JP2013147785A - Regenerated cellulose fiber with photothermal conversion property, method for producing the same and fiber structure - Google Patents

Regenerated cellulose fiber with photothermal conversion property, method for producing the same and fiber structure Download PDF

Info

Publication number
JP2013147785A
JP2013147785A JP2012276853A JP2012276853A JP2013147785A JP 2013147785 A JP2013147785 A JP 2013147785A JP 2012276853 A JP2012276853 A JP 2012276853A JP 2012276853 A JP2012276853 A JP 2012276853A JP 2013147785 A JP2013147785 A JP 2013147785A
Authority
JP
Japan
Prior art keywords
fiber
particles
photothermal
photothermal conversion
regenerated cellulose
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2012276853A
Other languages
Japanese (ja)
Other versions
JP6180733B2 (en
Inventor
Shohei Shimada
昌平 嶋田
Makoto Hayashi
誠 林
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Daiwabo Rayon Co Ltd
Daiwabo Holdings Co Ltd
Original Assignee
Daiwabo Rayon Co Ltd
Daiwabo Holdings Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Daiwabo Rayon Co Ltd, Daiwabo Holdings Co Ltd filed Critical Daiwabo Rayon Co Ltd
Priority to JP2012276853A priority Critical patent/JP6180733B2/en
Publication of JP2013147785A publication Critical patent/JP2013147785A/en
Application granted granted Critical
Publication of JP6180733B2 publication Critical patent/JP6180733B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Landscapes

  • Artificial Filaments (AREA)
  • Nonwoven Fabrics (AREA)

Abstract

PROBLEM TO BE SOLVED: To provide a regenerated cellulose fiber with photothermal conversion properties, which has photothermal conversion particles dispersed in the fiber in a fine particle state, has a high photothermal conversion function, has adequate antistatic properties, and has almost the same properties such as a color tone and texture as a usual rayon fiber; a method for producing the same; and a fiber structure.SOLUTION: The regenerated cellulose fiber contains the photothermal conversion particles having heat ray absorbing properties in the fiber. The photothermal conversion particle is a particle having a BET specific surface area of in a range of 5-120 m/g and a powder resistance of less than 30 Ω cm, and is contained in the fiber in a dispersed state. The method for producing the regenerated cellulose fiber comprises: preparing an aqueous dispersion liquid of the photothermal conversion particles; mixing the aqueous dispersion liquid with a viscose stock solution containing cellulose to prepare a viscose solution for spinning; extruding the viscose solution for spinning from a nozzle to form a fiber; and coagulating and regenerating the fiber.

Description

本発明は、光熱変換性再生セルロース繊維、その製造方法及び繊維構造物に関する。さらに詳しくは、特定の無機添加物を含有するレーヨン繊維、その製造方法及び繊維構造物に関する。   The present invention relates to a photothermal-convertible regenerated cellulose fiber, a method for producing the same, and a fiber structure. More specifically, the present invention relates to a rayon fiber containing a specific inorganic additive, a method for producing the same, and a fiber structure.

再生セルロースを用いたレーヨン繊維は、ビスコース法、銅アンモニア法、溶剤紡糸法など様々な方法で製造されることが知られている。レーヨン繊維は基質がセルロースであるため、それ自体は吸湿発熱することが知られている。近年、吸湿発熱以外にも熱線放射繊維や光熱変換繊維が提案されている。   It is known that rayon fibers using regenerated cellulose are produced by various methods such as viscose method, copper ammonia method, and solvent spinning method. It is known that rayon fibers themselves absorb moisture and generate heat because the substrate is cellulose. In recent years, heat ray radiating fibers and photothermal conversion fibers have been proposed in addition to hygroscopic heat generation.

特許文献1には、体積抵抗率が30〜500Ω・cmのn型半導体として、例えばアルミニウム等の金属をドーピングさせた導電性酸化亜鉛を繊維に含ませることが提案されている。特許文献2〜3には、ポリエステル繊維内に金属酸化物系無機粒子を練り込むことが提案されている。また、特許文献4には、芯鞘構造のポリエステル複合繊維において、芯成分に無機粒子を練り込むことが提案されている。特許文献5には、ポリエステル、ナイロン等の熱可塑性繊維に特定の粒径の酸化亜鉛粉末を練り込むことが提案されている。   Patent Document 1 proposes that a conductive zinc oxide doped with a metal such as aluminum is included in a fiber as an n-type semiconductor having a volume resistivity of 30 to 500 Ω · cm. Patent Documents 2 to 3 propose that the metal oxide inorganic particles are kneaded into the polyester fiber. Patent Document 4 proposes kneading inorganic particles into a core component in a polyester composite fiber having a core-sheath structure. Patent Document 5 proposes that a zinc oxide powder having a specific particle diameter is kneaded into a thermoplastic fiber such as polyester or nylon.

特開2000−154419号公報JP 2000-154419 A 特開2006−307383号公報JP 2006-307383 A 特開2008−075184号公報JP 2008-075184 A 特開2003−027337号公報JP 2003-027337 A 特許第4228856号公報Japanese Patent No. 4228856

しかし、特許文献1では発熱時の温度差が0.3〜0.6℃といった微差であり、人間が感じられる温度差は約0.5℃であり、それほど高い発熱は期待できない。また、特許文献2〜5では、ベースが熱可塑性樹脂であるため、粒子の水分散液を使用できず乾燥粒子(ドライ粉体)を使用しなければならないことから、微粒子状態で繊維内に分散させることは困難であり、紡糸性の低下と強伸度が低くなるという問題があった。また、特許文献1〜5の合成繊維は、無機粒子を多量に含有させると繊維強度が低下するため、無機粒子の添加量が制限されて十分な熱線吸収能が得られないという問題があった。さらに、特許文献3又は特許文献5の繊維は、熱線を積極的に反射させる、すなわち熱線遮蔽効果を有する繊維であるため、十分な蓄熱・保温性を備えるものではなかった。   However, in Patent Document 1, the temperature difference during heat generation is as small as 0.3 to 0.6 ° C., and the temperature difference perceived by humans is about 0.5 ° C., and so high heat generation cannot be expected. Further, in Patent Documents 2 to 5, since the base is a thermoplastic resin, the aqueous dispersion of particles cannot be used and dry particles (dry powder) must be used. However, there is a problem that the spinnability is lowered and the high elongation is lowered. Moreover, since the fiber strength will fall when the synthetic fiber of patent documents 1-5 contains a large amount of inorganic particles, there was a problem that the addition amount of inorganic particles was restricted and sufficient heat ray absorption ability was not obtained. . Furthermore, since the fiber of patent document 3 or patent document 5 is a fiber which reflects a heat ray positively, ie, has a heat ray shielding effect, it did not have sufficient heat storage and heat retention.

本発明は、前記従来の問題を解決するため、光熱変換性粒子を微粒子状態で繊維内に分散させることができ、高い光熱変換機能を有する再生セルロース繊維、その製造方法及び繊維構造物を提供する。さらに、制電特性は良好であり、色調、風合いなどの特性は通常の再生セルロース繊維と大差がない光熱変換性再生セルロース繊維、その製造方法及び繊維構造物を提供する。   In order to solve the above-mentioned conventional problems, the present invention provides a regenerated cellulose fiber having a high light-heat conversion function, in which light-heat convertible particles can be dispersed in the form of fine particles, a method for producing the same, and a fiber structure. . Furthermore, the present invention provides a photothermal-convertible regenerated cellulose fiber that has good antistatic properties and has characteristics such as color tone and texture that are not significantly different from ordinary regenerated cellulose fibers, a method for producing the same, and a fiber structure.

本発明の光熱変換性再生セルロース繊維は、繊維内に熱線吸収能を有する光熱変換性粒子を含む再生セルロース繊維であって、前記光熱変換性粒子は、BET比表面積が5〜120m2/gの範囲内であり、粉体抵抗が30Ωcm未満である粒子を分散状態で含むことを特徴とする。 The light-heat convertible regenerated cellulose fiber of the present invention is a regenerated cellulose fiber containing light-heat convertible particles having heat-absorbing ability in the fiber, and the light-heat convertible particles have a BET specific surface area of 5 to 120 m 2 / g. It is characterized by containing particles having a powder resistance of less than 30 Ωcm within a range in a dispersed state.

本発明の光熱変換性再生セルロース繊維の製造方法は、前記の光熱変換性再生セルロース繊維の製造方法であって、BET比表面積が5〜120m2/gの範囲内であり、粉体抵抗が30Ωcm未満である光熱変換性粒子の水分散液を調製し、セルロースを含むビスコース原液に、前記水分散液を混合して紡糸用ビスコース液を調製し、前記紡糸用ビスコース液をノズルより押し出して紡糸し、凝固再生することを特徴とする。 The method for producing the photothermal-convertible regenerated cellulose fiber of the present invention is a method for producing the photothermal-convertible regenerated cellulose fiber, wherein the BET specific surface area is in the range of 5 to 120 m 2 / g, and the powder resistance is 30 Ωcm. An aqueous dispersion of light-to-heat convertible particles is prepared, and the viscose stock solution containing cellulose is mixed with the aqueous dispersion to prepare a spinning viscose liquid, and the spinning viscose liquid is extruded from a nozzle. It is characterized by spinning and coagulating.

本発明の繊維構造物は、前記の光熱変換性再生セルロース繊維を含むものである。   The fiber structure of the present invention contains the above-mentioned photothermal conversion regenerated cellulose fiber.

本発明は、再生セルロース繊維に所定のBET比表面積及び粉体抵抗を満たす光熱変換性粒子を分散状態で存在させることにより、即効性のある高い光熱変換機能を有する再生セルロース繊維を提供できる。また、本発明は、制電特性が良好であり、色調、風合いなどの特性は通常のレーヨン繊維と大差のない光熱変換性再生セルロース繊維を提供できる。とくに太陽光(なかでも近赤外線)によって速効で暖かくなる繊維を提供できる。太陽光によって暖かくなる繊維は、下着、中着、外着、マフラー、ストール、帽子、耳掛け、手袋等の衣類製品、壁紙、障子紙、カーペット、カーテン等のインテリア製品、毛布、布団カバー、シーツ、枕カバー等の寝具等に有用である。   INDUSTRIAL APPLICABILITY The present invention can provide a regenerated cellulose fiber having an immediate effect and a high photothermal conversion function by allowing the regenerated cellulose fiber to have photothermal conversion particles satisfying a predetermined BET specific surface area and powder resistance in a dispersed state. In addition, the present invention can provide a light-heat-convertible regenerated cellulose fiber that has good antistatic properties and has characteristics such as color tone and texture that are not significantly different from ordinary rayon fibers. In particular, it is possible to provide fibers that become warm and warm by sunlight (especially near infrared rays). Fibers warmed by sunlight are underwear, innerwear, outerwear, mufflers, stalls, hats, ear hooks, gloves, and other clothing products, wallpaper, shoji paper, carpets, curtains, and other interior products, blankets, duvet covers, sheets It is useful for bedding such as pillow covers.

本発明の製造方法は、所定のBET比表面積及び粉体抵抗を満たす光熱変換性粒子の水分散液を調製し、セルロースを含むビスコース原液に、前記水分散液を混合して紡糸用ビスコース液を調製し、前記紡糸用ビスコース液をノズルより押し出して紡糸し、凝固再生することにより、光熱変換性粒子を微分散した状態で再生セルロース繊維に存在させることができる。これにより、即効性のある高い光熱変換機能を有する再生セルロース繊維を提供できる。また、色調も良好で、制電特性も良好である光熱変換性再生セルロース繊維を提供できる。   The production method of the present invention comprises preparing an aqueous dispersion of photothermal conversion particles satisfying a predetermined BET specific surface area and powder resistance, mixing the aqueous dispersion with a viscose stock solution containing cellulose, and spinning viscose. A liquid is prepared, and the spinning viscose liquid is extruded from a nozzle, spun, and coagulated and regenerated, whereby the photothermal conversion particles can be present in the regenerated cellulose fiber in a finely dispersed state. Thereby, the regenerated cellulose fiber which has a high photothermal conversion function with an immediate effect can be provided. Further, it is possible to provide a photothermal-convertible regenerated cellulose fiber having a good color tone and good antistatic properties.

本発明の繊維構造物は、再生セルロース繊維自体の肌に優しい性能に加えて、太陽光線を受けて発熱する機能により直ぐさま暖かくなる性能を付与できる。   The fiber structure of the present invention can be given the performance of warming up immediately due to the function of generating heat by receiving sunlight, in addition to the performance of the regenerated cellulose fiber itself on the skin.

図1は本発明の一実施例における光熱変換性レーヨン繊維の断面を示す透過光学顕微鏡写真(倍率640倍)である。FIG. 1 is a transmission optical micrograph (magnification 640 times) showing a cross section of a photothermal conversion rayon fiber in one example of the present invention. 図2は本発明の一実施例における蓄熱性試験方法を示す説明図である。FIG. 2 is an explanatory view showing a heat storage test method in one embodiment of the present invention. 図3は本発明の実施例9の実験1における蓄熱性試験の結果を示す温度変化グラフである。FIG. 3 is a temperature change graph showing the results of the heat storage property test in Experiment 1 of Example 9 of the present invention. 図4は本発明の実施例9の実験2における蓄熱性試験の結果を示す温度変化グラフである。FIG. 4 is a temperature change graph showing the results of the heat storage property test in Experiment 2 of Example 9 of the present invention. 図5は本発明の実施例9の実験3における蓄熱性試験の結果を示す温度変化グラフである。FIG. 5 is a temperature change graph showing the results of the heat storage property test in Experiment 3 of Example 9 of the present invention. 図6は本発明の実施例9の実験4における蓄熱性試験の結果を示す温度変化グラフである。FIG. 6 is a temperature change graph showing the results of the heat storage property test in Experiment 4 of Example 9 of the present invention. 図7は本発明の実施例9の実験5における蓄熱性試験の結果を示す温度変化グラフである。FIG. 7 is a temperature change graph showing the results of the heat storage property test in Experiment 5 of Example 9 of the present invention. 図8は本発明の実施例9の実験6における蓄熱性試験の結果を示す温度変化グラフである。FIG. 8 is a temperature change graph showing the results of the heat storage property test in Experiment 6 of Example 9 of the present invention. 図9は本発明の実施例1(繊維A)、実施例3(繊維C)、及び比較例1(繊維E)における近赤外線吸収率の結果を示すグラフである。FIG. 9 is a graph showing the results of near-infrared absorptance in Example 1 (Fiber A), Example 3 (Fiber C), and Comparative Example 1 (Fiber E) of the present invention. 図10は本発明の実施例1(繊維A)、実施例5(繊維G)、実施例6(繊維H)、及び比較例1(繊維E)の蓄熱性試験の結果を示す温度変化グラフである。FIG. 10 is a temperature change graph showing the results of the heat storage test of Example 1 (Fiber A), Example 5 (Fiber G), Example 6 (Fiber H), and Comparative Example 1 (Fiber E) of the present invention. is there. 図11は本発明の実施例1(繊維A)、実施例2(繊維B)、実施例7(繊維I)、比較例1(繊維E)、及び比較例3(繊維K)の蓄熱性試験の結果を示す温度変化グラフである。FIG. 11 shows the heat storage test of Example 1 (Fiber A), Example 2 (Fiber B), Example 7 (Fiber I), Comparative Example 1 (Fiber E), and Comparative Example 3 (Fiber K) of the present invention. It is a temperature change graph which shows the result of. 図12は本発明の実施例1(繊維A)、実施例8(繊維J)、比較例1(繊維E)、及び比較例4(繊維L)の蓄熱性試験の結果を示す温度変化グラフである。FIG. 12 is a temperature change graph showing the results of thermal storage tests of Example 1 (Fiber A), Example 8 (Fiber J), Comparative Example 1 (Fiber E), and Comparative Example 4 (Fiber L) of the present invention. is there. 図13は本発明の一実施例における光熱変換性レーヨン繊維の側面を示す透過光学顕微鏡写真(倍率320倍)である。FIG. 13 is a transmission optical micrograph (magnification 320 times) showing the side surface of the photothermal conversion rayon fiber in one example of the present invention. 図14は本発明の他の一実施例における光熱変換性レーヨン繊維の側面を示す透過光学顕微鏡写真(倍率320倍)である。FIG. 14 is a transmission optical micrograph (magnification 320 times) showing a side surface of the photothermal conversion rayon fiber in another embodiment of the present invention.

本発明は、再生セルロース繊維内に所定の熱線吸収能を有する光熱変換性粒子を含む。近赤外線の波長(780〜2100nm)をセルロース繊維中に練り込まれた光熱変換性粒子が吸収することで、セルロース分子内で粒子が振動することにより、熱を持ち、発熱効果が得られる。このようにするには、例えば、前記粒子の水分散液を、セルロースを含むビスコース原液に混合して紡糸用ビスコース液とし、この紡糸用ビスコース液をノズルより押し出して湿式紡糸することにより得ることができる。これにより前記粒子は、水分散液中で微分散された状態のままか、それに近い状態で繊維内に存在する。繊維へ練り込まれた光熱変換性粒子は、繊維内部にほぼ均等に分散しており、繊維側面からでも光学顕微鏡などを使えば確認できる。   This invention contains the photothermal conversion particle | grains which have a predetermined heat ray absorption ability in a regenerated cellulose fiber. Absorption of near-infrared wavelengths (780-2100 nm) by the photothermal conversion particles kneaded into the cellulose fibers causes the particles to vibrate within the cellulose molecules, thereby providing heat and an exothermic effect. To do this, for example, the aqueous dispersion of the particles is mixed with a viscose stock solution containing cellulose to obtain a spinning viscose liquid, and this spinning viscose liquid is extruded from a nozzle and wet-spun. Can be obtained. As a result, the particles are present in the fibers in a state of being finely dispersed in the aqueous dispersion or in a state close thereto. The photothermal conversion particles kneaded into the fiber are almost uniformly dispersed inside the fiber, and can be confirmed from the side of the fiber using an optical microscope or the like.

前記光熱変換性粒子は、BET比表面積が5〜120m2/gの範囲内であることが好ましい。この範囲であると、高い熱線吸収性と光熱変換性が得られる。前記BET比表面積は、JIS R 1626で規定されているBET比表面積法に従って測定する。好ましいBET比表面積は、5〜110m2/gの範囲内であり、より好ましくは、20〜100m2/gの範囲内である。さらに好ましい範囲は、70〜90m2/gである。 The photothermal conversion particles preferably have a BET specific surface area in the range of 5 to 120 m 2 / g. High heat ray absorptivity and photothermal conversion property are acquired as it is this range. The BET specific surface area is measured according to the BET specific surface area method defined in JIS R 1626. A preferred BET specific surface area is in the range of 5 to 110 m 2 / g, more preferably in the range of 20 to 100 m 2 / g. A more preferable range is 70 to 90 m 2 / g.

前記光熱変換性再生セルロース繊維内に前記光熱変換性粒子を単独で含有させる場合、前記光熱変換性粒子が1〜15質量%の範囲で存在しているのが好ましく、より好ましくは1.5〜15質量%の範囲であり、さらに好ましくは2〜10質量%の範囲である。この範囲であると、さらに高い熱線吸収性と光熱変換性が得られる。また、再生セルロースであると、合成樹脂と比較して多くの光熱変換性粒子を含有させても、繊維強度の劣化などが低く、セルロースは合成樹脂と比較して水分を多く含むので、この水分により熱を一部溜め込む性質を有していることから、蓄熱性をより効率よく発揮することができる。前記光熱変換性再生セルロース繊維内に前記光熱変換性粒子と後述する他の粒子を併用して含有させる場合、光熱変換性粒子は0.5〜10質量%の範囲で存在しているのが好ましく、より好ましくは1〜8質量%の範囲であり、さらに好ましくは1.5〜5質量%の範囲である。   When the photothermal conversion particles are contained alone in the photothermal conversion regenerated cellulose fiber, the photothermal conversion particles are preferably present in a range of 1 to 15% by mass, more preferably 1.5 to 1.5%. It is the range of 15 mass%, More preferably, it is the range of 2-10 mass%. Within this range, higher heat ray absorbability and photothermal conversion are obtained. In addition, when regenerated cellulose is used, even if more photothermal conversion particles are contained compared to synthetic resin, fiber strength degradation is low, and cellulose contains more moisture than synthetic resin. Therefore, the heat storage property can be exhibited more efficiently. When the photothermal conversion regenerated cellulose fiber contains the photothermal conversion particles and other particles described later in combination, the photothermal conversion particles are preferably present in the range of 0.5 to 10% by mass. More preferably, it is the range of 1-8 mass%, More preferably, it is the range of 1.5-5 mass%.

前記光熱変換性粒子のBET比表面積と、前記光熱変換性粒子の繊維内の含有率の積は、0.5〜3.5の範囲が好ましい。前記の範囲であれば、さらに高い熱線吸収性と光熱変換性が得られる。前記光熱変換性粒子のBET比表面積と繊維内の含有率の積は、繊維内の粒子のトータル比表面積に相当する値である。例えば、前記粒子のBET比表面積が5m2/gであり、繊維内の含有率が10質量%の場合、その積は5×0.1=0.5となる。加えて、一般に繊維内に無機粒子を添加すると色相が低下するが、前記光熱変換性粒子のBET比表面積と繊維内の含有率の積が前記範囲であると、熱線吸収性及び光熱変換性と色相の両方の特性を両立できる。すなわち、比表面積が大きい粒子を用いることにより、光が当たる面積が増加し、高効率で光熱変換することができる一方、粒子の含有量が多いと、繊維の色相が粒子の色相に影響されることから、粒子の比表面積と粒子の含有率の最適化により、熱線吸収性及び光熱変換性と色相の両方の特性を両立できる。 The product of the BET specific surface area of the photothermal conversion particles and the content of the photothermal conversion particles in the fiber is preferably in the range of 0.5 to 3.5. If it is the said range, still higher heat ray absorptivity and photothermal conversion property will be obtained. The product of the BET specific surface area of the photothermal conversion particles and the content in the fiber is a value corresponding to the total specific surface area of the particles in the fiber. For example, when the BET specific surface area of the particles is 5 m 2 / g and the content in the fiber is 10% by mass, the product is 5 × 0.1 = 0.5. In addition, generally, when inorganic particles are added to the fiber, the hue is lowered, but if the product of the BET specific surface area of the photothermal conversion particles and the content in the fiber is within the above range, the heat ray absorbability and the photothermal conversion property Both hue characteristics can be achieved. That is, by using particles with a large specific surface area, the area where light hits can be increased and photothermal conversion can be performed with high efficiency. On the other hand, when the content of particles is large, the hue of the fiber is influenced by the hue of the particles. Therefore, by optimizing the specific surface area of the particles and the content of the particles, it is possible to achieve both the heat ray absorptivity, the photothermal conversion property and the hue.

前記光熱変換性粒子の粉体抵抗は、30Ωcm未満が好ましい。より好ましい粉体抵抗は1〜20Ωcmであり、さらにより好ましくは2〜15Ωcmである。なお、粒子の粉体抵抗は、粉体を9.807MPaで押し付けた圧粉体での電気抵抗値(Ωcm)を求める。粒子の粉体抵抗は、本来は電気の導電性を評価する指標として用いられるが、本発明においては、光から変換された熱の伝導性を表す指標として用いる。また、粉体抵抗が30Ωcm未満を満たすことにより、繊維の制電性も良好となり、冬季の乾燥状態で使用しても静電気の帯電が少なくなり、不快感を減少できる。特に、アクリル繊維やウールなど帯電性の高い素材と併用すると、繊維構造物としたときの保温性が向上し、好ましい。   The powder resistance of the photothermal conversion particles is preferably less than 30 Ωcm. A more preferable powder resistance is 1 to 20 Ωcm, and even more preferably 2 to 15 Ωcm. In addition, the powder resistance of the particles is obtained as an electric resistance value (Ωcm) of a green compact obtained by pressing the powder at 9.807 MPa. The powder resistance of particles is originally used as an index for evaluating electrical conductivity, but in the present invention, it is used as an index representing the conductivity of heat converted from light. In addition, when the powder resistance is less than 30 Ωcm, the antistatic property of the fiber is improved, and even when used in a dry state in winter, static electricity is reduced and uncomfortable feeling can be reduced. In particular, it is preferable to use in combination with a highly charged material such as acrylic fiber or wool, since the heat retention when a fiber structure is obtained is improved.

前記光熱変換性粒子の粒子径については、乾燥粒子で提供される場合、電子顕微鏡写真法により測定される平均一次粒子径(50%粒子径)は、0.005〜0.5μmであることが好ましい。より好ましくは、0.01〜0.3μmである。一方、前記光熱変換性粒子が水分散液で提供される場合、レーザー回折光散乱法で測定される平均二次粒子径(50%粒子径)は、0.05〜0.8μmであることが好ましい。より好ましくは、0.07〜0.4μmである。粒子径がかかる範囲内にあると、光の散乱効果が小さく、高い熱線吸収性と光熱変換性が得られる。   Regarding the particle size of the photothermal conversion particles, when provided as dry particles, the average primary particle size (50% particle size) measured by electron micrograph is 0.005 to 0.5 μm. preferable. More preferably, it is 0.01-0.3 micrometer. On the other hand, when the photothermal conversion particles are provided as an aqueous dispersion, the average secondary particle size (50% particle size) measured by a laser diffraction light scattering method is 0.05 to 0.8 μm. preferable. More preferably, it is 0.07 to 0.4 μm. When the particle diameter is within such a range, the light scattering effect is small, and high heat absorption and photothermal conversion are obtained.

前記光熱変換性粒子は、例えば、下記(1)、下記(2)、炭化ジルコニウム、炭化チタン、及び酸化錫からなる群から選ばれる少なくとも一つの粒子であることが好ましい。これらの中でも、下記(1)及び下記(2)から選ばれる少なくとも一つの粒子であることがより好ましい。
(1)酸化錫にアンチモンをドーピングさせた微粒子(Sn02/Sbドープ)。
(2)酸化チタンにアンチモンドープ酸化錫を被覆した微粒子(Ti02,Sn02/Sbドープ)。
The photothermal conversion particles are preferably at least one particle selected from the group consisting of, for example, the following (1), the following (2), zirconium carbide, titanium carbide, and tin oxide. Among these, at least one particle selected from the following (1) and the following (2) is more preferable.
(1) Fine particles obtained by doping tin oxide with antimony (Sn0 2 / Sb dope).
(2) fine particles coated with antimony-doped tin oxide titanium oxide (Ti0 2, Sn0 2 / Sb-doped).

前記(1)及び(2)粒子の粒子径については、前記(1)粒子(酸化錫にアンチモンがドーピングした微粒子、以下「ATO粒子」ともいう)は、乾燥粒子における平均一次粒子径が0.005〜0.1μmであることが好ましく、より好ましくは0.01〜0.05μmである。また、前記(1)粒子は、水分散液における平均二次粒子径が0.05〜0.5μmであることが好ましく、より好ましくは0.07〜0.2μmである。本発明に用いられるATO粒子は、透明性が高い粒子であり、粉体抵抗が低く導電性が高いので、このような微粒子が、例えば繊維内において1質量%のような少量の含有量(含有率)であっても、十分な熱線吸収性及び光熱変換性が得られる。また、ATO粒子は透明性の高い粒子なので、繊維中での光の反射が少ないので、光の吸収性が高いといえる。好ましいATO粒子の含有量は、単独で含有する場合、対セルロースで(セルロースに対して)1〜15質量%であり、より好ましくは1.5〜15質量%であり、さらに好ましくは2〜10質量%である。後述する他の粒子と併用して混合する場合、ATO粒子は0.5〜10質量%が好ましく、より好ましくは1〜8質量%の範囲であり、さらに好ましくは1.5〜5質量%の範囲である。   Regarding the particle diameters of the particles (1) and (2), the particles (1) (fine particles obtained by doping tin oxide with antimony, hereinafter also referred to as “ATO particles”) have an average primary particle size of 0. It is preferable that it is 005-0.1 micrometer, More preferably, it is 0.01-0.05 micrometer. The (1) particles preferably have an average secondary particle size in an aqueous dispersion of 0.05 to 0.5 μm, more preferably 0.07 to 0.2 μm. The ATO particles used in the present invention are highly transparent particles, and have low powder resistance and high conductivity. Therefore, such a fine particle has a small content (contains, for example, 1% by mass in the fiber). Rate), sufficient heat ray absorptivity and photothermal conversion can be obtained. In addition, since ATO particles are highly transparent particles, light reflection in the fiber is small, and thus it can be said that the light absorption is high. The preferable content of ATO particles, when contained alone, is 1 to 15% by mass with respect to cellulose (relative to cellulose), more preferably 1.5 to 15% by mass, and further preferably 2 to 10%. % By mass. When mixing in combination with other particles to be described later, the ATO particles are preferably 0.5 to 10% by mass, more preferably 1 to 8% by mass, and even more preferably 1.5 to 5% by mass. It is a range.

前記(2)粒子(酸化チタンにアンチモンドープ酸化錫を被覆した微粒子、以下「Ti/ATO粒子」ともいう)は、乾燥粒子における平均一次粒子径が0.01〜0.5μmであることが好ましく、より好ましくは0.02〜0.3μmである。また、前記(2)粒子は、水分散液における平均二次粒子径が0.02〜0.8μmであることが好ましく、より好ましくは0.03〜0.4μmである。本発明に用いられるTi/ATO粒子は、酸化チタンがベース粒子であるため白色調の色調を付与でき、可視光透過性が下げられて透け防止性が高い。好ましいTi/ATO粒子の含有量は、単独で含有する場合、セルロースに対して1〜15質量%であり、より好ましくは1.5〜15質量%であり、さらに好ましくは2〜10質量%である。後述する他の粒子と併用して混合する場合、Ti/ATO粒子は0.5〜10質量%が好ましく、より好ましくは1〜8質量%の範囲であり、さらに好ましくは1.5〜5質量%の範囲である。   The (2) particles (fine particles obtained by coating titanium oxide with antimony-doped tin oxide, hereinafter also referred to as “Ti / ATO particles”) preferably have an average primary particle size of 0.01 to 0.5 μm in dry particles. More preferably, it is 0.02-0.3 micrometer. The (2) particles preferably have an average secondary particle diameter in the aqueous dispersion of 0.02 to 0.8 μm, more preferably 0.03 to 0.4 μm. The Ti / ATO particles used in the present invention can impart a white color tone because titanium oxide is a base particle, and the visible light permeability is lowered and the transparency is high. The content of preferable Ti / ATO particles is 1 to 15% by mass, more preferably 1.5 to 15% by mass, and further preferably 2 to 10% by mass with respect to cellulose, when contained alone. is there. When mixing in combination with other particles to be described later, the Ti / ATO particles are preferably 0.5 to 10% by mass, more preferably 1 to 8% by mass, and even more preferably 1.5 to 5% by mass. % Range.

前記ATO粒子における好ましいBET比表面積の範囲は、光熱変換性及び色相を考慮して50〜120m2/gであり、より好ましくは60〜100m2/gであり、さらに好ましくは70〜90m2/gである。一方、Ti/ATO粒子における好ましいBET比表面積の範囲は、光熱変換性及び色相を考慮して5〜50m2/gであり、より好ましくは6〜40m2/gであり、さらに好ましくは6〜10m2/gである。 The preferred range of BET specific surface area in the ATO particles are 50~120m 2 / g in consideration of the light-to-heat conversion property and hue, more preferably 60~100m 2 / g, more preferably 70~90m 2 / g. On the other hand, the range of preferred BET specific surface area in the Ti / ATO particles is 5 to 50 m 2 / g in consideration of the light-to-heat conversion property and hue, more preferably 6~40m 2 / g, more preferably 6 to 10 m 2 / g.

前記ATO粒子における好ましい粉体抵抗の範囲は、光熱変換性及び制電性を考慮して1〜25Ωcmであり、より好ましくは1〜10Ωcmであり、さらにより好ましくは2〜5Ωcmである。前記Ti/ATO粒子における好ましい粉体抵抗の範囲は、光熱変換性及び制電性を考慮して1〜25Ωcmであり、より好ましくは1〜10Ωcmであり、さらに好ましくは2〜5Ωcmである。   A preferable range of the powder resistance in the ATO particles is 1 to 25 Ωcm, more preferably 1 to 10 Ωcm, and even more preferably 2 to 5 Ωcm in consideration of photothermal conversion and antistatic properties. The range of the preferable powder resistance in the Ti / ATO particles is 1 to 25 Ωcm, more preferably 1 to 10 Ωcm, and further preferably 2 to 5 Ωcm in consideration of photothermal conversion and antistatic properties.

前記光熱変換性再生セルロース繊維は、原綿100質量%の水流交絡不織布(目付60g/m2)にしたときの近赤外線平均透過率が20%以下、近赤外線平均反射率が40%以下、可視光線平均透過率が20%以上であることが好ましい。より好ましくは、近赤外線平均透過率は15%以下、近赤外線平均反射率は35%以下、可視光線平均透過率は30%以上である。 The light-heat-convertible regenerated cellulose fiber has a near-infrared average transmittance of 20% or less, a near-infrared average reflectance of 40% or less, and visible light when formed into a hydroentangled nonwoven fabric (weight per unit: 60 g / m 2 ) of 100% by mass of raw cotton. The average transmittance is preferably 20% or more. More preferably, the near-infrared average transmittance is 15% or less, the near-infrared average reflectance is 35% or less, and the visible light average transmittance is 30% or more.

可視光線は波長380〜780nm、近赤外線は波長780〜2100nmの範囲で示す。可視光線透過率、近赤外線透過率、及び近赤外線反射率は、繊維の光熱変換性(蓄熱性)を示す指標として用いることができる。可視光線透過率が低いと、繊維中の粒子による遮蔽効果により透過が減少する。一方、繊維中に粒子が多くなるので、繊維自体の強度不足につながる恐れがある。近赤外線透過率及び近赤外線反射率は、光が繊維にあたった時に反射、透過、吸収が起こることから、上述した範囲にすることにより、光の吸収割合が高く、ひいては熱変換性が高くなる。   Visible light has a wavelength of 380 to 780 nm, and near infrared light has a wavelength of 780 to 2100 nm. Visible light transmittance, near-infrared transmittance, and near-infrared reflectance can be used as an index indicating the photothermal conversion property (heat storage property) of the fiber. When the visible light transmittance is low, the transmission is reduced by the shielding effect by the particles in the fiber. On the other hand, since the number of particles increases in the fiber, the fiber itself may be insufficient in strength. Near-infrared transmittance and near-infrared reflectance are reflected, transmitted, and absorbed when light strikes the fiber. By setting the above range, the light absorption ratio is high, and the heat conversion property is high. .

前記光熱変換性粒子として、ATO粒子を用いた場合、Ti/ATO粒子を用いた場合に比べ透明性が高い導電性粒子であるため、光の散乱効果を受けないので、再生セルロース繊維中の粒子がより多くの赤外線領域の光線を吸収し、熱に変換しており、長波長側(1500〜2100nmあたり)での吸収率が高い傾向にある。   When the ATO particles are used as the photothermal conversion particles, they are conductive particles having higher transparency than when Ti / ATO particles are used. Absorbs more light in the infrared region and converts it into heat, and tends to have a high absorption rate on the long wavelength side (around 1500 to 2100 nm).

一般に物体の透過率、反射率、吸収率を加えた値は100%になると言われることから、本発明の光熱変換性再生セルロース繊維は、原綿100質量%の水流交絡不織布(目付60g/m2)にしたとき、近赤外線吸収率は、波長1500〜2100nmの範囲で50%以上であることが好ましい。より好ましい近赤外線吸収率は、60%以上である。特に、本発明では所定の平均粒子径及び粉体抵抗を有するATO粒子を用いると、波長が長くなるほど近赤外吸収率が高くなり、好ましい。 Generally, it is said that the value obtained by adding the transmittance, reflectance, and absorptance of an object is 100%. Therefore, the photothermal-convertible regenerated cellulose fiber of the present invention is a hydroentangled nonwoven fabric of 100% by mass of raw cotton (60 g / m 2 basis weight). ), The near infrared absorptance is preferably 50% or more in the wavelength range of 1500 to 2100 nm. A more preferable near-infrared absorptance is 60% or more. In particular, in the present invention, it is preferable to use ATO particles having a predetermined average particle diameter and powder resistance because the near-infrared absorptance increases as the wavelength increases.

本発明の光熱変換性再生セルロース繊維は、前記した光熱変換性粒子以外に、他の粒子を含有しても良い。繊維中に光熱交換性粒子及び他の粒子を併存させることにより、蓄熱性がより向上する傾向にあり、好ましい。繊維中に光熱交換性粒子及び他の粒子が存在する状態では、光熱交換性粒子は発熱体としての役割を果たし、他の粒子が繊維中から熱が放出される(放熱される)のを防止する役割を果たすものと推定される。他の粒子としては、例えば、有機の粒子及び/又は無機の粒子であることが好ましい。有機の粒子としては、例えば、スチレン系樹脂、アクリル系樹脂などの粒子が挙げられる。無機の粒子としては、例えば、酸化チタン、酸化ジルコニウム、ケイ酸ジルコニウムなどの粒子が挙げられる。   The photothermal conversion regenerated cellulose fiber of the present invention may contain other particles in addition to the above-described photothermal conversion particles. It is preferable that the photothermal exchangeable particles and other particles coexist in the fiber because heat storage tends to be further improved. In the state where photothermal exchangeable particles and other particles are present in the fiber, the photothermal exchangeable particle serves as a heating element and prevents other particles from releasing (dissipating heat) from the fiber. It is presumed to play a role. Other particles are preferably organic particles and / or inorganic particles, for example. Examples of the organic particles include particles such as a styrene resin and an acrylic resin. Examples of inorganic particles include particles of titanium oxide, zirconium oxide, zirconium silicate, and the like.

前記光熱変換性再生セルロース繊維が、ビスコース法による再生セルロース繊維の場合、他の粒子は、耐酸及び/又は耐アルカリの粒子であることが好ましい。例えば、pH1以下の強酸及び/又はpH13以上の強アルカリ雰囲気に耐性を有する粒子であることが好ましい。或いは、他の粒子は、ビスコースに溶解するか、又はビスコース中で異物形成しない粒子であることが好ましい。具体的には、他の粒子の耐酸性は、10%硫酸水溶液に約1〜3質量%の粒子を添加し、溶液中の粒子の状態を観察することで確認できる。同様に、他の粒子の耐アルカリ性は、6%水酸化ナトリウム溶液に、約1〜3質量%の粒子を添加し、耐酸性と同様にして確認できる。   When the photothermal-convertible regenerated cellulose fiber is regenerated cellulose fiber by the viscose method, the other particles are preferably acid-resistant and / or alkali-resistant particles. For example, particles having resistance to a strong acid having a pH of 1 or less and / or a strong alkali atmosphere having a pH of 13 or more are preferable. Alternatively, the other particles are preferably particles that dissolve in viscose or do not form foreign matters in the viscose. Specifically, the acid resistance of other particles can be confirmed by adding about 1 to 3% by mass of particles to a 10% aqueous sulfuric acid solution and observing the state of the particles in the solution. Similarly, the alkali resistance of other particles can be confirmed in the same manner as acid resistance by adding about 1 to 3% by mass of particles to a 6% sodium hydroxide solution.

本発明の効果をより高めるには、他の粒子が放熱防止性及び/又は低熱伝導性を有する粒子であることが好ましい。このような粒子が光熱変換性粒子とともに繊維に含まれると、光熱変換性粒子により繊維内部に蓄えられた熱を他の粒子の存在により繊維の外部へ放熱しにくくなると推定される。低熱伝導性の粒子の場合、30W/(m・K)以下の熱伝導率を有する粒子であることが好ましい。   In order to further enhance the effect of the present invention, it is preferable that the other particles are particles having heat dissipation prevention properties and / or low thermal conductivity. If such particles are contained in the fiber together with the photothermal conversion particles, it is presumed that the heat stored inside the fiber by the photothermal conversion particles is difficult to dissipate to the outside of the fiber due to the presence of other particles. In the case of particles having low thermal conductivity, particles having a thermal conductivity of 30 W / (m · K) or less are preferable.

また、本発明の効果をより高めるには、他の粒子は、平均一次粒子径が1μm以下であることが好ましく、より好ましくは平均二次粒子径が1μm以下であり、さらにより好ましくは平均二次粒子径が0.5μm以下である。或いは、他の粒子は、一次粒子径が0.7μm以下の粒子が30%以上であることが好ましく、より好ましくは二次粒子径が0.7μm以下の粒子が30%以上であり、さらにより好ましくは二次粒子径が0.4μm以下の粒子が30%以上である。上記範囲内の粒子径を有する他の粒子が光熱変換性粒子とともに繊維に含まれると、光熱変換性粒子により繊維内部に蓄えられた熱を他の粒子の存在により繊維の外部へ放熱しにくくなると推定される。上記他の粒子の一次粒子径、平均一次粒子径(50%粒子径)は、電子顕微鏡写真法により測定することができる。上記他の粒子の二次粒子径、平均二次粒子径(50%粒子径)は、レーザー回折光散乱法で測定することができる。   In order to further enhance the effect of the present invention, the other particles preferably have an average primary particle size of 1 μm or less, more preferably an average secondary particle size of 1 μm or less, and even more preferably an average secondary particle size. The secondary particle size is 0.5 μm or less. Alternatively, the other particles are preferably 30% or more of particles having a primary particle size of 0.7 μm or less, more preferably 30% or more of particles having a secondary particle size of 0.7 μm or less, and even more. Preferably, particles having a secondary particle diameter of 0.4 μm or less are 30% or more. When other particles having a particle size within the above range are included in the fiber together with the photothermal conversion particles, the heat stored inside the fiber by the photothermal conversion particles is difficult to dissipate to the outside of the fiber due to the presence of the other particles. Presumed. The primary particle size and average primary particle size (50% particle size) of the other particles can be measured by electron micrograph. The secondary particle diameter and average secondary particle diameter (50% particle diameter) of the other particles can be measured by a laser diffraction light scattering method.

また、蓄熱性と繊維強度の両立の観点から、前記光熱変換性再生セルロース繊維内における他の粒子の含有量は0.5〜15質量%が好ましく、1〜10質量%がより好ましく、さらに好ましくは1〜5質量%であり、特に好ましくは1〜3質量%である。   Moreover, from the viewpoint of achieving both heat storage and fiber strength, the content of other particles in the photothermal-convertible regenerated cellulose fiber is preferably 0.5 to 15% by mass, more preferably 1 to 10% by mass, and still more preferably. Is 1 to 5% by mass, particularly preferably 1 to 3% by mass.

光熱変換性粒子と他の粒子を併用する場合、その混合率は、粒子の全体質量に対して、光熱変換性粒子20〜80質量%及び他の粒子20〜80質量%であることが好ましい。より好ましくは、光熱変換性粒子25〜70質量%、他の粒子30〜75質量%である。混合率を上記範囲内とすることにより、光熱変換性機能を繊維に付与しつつ、繊維強度も実用に耐えうるものとなり、しかも他の粒子により光熱変換性粒子を単独で繊維内へ存在させた場合よりも蓄熱効果をより高めることが出来る。   When using a photothermal conversion particle | grain and another particle together, it is preferable that the mixing rate is 20-80 mass% of photothermal conversion particles and 20-80 mass% of other particles with respect to the whole mass of particle | grains. More preferably, it is 25-70 mass% of photothermal conversion particles, and 30-75 mass% of other particles. By making the mixing ratio within the above range, the fiber strength can be withstood practically while imparting the photothermal conversion function to the fiber, and the photothermal conversion particles are present alone in the fiber by other particles. The heat storage effect can be further enhanced than the case.

本発明の光熱変換性再生セルロース繊維は、さらに、紫外線吸収剤等の機能剤を含んでも良い。   The photothermal conversion regenerated cellulose fiber of the present invention may further contain a functional agent such as an ultraviolet absorber.

次に、本発明の光熱変換性再生セルロース繊維の製造方法について説明する。再生セルロースに前記所定のBET比表面積及び粉体抵抗を満たす光熱変換性粒子を含有させる方法として、公知の再生セルロース製造方法を用いることができる。例えば、ビスコースレーヨンであれば、光熱変換性粒子の水分散液を調製し、セルロースを含むビスコース原液に、前記水分散液を混合して紡糸用ビスコース液を調製し、前記紡糸用ビスコース液をノズルより押し出して紡糸し、凝固再生することにより、光熱変換性粒子を微分散した状態で再生セルロース繊維内に存在させることができる。また、光熱変換性粒子と他の粒子を含む水分散液を調製し、セルロースを含むビスコース原液に、前記水分散液を混合して紡糸用ビスコース液を調製し、前記紡糸用ビスコース液をノズルより押し出して紡糸し、凝固再生することにより、光熱変換性粒子及び他の粒子を微分散した状態で再生セルロース繊維内に存在させることができる。   Next, the manufacturing method of the photothermal conversion regenerated cellulose fiber of this invention is demonstrated. A known regenerated cellulose production method can be used as a method for incorporating regenerated cellulose into photothermal conversion particles satisfying the predetermined BET specific surface area and powder resistance. For example, in the case of viscose rayon, an aqueous dispersion of photothermal conversion particles is prepared, and the aqueous dispersion is mixed with a viscose stock solution containing cellulose to prepare a spinning viscose liquid. The coarse liquid is extruded from a nozzle, spun, and coagulated and regenerated, whereby the photothermal conversion particles can be present in the regenerated cellulose fiber in a finely dispersed state. Further, an aqueous dispersion containing photothermal conversion particles and other particles is prepared, and the aqueous dispersion is mixed with a viscose stock solution containing cellulose to prepare a spinning viscose liquid, and the spinning viscose liquid is prepared. Is extruded from a nozzle, spun, and coagulated and regenerated, whereby the photothermal conversion particles and other particles can be present in the regenerated cellulose fiber in a finely dispersed state.

セルロースを含むビスコース原液としては、セルロースが7〜10質量%、水酸化ナトリウムが5〜8質量%、二硫化炭素が2〜3.5質量%のビスコース原液を調製して用いるとよい。このとき、必要に応じて、エチレンジアミン4酢酸(EDTA)、二酸化チタンなどの添加剤を使用することもできる。調製したセルロースを含むビスコース原液に、前記光熱変換性粒子を含む水分散液、或いは光熱変換性粒子と他の粒子を含む水分散液を混合して紡糸用ビスコース液を調製する。紡糸用ビスコース液の温度は19〜23℃に保持するのが好ましい。前記紡糸用ビスコース液において、前記光熱変換性粒子を単独で含む場合、前記光熱変換性粒子の添加量はセルロースに対して1〜15質量%であることが好ましく、1.5〜15質量%であることがより好ましく、2〜10質量%であることがさらに好ましい。前記紡糸用ビスコース液において、前記光熱変換性粒子と他の粒子を併用して含む場合、前記光熱変換性粒子の添加量はセルロースに対して0.5〜10質量%であることが好ましく、1〜8質量%であることがより好ましく、1.5〜5質量%であることがさらに好ましい。また、前記紡糸用ビスコース液において、前記他の粒子の添加量はセルロースに対して0.5〜15質量%であることが好ましく、1〜10質量%であることがより好ましく、1〜5質量%であることがさらに好ましく、1〜3質量%であることが特に好ましい。前記光熱変換性粒子と他の粒子の混合率は、粒子の全体質量に対して、光熱変換性粒子20〜80質量%及び他の粒子20〜80質量%であることが好ましい。より好ましくは、光熱変換性粒子25〜70質量%、他の粒子30〜75質量%である。   As the viscose stock solution containing cellulose, a viscose stock solution containing 7 to 10% by mass of cellulose, 5 to 8% by mass of sodium hydroxide, and 2 to 3.5% by mass of carbon disulfide may be prepared and used. At this time, additives such as ethylenediaminetetraacetic acid (EDTA) and titanium dioxide can be used as necessary. A viscose solution for spinning is prepared by mixing an aqueous dispersion containing the photothermal conversion particles or an aqueous dispersion containing photothermal conversion particles and other particles into the prepared viscose stock solution containing cellulose. The temperature of the spinning viscose liquid is preferably maintained at 19 to 23 ° C. In the spinning viscose liquid, when the photothermal conversion particles are contained alone, the addition amount of the photothermal conversion particles is preferably 1 to 15% by mass with respect to cellulose, and 1.5 to 15% by mass. More preferably, it is 2-10 mass%. In the spinning viscose liquid, when the photothermal conversion particles and other particles are used in combination, the addition amount of the photothermal conversion particles is preferably 0.5 to 10% by mass with respect to cellulose. It is more preferably 1 to 8% by mass, and further preferably 1.5 to 5% by mass. In the spinning viscose liquid, the amount of the other particles added is preferably 0.5 to 15% by mass, more preferably 1 to 10% by mass, and 1 to 5% with respect to cellulose. It is more preferable that it is mass%, and it is especially preferable that it is 1-3 mass%. The mixing ratio of the photothermal conversion particles and other particles is preferably 20 to 80% by mass of the photothermal conversion particles and 20 to 80% by mass of the other particles with respect to the total mass of the particles. More preferably, it is 25-70 mass% of photothermal conversion particles, and 30-75 mass% of other particles.

紡糸浴(ミューラー浴)としては、硫酸を95〜130g/リットル、硫酸亜鉛を10〜17g/リットル、芒硝を290〜370g/リットルを含む紡糸浴を用いることが好ましい。より好ましい硫酸濃度は、100〜120g/リットルである。また、紡糸浴は、温度を45〜60℃とすることが好ましい。紡糸条件として、本発明の再生セルロース繊維(レーヨン繊維)は、通常の円形ノズルを用いて製造することができる。異形ノズルを用いることもできる。紡糸ノズルの選定は、目的とする生産量にもよるが、直径0.05〜0.12mmの円形ノズルを1000〜20000ホール有するものが好ましい。   As the spinning bath (Mueller bath), it is preferable to use a spinning bath containing 95 to 130 g / liter of sulfuric acid, 10 to 17 g / liter of zinc sulfate, and 290 to 370 g / liter of sodium sulfate. A more preferable sulfuric acid concentration is 100 to 120 g / liter. The spinning bath preferably has a temperature of 45 to 60 ° C. As spinning conditions, the regenerated cellulose fiber (rayon fiber) of the present invention can be produced using a normal circular nozzle. A variant nozzle can also be used. The selection of the spinning nozzle depends on the target production amount, but preferably has a circular nozzle having a diameter of 0.05 to 0.12 mm and 1000 to 20000 holes.

前記紡糸ノズルを用いて、上記で得られた紡糸用ビスコース液を紡糸浴中に押し出して紡糸し、凝固再生させる。紡糸速度は35〜70m/分の範囲が好ましい。また、延伸率は39〜50%が好ましい。ここで延伸率とは、延伸前の長さを100%としたとき、延伸後の長さが何%伸びたかを示すものである。倍率で示すと、延伸前が1、延伸後は1.39〜1.50倍となる。   Using the spinning nozzle, the spinning viscose liquid obtained above is extruded into a spinning bath, spun, and coagulated and regenerated. The spinning speed is preferably in the range of 35 to 70 m / min. Further, the stretching ratio is preferably 39 to 50%. Here, the stretch ratio indicates how many percent the stretched length is increased when the stretched length is 100%. In terms of magnification, the ratio is 1 before stretching and 1.39 to 1.50 after stretching.

上記のようにして得られたレーヨン繊維糸条を所定の長さにカットし、精練処理を行う。精練工程は、通常の方法で、熱水処理,水硫化処理、漂白、酸洗い、及び油剤付与の順で行うとよい。   The rayon fiber yarn obtained as described above is cut into a predetermined length and subjected to a scouring treatment. The scouring step is preferably performed in the order of hot water treatment, hydrosulfurization treatment, bleaching, pickling, and oil application.

その後、必要に応じて圧縮ローラーや真空吸引等の方法で余分な油剤、水分を繊維から除去した後、乾燥処理を施して本発明のレーヨン繊維を得ることができる。   Thereafter, if necessary, excess oil agent and moisture are removed from the fiber by a method such as a compression roller or vacuum suction, and then a drying treatment is performed to obtain the rayon fiber of the present invention.

本発明の再生セルロース繊維は、繊度が0.3〜6.0dtexであることが好ましい。より好ましくは0.6〜4.0dtexであり、さらに好ましくは0.9〜3.3dtexである。繊度が0.3dtex未満であると、延伸時に単繊維切れが発生しやすい傾向にある。繊度が6.0dtexを越えると、衣料用途には向かなくなる恐れがある。しかし、カーペット等のインテリア製品用であれば6.0dtexを越える太繊度の繊維でも使用できる。   The regenerated cellulose fiber of the present invention preferably has a fineness of 0.3 to 6.0 dtex. More preferably, it is 0.6-4.0 dtex, More preferably, it is 0.9-3.3 dtex. When the fineness is less than 0.3 dtex, the single fiber tends to be broken during stretching. If the fineness exceeds 6.0 dtex, there is a risk that it will not be suitable for clothing use. However, for interior products such as carpets, fibers having a fineness exceeding 6.0 dtex can be used.

本発明の再生セルロース繊維は、長繊維状(例えば、トウ、フィラメント、不織布等)、短繊維状(例えば、湿式抄紙用原綿、エアレイド不織布用原綿、カード用原綿等)の形態で提供され、繊維構造物を形成することが好ましい。前記繊維構造物としては、例えば、トウ、フィラメント、紡績糸、中綿(詰め綿)、紙、不織布及び織編物等が好ましい。本発明の繊維構造物は、前記再生セルロース繊維内に光熱変換性粒子が含まれているが、風合いは良好である。本発明の繊維構造物において、他の繊維と併用する場合は、前記再生セルロース繊維は繊維構造物全体質量に対して5質量%以上含有させることが好ましい。より好ましくは10質量%以上である。また、他の繊維と併用する場合で衣料など色相を考慮する用途では、前記再生セルロース繊維の含有量は繊維構造物全体質量に対して50質量%以下であることが好ましく、30質量%以下であることがより好ましく、さらに好ましくは20質量%以下である。   The regenerated cellulose fiber of the present invention is provided in the form of long fibers (for example, tow, filament, non-woven fabric, etc.), short fibers (for example, raw cotton for wet papermaking, raw cotton for airlaid non-woven fabric, raw cotton for cards, etc.) It is preferable to form a structure. As the fiber structure, for example, tow, filament, spun yarn, batting (padded cotton), paper, non-woven fabric, and woven / knitted fabric are preferable. In the fiber structure of the present invention, the heat-convertible particles are contained in the regenerated cellulose fiber, but the texture is good. In the fiber structure of the present invention, when used in combination with other fibers, the regenerated cellulose fiber is preferably contained in an amount of 5% by mass or more based on the total mass of the fiber structure. More preferably, it is 10 mass% or more. Moreover, in the use which considers hues, such as clothing, when using together with another fiber, it is preferable that content of the said regenerated cellulose fiber is 50 mass% or less with respect to the whole fiber structure mass, and is 30 mass% or less. More preferably, it is 20% by mass or less.

本発明の繊維構造物として、例えば、紡績糸とした場合、前記再生セルロース繊維単独、又はその他の再生セルロース繊維、コットン、麻、ウール、アクリル、ポリエステル、ポリアミド、ポリオレフィン、ポリウレタン等の他の繊維と混紡、複合することが好ましい。このような紡績糸は、例えば織編物に加工されて衣料等に用いることができる。特に、他の繊維との好ましい組合せとしては、例えば、発熱性衣料では本発明の再生セルロース繊維を50〜5質量%とコットン、麻、ウール、アクリル、ポリエチレンテレフタレート(PET),ポリトリメチレンテレフタレート(PTT)等のポリエステル、ナイロン6等のポリアミド、ポリプロピレン等のポリオレフィン、ポリウレタン等の少なくとも一つの他の繊維と混合して用いることができる。特には、アクリル繊維及び/又はコットン繊維を混合して用いるとよい。   As the fiber structure of the present invention, for example, when a spun yarn is used, the regenerated cellulose fiber alone or other regenerated cellulose fibers, cotton, hemp, wool, acrylic, polyester, polyamide, polyolefin, polyurethane and other fibers It is preferable to blend and combine. Such spun yarn can be processed into a woven or knitted fabric and used for clothing or the like. In particular, as a preferable combination with other fibers, for example, in exothermic clothing, 50 to 5% by mass of the regenerated cellulose fiber of the present invention and cotton, hemp, wool, acrylic, polyethylene terephthalate (PET), polytrimethylene terephthalate ( Polyester such as PTT), polyamide such as nylon 6, polyolefin such as polypropylene, and at least one other fiber such as polyurethane can be used. In particular, acrylic fibers and / or cotton fibers may be mixed and used.

本発明の繊維構造物として、例えば、不織布とした場合、前記再生セルロース繊維単独、又はその他の再生セルロース繊維、コットン、麻、ウール、アクリル、ポリエステル、ポリアミド、ポリオレフィン、ポリウレタン等の他の繊維と混綿して用いることができる。不織布の形態としては、例えば、湿式不織布(湿式抄紙)、エアレイド不織布、水流交絡不織布、ニードルパンチ不織布などが挙げられる。   As the fiber structure of the present invention, for example, in the case of a non-woven fabric, the regenerated cellulose fiber alone or other regenerated cellulose fibers, cotton, hemp, wool, acrylic, polyester, polyamide, polyolefin, polyurethane, and other fibers are mixed. Can be used. Examples of the form of the nonwoven fabric include a wet nonwoven fabric (wet papermaking), an airlaid nonwoven fabric, a hydroentangled nonwoven fabric, and a needle punched nonwoven fabric.

以下、図面を用いて説明する。図1は本発明の一実施例における光熱変換性レーヨン繊維(繊維A)の断面を示す光学顕微鏡写真(倍率640倍)である。図13は、本発明の一実施例における光熱変換性レーヨン繊維(繊維I)側面を示す光学顕微鏡写真(倍率320倍)である。図14は、本発明の一実施例における光熱変換性レーヨン繊維(繊維J)側面を示す光学顕微鏡写真(倍率320倍)である。 図1、図13、図14から光熱変換性粒子はセルロース中にほぼ均一に微分散されていることがわかる。   Hereinafter, it demonstrates using drawing. FIG. 1 is an optical micrograph (magnification 640 times) showing a cross section of a photothermal conversion rayon fiber (fiber A) in one example of the present invention. FIG. 13 is an optical micrograph (magnification 320 times) showing the side surface of the photothermal conversion rayon fiber (fiber I) in one example of the present invention. FIG. 14 is an optical micrograph (magnification 320 times) showing the side surface of the photothermal conversion rayon fiber (fiber J) in one example of the present invention. 1, 13, and 14 show that the photothermal conversion particles are finely dispersed almost uniformly in cellulose.

以下、実施例により本発明をさらに具体的に説明する。本発明は、下記の実施例に限定されるものではない。なお、下記の実施例で添加量を単に%と表記した場合は、質量%を意味する。   Hereinafter, the present invention will be described more specifically with reference to examples. The present invention is not limited to the following examples. In addition, when the addition amount is simply expressed as% in the following examples, it means mass%.

(測定方法)
(1)比表面積
JIS R 1626で規定されているBET比表面積法に従って測定した。
(Measuring method)
(1) Specific surface area It measured according to the BET specific surface area method prescribed | regulated by JISR1626.

(2)平均一次粒子径、平均二次粒子径
水分散液で提供される前記(1)の酸化錫にアンチモンをドープした粒子(ATO粒子)は、レーザー回折光散乱法により、50%粒子径(平均二次粒子径)を測定した。なお、平均二次粒子径の測定には、(株)堀場製作所製のレーザー回折/散乱式粒子分布測定装置「LA−950S2」を使用した。他の粒子の50%粒子径(平均二次粒子径)も同様に測定した。
乾燥粒子で提供される前記(2)の酸化チタンにアンチモンドープ酸化錫を被覆した粒子(Ti/ATO粒子)は、電子顕微鏡写真法により、50%粒子径(平均一次粒子径)を測定した。他の粒子の50%粒子径(平均一次粒子径)も同様に測定した。
(2) Average primary particle size, average secondary particle size Particles (ATO particles) doped with antimony in the tin oxide of (1) provided in the aqueous dispersion are 50% particle size by laser diffraction light scattering method. (Average secondary particle diameter) was measured. For measurement of the average secondary particle diameter, a laser diffraction / scattering particle distribution measuring apparatus “LA-950S2” manufactured by Horiba, Ltd. was used. The 50% particle size (average secondary particle size) of other particles was measured in the same manner.
Particles (Ti / ATO particles) obtained by coating antimony-doped tin oxide on titanium oxide (2) provided as dry particles were measured for 50% particle size (average primary particle size) by electron micrograph. The 50% particle size (average primary particle size) of other particles was measured in the same manner.

(3)粉体抵抗
粉体を9.807MPaで押し付けた圧粉体での電気抵抗値(Ωcm)を測定した。
(3) Powder resistance The electrical resistance value (Ωcm) of the green compact obtained by pressing the powder at 9.807 MPa was measured.

(4)繊維の色相
繊維の白度は、JIS Z 8722にて定義されている拡散照明垂直受光方式に準拠したMINOLTA製「CR310」を用いて、3回の発光し、その際の白度をJIS Z 8729に規定されている「L***表色系」に従って測定した。
ハンター白色度は、L*値、a*値、b*値から計算し、下記式を用いて算出した。
ハンター白色度:W(白色度)=100−√〔(100−L*)+(a*2+b*2)〕
原綿のハンター白色度が80以上のものをA、80未満60以上をB、60未満をCとした。
(4) Hue of the fiber The whiteness of the fiber is measured three times using MINOLTA “CR310” conforming to the diffuse illumination vertical light receiving system defined in JIS Z 8722. The measurement was performed according to “L * a * b * color system” defined in JIS Z 8729.
Hunter whiteness was calculated from the L * value, a * value, and b * value, and was calculated using the following equation.
Hunter whiteness: W (whiteness) = 100-√ [(100-L * ) + (a * 2 + b * 2 )]
Raw cotton hunters with whiteness of 80 or more were designated as A, less than 80 and 60 or more as B, and less than 60 as C.

(5)繊維物性
繊度、乾湿強伸度の測定はJIS L 1015に準じた試験で行った。
(5) Physical properties of fibers The fineness and wet / dry strength were measured by tests according to JIS L 1015.

(6)繊維の元素分析
繊維の元素分析は、ICP発光分析装置(島津製作所製、品名「ICPS−7510」を用いて行った。
(6) Elemental analysis of fiber Elemental analysis of the fiber was performed using an ICP emission analyzer (manufactured by Shimadzu Corporation, product name “ICPS-7510”).

(7)繊維の元素含有量測定
繊維の元素含有量は、蛍光X線分析を用いて測定した。蛍光X線分析は、島津製作所製の蛍光X線分析装置「LAB CENTER XRF−1700」を用いて、FP法による理論計算により測定した。この測定装置の概略と測定条件は、次のとおりであった。
(i)測定装置の概略
測定元素範囲 4Be〜92U
X線管 4kw薄窓,Rhターゲット
分光素子 LiF,PET,Ge,TAP,SX
1次X線フィルタ 4種自動交換(Al,Ti,Ni,Zr)
視野制限絞り 5種自動交換(直径1,3,10,20,30mmφ)
検出器 シンチレーションカウンタ(重元素)、プロポーショナルカウンタ(軽元素 )
(ii)測定条件
管電圧−管電流 40kw−95mA
(iii)測定サンプル
測定サンプルとして、繊維のカットファイバーを用いた。照射面は直径10mmで厚 み数mmに調整し、上方から照射して下方に透過させて測定した。
(7) Element content measurement of fiber The element content of the fiber was measured using fluorescent X-ray analysis. The fluorescent X-ray analysis was measured by theoretical calculation by the FP method using a fluorescent X-ray analyzer “LAB CENTER XRF-1700” manufactured by Shimadzu Corporation. The outline of this measuring apparatus and the measurement conditions were as follows.
(I) Outline of measuring device Measuring element range: 4Be to 92U
X-ray tube 4kw thin window, Rh target Spectrometer LiF, PET, Ge, TAP, SX
Primary X-ray filter 4 types automatic exchange (Al, Ti, Ni, Zr)
Field-restricting diaphragm Five types of automatic replacement (diameter 1, 3, 10, 20, 30mmφ)
Detector Scintillation counter (heavy element), proportional counter (light element)
(Ii) Measurement conditions Tube voltage-tube current 40 kW-95 mA
(Iii) Measurement sample A fiber cut fiber was used as a measurement sample. The irradiation surface was adjusted to have a diameter of 10 mm and a thickness of several mm, irradiated from above and transmitted downward.

(8)蓄熱性試験
蓄熱性は、図2に示す試験装置で測定した。蓄熱性測定サンプルとして所定の目付の不織布サンプルを用い、比較例1(レギュラーレーヨン)を用いた場合との温度差を測定し、下記の基準で評価した。
A 5℃以上
B 2℃以上5℃未満
C 2℃未満
(8) Thermal storage test Thermal storage was measured with the test apparatus shown in FIG. A non-woven fabric sample having a predetermined basis weight was used as a heat storage measurement sample, and the temperature difference from the case of using Comparative Example 1 (regular rayon) was measured and evaluated according to the following criteria.
A 5 ° C or higher B 2 ° C or higher and lower than 5 ° C C lower than 2 ° C

図2は本発明の一実施例における蓄熱性試験方法を示す説明図である。この試験装置は一般財団法人日本化学繊維検査協会に置かれている。発泡スチロール製試料台1の上に平板2とその上に温度計3と、試料4を置き、試料押さえ5で試料を平らに設置した。試料台1の上面からL=50cmの高さの位置の照射ランプ6(岩崎電気社製、商品名「アイランプ」、PRS100V、500W)からスポットライトを照射した。照射時間20分間、放冷時間20分間、試験室の温度20℃±2℃とした。   FIG. 2 is an explanatory view showing a heat storage test method in one embodiment of the present invention. This test equipment is located in the Japan Chemical Fiber Inspection Association. A flat plate 2, a thermometer 3, and a sample 4 were placed on the polystyrene foam sample stage 1, and the sample was placed flat with a sample holder 5. A spotlight was irradiated from an irradiation lamp 6 (manufactured by Iwasaki Electric Co., Ltd., trade name “eye lamp”, PRS100V, 500 W) at a height of L = 50 cm from the upper surface of the sample stage 1. The irradiation time was 20 minutes, the cooling time was 20 minutes, and the test room temperature was 20 ° C. ± 2 ° C.

(9)制電性試験
[摩擦帯電圧]
JIS L 1094−2008に準じた摩擦帯電圧試験(摩擦布:毛、たて)を20℃、40%RHの雰囲気で実施した。測定用サンプルとして、不織布サンプル(目付約100g/m2)を用いた。
摩擦帯電圧試験結果が比較例1(レギュラーレーヨン)に比べて下回ったものを○、レギュラーレーヨンと同じか上回ったものを×とした。
[表面漏えい抵抗]
JIS L 1094−2008の参考法に準じ、印加電圧1000V、20℃、40%RHの雰囲気下で測定した。測定用サンプルとして、不織布サンプル(目付約110g/m2)を用いた。
(9) Antistatic test [friction band voltage]
A friction voltage test (friction cloth: hair, warp) according to JIS L 1094-2008 was performed in an atmosphere of 20 ° C. and 40% RH. A non-woven fabric sample (approx. 100 g / m 2 ) was used as a measurement sample.
A sample in which the frictional voltage test result was lower than that in Comparative Example 1 (regular rayon) was marked with ◯, and a sample with the same or higher value than regular rayon was marked with ×.
[Surface leakage resistance]
According to the reference method of JIS L 1094-2008, the measurement was performed in an atmosphere of an applied voltage of 1000 V, 20 ° C., and 40% RH. A non-woven fabric sample (approx. 110 g / m 2 ) was used as a measurement sample.

(10)光の透過率及び反射率測定
可視光及び近赤外線の平均反射率と平均透過率を測定した。使用機器は日本分光(株)製「V−570型分光高度計 ISN−470型積分球」であり、波長範囲は、可視光線380nm〜780nm、近赤外線780nm〜2100nmとした。測定用サンプルとして、不織布サンプル(目付60g/m2)を用いた。
(10) Light transmittance and reflectance measurement The average reflectance and average transmittance of visible light and near infrared rays were measured. The equipment used was a “V-570 spectral altimeter ISN-470 type integrating sphere” manufactured by JASCO Corporation, and the wavelength ranges were 380 nm to 780 nm for visible light and 780 nm to 2100 nm for near infrared. A non-woven fabric sample (weight per unit area: 60 g / m 2 ) was used as a measurement sample.

(実施例1〜4、比較例1、2)
(1)繊維A
[ビスコース原液条件]
石原産業社製の透明導電性水分散体[製品名「SN−100D」、酸化錫にアンチモンをドーピングさせた微粒子(Sn02/Sbドープ)の水分散体でATO粒子の濃度30質量%]67質量%と、残余は水からなる混合液を卓上型ホモミキサー(プライミクス社製、商品名「T.K.MHOMOMIXER MARKII」)で混合し水分散液を調製した。その水分散液を原料ビスコースへATO粒子の質量がセルロースに対して2質量%となるように添加し、混合機にて攪拌混合を行った。原料ビスコースはセルロース含有量9.0質量%、水酸化ナトリウム含有量5.2質量%、セルロースに対して二硫化炭素32質量%を含むものを用いた。なお、「SN−100D」において、ATO粒子の比表面積は83.9m2/g、平均二次粒子径は0.109μm、粉体抵抗は4.0Ωcmであった。
[紡糸条件]
得られた紡糸用ビスコースを、2浴緊張紡糸法により、紡糸速度50m/分、延伸率44%で紡糸して、繊度1.4dtexの繊維を得た。第1浴(紡糸浴)は、硫酸115g/L、硫酸亜鉛13g/L、硫酸ナトリウム350g/L含むミューラー浴(50℃)を用いた。また、ビスコースを吐出する紡糸口金には、孔径0.06mmのホールを10692個有するノズルを用いた。紡糸中、単糸切れ等の不都合は生じず、混合ビスコースの紡糸性は良好であった。
[精練条件]
このようにして得られたビスコースレーヨンの糸条を、38mmにカットし、精練処理を行った。精練工程は、熱水処理後に水洗を行い、その後圧縮ローラーで余分な水分を繊維から落とした後、水硫化ソーダにて処理し、水洗後、圧縮ローラーで水分を落とした。次いで次亜塩素酸ソーダにて処理後、硫酸にて処理し、水洗、圧縮ローラーにて水分を落とし、油剤処理後、圧縮ローラーにて水分を落とし、乾燥処理(60℃、7時間)を施して、繊維A(実施例1)を得た。繊維Aを分析したところ、ICP(高周波プラズマ)発光分析装置での元素分析によると、Sbが523ppm、Snが3990ppmであり、蛍光X線分析装置での元素含有量測定によると、Sbが0.03質量%、Snが0.29質量%であった。
(Examples 1-4, Comparative Examples 1 and 2)
(1) Fiber A
[Viscose undiluted solution conditions]
Transparent conductive water dispersion manufactured by Ishihara Sangyo Co., Ltd. [Product name “SN-100D”, aqueous dispersion of fine particles of SnO 2 / Sb doped tin oxide (SnO 2 / Sb dope) with an ATO particle concentration of 30% by mass] 67 An aqueous dispersion was prepared by mixing a mixed solution composed of mass% and the balance water with a desktop homomixer (trade name “TKMHOMOMIXER MARKII” manufactured by PRIMIX Co., Ltd.). The aqueous dispersion was added to the raw material viscose so that the mass of ATO particles was 2% by mass with respect to cellulose, and the mixture was stirred and mixed in a mixer. The raw material viscose used contained cellulose content of 9.0% by mass, sodium hydroxide content of 5.2% by mass, and carbon disulfide containing 32% by mass with respect to cellulose. In “SN-100D”, the specific surface area of ATO particles was 83.9 m 2 / g, the average secondary particle diameter was 0.109 μm, and the powder resistance was 4.0 Ωcm.
[Spinning conditions]
The obtained viscose for spinning was spun at a spinning speed of 50 m / min and a draw ratio of 44% by a two-bath tension spinning method to obtain a fiber having a fineness of 1.4 dtex. As the first bath (spinning bath), a Mueller bath (50 ° C.) containing 115 g / L of sulfuric acid, 13 g / L of zinc sulfate, and 350 g / L of sodium sulfate was used. A nozzle having 10692 holes having a hole diameter of 0.06 mm was used as a spinneret for discharging viscose. During spinning, there was no inconvenience such as single yarn breakage, and the spinnability of the mixed viscose was good.
[Scouring conditions]
The viscose rayon yarn thus obtained was cut into 38 mm and subjected to a scouring treatment. In the scouring step, washing with water was performed after the hot water treatment, and then excess moisture was removed from the fibers with a compression roller, followed by treatment with sodium hydrosulfide. After washing with water, the moisture was removed with a compression roller. Next, after treatment with sodium hypochlorite, treatment with sulfuric acid, washing with water, dropping moisture with a compression roller, treating with oil agent, dropping moisture with a compression roller, and drying treatment (60 ° C., 7 hours) Thus, fiber A (Example 1) was obtained. When the fiber A was analyzed, Sb was 523 ppm and Sn was 3990 ppm according to elemental analysis with an ICP (high frequency plasma) emission spectrometer, and Sb was 0.00 according to element content measurement with a fluorescent X-ray analyzer. 03 mass% and Sn were 0.29 mass%.

(2)繊維B
添加液として、石原産業製の透明導電性水分散体「SN−100D」(ATO粒子の濃度30質量%)11.1質量%と、堺化学工業製の酸化チタン(製品名「SA−14」、平均二次粒子径0.3μm)13.3質量%と、残余は水からなる混合液を卓上型ホモミキサー(プライミクス株式会社製「T.K.MHOMOMIXER MARKII」)で混合し水分散液を調製した。その水分散液を原料ビスコースへATO粒子と酸化チタン粒子の合計質量がセルロースに対して10質量%(ATO粒子2質量%、酸化チタン粒子8質量%)となるように添加し、混合機にて攪拌混合を行った。繊度を1.7dtexにした以外は紡糸、精練、乾燥は実施例1と同様に行い、繊維B(実施例2)を得た。
(2) Fiber B
As an additive liquid, transparent conductive water dispersion “SN-100D” manufactured by Ishihara Sangyo Co., Ltd. (a concentration of 30% by mass of ATO particles) 11.1% by mass and titanium oxide manufactured by Sakai Chemical Industry Co., Ltd. (product name “SA-14”) , Average secondary particle size 0.3 μm) 13.3 mass%, and the remaining liquid mixture is mixed with a desktop homomixer (“TK MHOMOMIXER MARKII” manufactured by PRIMIX Corporation) Prepared. The aqueous dispersion is added to the raw material viscose so that the total mass of ATO particles and titanium oxide particles is 10% by mass with respect to cellulose (2% by mass of ATO particles, 8% by mass of titanium oxide particles). The mixture was stirred. Except for the fineness of 1.7 dtex, spinning, scouring, and drying were performed in the same manner as in Example 1 to obtain Fiber B (Example 2).

(3)繊維C
添加液として、石原産業社製の白色導電性酸化チタン[商品名「ET−500W」、酸化チタンにアンチモンドープ酸化錫を被覆した微粒子(Ti02、Sn02/Sbドープ)、Ti/ATO粒子]20質量%と残余は水からなる混合液を卓上型ホモミキサー(プライミクス株式会社製「T.K.MHOMOMIXER MARKII」)で混合し水分散液を調製した。その水分散液を原料ビスコースへTi/ATO粒子の質量がセルロースに対して10質量%となるように添加し、混合機にて攪拌混合を行った。繊度を1.7dtexにした以外は紡糸、精練、乾燥は実施例1と同様に行い、繊維C(実施例3)を得た。なお、「ET−500W」において、Ti/ATO粒子の平均一次粒子径は0.254μm、粉体抵抗は3.5Ωcmであった。
(3) Fiber C
As an additive solution, manufactured by Ishihara Sangyo Kaisha, Ltd. of white conductive titanium oxide [trade name "ET-500 W", particles coated with antimony-doped tin oxide titanium oxide (Ti0 2, Sn0 2 / Sb-doped), Ti / ATO particles] A mixed liquid composed of 20% by mass and the balance water was mixed with a desktop homomixer (“TK MHOMOMIXER MARKII” manufactured by PRIMIX Co., Ltd.) to prepare an aqueous dispersion. The aqueous dispersion was added to the raw material viscose so that the mass of Ti / ATO particles was 10% by mass with respect to cellulose, and the mixture was stirred and mixed with a mixer. Except for changing the fineness to 1.7 dtex, spinning, scouring, and drying were performed in the same manner as in Example 1 to obtain a fiber C (Example 3). In “ET-500W”, the average primary particle diameter of Ti / ATO particles was 0.254 μm, and the powder resistance was 3.5 Ωcm.

(4)繊維D
添加液として、石原産業社製の白色導電性酸化チタン{製品名「ET−300W」、酸化チタンにアンチモンドープ酸化錫を被覆した微粒子(Ti02、Sn02/Sbドープ)、Ti/ATO粒子}20質量%と残余は水からなる混合液を卓上型ホモミキサー(プライミクス株式会社製「T.K.MHOMOMIXER MARKII」)で混合し水分散液を調製した。その水分散液を原料ビスコースへTi/ATO粒子の質量がセルロースに対して10質量%となるように添加し、混合機にて攪拌混合を行った。繊度を1.7dtexにした以外は紡糸、精練、乾燥は実施例1と同様に行い、繊維D(実施例4)を得た。なお、「ET−300W」において、Ti/ATO粒子の平均一次粒子径は0.038μm、粉体抵抗は20Ωcmであった。
(4) Fiber D
As an additive solution, manufactured by Ishihara Sangyo Kaisha, Ltd. of white conductive titanium oxide {trade name "ET-300 W", particles coated with antimony-doped tin oxide titanium oxide (Ti0 2, Sn0 2 / Sb-doped), Ti / ATO particles} A mixed liquid composed of 20% by mass and the balance water was mixed with a desktop homomixer (“TK MHOMOMIXER MARKII” manufactured by PRIMIX Co., Ltd.) to prepare an aqueous dispersion. The aqueous dispersion was added to the raw material viscose so that the mass of Ti / ATO particles was 10% by mass with respect to cellulose, and the mixture was stirred and mixed with a mixer. Except for changing the fineness to 1.7 dtex, spinning, scouring, and drying were performed in the same manner as in Example 1 to obtain a fiber D (Example 4). In “ET-300W”, the average primary particle diameter of Ti / ATO particles was 0.038 μm, and the powder resistance was 20 Ωcm.

(5)繊維E
原液である原料ビスコースになにも添加せずに、紡糸、精練、乾燥まで実施例1と同様に行い、繊維E(比較例1)を得た。
(5) Fiber E
The fiber E (Comparative Example 1) was obtained in the same manner as in Example 1 until spinning, scouring, and drying without adding anything to the raw material viscose.

(6)繊維F
石原産業社製の白色導電性酸化チタン「ET−500W」に替えて表2に示す炭化ジルコニウム(ZrC)の黒色粉末を添加し繊度を1.7dtexにした以外は、実施例3と同様にして、繊維F(比較例2)を得た。
(6) Fiber F
Except for the white conductive titanium oxide “ET-500W” manufactured by Ishihara Sangyo Co., Ltd., the black powder of zirconium carbide (ZrC) shown in Table 2 was added and the fineness was set to 1.7 dtex, in the same manner as in Example 3. Fiber F (Comparative Example 2) was obtained.

(実施例5)
添加液として、石原産業社製の透明導電性水分散体「SN−100D」(ATO粒子の濃度30質量%)67質量%と、残余は水からなる混合液を卓上型ホモミキサー(プライミクス社製、商品名「T.K.MHOMOMIXER MARKII」)で混合し水分散液を調製した。その水分散液を原料ビスコースへATO粒子の質量がセルロースに対して1質量%となるように添加し、混合機にて攪拌混合を行った。紡糸、精練、乾燥は実施例1と同様に行い、繊維Gを得た。
(Example 5)
As an additive liquid, a transparent conductive water dispersion “SN-100D” (concentration of ATO particles: 30% by mass) of 67% by mass made by Ishihara Sangyo Kaisha Ltd. , Trade name “TKMHOMOMIXER MARKII”) to prepare an aqueous dispersion. The aqueous dispersion was added to the raw material viscose so that the mass of ATO particles was 1% by mass with respect to cellulose, and the mixture was stirred and mixed in a mixer. Spinning, scouring, and drying were performed in the same manner as in Example 1 to obtain fiber G.

(実施例6)
添加液として、石原産業社製の透明導電性水分散体「SN−100D」(ATO粒子の濃度30質量%)67質量%と、残余は水からなる混合液を卓上型ホモミキサー(プライミクス社製、商品名「T.K.MHOMOMIXER MARKII」)で混合し水分散液を調製した。その水分散液を原料ビスコースへATO粒子の質量がセルロースに対して5質量%となるように添加し、混合機にて攪拌混合を行った。紡糸、精練、乾燥は実施例1と同様に行い、繊維Hを得た。
(Example 6)
As an additive liquid, a transparent conductive water dispersion “SN-100D” (concentration of ATO particles: 30% by mass) of 67% by mass made by Ishihara Sangyo Kaisha Ltd. , Trade name “TKMHOMOMIXER MARKII”) to prepare an aqueous dispersion. The aqueous dispersion was added to the raw material viscose so that the mass of ATO particles was 5% by mass with respect to cellulose, and the mixture was stirred and mixed with a mixer. Spinning, scouring, and drying were performed in the same manner as in Example 1 to obtain fiber H.

(実施例7)
添加液として、石原産業製の透明導電性水分散体「SN−100D」(ATO粒子の濃度30質量%)28質量%と、堺化学工業製の酸化チタン「SA−14」7.6質量%と、残余は水からなる混合液を卓上型ホモミキサー(プライミクス株式会社製「T.K.MHOMOMIXER MARKII」)で混合し水分散液を調製した。その水分散液を原料ビスコースへATO粒子と酸化チタン粒子の合計質量がセルロースに対して3.8質量%(ATO粒子2質量%、酸化チタン粒子1.8質量%)となるように添加し、混合機にて攪拌混合を行った。紡糸、精練、乾燥は実施例1と同様に行い、繊維Iを得た。
(Example 7)
As an additive liquid, transparent conductive water dispersion “SN-100D” (concentration of ATO particles: 30% by mass) manufactured by Ishihara Sangyo Co., Ltd., and 7.6% by mass of titanium oxide “SA-14” manufactured by Sakai Chemical Industry Co., Ltd. Then, the remaining mixture of water was mixed with a desktop homomixer (“TKMMOMOMIXER MARKII” manufactured by PRIMIX Co., Ltd.) to prepare an aqueous dispersion. The aqueous dispersion was added to the raw material viscose so that the total mass of ATO particles and titanium oxide particles was 3.8% by mass (2% by mass of ATO particles, 1.8% by mass of titanium oxide particles) with respect to cellulose. The mixture was stirred and mixed in a mixer. Spinning, scouring, and drying were performed in the same manner as in Example 1 to obtain Fiber I.

(実施例8)
添加液として、石原産業製の透明導電性水分散体「SN−100D」(ATO粒子の濃度30質量%)28質量%と、ハクスイテック社製のケイ酸ジルコニウム(製品名「ミクロパックスS」、平均一次粒子径0.8μm)7.6質量%と、残余は水からなる混合液を卓上型ホモミキサー(プライミクス株式会社製「T.K.MHOMOMIXER MARKII」)で混合し水分散液を調製した。その水分散液を原料ビスコースへATO粒子とケイ酸ジルコニウム粒子の合計質量がセルロースに対して3.8質量%(ATO粒子2質量%、ケイ酸ジルコニウム粒子1.8質量%)となるように添加し、混合機にて攪拌混合を行った。紡糸、精練、乾燥は実施例1と同様に行い、繊維Jを得た。
(Example 8)
As an additive liquid, transparent conductive water dispersion “SN-100D” manufactured by Ishihara Sangyo Co., Ltd., 28 mass% (concentration of ATO particles 30 mass%), zirconium silicate (product name “Micropax S” manufactured by Hakusui Tech Co., Ltd., average A mixed liquid composed of 7.6% by mass (primary particle size 0.8 μm) and the balance water was mixed with a desktop homomixer (“TK MHOMOMIXER MARKII” manufactured by PRIMIX Co., Ltd.) to prepare an aqueous dispersion. The aqueous dispersion is used as raw material viscose so that the total mass of ATO particles and zirconium silicate particles is 3.8% by mass (2% by mass of ATO particles and 1.8% by mass of zirconium silicate particles) based on cellulose. The mixture was added and stirred and mixed in a mixer. Spinning, scouring, and drying were performed in the same manner as in Example 1 to obtain fiber J.

(比較例3)
添加液として、堺化学工業製の酸化チタン「SA−14」20質量%と残余は水からなる混合液を卓上型ホモミキサー(プライミクス株式会社製「T.K.MHOMOMIXER MARKII」)で混合し水分散液を調製した。その水分散液を原料ビスコースへ酸化
チタン粒子の質量がセルロースに対して1.8質量%となるように添加し、混合機にて攪拌混合を行った。紡糸、精練、乾燥は実施例1と同様に行い、繊維Kを得た。
(Comparative Example 3)
As an additive solution, a mixed solution composed of 20% by mass of titanium oxide “SA-14” manufactured by Sakai Chemical Industry and the balance water is mixed with a desktop homomixer (“TK MHOMOMIXER MARKII” manufactured by Primix Co., Ltd.) to form water. A dispersion was prepared. The aqueous dispersion was added to the raw material viscose so that the mass of the titanium oxide particles was 1.8% by mass with respect to cellulose, and the mixture was stirred and mixed in a mixer. Spinning, scouring, and drying were performed in the same manner as in Example 1 to obtain fiber K.

(比較例4)
添加液として、ハクスイテック社製ケイ酸ジルコニウム「ミクロパックスS」20質量%と残余は水からなる混合液を卓上型ホモミキサー(プライミクス株式会社製「T.K.MHOMOMIXER MARKII」)で混合し水分散液を調製した。その水分散液を原
料ビスコースへケイ酸ジルコニウム粒子の質量がセルロースに対して10質量%となるように添加し、混合機にて攪拌混合を行った。繊度を1.7dtexとしたこと以外は紡糸、精練、乾燥は実施例1と同様に行い、繊維Lを得た。
(Comparative Example 4)
As an additive liquid, a mixed liquid composed of 20% by mass of zirconium silicate “Micropax S” manufactured by Hux Itec Co., Ltd. and the balance water is mixed with a desktop homomixer (“TK MHOMOMIXER MARKII” manufactured by Primix Co., Ltd.) and dispersed in water. A liquid was prepared. The aqueous dispersion was added to the raw material viscose so that the mass of the zirconium silicate particles was 10% by mass with respect to cellulose, and the mixture was stirred and mixed in a mixer. Spinning, scouring, and drying were performed in the same manner as in Example 1 except that the fineness was 1.7 dtex, and a fiber L was obtained.

実施例及び比較例の繊維の物性、色相、元素分析を行い、その結果を下記表2、表3に示した。また、表2及び表3には、各繊維に含まれている光熱変換性粒子、及びその他の粒子の物性も併せて示した。   The physical properties, hue, and elemental analysis of the fibers of Examples and Comparative Examples were performed, and the results are shown in Tables 2 and 3 below. Tables 2 and 3 also show the physical properties of the photothermal conversion particles and other particles contained in each fiber.

<不織布の作製>
アクリル繊維(東レ製「シルウォーム」、繊度1.1dtex、繊維長38mm)65質量%と、上記で得られた繊維A〜F(レーヨン繊維)のいずれを35質量%混綿し、カードウェブを作製した。次に、カードウェブの片面に対して、孔径0.13mmφ、孔ピッチ1mm間隔で配列されたノズルから3MPaの水圧で柱状水流を噴射し、再度同じ面に対して5MPaの水圧で柱状水流を噴射し、裏返して5MPaの水圧で柱状水流を噴射して、下記表1に示す目付の水流交絡不織布(レーヨン繊維35質量%)を作製した。また、上記で得られた繊維A〜E、繊維G〜Lを用い、繊維の構成をレーヨン繊維100質量%とし、不織布の目付を約100g/m2とした以外は、上記と同様の方法で水流交絡不織布(レーヨン繊維100質量%)を作製した。
<Production of non-woven fabric>
A card web is prepared by blending 65% by mass of acrylic fiber (Toray “Sylworm”, fineness 1.1 dtex, fiber length 38 mm) and 35% by mass of any of the fibers A to F (rayon fibers) obtained above. did. Next, a columnar water flow is injected at a water pressure of 3 MPa from a nozzle arranged at a hole diameter of 0.13 mmφ and a hole pitch of 1 mm on one side of the card web, and a columnar water flow is injected again at a water pressure of 5 MPa on the same surface. Then, it was turned over and a columnar water flow was jetted at a water pressure of 5 MPa to produce a hydroentangled nonwoven fabric (35% by mass of rayon fiber) with a basis weight shown in Table 1 below. Moreover, it is the same method as the above except that the fibers A to E and the fibers G to L obtained above are used, the structure of the fibers is 100% by weight of rayon fibers, and the basis weight of the nonwoven fabric is about 100 g / m 2. A hydroentangled nonwoven fabric (rayon fiber 100% by mass) was produced.

得られた水流交絡不織布について、蓄熱性、制電性(摩擦帯電圧、表面漏えい抵抗)、可視光透過率、近赤外線反射率、近赤外線透過率を測定した。結果を下記の表1〜3に示した。なお、下記表1に示した蓄熱性のデータは、レーヨン繊維35質量%の不織布を用いたデータであった。下記表1〜表3において、「−」は、測定していないことを意味する。   The obtained hydroentangled nonwoven fabric was measured for heat storage, antistatic properties (friction band voltage, surface leakage resistance), visible light transmittance, near infrared reflectance, and near infrared transmittance. The results are shown in Tables 1 to 3 below. In addition, the heat storage data shown in Table 1 below was data using a nonwoven fabric containing 35% by weight of rayon fibers. In the following Tables 1 to 3, “-” means not measured.

表1〜3のとおり、本発明の実施例の繊維は、高い光熱変換機能を有し、制電特性は良好であり、色調、風合いなどの特性は通常のレーヨン繊維とほとんど変らない光熱変換性再生セルロース繊維であることが確認できた。   As shown in Tables 1 to 3, the fibers of the examples of the present invention have a high photothermal conversion function, good antistatic properties, and properties such as color tone and texture hardly change from ordinary rayon fibers. It was confirmed that it was a regenerated cellulose fiber.

図1には、実施例1の繊維(繊維A)の断面の光学顕微鏡写真(倍率640倍)を示し、図13及び図14には、それぞれ、実施例7の繊維(繊維I)及び実施例8の繊維(繊維J)の側面の光学顕微鏡写真(倍率320倍)を示した。図1から、光熱変換性粒子がセルロース中にほぼ均一に微分散されていることが確認できた。また、図13及び図14から、光熱変換性粒子と他の粒子がセルロース中にほぼ均一に微分散されていることが確認できた。   1 shows an optical micrograph (magnification 640 times) of a cross section of the fiber (fiber A) of Example 1, and FIGS. 13 and 14 show the fiber (fiber I) and Example of Example 7, respectively. The optical microscope photograph (magnification 320 times) of the side surface of 8 fibers (fiber J) was shown. From FIG. 1, it was confirmed that the photothermal conversion particles were finely dispersed almost uniformly in cellulose. Moreover, from FIG.13 and FIG.14, it has confirmed that the photothermal conversion particle | grains and other particle | grains were disperse | distributed substantially uniformly in the cellulose.

図9に、本発明の実施例1(繊維A)、実施例3(繊維C)、及び比較例1(繊維E)における近赤外線吸収率の結果を示した。図9から分かるように、本発明の実施例の繊維は、近赤外線吸収率がレギュラーレーヨン繊維(比較例1の繊維E)より高かった。   In FIG. 9, the result of the near-infrared absorptance in Example 1 (fiber A), Example 3 (fiber C), and Comparative example 1 (fiber E) of this invention was shown. As can be seen from FIG. 9, the fiber of the example of the present invention had a higher near-infrared absorptance than the regular rayon fiber (fiber E of Comparative Example 1).

図10に、本発明の実施例1(繊維A)、実施例5(繊維G)、実施例6(繊維H)、及び比較例1(繊維E)における蓄熱性試験の結果を示した。表2〜表3、及び図10から分かるように、光熱変換性粒子中の光熱変換性粒子の含有量が大きいほど、温度上昇が高く、蓄熱性に優れていた。なお、図10の蓄熱性試験の結果は、レーヨン繊維100質量%の不織布を用いた結果であった。以下、図11〜図12でも同様に、レーヨン繊維100質量%の不織布を用いた蓄熱性試験の結果を示した。   In FIG. 10, the result of the thermal storage test in Example 1 (fiber A), Example 5 (fiber G), Example 6 (fiber H), and Comparative example 1 (fiber E) of this invention was shown. As can be seen from Tables 2 to 3 and FIG. 10, the higher the content of the photothermal conversion particles in the photothermal conversion particles, the higher the temperature rise and the better the heat storage property. In addition, the result of the thermal storage test of FIG. 10 was a result using the nonwoven fabric of 100 mass% of rayon fibers. Hereinafter, similarly, FIGS. 11 to 12 show the results of a heat storage test using a non-woven fabric of 100% by weight of rayon fiber.

図11に、本発明の実施例1(繊維A)、実施例2(繊維B)、実施例7(繊維I)、比較例1(繊維E)、及び比較例3(繊維K)における蓄熱性試験の結果を示した。図12に、本発明の実施例1(繊維A)、実施例8(繊維J)、比較例1(繊維E)、及び比較例4(繊維L)における蓄熱性試験の結果を示した。表2〜表3、図11〜図12から分かるように、光熱変換性粒子に加えて他の粒子を含むことにより、相乗効果があり、より蓄熱性に優れていた。また、他の粒子として、酸化チタンを用いた方が、より相乗効果に優れることが分かった。   FIG. 11 shows heat storage properties in Example 1 (fiber A), Example 2 (fiber B), Example 7 (fiber I), Comparative example 1 (fiber E), and Comparative example 3 (fiber K) of the present invention. The results of the test are shown. In FIG. 12, the result of the thermal storage test in Example 1 (fiber A), Example 8 (fiber J), Comparative example 1 (fiber E), and Comparative example 4 (fiber L) of this invention was shown. As can be seen from Tables 2 to 3 and FIGS. 11 to 12, the inclusion of other particles in addition to the photothermal conversion particles has a synergistic effect and is more excellent in heat storage. Moreover, it turned out that the direction which uses a titanium oxide as another particle | grain is more excellent in a synergistic effect.

(実施例9)
<実験1>
実施例1の繊維A(レーヨン繊維)35質量%とアクリル繊維(東レ製「シルウォーム」、繊度1.1dtex、繊維長38mm)65質量%を混合し、上述した不織布の作製のとおりに混綿不織布(目付150g/m2)を製造した。比較として本実施例のレーヨン繊維に換えてレギュラーレーヨン繊維(比較例1の繊維E)を使用した混綿不織布を用いて蓄熱機能を評価した。その結果を図3に示した。本実施例品は比較例品に比べて+14.8℃の温度上昇が認められた。
<実験2>
実施例1の繊維A(レーヨン繊維)35質量%と木材パルプ65質量%を混合し、湿式抄造して抄紙品(目付80g/m2)を作成した。比較として本実施例のレーヨン繊維に換えてレギュラーレーヨン繊維(比較例1の繊維E)を使用した抄紙品を用いて蓄熱機能を評価した。その結果を図4に示した。本実施例品は比較例品に比べて+11.4℃の温度上昇が認められた。
<実験3>
実施例1の繊維A(レーヨン繊維)100質量%の不織布(目付100g/m2)を反応性染料で染色してその染色品の蓄熱機能を評価した。その結果を図5に示した。本実施例品は比較例品(繊維E)に比べていずれも有意差のある温度上昇が認められた。
<実験4>
実施例1の繊維A(レーヨン繊維)100質量%の不織布(目付100g/m2)をカチオン染料で染色してその染色品の蓄熱機能を評価した。その結果を図6に示した。本実施例品は比較例品(繊維E)に比べて有意差のある温度上昇が認められた。
<実験5>
実施例1の繊維A(レーヨン繊維)100質量%のレーヨン繊維不織布(目付100g/m2)を漂白処理と洗濯試験して蓄熱機能を評価した。その結果を図7に示した。漂白処理及び洗濯試験しても蓄熱機能は変らなかった。なお、漂白処理はケイ酸ソーダ(1g/L)、苛性ソーダ(1g/L)、過酸化水素水(1g/L)の混合浴(浴比1:30)へ50分間(80〜90℃)の条件で行い、洗濯試験は炭酸ソーダ3%の浴(浴比1:100)へ120分(60℃)の条件で行った。
<実験6>
実施例1の繊維A(レーヨン繊維)の混率を図8に示すように換えた以外は、上述した不織布の作製とおりに混綿不織布(150g/m2)を製造した。比較として本実施例のレーヨン繊維に換えてレギュラーレーヨン繊維(比較例1の繊維E)を使用した混綿不織布を用いて蓄熱機能を評価した。その結果を図8に示した。本実施例品は比較例品に比べて+2.7℃〜+6.3℃の温度上昇が認められた。
Example 9
<Experiment 1>
35% by mass of the fiber A (rayon fiber) of Example 1 and 65% by mass of acrylic fiber (“Sylwarm” manufactured by Toray, fineness 1.1 dtex, fiber length 38 mm) were mixed, and the mixed cotton nonwoven fabric was prepared as described above for the nonwoven fabric. (A basis weight of 150 g / m 2 ) was produced. For comparison, the heat storage function was evaluated using a mixed cotton nonwoven fabric using regular rayon fiber (fiber E of Comparative Example 1) instead of the rayon fiber of this example. The results are shown in FIG. This example product showed a temperature increase of + 14.8 ° C. compared to the comparative example product.
<Experiment 2>
35% by mass of fiber A (rayon fiber) of Example 1 and 65% by mass of wood pulp were mixed and subjected to wet papermaking to prepare a paper product (weight per unit area: 80 g / m 2 ). For comparison, the heat storage function was evaluated using a paper product using regular rayon fiber (fiber E of Comparative Example 1) instead of the rayon fiber of this example. The results are shown in FIG. This example product showed a temperature increase of + 11.4 ° C. compared to the comparative example product.
<Experiment 3>
The nonwoven fabric (100 g / m 2 ) of 100% by mass of the fiber A (rayon fiber) of Example 1 was dyed with a reactive dye, and the heat storage function of the dyed product was evaluated. The results are shown in FIG. As for this Example goods, the temperature rise with a significant difference was recognized compared with the comparative example goods (fiber E).
<Experiment 4>
A non-woven fabric (100 g / m 2 ) of 100% by mass of fiber A (rayon fiber) of Example 1 was dyed with a cationic dye, and the heat storage function of the dyed product was evaluated. The results are shown in FIG. The product of this example was found to have a significant temperature increase compared to the comparative product (Fiber E).
<Experiment 5>
The heat storage function was evaluated by subjecting 100% by mass of rayon fiber nonwoven fabric (fiber weight of 100% / m 2 ) of Example 1 to a bleaching treatment and a washing test. The results are shown in FIG. The heat storage function did not change even after bleaching and washing tests. The bleaching treatment was performed for 50 minutes (80 to 90 ° C.) into a mixed bath (bath ratio 1:30) of sodium silicate (1 g / L), caustic soda (1 g / L), and hydrogen peroxide (1 g / L). The washing test was conducted under a condition of 120 minutes (60 ° C.) into a 3% sodium carbonate bath (bath ratio 1: 100).
<Experiment 6>
A mixed cotton nonwoven fabric (150 g / m 2 ) was produced in the same manner as the nonwoven fabric described above except that the mixing ratio of the fiber A (rayon fiber) in Example 1 was changed as shown in FIG. For comparison, the heat storage function was evaluated using a mixed cotton nonwoven fabric using regular rayon fiber (fiber E of Comparative Example 1) instead of the rayon fiber of this example. The results are shown in FIG. This example product showed a temperature increase of + 2.7 ° C. to + 6.3 ° C. compared to the comparative example product.

以上、実験1〜6の結果から、本発明の光熱変換性レーヨン繊維は、高い蓄熱性を有するとともに、染色性、耐洗濯性について良好な性能が得られることが確認でき、紙、不織布、織編物などの繊維構造物に有用であることが確認できた。   As described above, from the results of Experiments 1 to 6, it can be confirmed that the photothermal conversion rayon fiber of the present invention has high heat storage properties, and good performance can be obtained for dyeability and washing resistance. It was confirmed that it was useful for fiber structures such as knitted fabrics.

本発明の光熱変換性再生セルロース繊維は、例えば、トウ、フィラメント、紡績糸、中綿(詰め綿)、紙、不織布、織編物などの繊維構造物に用いることができる。また、本発明の繊維構造物は、下着、中着、外着、マフラー、ストール、帽子、耳掛け、手袋等の衣類製品、壁紙、障子紙、カーペット、カーテン等のインテリア製品、毛布、布団カバー、シーツ、枕カバー等の寝具等に有用である。   The photothermal conversion regenerated cellulose fiber of the present invention can be used for fiber structures such as tow, filament, spun yarn, batting (padded cotton), paper, nonwoven fabric, woven and knitted fabric. The fiber structure of the present invention includes underwear, innerwear, outerwear, mufflers, stalls, hats, ear hooks, gloves and other clothing products, wallpaper, shoji paper, carpets, curtains and other interior products, blankets, and duvet covers. It is useful for bedding such as sheets and pillow covers.

1 試料台
2 平板
3 温度計
4 試料
5 試料押さえ
6 照射ランプ
1 Sample stand 2 Flat plate 3 Thermometer 4 Sample 5 Sample holder 6 Irradiation lamp

Claims (8)

繊維内に熱線吸収能を有する光熱変換性粒子を含む再生セルロース繊維であって、
前記光熱変換性粒子は、BET比表面積が5〜120m2/gの範囲内であり、粉体抵抗が30Ωcm未満である粒子を分散状態で含むことを特徴とする光熱変換性再生セルロース繊維。
Regenerated cellulose fiber containing photothermal conversion particles having heat ray absorption ability in the fiber,
The photothermal conversion regenerated cellulose fiber, wherein the photothermal conversion particles include particles having a BET specific surface area of 5 to 120 m 2 / g and a powder resistance of less than 30 Ωcm in a dispersed state.
前記光熱変換性再生セルロース繊維内に前記光熱変換性粒子が1〜15質量%の範囲で存在している請求項1に記載の光熱変換性再生セルロース繊維。   The photothermal-convertible regenerated cellulose fiber according to claim 1, wherein the photothermal-convertible regenerated cellulose fiber is present in an amount of 1 to 15% by mass in the photothermal-convertible regenerated cellulose fiber. 前記光熱変換性粒子の比表面積と前記光熱変換性粒子の繊維内の含有率の積が0.5〜3.5の範囲である請求項1又は2に記載の光熱変換性再生セルロース繊維。   The photothermal-convertible regenerated cellulose fiber according to claim 1 or 2, wherein the product of the specific surface area of the photothermal-convertible particle and the content of the photothermal-convertible particle in the fiber is in the range of 0.5 to 3.5. 前記光熱変換性粒子が下記(1)及び(2)から選ばれる少なくとも一つの粒子である請求項1〜3のいずれか1項に記載の光熱変換性再生セルロース繊維。
(1)酸化錫にアンチモンをドーピングさせた微粒子(Sn02/Sbドープ)。
(2)酸化チタンにアンチモンドープ酸化錫を被覆した微粒子(Ti02,Sn02/Sbドープ)。
The photothermal-convertible regenerated cellulose fiber according to any one of claims 1 to 3, wherein the photothermal-convertible particle is at least one particle selected from the following (1) and (2).
(1) Fine particles obtained by doping tin oxide with antimony (Sn0 2 / Sb dope).
(2) fine particles coated with antimony-doped tin oxide titanium oxide (Ti0 2, Sn0 2 / Sb-doped).
前記光熱変換性再生セルロース繊維の原綿100質量%の水流交絡不織布(目付60g/m2)にしたときの近赤外線透過率が20%以下、近赤外線反射率が40%以下、可視光線透過率が20%以上である請求項1〜4のいずれか1項に記載の光熱変換性再生セルロース繊維。 Near-infrared transmittance is 20% or less, near-infrared reflectance is 40% or less, and visible light transmittance is 100% by mass of hydrothermally entangled nonwoven fabric (60 g / m 2 per unit area) of the raw photothermal-convertible cellulose fiber. It is 20% or more, The photothermal conversion regenerated cellulose fiber of any one of Claims 1-4. 前記光熱変換性粒子に加えて、他の粒子を含む請求項1〜5のいずれか1項に記載の光熱変換性再生セルロース繊維。   The photothermal-convertible regenerated cellulose fiber according to any one of claims 1 to 5, comprising other particles in addition to the photothermal-convertible particles. 請求項1〜6のいずれか1項に記載の光熱変換性再生セルロース繊維を含む繊維構造物。   The fiber structure containing the photothermal conversion regenerated cellulose fiber of any one of Claims 1-6. 請求項1〜6のいずれか1項に記載の光熱変換性再生セルロース繊維の製造方法であって、
BET比表面積が5〜120m2/gの範囲内であり、粉体抵抗が30Ωcm未満である光熱変換性粒子の水分散液を調製し、
セルロースを含むビスコース原液に、前記水分散液を混合して紡糸用ビスコース液を調製し、
前記紡糸用ビスコース液をノズルより押し出して紡糸し、凝固再生することを特徴とする光熱変換性再生セルロース繊維の製造方法。
It is a manufacturing method of photothermal conversion regenerated cellulose fiber given in any 1 paragraph of Claims 1-6,
Preparing an aqueous dispersion of photothermal conversion particles having a BET specific surface area in the range of 5 to 120 m 2 / g and a powder resistance of less than 30 Ωcm;
The viscose stock solution containing cellulose is mixed with the aqueous dispersion to prepare a viscose solution for spinning,
A method for producing a photothermal-convertible regenerated cellulose fiber, wherein the spinning viscose liquid is extruded from a nozzle, spun, and coagulated and regenerated.
JP2012276853A 2011-12-22 2012-12-19 Photothermal-convertible regenerated cellulose fiber, method for producing the same, and fiber structure Active JP6180733B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2012276853A JP6180733B2 (en) 2011-12-22 2012-12-19 Photothermal-convertible regenerated cellulose fiber, method for producing the same, and fiber structure

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
JP2011281837 2011-12-22
JP2011281837 2011-12-22
JP2012276853A JP6180733B2 (en) 2011-12-22 2012-12-19 Photothermal-convertible regenerated cellulose fiber, method for producing the same, and fiber structure

Publications (2)

Publication Number Publication Date
JP2013147785A true JP2013147785A (en) 2013-08-01
JP6180733B2 JP6180733B2 (en) 2017-08-16

Family

ID=49045557

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2012276853A Active JP6180733B2 (en) 2011-12-22 2012-12-19 Photothermal-convertible regenerated cellulose fiber, method for producing the same, and fiber structure

Country Status (1)

Country Link
JP (1) JP6180733B2 (en)

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2016111116A1 (en) * 2015-01-06 2016-07-14 株式会社カネカ Arc resistant acrylic fiber, fabric for arc-protective clothing, and arc protective clothing
TWI586860B (en) * 2015-05-26 2017-06-11 台虹科技股份有限公司 Infrared photothermal conversion fiber and infrared photothermal conversion fiber manufacturing method
CN111285704A (en) * 2020-01-19 2020-06-16 陕西科技大学 Cellulose source carbon-based photothermal conversion material for seawater desalination and preparation method thereof
CN113151929A (en) * 2021-04-21 2021-07-23 上海工程技术大学 Zirconium carbide/polyurethane-polypyrrole sheath-core fiber and preparation method and application thereof
CN115341292A (en) * 2022-07-01 2022-11-15 东华大学 Preparation method of photothermal conversion-heat storage temperature-regulating thermal fiber
CN115341297A (en) * 2022-07-01 2022-11-15 东华大学 Preparation method of thermal fiber with photo-thermal conversion function

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP3651179A4 (en) 2017-07-06 2020-07-15 Panasonic Intellectual Property Management Co., Ltd. Magnetron and microwave heating device equipped with same

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH01314716A (en) * 1988-06-10 1989-12-19 Unitika Ltd White fabric having heat insulating property

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH01314716A (en) * 1988-06-10 1989-12-19 Unitika Ltd White fabric having heat insulating property

Cited By (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2016111116A1 (en) * 2015-01-06 2016-07-14 株式会社カネカ Arc resistant acrylic fiber, fabric for arc-protective clothing, and arc protective clothing
CN107109709A (en) * 2015-01-06 2017-08-29 株式会社钟化 Arc resistance acrylic fibers, arc protection take cloth and silk and arc protection clothes
JP2020020087A (en) * 2015-01-06 2020-02-06 株式会社カネカ Fabric for arc-protective clothing and arc-protective clothing
US10577724B2 (en) 2015-01-06 2020-03-03 Kaneka Corporation Arc resistant acrylic fiber, fabric for arc-protective clothing, and arc protective clothing
CN107109709B (en) * 2015-01-06 2021-08-24 株式会社钟化 Arc-resistant acrylic fiber, arc protective clothing fabric, and arc protective clothing
TWI586860B (en) * 2015-05-26 2017-06-11 台虹科技股份有限公司 Infrared photothermal conversion fiber and infrared photothermal conversion fiber manufacturing method
CN111285704A (en) * 2020-01-19 2020-06-16 陕西科技大学 Cellulose source carbon-based photothermal conversion material for seawater desalination and preparation method thereof
CN113151929A (en) * 2021-04-21 2021-07-23 上海工程技术大学 Zirconium carbide/polyurethane-polypyrrole sheath-core fiber and preparation method and application thereof
CN115341292A (en) * 2022-07-01 2022-11-15 东华大学 Preparation method of photothermal conversion-heat storage temperature-regulating thermal fiber
CN115341297A (en) * 2022-07-01 2022-11-15 东华大学 Preparation method of thermal fiber with photo-thermal conversion function
CN115341292B (en) * 2022-07-01 2024-02-27 东华大学 Preparation method of photo-thermal conversion-heat storage temperature regulation thermal insulation fiber
CN115341297B (en) * 2022-07-01 2024-02-27 东华大学 Preparation method of thermal insulation fiber with photo-thermal conversion function

Also Published As

Publication number Publication date
JP6180733B2 (en) 2017-08-16

Similar Documents

Publication Publication Date Title
JP6180733B2 (en) Photothermal-convertible regenerated cellulose fiber, method for producing the same, and fiber structure
CN107109709B (en) Arc-resistant acrylic fiber, arc protective clothing fabric, and arc protective clothing
JP6067977B2 (en) Light-shielding regenerated cellulose fiber, method for producing the same, and fiber structure
WO2017150341A1 (en) Fabric for electric-arc protective clothing, and electric-arc protective clothing
TWI551742B (en) Sheath-core compound fiber, false twist textured yarn composed thereof, method for manufacturing the same, and woven knit fabric including the fiber
JP3883007B2 (en) Boride fine particle-containing fiber and fiber product using the same
KR20050032592A (en) Porous fiber
WO2006008785A1 (en) Fiber containing boride microparticle and textile product therefrom
JP6106487B2 (en) Functional fiber
TW201107550A (en) Ultraviolet protective fabrics based on man-made cellulosic fibres
EP2899302B1 (en) Halogen-containing flame-retardant fibers, method for producing same, and flame-retardant fiber product using same
JP4228856B2 (en) Thermoplastic fibers, fabrics and textile products
JP5319377B2 (en) Thermal storage fabric and non-woven fabric for batting
JP2023168441A (en) Near infrared absorbable fiber, woven fabric, or nonwoven fabric
TWI739033B (en) Moisture-absorptive acrylonitrile fiber, method for producing said fiber, and fiber structure containing said fiber
JP2007303020A (en) Colored fiber structure and method for producing the same
JP2015101815A (en) Functional fiber, and heat retaining woven fabric to be constituted of the fiber
JP2009150008A (en) Long and short composite spun yarn and cloth
JP6355351B2 (en) Synthetic fiber
JP2015148028A (en) Composite bundle spun yarn and fabric including the same
JPH03124841A (en) Synthetic fiber woven fabric and its production
JP2015105444A (en) Functional composite yarn
JP2017214690A (en) Cellulose fiber and method for producing the same, and woven or knitted fabric including fiber
WO2023145820A1 (en) Flameproof rayon fibers, method for producing same, spun yarn using same and knitted fabric
JP2013028868A (en) Long and short composite spun yarn, fabric including the same and method for producing the same

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20151112

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20161028

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20161110

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20170110

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20170309

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20170529

A911 Transfer to examiner for re-examination before appeal (zenchi)

Free format text: JAPANESE INTERMEDIATE CODE: A911

Effective date: 20170606

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20170706

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20170719

R150 Certificate of patent or registration of utility model

Ref document number: 6180733

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313117

S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313531

R360 Written notification for declining of transfer of rights

Free format text: JAPANESE INTERMEDIATE CODE: R360

R360 Written notification for declining of transfer of rights

Free format text: JAPANESE INTERMEDIATE CODE: R360

R371 Transfer withdrawn

Free format text: JAPANESE INTERMEDIATE CODE: R371

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313117

S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313531

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350