向位置に軸方向に貫通する放熱孔を設ける。 (3) According to the present invention, in a slide bearing having a structure in which a low-hardness metal layer is formed on the inner peripheral surface of the back metal, a heat radiating hole penetrating in the axial direction is provided in the circumferential direction and radial position of the back metal that becomes high temperature.

(4)本発明は、裏金の内周面に低硬度金属層が形成された構造のすべり軸受において、高温となる低硬度金属層の周方向および半径方向位置に裏金外周側から低硬度金属層の表面に通じて低温の潤滑油を噴射する潤滑油噴射孔を設ける。 (4) The present invention provides a sliding bearing having a structure in which a low-hardness metal layer is formed on the inner peripheral surface of a back metal, and the low-hardness metal layer from the back metal outer peripheral side to the circumferential and radial positions of the low-hardness metal layer that becomes high temperature Lubricating oil injection holes for injecting low temperature lubricating oil through the surface are provided.

(5)本発明は、裏金の内周面に低硬度金属層が形成され、該低硬度金属層の内周面に偏心量増加用溝を有するすべり軸受において、高温となる低硬度金属層の周方向および半径方向位置に裏金外周側から低硬度金属層の表面に通じて潤滑油を噴射する潤滑油噴射孔を設け、この潤滑油噴射孔が設けられる低硬度金属層の周方向および半径方向位置は、周方向については油膜厚さ最小位置を基準として回転下流側25°から回転上流側10°の範囲の一部であり、軸方向につていは偏心量増加溝によって分けられた各軸受摺動面の中央を基準として±L/3(Lは各軸受摺動面の軸方向長さ)の範囲の一部である。 (5) The present invention provides a slide bearing having a low hardness metal layer formed on the inner peripheral surface of a back metal and having an eccentricity increasing groove on the inner peripheral surface of the low hardness metal layer. Lubricating oil injection holes for injecting lubricating oil from the outer peripheral side of the back metal to the surface of the low hardness metal layer are provided in the circumferential direction and the radial position, and the circumferential direction and radial direction of the low hardness metal layer provided with the lubricating oil injection holes The position in the circumferential direction is a part of the range from the rotation downstream side 25 ° to the rotation upstream side 10 ° on the basis of the minimum oil film thickness position, and in the axial direction, each bearing is divided by an eccentricity increasing groove. This is a part of a range of ± L / 3 (L is the axial length of each bearing sliding surface) with respect to the center of the sliding surface.

(6)本発明は、裏金の内周面に低硬度金属層が形成され、該低硬度金属層の内周面に偏心量増加用溝を有するすべり軸受において、周方向の油膜厚さ最小位置を基準として±10°の範囲内に分岐点を定め、該分岐点から回転上流側においては偏心量増加用溝を設け、分岐点から回転下流側においては2本の偏心量増加用溝を軸方向に分岐させて設け、この2本の偏心量増加用溝は分岐点から回転上流側の各軸受摺動面の中央を基準として軸方向に±L/3(Lは各軸受摺動面の軸方向長さ)の範囲内に分岐されている。 (6) The present invention provides the minimum position of the oil film thickness in the circumferential direction in a slide bearing in which a low-hardness metal layer is formed on the inner peripheral surface of the back metal and the groove for increasing the eccentricity is formed on the inner peripheral surface of the low-hardness metal layer. Is determined within a range of ± 10 ° with respect to the angle, and an eccentricity increasing groove is provided on the upstream side of the rotation from the branching point, and two eccentricity increasing grooves are provided on the downstream side of the rotation from the branching point. These two grooves for increasing the amount of eccentricity are ± L / 3 in the axial direction with respect to the center of each bearing sliding surface on the upstream side of the rotation from the branching point (L is the bearing sliding surface). Branched within the range of (Axial length).

(7)本発明は、裏金の内周面に低硬度金属層が形成され、該低硬度金属層の内周面に偏心量増加用溝を有するすべり軸受において、周方向の油膜厚さ最小位置を基準として±10°の範囲内に分岐点を定め、該分岐点から回転上流側においては偏心量増加用溝を設け、分岐点から回転下流側においては軸方向成分を持つ2本の偏心量増加用溝を分岐させて設け、この2本の偏心量増加用溝の深さは回転下流側に向かって浅くしていき、軸受軸方向端部に至る前に溝の底面が軸受摺動面と一致して溝がなくなるように加工されている。 (7) The present invention provides the minimum position of the oil film thickness in the circumferential direction in the slide bearing in which the low hardness metal layer is formed on the inner peripheral surface of the back metal and the groove for increasing the amount of eccentricity is formed on the inner peripheral surface of the low hardness metal layer. A branch point is defined within a range of ± 10 ° with reference to the angle, a groove for increasing the eccentric amount is provided on the upstream side of the branch point, and two eccentric amounts having an axial component on the downstream side of the rotation from the branch point. The increasing groove is branched and the depth of the two eccentricity increasing grooves is made shallower toward the downstream side of the rotation, and the bottom surface of the groove is the bearing sliding surface before reaching the bearing axial end. It is processed so that there is no groove to match.

(8)本発明は、上記(1)〜(7)の何れかに記載の発明のすべり軸受により回転子が軸支された回転電機を構成する。 (8) This invention comprises the rotary electric machine with which the rotor was axially supported by the slide bearing of the invention in any one of said (1)-(7).

本発明によれば、回転電機の運転時に軸受本体に発生する熱応力を低減し、低硬度金属層の損傷を防止することができる。   ADVANTAGE OF THE INVENTION According to this invention, the thermal stress which generate | occur | produces in a bearing main body at the time of a driving | running | working of a rotary electric machine can be reduced, and damage to a low-hardness metal layer can be prevented.

以下本発明の実施形態について図面を参照して説明する。   Embodiments of the present invention will be described below with reference to the drawings.

(第1の実施形態)
図1は本発明によるすべり軸受の第1の実施形態を示し、(a)は径方向断面図、(b)は軸方向断面図である。なお、図14と同一部分には同一符号を付してその説明を省略し、ここでは異なる部分について述べる。
(First embodiment)
1A and 1B show a first embodiment of a plain bearing according to the present invention, in which FIG. 1A is a radial sectional view and FIG. 1B is an axial sectional view. Note that the same parts as those in FIG. 14 are denoted by the same reference numerals and description thereof is omitted, and different parts are described here.

第1の実施形態では、図1(a),(b)に示すように軸受本体の周方向で、且つ低硬度金属層2が高温となる位置の裏金1と低硬度金属層2との境界部分に軸方向に貫通する隙間7を設け、この部分での両者の接触を無くすようにしたものである。   In the first embodiment, as shown in FIGS. 1A and 1B, the boundary between the backing metal 1 and the low-hardness metal layer 2 in the circumferential direction of the bearing body and at a position where the low-hardness metal layer 2 is at a high temperature. A gap 7 penetrating in the axial direction is provided in the portion, and contact between the two in this portion is eliminated.

この場合、裏金1と低硬度金属層2との境界部分に隙間7を設ける際の周方向位置としては、図2に示すように油膜厚さ最小位置を基準に回転下流側25°から回転上流側10°までの範囲の一部が選定される。   In this case, the circumferential position when the gap 7 is provided at the boundary portion between the back metal 1 and the low hardness metal layer 2 is rotated upstream from the rotation downstream side 25 ° with reference to the minimum oil film thickness position as shown in FIG. A part of the range up to 10 ° on the side is selected.

このような構成とすれば、低硬度金属層2が高温となる位置の裏金1と低硬度金属層2との境界部分が軸方向に貫通する隙間7により非接触状態となるので、特に軸方向の熱膨張を拘束する作用が小さくなり、低硬度金属層2の熱応力を低減することができる。   With such a configuration, the boundary portion between the back metal 1 and the low hardness metal layer 2 at a position where the low hardness metal layer 2 is at a high temperature is in a non-contact state by the gap 7 penetrating in the axial direction. The action of restraining the thermal expansion of the metal is reduced, and the thermal stress of the low hardness metal layer 2 can be reduced.

また、隙間7が設けられる周方向位置として、熱応力が最大となることが予想される範囲の一部が選定されているので、大きな熱応力の発生を防ぐことができる。   Moreover, since a part of the range where the thermal stress is expected to be maximized is selected as the circumferential position where the gap 7 is provided, the generation of a large thermal stress can be prevented.

(第2の実施形態)
図3は本発明によるすべり軸受の第2の実施形態を示し、(a)は径方向断面図、(b)は軸方向断面図で、図1と同一部分には同一符号を付してその説明を省略し、ここでは異なる部分について述べる。
(Second Embodiment)
3A and 3B show a second embodiment of the slide bearing according to the present invention, wherein FIG. 3A is a radial sectional view, FIG. 3B is an axial sectional view, and the same parts as those in FIG. The description is omitted, and different parts are described here.

第2の実施形態では、図3(a),(b)に示すように第1の実施形態と同様に裏金1と低硬度金属層2との境界部分に設けた隙間7を冷却用流体通路として利用し、図示しない冷却用流体供給手段により隙間内に冷却用流体8を軸方向に流すようにしたものである。   In the second embodiment, as shown in FIGS. 3A and 3B, a gap 7 provided at the boundary between the back metal 1 and the low-hardness metal layer 2 is provided as a cooling fluid passage as in the first embodiment. The cooling fluid 8 is made to flow in the axial direction in the gap by a cooling fluid supply means (not shown).

このようにすれば、第1の実施形態と同様の作用効果が得られるのに加えて、隙間7周辺の低硬度金属層2と裏金1の温度を低減することができ、その結果、隙間7周辺での熱応力を低減することができる。   In this way, in addition to the same effects as the first embodiment, the temperature of the low-hardness metal layer 2 and the back metal 1 around the gap 7 can be reduced. As a result, the gap 7 Thermal stress at the periphery can be reduced.

(第3の実施形態)
図4は本発明によるすべり軸受の第3の実施形態を示し、(a)は径方向断面図、(b)は軸方向断面図で、図1と同一部分には同一符号を付してその説明を省略し、ここでは異なる部分について述べる。
(Third embodiment)
4A and 4B show a third embodiment of the slide bearing according to the present invention, wherein FIG. 4A is a radial sectional view, FIG. 4B is an axial sectional view, and the same parts as those in FIG. The description is omitted, and different parts are described here.

第4の実施形態では、図4(a),(b)に示すように裏金1の内周面に低硬度金属層2が形成され、この低硬度金属層2の軸方向中央部に周方向に伸びる偏心量増加用溝4を有する軸受本体において、第1の実施形態と同様に裏金1と低硬度金属層2との境界部分に軸方向に貫通する隙間7を設けると共に、偏心量増加用溝4の底面から隙間7に抜ける孔4aをあけ、この孔4aを通して偏心量増加用溝4内を流れる潤滑油の一部を隙間7内に導くようにしたものである。   In the fourth embodiment, a low-hardness metal layer 2 is formed on the inner peripheral surface of the back metal 1 as shown in FIGS. 4A and 4B, and the low-hardness metal layer 2 has a circumferential direction at the center in the axial direction. In the bearing body having the groove 4 for increasing the eccentric amount extending in the same manner as in the first embodiment, a gap 7 penetrating in the axial direction is provided at the boundary portion between the back metal 1 and the low hardness metal layer 2 and for increasing the eccentric amount. A hole 4 a is formed through the bottom surface of the groove 4 into the gap 7, and a part of the lubricating oil flowing in the eccentricity increasing groove 4 is guided into the gap 7 through the hole 4 a.

このような構成とすれば、第1の実施形態と同様の作用効果が得られることに加え、偏心量増加用溝4内を流れる潤滑油の一部が孔4aを通して隙間7内に流入し、隙間7内を軸方向に流れて軸受本体の側面から排出されるので、隙間7周辺の温度が低減し、熱応力を低減することができる。この場合、偏心量増加用溝4内には比較的低温の潤滑油が流れているので、隙間7の周辺温度の低減効果は顕著である。   With such a configuration, in addition to obtaining the same operational effects as the first embodiment, a part of the lubricating oil flowing in the eccentricity increasing groove 4 flows into the gap 7 through the hole 4a, Since it flows in the gap 7 in the axial direction and is discharged from the side surface of the bearing body, the temperature around the gap 7 can be reduced, and the thermal stress can be reduced. In this case, since the lubricating oil having a relatively low temperature flows in the eccentricity increasing groove 4, the effect of reducing the ambient temperature of the gap 7 is remarkable.

また、本実施形態においては、偏心量増加用溝4内を流れる潤滑油を隙間7内に導入しているので、第2の実施形態のように冷却用流体を供給するための準備や、冷却用流体の供給装置が不要である。   Further, in this embodiment, since the lubricating oil flowing in the eccentricity increasing groove 4 is introduced into the gap 7, preparation for supplying the cooling fluid as in the second embodiment, and cooling No fluid supply device is required.

(第4の実施形態)
図5は本発明によるすべり軸受の第4の実施形態を示し、(a)は径方向断面図、(b)は軸方向断面図で、図1と同一部分には同一符号を付してその説明を省略し、ここでは異なる部分について述べる。
(Fourth embodiment)
5A and 5B show a fourth embodiment of the slide bearing according to the present invention, wherein FIG. 5A is a radial cross-sectional view, and FIG. 5B is an axial cross-sectional view. The description is omitted, and different parts are described here.

第4の実施形態では、図5(a),(b)に示すように軸受本体の周方向および半径方向について、裏金1が高温となる位置において、裏金1に軸方向に貫通する放熱孔9を設けるようにしたものである。この放熱孔9を裏金1に設けている理由は、低硬度金属層2に放熱孔を設けるよりも、強度上の信頼性が高いためである。   In the fourth embodiment, as shown in FIGS. 5 (a) and 5 (b), in the circumferential direction and the radial direction of the bearing body, the heat radiating hole 9 that penetrates the back metal 1 in the axial direction at a position where the back metal 1 becomes high temperature. Is provided. The reason why the heat radiating hole 9 is provided in the back metal 1 is that the reliability in strength is higher than that provided in the low hardness metal layer 2.

ここで、上記裏金1に軸方向に貫通する放熱孔9を設ける場合、図6に示すように周方向については、油膜厚さ最小位置を基準として回転下流側25°から回転上流側10°の範囲内に設け、且つ半径方向については、低硬度金属層2と裏金1の境界を下限、低硬度金属層2の表面からH/2の位置を上限とする範囲内に設ける。但し、Hは軸受本体の内周半径と外周半径の差である。   Here, when the heat sink hole 9 penetrating in the axial direction is provided in the back metal 1, as shown in FIG. 6, in the circumferential direction, the rotation downstream side is 25 ° to the rotation upstream side 10 ° with reference to the minimum position of the oil film thickness. In the radial direction, the boundary between the low-hardness metal layer 2 and the back metal 1 is set as a lower limit, and the position H / 2 from the surface of the low-hardness metal layer 2 is set as an upper limit. However, H is the difference between the inner peripheral radius and the outer peripheral radius of the bearing body.

このように放熱孔9を設けるにあたり、軸受本体の周方向および半径方向について、それぞれ範囲を規定しているのは次のような根拠によるものである。   Thus, in providing the heat radiating hole 9, the range is prescribed | regulated about the circumferential direction and radial direction of a bearing main body, respectively for the following grounds.

図15で示した回転電機の定格運転時における軸受本体の周方向と半径方向の温度分布図から明らかなように、裏金1が周方向に関して高温となる領域は、油膜厚さ最小位置を基準として、回転下流側25°から回転上流側10°の範囲である。また、半径方向に関して裏金1が高温となる領域は、低硬度金属層2からH/4までの範囲である。このうち、半径方向については、運転条件や軸受材料の変化で高温領域が移動する可能性も考慮に入れて設置範囲の上限を大きくした。その際、図15で低硬度金属層2の表面からH/2以上離れた位置では、高温領域から2段階低温の領域に入っており、これ以上外周では放熱の効果は望めないものと仮定して、低硬度金属層2の表面からH/2の位置を半径方向の上限としている。   As is clear from the temperature distribution diagram in the circumferential direction and the radial direction of the bearing body during rated operation of the rotating electrical machine shown in FIG. 15, the region where the back metal 1 becomes high in the circumferential direction is based on the minimum position of the oil film thickness. The rotation downstream side is 25 ° to the rotation upstream side 10 °. Moreover, the area | region where the back metal 1 becomes high temperature regarding a radial direction is the range from the low-hardness metal layer 2 to H / 4. Among these, in the radial direction, the upper limit of the installation range was increased in consideration of the possibility of the high temperature region moving due to changes in operating conditions and bearing materials. In that case, it is assumed that in the position away from the surface of the low-hardness metal layer 2 by H / 2 or more in FIG. 15, it enters a two-step low temperature region from the high temperature region, and no further heat dissipation effect can be expected at the outer periphery. Thus, the position of H / 2 from the surface of the low hardness metal layer 2 is the upper limit in the radial direction.

このような構成とすれば、放熱孔9からの放熱により裏金1の温度が下がり、裏金1に接する低硬度金属層2の温度も下がり、その結果低硬度金属層2の熱応力を低減することができる。   With such a configuration, the temperature of the back metal 1 is lowered due to heat radiation from the heat radiation hole 9, and the temperature of the low-hardness metal layer 2 in contact with the back metal 1 is also lowered. As a result, the thermal stress of the low-hardness metal layer 2 is reduced. Can do.

(第5の実施形態)
図7は本発明によるすべり軸受の第5の実施形態を示し、(a)は径方向断面図、(b)は軸方向断面図で、図1と同一部分には同一符号を付してその説明を省略し、ここでは異なる部分について述べる。
(Fifth embodiment)
7A and 7B show a fifth embodiment of the plain bearing according to the present invention. FIG. 7A is a radial sectional view, FIG. 7B is an axial sectional view, and the same parts as those in FIG. The description is omitted, and different parts are described here.

第5の実施形態では、図7(a),(b)に示すように裏金1の内周面に低硬度金属層2が形成され、この低硬度金属層2の軸方向中央部に周方向に伸びる偏心量増加用溝4を有するすべり軸受において、軸受本体の周方向と軸方向に関して低硬度金属層2が高温となる位置で、裏金1の外周側から低硬度金属層2の表面(内周面)側に抜ける複数(図では2つ)の潤滑油噴射孔10を軸方向に適宜離間させて設け、回転電機の運転中にこれらの孔から低温の潤滑油を噴射させるようにしたものである。   In the fifth embodiment, a low-hardness metal layer 2 is formed on the inner peripheral surface of the back metal 1 as shown in FIGS. 7A and 7B, and the low-hardness metal layer 2 has a circumferential direction at the center in the axial direction. In the slide bearing having the eccentricity increasing groove 4 extending to the surface, the surface of the low hardness metal layer 2 (inner side) from the outer peripheral side of the back metal 1 at a position where the low hardness metal layer 2 becomes high in the circumferential direction and the axial direction of the bearing body. A plurality (two in the figure) of lubricating oil injection holes 10 that are removed to the (circumferential surface) side are provided so as to be appropriately separated in the axial direction, and low temperature lubricating oil is injected from these holes during operation of the rotating electrical machine. It is.

ここで、上記裏金1の外周側から低硬度金属層2の表面に抜ける潤滑油噴射孔10を設ける場合、大きな熱応力低減効果を得るための潤滑油噴射孔の設置範囲について図8により説明する。   Here, in the case of providing the lubricating oil injection hole 10 that extends from the outer peripheral side of the back metal 1 to the surface of the low hardness metal layer 2, the installation range of the lubricating oil injection hole for obtaining a large thermal stress reduction effect will be described with reference to FIG. .

軸受本体の周方向については、油膜厚さ最小位置を基準として回転下流側25°から回転上流側10°の範囲の一部に孔を設け、且つ軸方向については偏心量増加用溝4によって2分された各軸受摺動面5の中央を基準として、±L/3の範囲の一部に孔を設ける。但し、Lは各軸受摺動面5の軸方向長さである。   With respect to the circumferential direction of the bearing body, a hole is provided in a part of the range from the rotation downstream side 25 ° to the rotation upstream side 10 ° with reference to the minimum oil film thickness position, and the axial direction is increased by the eccentricity increasing groove 4. A hole is provided in a part of a range of ± L / 3 with reference to the center of each divided bearing sliding surface 5. However, L is the axial length of each bearing sliding surface 5.

以下その根拠について述べる。   The basis for this is described below.

図15で示した回転電機の定格運転時における軸受本体の周方向と半径方向の温度分布図から明らかなように、裏金1が周方向に関して高温となる領域は、油膜厚さ最小位置を基準として、回転下流側25°から回転上流側10°の範囲である。このうち、軸方向については、運転条件や軸受材料の変化で高温領域が移動する可能性も考慮に入れて±L/3まで設置範囲を広げている。   As is clear from the temperature distribution diagram in the circumferential direction and the radial direction of the bearing body during rated operation of the rotating electrical machine shown in FIG. 15, the region where the back metal 1 becomes high in the circumferential direction is based on the minimum position of the oil film thickness. The rotation downstream side is 25 ° to the rotation upstream side 10 °. Among these, in the axial direction, the installation range is expanded to ± L / 3 in consideration of the possibility of the high temperature region moving due to changes in operating conditions and bearing materials.

このような構成とすれば、回転電機の運転中に図示しない潤滑油供給手段により潤滑油噴射孔10を通して低温の潤滑油を低硬度金属層2の内周面側に噴射すると、この低温の潤滑油は軸受油膜6内の潤滑油と混合されるため、軸受油膜6の温度が下がると共に、低硬度金属層2の温度も下がり、その結果、低硬度金属層2の熱応力を低減できる。   With this configuration, when low temperature lubricating oil is injected to the inner peripheral surface side of the low hardness metal layer 2 through the lubricating oil injection hole 10 by a lubricating oil supply means (not shown) during operation of the rotating electrical machine, this low temperature lubrication is performed. Since the oil is mixed with the lubricating oil in the bearing oil film 6, the temperature of the bearing oil film 6 is lowered and the temperature of the low hardness metal layer 2 is also lowered. As a result, the thermal stress of the low hardness metal layer 2 can be reduced.

上記実施形態では、偏心量増加用溝4を有するすべり軸受について説明したが、偏心量増加用溝4のないすべり軸受に対しても前述同様に実施できるものである。   In the above-described embodiment, the slide bearing having the eccentricity increasing groove 4 has been described. However, the present invention can be applied to a sliding bearing without the eccentricity increasing groove 4 in the same manner as described above.

図9は、偏心量増加用溝のないすべり軸受に対して、裏金1の外周側から低硬度金属層2の表面に抜ける潤滑油噴射孔10を設ける場合、大きな熱応力低減効果を得るための潤滑油噴射孔の設置範囲を示している。   FIG. 9 shows a case where a lubricating oil injection hole 10 extending from the outer peripheral side of the back metal 1 to the surface of the low-hardness metal layer 2 is provided for a slide bearing without an eccentricity increasing groove, in order to obtain a large thermal stress reduction effect. The installation range of the lubricating oil injection hole is shown.

偏心量増加用溝のないすべり軸受において、図9に示すように軸受本体の周方向については油膜厚さ最小位置を基準として回転下流側25°から回転上流側10°の範囲の一部に孔を設け、且つ軸方向については軸受摺動面5の中央を基準として±L/3の範囲の一部に孔を設ける。但し、Lは軸受摺動面5の軸方向長さである。このような設置範囲を定めた根拠は、偏心量増加溝を有するすべり軸受の場合と同様である
(第6の実施形態)
図10は本発明によるすべり軸受の第6の実施形態を示し、(a)は径方向断面図、(b)は軸方向断面図、(c)は軸受摺動面の展開図で、図7と同一部分には同一符号を付してその説明を省略し、ここでは異なる部分について述べる。
In a plain bearing without an eccentricity increasing groove, as shown in FIG. 9, a hole is formed in a part of a range of 25 ° from the downstream side of the rotation to 10 ° of the upstream side in the circumferential direction of the bearing body with reference to the minimum position of the oil film thickness. In the axial direction, a hole is provided in a part of a range of ± L / 3 with reference to the center of the bearing sliding surface 5. However, L is the axial length of the bearing sliding surface 5. The grounds for determining such an installation range are the same as in the case of the slide bearing having the eccentricity increasing groove (sixth embodiment).
10A and 10B show a sixth embodiment of the slide bearing according to the present invention, in which FIG. 7A is a radial sectional view, FIG. 10B is an axial sectional view, and FIG. The same reference numerals are given to the same parts and the description thereof is omitted, and different parts will be described here.

第6の実施形態では、図10(a)〜(c)に示すように裏金1の外周側の軸方向中央位置から低硬度金属層2の表面へ向けて、孔の出口が最も近い軸方向端部に向って傾斜するように2つの潤滑油噴射孔10を設けたものである。   In the sixth embodiment, as shown in FIGS. 10A to 10C, the axial direction in which the outlet of the hole is closest to the surface of the low-hardness metal layer 2 from the axial center position on the outer peripheral side of the back metal 1. Two lubricating oil injection holes 10 are provided so as to incline toward the end.

このような構成とすれば、傾斜する潤滑油噴射孔10を通して低硬度金属層2の表面から噴射された潤滑油は、軸方向の速度成分を持つため、潤滑油噴射孔の回転上流側から流れてくる高温の潤滑油の一部を巻き込み、軸方向端部から排出される。   With such a configuration, the lubricating oil injected from the surface of the low hardness metal layer 2 through the inclined lubricating oil injection hole 10 has a velocity component in the axial direction, and therefore flows from the upstream side of the rotation of the lubricating oil injection hole. A part of the hot lubricating oil coming in is entrained and discharged from the axial end.

従って、噴射孔10を軸方向に傾けずに設けた場合と比較して、回転下流側に流れる高温の潤滑油量が減少するため、低硬度金属層2の温度を更に低減することができ、その分発生する熱応力を低減することができる。   Therefore, compared to the case where the injection hole 10 is not tilted in the axial direction, the amount of high-temperature lubricating oil flowing on the downstream side of the rotation is reduced, so that the temperature of the low hardness metal layer 2 can be further reduced. The thermal stress generated accordingly can be reduced.

(第7の実施形態)
図11は本発明によるすべり軸受の第7の実施形態を示す径方向断面図で、図1と同一部分には同一符号を付して説明する。
(Seventh embodiment)
FIG. 11 is a radial sectional view showing a seventh embodiment of the plain bearing according to the present invention. The same parts as those in FIG.

第7の実施形態では、図11に示すように裏金1の内周面に低硬度金属層2が形成され、この低硬度金属層2の軸方向中央部に偏心量増加用溝4を有するすべり軸受において、軸受本体の周方向の油膜厚さ最小位置を基準として±10°の範囲内に分岐点11を定め、この分岐点11から回転上流側においては従来通りの偏心量増加溝4を設け、分岐点11において偏心量増加溝4を互いに異なる軸方向に2本に分岐し、分岐点11から回転下流側においては分岐点11から回転上流側の各軸受摺動面の中央を基準として軸方向に±L/3の範囲内に分岐後の各溝12を設けるようにしたものである。   In the seventh embodiment, as shown in FIG. 11, a low hardness metal layer 2 is formed on the inner peripheral surface of the back metal 1, and a slip having an eccentricity increasing groove 4 in the axial center of the low hardness metal layer 2 is provided. In the bearing, a branch point 11 is defined within a range of ± 10 ° with respect to the minimum position of the oil film thickness in the circumferential direction of the bearing body, and a conventional eccentricity increasing groove 4 is provided on the upstream side of the branch point 11 from the rotation. The eccentricity increasing groove 4 is bifurcated in two different axial directions at the branch point 11, and on the downstream side of the rotation from the branch point 11, the shaft is centered on the center of each bearing sliding surface from the branch point 11 to the upstream side of rotation. Each branched groove 12 is provided in the range of ± L / 3 in the direction.

ここで、分岐点の周方向設置範囲と分岐点の回転下流側各溝の軸方向設置範囲を図12に示す。   Here, the circumferential installation range of the branch point and the axial installation range of each groove on the downstream side of the branch point are shown in FIG.

以下、このような範囲を定めた根拠について述べる。   The grounds for defining such a range will be described below.

低硬度金属層の高温領域よりも回転下流側に分岐点があると、低温の潤滑油が高温領域を通過しないため、温度低減の効果が得られない。背景技術の項で述べたように低硬度金属層の表面温度は、油膜厚さ最小位置から下流側で最高となるため、温度低減効果については、分岐点を油膜厚さ最小位置より上流側に設置することが望ましい。   If there is a branch point on the rotation downstream side of the high-temperature region of the low-hardness metal layer, the low-temperature lubricating oil does not pass through the high-temperature region, so that the temperature reduction effect cannot be obtained. As described in the background art section, the surface temperature of the low-hardness metal layer is highest on the downstream side from the minimum oil film thickness position. It is desirable to install.

一方、あまり上流側で分岐すると、軸受油膜の圧力が下がってしまい、回転軸の偏心量に影響を与える。理論上、最小油膜厚さ位置から下流側では油膜圧力が発生しないで、偏心量に影響を与えないためには、分岐点を油膜厚さ最小位置より下流側に設置することが望ましい。   On the other hand, if it branches too far upstream, the pressure of the bearing oil film will drop, affecting the amount of eccentricity of the rotating shaft. Theoretically, in order to prevent the oil film pressure from being generated downstream from the minimum oil film thickness position and not to affect the amount of eccentricity, it is desirable to install the branch point downstream from the minimum oil film thickness position.

以上のことより油膜厚さ最小位置を分岐点設置の目標とし、設計余裕として±10°の範囲を分岐点設置範囲として定めている。また、分岐点から回転下流側における各溝の軸方向位置については、前述した第5の実施形態と同様の根拠により定めている。   From the above, the minimum oil film thickness position is set as a target for branch point installation, and a range of ± 10 ° is set as a branch point installation range as a design margin. Further, the axial position of each groove on the downstream side of the rotation from the branch point is determined on the same basis as in the fifth embodiment described above.

このような構成とすれば、偏心量増加溝4内に比較的低温の潤滑油が流れているので、この溝内の潤滑油を高温領域に導くことにより、低硬度金属層2の表面温度を低減することができ、その結果、低硬度金属層2の熱応力を低減することが可能となる。   With such a configuration, since a relatively low temperature lubricating oil flows in the eccentricity increasing groove 4, the surface temperature of the low hardness metal layer 2 is reduced by guiding the lubricating oil in the groove to a high temperature region. As a result, the thermal stress of the low hardness metal layer 2 can be reduced.

(第8の実施形態)
図13は本発明によるすべり軸受の第8の実施形態を示す径方向断面図で、図1と同一部分には同一符号を付して説明する。
(Eighth embodiment)
FIG. 13 is a radial cross-sectional view showing an eighth embodiment of the plain bearing according to the present invention, and the same parts as those in FIG.

第8の実施形態では、図13に示すように裏金1の内周面に低硬度金属層2が形成され、この低硬度金属層2の軸方向中央部に偏心量増加用溝4を有するすべり軸受において、軸受本体の周方向の油膜厚さ最小位置を基準として±10°の範囲内に分岐点11を定め、この分岐点11から回転上流側においては偏心量増加溝4を従来通り設け、分岐点11において偏心量増加用溝4を、軸方向成分を持つ2本の溝12に分岐し、分岐点から回転下流側においては各溝12の深さを浅くしていき、軸受本体の軸方向端部に至る前に溝12の底面が軸受摺動面5と一致して溝がなくなるように加工を行う。   In the eighth embodiment, as shown in FIG. 13, a low hardness metal layer 2 is formed on the inner peripheral surface of the back metal 1, and a slide having an eccentricity increasing groove 4 in the axial center of the low hardness metal layer 2 is provided. In the bearing, a branch point 11 is defined within a range of ± 10 ° with respect to the minimum position of the oil film thickness in the circumferential direction of the bearing body, and an eccentricity increasing groove 4 is provided on the upstream side of the branch point 11 as usual, At the branch point 11, the eccentricity increasing groove 4 is branched into two grooves 12 having an axial component, and the depth of each groove 12 is made shallower on the downstream side of the branch point to rotate the shaft of the bearing body. Before reaching the end in the direction, machining is performed so that the bottom surface of the groove 12 coincides with the bearing sliding surface 5 and the groove is eliminated.

このような構成とすれば、偏心量増加用溝4内を流れてきた比較的低温の潤滑油が、分岐点より回転下流側で軸受摺動面5に軸方向の速度成分を持って流出する。この軸受摺動面5を流れてきた高温の潤滑油の一部は、溝12から流出した潤滑油に巻き込まれ、軸方向端部から排出される。   With such a configuration, the relatively low-temperature lubricating oil flowing in the eccentricity increasing groove 4 flows out to the bearing sliding surface 5 with an axial speed component on the downstream side of the rotation from the branch point. . Part of the high-temperature lubricating oil that has flowed through the bearing sliding surface 5 is caught in the lubricating oil that has flowed out of the groove 12 and discharged from the end in the axial direction.

従って、回転下流側に流れる高温の潤滑油量が減少するため、低硬度金属層2と裏金1の温度を低減することができ、その結果、低硬度金属層2に働く熱応力を低減することができる。   Accordingly, since the amount of high-temperature lubricating oil flowing downstream of the rotation decreases, the temperature of the low-hardness metal layer 2 and the back metal 1 can be reduced, and as a result, the thermal stress acting on the low-hardness metal layer 2 can be reduced. Can do.

なお、上述した第1の実施形態乃至第8の実施形態のいずれかのすべり軸受をタービン、発電機、電動機などの回転電機の回転子を軸支する軸受として用いることにより、安定した状態で回転電機を運転することができる。   The sliding bearing according to any of the first to eighth embodiments described above is used as a bearing that supports the rotor of a rotating electrical machine such as a turbine, a generator, or an electric motor, thereby rotating in a stable state. The electric machine can be operated.

本発明によるすべり軸受の第1の実施形態を示し、(a)は径方向断面図、(b)は軸方向断面図。BRIEF DESCRIPTION OF THE DRAWINGS The 1st Embodiment of the slide bearing by this invention is shown, (a) is radial direction sectional drawing, (b) is axial direction sectional drawing. 同実施形態において、大きな熱応力低減効果を得るための隙間の設置範囲を示す図。The figure which shows the installation range of the clearance gap for obtaining the big thermal stress reduction effect in the same embodiment. 本発明によるすべり軸受の第2の実施形態を示し、(a)は径方向断面図、(b)は軸方向断面図。The 2nd Embodiment of the slide bearing by this invention is shown, (a) is radial direction sectional drawing, (b) is axial direction sectional drawing. 本発明によるすべり軸受の第3の実施形態を示し、(a)は径方向断面図、(b)は軸方向断面図。The 3rd Embodiment of the slide bearing by this invention is shown, (a) is radial direction sectional drawing, (b) is axial direction sectional drawing. 本発明によるすべり軸受の第4の実施形態を示し、(a)は径方向断面図、(b)は軸方向断面図。The 4th Embodiment of the slide bearing by this invention is shown, (a) is radial direction sectional drawing, (b) is axial direction sectional drawing. 同実施形態において、大きな熱応力低減効果を得るための放熱孔の設置範囲を示す図。The figure which shows the installation range of the heat radiating hole for obtaining the big thermal stress reduction effect in the same embodiment. 本発明によるすべり軸受の第5の実施形態を示し、(a)は径方向断面図、(b)は軸方向断面図。The 5th Embodiment of the slide bearing by this invention is shown, (a) is radial direction sectional drawing, (b) is axial direction sectional drawing. 同実施形態において、大きな熱応力低減効果を得るための潤滑油噴射孔の設置範囲を示す図。The figure which shows the installation range of the lubricating oil injection hole for obtaining the big thermal stress reduction effect in the same embodiment. 同じく偏心量増加用溝を持たないすべり軸受において、大きな熱応力低減効果を得るための潤滑油噴射孔の設置範囲を示す図。The figure which shows the installation range of the lubricating oil injection hole for obtaining the big thermal stress reduction effect similarly in the slide bearing which does not have the groove | channel for eccentric amount increase. 本発明によるすべり軸受の第6の実施形態を示し、(a)は径方向断面図、(b)は軸方向断面図、(c)は軸受摺動面の展開図。The 6th Embodiment of the slide bearing by this invention is shown, (a) is radial direction sectional drawing, (b) is axial direction sectional drawing, (c) is an expanded view of a bearing sliding surface. 本発明によるすべり軸受の第7の実施形態を示す径方向断面図。The radial direction sectional view showing a 7th embodiment of the slide bearing by the present invention. 同実施形態において、分岐点の周方向設置範囲と分岐点から回転下流側の各溝の軸方向設置範囲を示す図。The figure which shows the axial direction installation range of each groove | channel of the rotation downstream side from a branch point and the circumferential direction installation range of a branch point in the embodiment. 本発明によるすべり軸受の第8の実施形態を示す径方向断面図。A radial direction sectional view showing an 8th embodiment of a slide bearing by the present invention. 従来のすべり軸受の構成例を示し、(a)は径方向断面図、(b)は軸方向断面図。The structural example of the conventional slide bearing is shown, (a) is radial direction sectional drawing, (b) is an axial direction sectional view. 従来のすべり軸受において、回転電機の定格運転時における周方向と半径方向の温度分布の一例を示す図。The figure which shows an example of the temperature distribution of the circumferential direction and radial direction at the time of the rated operation of a rotary electric machine in the conventional slide bearing. 従来のすべり軸受において、回転電機の定格運転時における周方向と軸方向の温度分布の一例を示す図。The figure which shows an example of the temperature distribution of the circumferential direction at the time of rated operation of a rotary electric machine, and an axial direction in the conventional slide bearing.

符号の説明Explanation of symbols

1…裏金、2…低硬度金属層、3…回転軸、4…偏心量増加用溝、4a…孔、5…軸受摺動面、6…軸受油膜、7…隙間、8…冷却用流体、9…放熱孔、10…潤滑油噴射孔、11…分岐点、12…分岐後の溝。   DESCRIPTION OF SYMBOLS 1 ... Back metal, 2 ... Low-hardness metal layer, 3 ... Rotating shaft, 4 ... Eccentricity increasing groove, 4a ... Hole, 5 ... Bearing sliding surface, 6 ... Bearing oil film, 7 ... Clearance, 8 ... Cooling fluid, 9 ... radiation hole, 10 ... lubricating oil injection hole, 11 ... branch point, 12 ... groove after branching.

Claims (13)

裏金の内周面に低硬度金属層が形成された構造のすべり軸受において、高温となる低硬度金属層の周方向位置に対応する低硬度金属層と裏金との境界部分に軸方向に貫通する隙間を設けたことを特徴とするすべり軸受。   In a plain bearing with a structure in which a low hardness metal layer is formed on the inner peripheral surface of the back metal, it penetrates in the axial direction at the boundary between the low hardness metal layer and the back metal corresponding to the circumferential position of the low hardness metal layer at high temperature. A plain bearing characterized by providing a gap. 請求項1記載のすべり軸受において、前記高温となる低硬度金属層の周方向位置は、油膜厚さ最小位置を基準に回転下流側25°から回転上流側10°までの範囲の一部であることを特徴とするすべり軸受。   2. The slide bearing according to claim 1, wherein a circumferential position of the low-hardness metal layer at a high temperature is a part of a range from a rotation downstream side of 25 ° to a rotation upstream side of 10 ° on the basis of a minimum oil film thickness position. A plain bearing characterized by that. 請求項1又は請求項2記載のすべり軸受において、前記低硬度金属層と裏金との境界に設けられた隙間は、冷却用流体を軸方向に通流させる冷却用流体通路として利用することを特徴とするすべり軸受。   3. The plain bearing according to claim 1, wherein the clearance provided at the boundary between the low-hardness metal layer and the back metal is used as a cooling fluid passage through which the cooling fluid flows in the axial direction. And plain bearings. 裏金の内周面に低硬度金属層が形成され、該低硬度金属層の内周面に偏心量増加用溝を有するすべり軸受において、高温となる低硬度金属層の周方向位置に対応する低硬度金属層と裏金との境界部分に軸方向に貫通する隙間を設けると共に、前記偏心量増加用溝の底面と前記隙間との間に、前記偏心量増加用溝内を流れる潤滑油の一部を前記隙間内に導く孔を設けたことを特徴とするすべり軸受。   In a slide bearing having a low-hardness metal layer formed on the inner peripheral surface of the back metal and having an eccentricity increasing groove on the inner peripheral surface of the low-hardness metal layer, a low hardness corresponding to the circumferential position of the low-hardness metal layer at a high temperature A part of the lubricating oil flowing in the eccentricity increasing groove is provided between the bottom surface of the eccentricity increasing groove and the gap between the gap extending in the axial direction at a boundary portion between the hard metal layer and the back metal. A plain bearing provided with a hole for guiding the inside of the gap. 裏金の内周面に低硬度金属層が形成された構造のすべり軸受において、高温となる裏金の周方向および半径方向位置に軸方向に貫通する放熱孔を設けたことを特徴とするすべり軸受。   A slide bearing having a structure in which a low-hardness metal layer is formed on the inner peripheral surface of a back metal, wherein a heat radiating hole penetrating in the axial direction is provided in a circumferential direction and a radial position of the back metal at a high temperature. 請求項5記載のすべり軸受において、高温となる裏金の周方向および半径方向位置は、周方向については油膜厚さ最小位置を基準として回転下流側25°から回転上流側10°までの範囲の一部であり、半径方向については低硬度金属層と裏金の境界を下限、低硬度金属層表面からH/2(Hはすべり軸受の内周半径と外周半径の差)離れた位置を上限とする範囲の一部であることを特徴とするすべり軸受。   6. The sliding bearing according to claim 5, wherein the circumferential direction and radial direction position of the back metal that becomes high temperature is one in a range from the rotational downstream side of 25 ° to the rotational upstream side of 10 ° with respect to the minimum position of the oil film thickness in the circumferential direction. In the radial direction, the lower limit is the boundary between the low-hardness metal layer and the back metal, and the upper limit is a position that is H / 2 away from the surface of the low-hardness metal layer (H is the difference between the inner and outer radiuses of the slide bearing). A plain bearing that is part of the range. 裏金の内周面に低硬度金属層が形成された構造のすべり軸受において、高温となる低硬度金属層の周方向および半径方向位置に裏金外周側から低硬度金属層の表面に通じて低温の潤滑油を噴射する潤滑油噴射孔を設けたことを特徴とするすべり軸受。   In a plain bearing with a low-hardness metal layer formed on the inner peripheral surface of the back metal, the low-hardness metal layer has a low temperature through the back metal outer peripheral side to the surface of the low-hardness metal layer in the circumferential direction and radial position of the low-hardness metal layer. A plain bearing provided with a lubricating oil injection hole for injecting lubricating oil. 請求項7記載のすべり軸受において、潤滑油噴射孔が設けられる低硬度金属層の周方向および半径方向位置は、周方向については油膜厚さ最小位置を基準として回転下流側25°から回転上流側10°の範囲の一部であり、軸方向につていは軸方向摺動面の中央を基準として、±L/3(Lは各軸受摺動面の軸方向長さ)の範囲の一部であることを特徴とするすべり軸受。   8. The sliding bearing according to claim 7, wherein the circumferential direction and radial position of the low hardness metal layer in which the lubricating oil injection hole is provided are from the rotational downstream side 25 ° to the rotational upstream side with respect to the minimum position of the oil film thickness in the circumferential direction. Part of the range of 10 ° and part of the range of ± L / 3 (L is the axial length of each bearing sliding surface) with respect to the center of the axial sliding surface in the axial direction A plain bearing characterized by 裏金の内周面に低硬度金属層が形成され、該低硬度金属層の内周面に偏心量増加用溝を有するすべり軸受において、高温となる低硬度金属層の周方向および半径方向位置に裏金外周側から低硬度金属層の表面に通じて潤滑油を噴射する潤滑油噴射孔を設け、この潤滑油噴射孔が設けられる低硬度金属層の周方向および半径方向位置は、周方向については油膜厚さ最小位置を基準として回転下流側25°から回転上流側10°の範囲の一部であり、軸方向につていは偏心量増加溝によって分けられた各軸受摺動面の中央を基準として±L/3(Lは各軸受摺動面の軸方向長さ)の範囲の一部であることを特徴とするすべり軸受。   In a slide bearing having a low-hardness metal layer formed on the inner peripheral surface of the back metal and having a groove for increasing the amount of eccentricity on the inner peripheral surface of the low-hardness metal layer, the low-hardness metal layer at high temperatures is positioned in the circumferential direction and radial position. Lubricating oil injection holes for injecting lubricating oil from the outer peripheral side of the back metal to the surface of the low hardness metal layer are provided, and the circumferential direction and radial position of the low hardness metal layer provided with the lubricating oil injection holes are as follows. A part of the range from 25 ° downstream to 10 ° upstream from the minimum position of the oil film thickness as a reference. In the axial direction, the center of each bearing sliding surface divided by the eccentricity increasing groove is the reference. As a part of a range of ± L / 3 (L is an axial length of each bearing sliding surface). 請求項7乃至請求項9の何れかに記載のすべり軸受において、潤滑油噴射孔はその低硬度金属層表面側の出口が該噴射孔の出口から最も近い軸受軸方向端部の方向に傾斜して設けたことを特徴とするすべり軸受。   The sliding bearing according to any one of claims 7 to 9, wherein the lubricating oil injection hole is inclined in the direction of the bearing axial end where the outlet on the surface side of the low hardness metal layer is closest to the outlet of the injection hole. A plain bearing characterized in that it is provided. 裏金の内周面に低硬度金属層が形成され、該低硬度金属層の内周面に偏心量増加用溝を有するすべり軸受において、周方向の油膜厚さ最小位置を基準として±10°の範囲内に分岐点を定め、該分岐点から回転上流側においては偏心量増加用溝を設け、分岐点から回転下流側においては2本の偏心量増加用溝を軸方向に分岐させて設け、この2本の偏心量増加用溝は分岐点から回転上流側の各軸受摺動面の中央を基準として軸方向に±L/3(Lは各軸受摺動面の軸方向長さ)の範囲内に分岐されていることを特徴とするすべり軸受。   In a slide bearing having a low-hardness metal layer formed on the inner peripheral surface of the back metal and having a groove for increasing the amount of eccentricity on the inner peripheral surface of the low-hardness metal layer, it is ± 10 ° with respect to the minimum position of the oil film thickness in the circumferential direction. A branch point is defined within the range, and an eccentric amount increasing groove is provided on the upstream side of the branch from the branch point, and two eccentric amount increasing grooves are provided on the downstream side of the branch point to be branched in the axial direction. These two grooves for increasing the amount of eccentricity are in the range of ± L / 3 (L is the axial length of each bearing sliding surface) in the axial direction with reference to the center of each bearing sliding surface on the upstream side from the branch point. A plain bearing that is branched into the inside. 裏金の内周面に低硬度金属層が形成され、該低硬度金属層の内周面に偏心量増加用溝を有するすべり軸受において、周方向の油膜厚さ最小位置を基準として±10°の範囲内に分岐点を定め、該分岐点から回転上流側においては偏心量増加用溝を設け、分岐点から回転下流側においては軸方向成分を持つ2本の偏心量増加用溝を分岐させて設け、この2本の偏心量増加用溝の深さは回転下流側に向かって浅くしていき、軸受軸方向端部に至る前に溝の底面が軸受摺動面と一致して溝がなくなるように加工されていることを特徴とするすべり軸受。   In a slide bearing having a low-hardness metal layer formed on the inner peripheral surface of the back metal and having a groove for increasing the amount of eccentricity on the inner peripheral surface of the low-hardness metal layer, it is ± 10 ° with respect to the minimum position of the oil film thickness in the circumferential direction. A branch point is set within the range, and an eccentric amount increasing groove is provided on the upstream side of the branch point from the branch point, and two eccentric amount increasing grooves having an axial component are branched from the branch point on the downstream side of the rotation. The two grooves for increasing the amount of eccentricity are made shallower toward the downstream side of the rotation, and the bottom surface of the groove coincides with the bearing sliding surface before reaching the end portion in the bearing axial direction, and the groove disappears. A plain bearing characterized by being processed as described above. 請求項1乃至請求項12の何れかに記載のすべり軸受により回転子が軸支された回転電機。   A rotating electrical machine in which a rotor is pivotally supported by the slide bearing according to any one of claims 1 to 12.
JP2004326786A 2004-11-10 2004-11-10 Slide bearing and rotary electric machine including slide bearing Pending JP2006138353A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2004326786A JP2006138353A (en) 2004-11-10 2004-11-10 Slide bearing and rotary electric machine including slide bearing

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2004326786A JP2006138353A (en) 2004-11-10 2004-11-10 Slide bearing and rotary electric machine including slide bearing

Publications (1)

Publication Number Publication Date
JP2006138353A true JP2006138353A (en) 2006-06-01

Family

ID=36619311

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2004326786A Pending JP2006138353A (en) 2004-11-10 2004-11-10 Slide bearing and rotary electric machine including slide bearing

Country Status (1)

Country Link
JP (1) JP2006138353A (en)

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP2103823A2 (en) 2008-03-19 2009-09-23 Hitachi Ltd. Journal bearing device
JP2010116953A (en) * 2008-11-12 2010-05-27 Hitachi Ltd Journal bearing device
CN102482952A (en) * 2009-09-01 2012-05-30 丰田自动车株式会社 Sliding support structure for shaft member
US8616777B1 (en) 2012-11-16 2013-12-31 Pratt & Whitney Canada Corp. Bearing assembly with inner ring
CN106523535A (en) * 2016-11-29 2017-03-22 东方电气集团东方汽轮机有限公司 Elliptic bearing capable of being subjected to forced cooling
US9933007B2 (en) 2014-01-15 2018-04-03 Taiho Kogyo Co., Ltd. Sliding bearing
CN110454509A (en) * 2019-08-30 2019-11-15 福建福清核电有限公司 A kind of pumping over profile shaft holds thrust disc

Cited By (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP2103823A2 (en) 2008-03-19 2009-09-23 Hitachi Ltd. Journal bearing device
US8147145B2 (en) 2008-03-19 2012-04-03 Hitachi, Ltd. Journal bearing device
JP2010116953A (en) * 2008-11-12 2010-05-27 Hitachi Ltd Journal bearing device
CN102482952A (en) * 2009-09-01 2012-05-30 丰田自动车株式会社 Sliding support structure for shaft member
US8556514B2 (en) 2009-09-01 2013-10-15 Toyota Jidosha Kabushiki Kaisha Sliding support structure for shaft member
US8616777B1 (en) 2012-11-16 2013-12-31 Pratt & Whitney Canada Corp. Bearing assembly with inner ring
US9933007B2 (en) 2014-01-15 2018-04-03 Taiho Kogyo Co., Ltd. Sliding bearing
CN106523535A (en) * 2016-11-29 2017-03-22 东方电气集团东方汽轮机有限公司 Elliptic bearing capable of being subjected to forced cooling
CN110454509A (en) * 2019-08-30 2019-11-15 福建福清核电有限公司 A kind of pumping over profile shaft holds thrust disc

Similar Documents

Publication Publication Date Title
JP4604099B2 (en) Journal bearing device
KR100826994B1 (en) Shaft sealing device for generator
JP6412788B2 (en) Tilting pad bearing
JP6470945B2 (en) Suction seal assembly for rotating machine and method for assembling the same
JP6038088B2 (en) Bearings and bearing pads
WO2016084937A1 (en) Journal bearing and rotary machine
WO2012039386A1 (en) Self-adjusting seal for turbo rotary machine
Bang et al. Comparison of power loss and pad temperature for leading edge groove tilting pad journal bearings and conventional tilting pad journal bearings
EP2165084A1 (en) Radial foil bearing with sealing function
US9062712B1 (en) Passive thermal management of foil bearings
CA2807351A1 (en) Hydrodynamic axial bearing
JP2015007463A (en) Tilting pad bearing
CA2852164A1 (en) Hydrodynamic axial bearing
JP5094833B2 (en) Tilting pad journal bearing device
JP2006138353A (en) Slide bearing and rotary electric machine including slide bearing
Nicholas Tilting Pad Journal Bearings With Spray-Bar Blockers And By-Pass Cooling For High Speed, High Load Applications.
JP5119281B2 (en) Combined bearing device
JP2008151239A (en) Tilting pad type bearing
JP2012122535A (en) Thrust bearing device of electric rotating machine
JP5156589B2 (en) Journal bearing device
JP3448148B2 (en) Thrust bearing device
WO2014133499A2 (en) Passive thermal management of foil bearings
KR100782374B1 (en) High Precision Radial Foil Bearing
JP2003028146A (en) Guide bearing device
JP2012140984A (en) Bearing device of vertical shaft rotary electric machine