JP2013147406A - Method for producing silicon single crystal - Google Patents

Method for producing silicon single crystal Download PDF

Info

Publication number
JP2013147406A
JP2013147406A JP2012011188A JP2012011188A JP2013147406A JP 2013147406 A JP2013147406 A JP 2013147406A JP 2012011188 A JP2012011188 A JP 2012011188A JP 2012011188 A JP2012011188 A JP 2012011188A JP 2013147406 A JP2013147406 A JP 2013147406A
Authority
JP
Japan
Prior art keywords
single crystal
silicon single
pulling machine
raw material
silicon
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2012011188A
Other languages
Japanese (ja)
Inventor
Akihiro Kimura
明浩 木村
Izumi Fusegawa
泉 布施川
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Shin Etsu Handotai Co Ltd
Original Assignee
Shin Etsu Handotai Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Shin Etsu Handotai Co Ltd filed Critical Shin Etsu Handotai Co Ltd
Priority to JP2012011188A priority Critical patent/JP2013147406A/en
Publication of JP2013147406A publication Critical patent/JP2013147406A/en
Pending legal-status Critical Current

Links

Landscapes

  • Crystals, And After-Treatments Of Crystals (AREA)

Abstract

PROBLEM TO BE SOLVED: To provide a method for producing a silicon single crystal, by which the occurrence of dislocations in the silicon single crystal can be suppressed.SOLUTION: A method for producing a silicon single crystal includes melting a raw material charged in a pulling machine into a silicon melt, then bringing a seed crystal into contact with a melt surface of the silicon melt, and growing the silicon single crystal by pulling the seed crystal upward. In the method, after setting components used in a furnace in the pulling machine, the inside of the pulling machine is evacuated before the raw material is charged.

Description

本発明は、引上機を用いたシリコン単結晶の製造方法に関する。   The present invention relates to a method for producing a silicon single crystal using a pulling machine.

チョクラルスキー法(CZ法)ではバッチ終了後に炉内を解体し各部の清掃を行い、チャンバー内壁や主としてカーボン材からなる炉内部品などに付着した粉体や堆積物の除去などを行う。その後改めて炉内部品をセットして、石英ルツボ内に原料を仕込み、シリコン単結晶の製造を再開する。   In the Czochralski method (CZ method), the inside of the furnace is disassembled after the completion of the batch, the respective parts are cleaned, and the powder and deposits adhered to the inner wall of the chamber and in-furnace parts mainly made of carbon are removed. After that, the furnace parts are set again, the raw material is charged into the quartz crucible, and the production of the silicon single crystal is resumed.

特許文献1には、炉の開放時に炉内部品に水分が吸着し、その影響でカーボン部品の消耗が激しくなり、炉の経時変化の影響や、結晶中へのカーボンの混入、溶融シリコンとカーボンが反応し、SiCが生成され、これが成長中の結晶に取込まれて有転位化することが指摘されており、この吸着水分の除去方法について記載されている。具体的には、まずシリコン単結晶を取り出し、その後炉を大気開放し炉内掃除を行い、次の結晶成長に備え原材料を仕込む。その後に炉の組み立てを行い、真空引きを行って、単結晶成長プロセスに移行することが記載されている。即ち、特許文献1では吸着水分を除去するために、原料を仕込んでから真空引きを行う。   In Patent Document 1, moisture is adsorbed to the internal parts of the furnace when the furnace is opened, and the exhaustion of the carbon parts becomes severe due to the influence, the influence of the change with time of the furnace, the mixing of carbon into the crystal, molten silicon and carbon Reacts to produce SiC, which is taken into the growing crystal and converted to dislocation, and a method for removing this adsorbed moisture is described. Specifically, first, a silicon single crystal is taken out, then the furnace is opened to the atmosphere and the inside of the furnace is cleaned, and raw materials are charged for the next crystal growth. It is described that the furnace is then assembled and evacuated to shift to a single crystal growth process. That is, in Patent Document 1, in order to remove adsorbed moisture, vacuuming is performed after raw materials are charged.

特開2009−167073号公報JP 2009-167073 A

しかしながら、引上機に原料を仕込んでから真空引きを行うと、炉内部品の解体清掃時に除去しきれなかった細かな粉体等が引上機内で飛散して石英ルツボ内の原料に入り、これに由来してシリコン単結晶が有転位化してしまう場合があることが分かった。   However, when vacuuming is performed after the raw materials are charged into the puller, fine powder that cannot be removed during the dismantling and cleaning of the in-furnace parts is scattered in the puller and enters the raw material in the quartz crucible. From this, it was found that the silicon single crystal may be dislocated.

本発明は、上記問題に鑑みなされたものであって、炉内部品の解体清掃に起因してシリコン単結晶が有転位化することを抑制できるシリコン単結晶の製造方法を提供することを目的とする。   This invention is made in view of the said problem, Comprising: It aims at providing the manufacturing method of the silicon single crystal which can suppress that a silicon single crystal originates in dislocation | rearrangement resulting from the disassembly cleaning of the in-furnace components. To do.

本発明は、上記課題を解決するためになされたものであって、引上機内に仕込んだ原料を溶融してシリコン融液とし、該シリコン融液の融液面に種結晶を接触させ、該種結晶を上方に引き上げることによりシリコン単結晶を育成するシリコン単結晶の製造方法であって、
前記引上機内に炉内部品をセットした後、前記原料を仕込む前に、前記引上機内を真空引きすることを特徴とするシリコン単結晶の製造方法を提供する。
The present invention has been made in order to solve the above-described problem, and melts a raw material charged in a pulling machine to form a silicon melt, a seed crystal is brought into contact with the melt surface of the silicon melt, A silicon single crystal manufacturing method for growing a silicon single crystal by pulling a seed crystal upward,
Provided is a method for producing a silicon single crystal, characterized in that after the in-furnace parts are set in the pulling machine and before the raw materials are charged, the pulling machine is evacuated.

このように原料を仕込む前に引上機内を真空引きすることにより、引上機の解体清掃時に生じた粉体などを除去することができるため、その後に原料を仕込むことでシリコン単結晶が有転位化することを抑制することができる。   By vacuuming the inside of the pulling machine before charging the raw material in this way, it is possible to remove powder generated during the dismantling cleaning of the pulling machine. Dislocation can be suppressed.

また、前記引上機内を真空引きするとき、加熱しながら真空引きすることが好ましい。   Further, when evacuating the inside of the pulling machine, it is preferable to evacuate while heating.

このように加熱することで、より効果的に粉体などを除去できる。   By heating in this way, powder etc. can be removed more effectively.

さらに、前記引上機内を真空引きするとき、真空到達度を1×10−2hPa以下に真空引きすることが好ましい。 Furthermore, when evacuating the inside of the pulling machine, it is preferable to evacuate the vacuum level to 1 × 10 −2 hPa or less.

このような真空到達度であれば、十分に効率良く粉体などを除去できる。   With such a degree of vacuum, the powder can be removed sufficiently efficiently.

以上説明したように、本発明のシリコン単結晶の製造方法であれば、原料を仕込む前に引上機の真空引きを行うことにより、引上機の解体清掃時に生じた粉体などを除去することができ、その後に原料を仕込むことでシリコン単結晶が有転位化することを抑制することが可能となる。これにより、単結晶の生産性を著しく向上させることができる。   As described above, in the method for producing a silicon single crystal of the present invention, the powder generated during the dismantling cleaning of the puller is removed by evacuating the puller before charging the raw material. It is possible to suppress dislocation of the silicon single crystal by charging the raw material thereafter. Thereby, the productivity of a single crystal can be remarkably improved.

以下、本発明を詳細に説明するが、本発明はこれに限定されるものではない。上述のように、シリコン単結晶が有転位化することを抑制できるシリコン単結晶の製造方法が望まれていた。   Hereinafter, the present invention will be described in detail, but the present invention is not limited thereto. As described above, a method for producing a silicon single crystal that can suppress the dislocation of the silicon single crystal has been desired.

本発明者らは、上記問題を解決するために鋭意検討を行い、解体清掃時に除去し切れなかった細かな粉体等に由来してシリコン単結晶が有転位化してしまうことを回避する方法を見出し、本発明を完成させた。以下、本発明をより詳細に説明する。   The present inventors have intensively studied to solve the above problem, and a method for avoiding dislocation of the silicon single crystal derived from fine powder that could not be removed during disassembly cleaning. The headline and the present invention were completed. Hereinafter, the present invention will be described in more detail.

すなわち、本発明のシリコン単結晶の製造方法は、炉内部品の解体清掃後引上機内に炉内部品をセットした後、石英ルツボ内に原料を仕込む前に、引上機内を真空引きする。このように、解体清掃を終えた後、原料を仕込む前に一度炉を組み立てて真空引きを行うことで、チャンバーや炉内部品などから除去し切れなかった細かな粉体などを除去できる。CZ法ではSiO等の粉体の堆積が大量に発生する。従って、これを清掃しても完全には除去され難い。また、炉内部品は主にカーボン材でできているため、もともとその表面から発塵しやすい。従って、清掃後、炉内部品を引上機内にセットした後、最初の真空引きの時に、大量の粉塵が舞い引上機内を浮遊しながら排気除去される。このとき、従来は同時に原料が引上機内に存在したため、その後の単結晶の引上げにおいて有転位化の原因になったが、本発明では、一旦、炉内部品を引上機内にセットした後真空引きすることで粉塵を除去し、その後に原料を仕込むことで、解体、清掃に起因したシリコン単結晶の有転位化が生じないようにすることができる。   That is, in the method for producing a silicon single crystal according to the present invention, after dismantling and cleaning of the in-furnace parts, the in-furnace parts are set in the pulling machine, and then the inside of the pulling machine is evacuated before charging the raw material into the quartz crucible. As described above, after the dismantling and cleaning are completed, the furnace is once assembled and evacuated before charging the raw materials, so that fine powder that cannot be completely removed from the chamber and in-furnace parts can be removed. In the CZ method, a large amount of powder such as SiO is generated. Therefore, even if this is cleaned, it is difficult to remove it completely. In addition, because the in-furnace parts are mainly made of carbon material, dust is easily generated from the surface. Accordingly, after cleaning, after setting the in-furnace parts in the pulling machine, a large amount of dust is fluttered and removed while floating in the pulling machine at the time of the first vacuuming. At this time, since the raw material was simultaneously present in the pulling machine at the same time, it caused dislocations in the subsequent pulling of the single crystal, but in the present invention, after the furnace parts were once set in the pulling machine, the vacuum By removing the dust by pulling, and then charging the raw material, it is possible to prevent dislocation of the silicon single crystal resulting from disassembly and cleaning.

また、前記引上機内を真空引きするとき、加熱しながら真空引きすることで、より効果的に粉体などを除去できる。この際の加熱は特に制限されないが、原料溶融時の電力に対して100%以下、特に50〜90%程度であることがより好ましい。   Moreover, when evacuating the inside of the said pulling machine, powder etc. can be removed more effectively by evacuating while heating. The heating at this time is not particularly limited, but it is more preferably 100% or less, particularly about 50 to 90% with respect to the electric power at the time of melting the raw material.

さらに、前記引上機内を真空引きするとき、真空到達度を1×10−2hPa以下に真空引きすることが好ましく、真空到達度を1×10−3hPa以下に真空引きすることがより好ましく、真空到達度は低いほど好ましい。これにより、十分に効率良く粉体や水分などを除去できる。 Further, when evacuating the pulling machine, it is preferable to evacuate the vacuum reaching degree below 1 × 10 -2 hPa, it is more preferable to evacuate the vacuum reaching degree below 1 × 10 -3 hPa The lower the vacuum reach, the better. Thereby, powder, moisture, etc. can be removed sufficiently efficiently.

この後、原料を仕込む為に一度炉を大気開放し、直ちに原料を仕込み、再度真空引き等を行いシリコン単結晶成長プロセスに移行すれば、シリコン単結晶を有転位化させることなく、効率良くシリコン単結晶を製造することができる。なお、シリコン単結晶成長プロセスは、一般に行われているいずれの方法によることもでき、引上機内に仕込んだ原料を溶融してシリコン融液とし、該シリコン融液の融液面に種結晶を接触させ、該種結晶を上方に引き上げることによりシリコン単結晶を育成するプロセスであれば特に制限されない。   After that, once the furnace is opened to the atmosphere to charge the raw material, the raw material is immediately charged, and vacuuming is performed again to move to the silicon single crystal growth process. Single crystals can be produced. The silicon single crystal growth process can be performed by any of the generally used methods. The raw material charged in the puller is melted to form a silicon melt, and a seed crystal is formed on the melt surface of the silicon melt. There is no particular limitation as long as it is a process for growing a silicon single crystal by bringing it into contact and pulling the seed crystal upward.

以下、本発明の実施例および比較例を挙げてさらに詳細に説明するが、本発明は下記の実施例に限定されるものではない。   EXAMPLES Hereinafter, although the Example and comparative example of this invention are given and demonstrated further in detail, this invention is not limited to the following Example.

〔実施例1〜4、比較例〕
表1に記す原料仕込み前処理を行った後、多結晶シリコンを仕込んだ。その後、引上機内に仕込んだ多結晶シリコンを溶融してシリコン融液とし、シリコン融液の融液面に種結晶を接触させ、種結晶を上方に引き上げることによりシリコン単結晶を育成した。溶融した多結晶シリコンは400kgであり、直径300mmのシリコン単結晶を製造した。なお、一本引上げる毎に引上機の炉内を解体清掃した。これを10回繰り返し行い、10本のシリコン単結晶を製造した。この時の有転位化回数の合計を表1に記す。
[Examples 1-4, comparative example]
After the raw material preparation pretreatment shown in Table 1, polycrystalline silicon was charged. Thereafter, the polycrystalline silicon charged in the puller was melted to form a silicon melt, a seed crystal was brought into contact with the melt surface of the silicon melt, and the seed crystal was pulled upward to grow a silicon single crystal. The molten polycrystalline silicon was 400 kg, and a silicon single crystal having a diameter of 300 mm was produced. In addition, the inside of the furnace of the lifting machine was dismantled and cleaned each time one was pulled up. This was repeated 10 times to produce 10 silicon single crystals. The total number of dislocations at this time is shown in Table 1.

なお、表1中、実施した処理は○、実施しない処理は×で示す。また、実施例4については原料仕込み前処理の真空引き中に加熱した。   In Table 1, the implemented processing is indicated by ◯, and the processing not performed is indicated by ×. Moreover, about Example 4, it heated during the vacuuming of raw material preparation pre-processing.

Figure 2013147406
Figure 2013147406

実施例1〜3では、加熱は行わずに真空引きのみを原料仕込み前に行った。到達真空度が5×10−1hPaでは、10本の結晶製造中に3回有転位化したものの、1×10−2hPaでの有転位化回数は1回、1×10−3hPaでの有転位化回数は0回と非常に良好であった。 In Examples 1 to 3, heating was not performed, but only evacuation was performed before the raw materials were charged. When the ultimate vacuum was 5 × 10 −1 hPa, the number of dislocations at 1 × 10 −2 hPa was 1 × 1 × 10 −3 hPa, although the number of dislocations was 1 × 10 −2 hPa. The number of dislocations of was very good at 0 times.

実施例4では、加熱を行いながら真空引きを行った。加熱時のヒーターパワーは原料溶融時の電力の80%、到達真空度は1×10−2hPaであった。この時は一度も有転位化することなく10本のシリコン単結晶を得ることができ、非常に高い生産効率であった。 In Example 4, evacuation was performed while heating. The heater power during heating was 80% of the power during melting of the raw material, and the ultimate vacuum was 1 × 10 −2 hPa. At this time, ten silicon single crystals could be obtained without any dislocation, and the production efficiency was very high.

比較例では、事前に加熱も真空引きも行わず、解体清掃後に直ちに原料を仕込み、その後真空引きを行った後に、シリコン単結晶を育成した。この時は10本の結晶を製造する過程で8回も有転位化してしまい、非常に効率が悪かった。   In the comparative example, heating and evacuation were not performed in advance, the raw material was charged immediately after the dismantling cleaning, and after vacuuming, a silicon single crystal was grown. At this time, dislocation occurred 8 times in the process of producing 10 crystals, which was very inefficient.

なお、本発明は、上記実施形態に限定されるものではない。上記実施形態は、例示であり、本発明の特許請求の範囲に記載された技術的思想と実質的に同一な構成を有し、同様な作用効果を奏するものは、いかなるものであっても本発明の技術的範囲に包含される。
The present invention is not limited to the above embodiment. The above-described embodiment is an exemplification, and the present invention has substantially the same configuration as the technical idea described in the claims of the present invention, and any device that exhibits the same function and effect is the present invention. It is included in the technical scope of the invention.

Claims (3)

引上機内に仕込んだ原料を溶融してシリコン融液とし、該シリコン融液の融液面に種結晶を接触させ、該種結晶を上方に引き上げることによりシリコン単結晶を育成するシリコン単結晶の製造方法であって、
前記引上機内に炉内部品をセットした後、前記原料を仕込む前に、前記引上機内を真空引きすることを特徴とするシリコン単結晶の製造方法。
A silicon single crystal for growing a silicon single crystal by melting the raw material charged in the pulling machine into a silicon melt, bringing the seed crystal into contact with the melt surface of the silicon melt, and pulling the seed crystal upward A manufacturing method comprising:
A method for producing a silicon single crystal, wherein after the parts in the furnace are set in the pulling machine, the inside of the pulling machine is evacuated before the raw material is charged.
前記引上機内を真空引きするとき、加熱しながら真空引きすることを特徴とする請求項1に記載のシリコン単結晶の製造方法。   The method for producing a silicon single crystal according to claim 1, wherein when the inside of the pulling machine is evacuated, the evacuation is performed while heating. 前記引上機内を真空引きするとき、真空到達度を1×10−2hPa以下に真空引きすることを特徴とする請求項1又は請求項2に記載のシリコン単結晶の製造方法。


3. The method for producing a silicon single crystal according to claim 1, wherein when the inside of the pulling machine is evacuated, the degree of vacuum is evacuated to 1 × 10 −2 hPa or less.


JP2012011188A 2012-01-23 2012-01-23 Method for producing silicon single crystal Pending JP2013147406A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2012011188A JP2013147406A (en) 2012-01-23 2012-01-23 Method for producing silicon single crystal

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2012011188A JP2013147406A (en) 2012-01-23 2012-01-23 Method for producing silicon single crystal

Publications (1)

Publication Number Publication Date
JP2013147406A true JP2013147406A (en) 2013-08-01

Family

ID=49045303

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2012011188A Pending JP2013147406A (en) 2012-01-23 2012-01-23 Method for producing silicon single crystal

Country Status (1)

Country Link
JP (1) JP2013147406A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2014132561A1 (en) * 2013-02-26 2014-09-04 信越半導体株式会社 Method for producing silicon carbide and silicon carbide
US10000863B2 (en) 2015-02-03 2018-06-19 Sumco Corporation Method for cleaning single crystal pulling apparatus, cleaning tool for use therein, and method for manufacturing single crystal

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH04275994A (en) * 1991-02-26 1992-10-01 Toshiba Corp Production of semiconductor single crystal
JP2009167073A (en) * 2008-01-11 2009-07-30 Union Material Kk Apparatus and method for growing single crystal
JP2011105551A (en) * 2009-11-18 2011-06-02 Mitsubishi Materials Techno Corp Method and apparatus for producing single crystal semiconductor

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH04275994A (en) * 1991-02-26 1992-10-01 Toshiba Corp Production of semiconductor single crystal
JP2009167073A (en) * 2008-01-11 2009-07-30 Union Material Kk Apparatus and method for growing single crystal
JP2011105551A (en) * 2009-11-18 2011-06-02 Mitsubishi Materials Techno Corp Method and apparatus for producing single crystal semiconductor

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2014132561A1 (en) * 2013-02-26 2014-09-04 信越半導体株式会社 Method for producing silicon carbide and silicon carbide
US10000863B2 (en) 2015-02-03 2018-06-19 Sumco Corporation Method for cleaning single crystal pulling apparatus, cleaning tool for use therein, and method for manufacturing single crystal

Similar Documents

Publication Publication Date Title
CN107208306B (en) Method and tool for cleaning single crystal pulling apparatus, and method for producing single crystal
CN102560630A (en) Thermal field capable of allowing synchronous growth of a plurality of crystals with edge-defined film-fed crystal growth technique and method thereof
JP4803784B2 (en) Method for producing quartz glass crucible for pulling silicon single crystal
JP2013147406A (en) Method for producing silicon single crystal
JP5318365B2 (en) Silicon crystal material and method for producing FZ silicon single crystal using the same
JP5741163B2 (en) Quartz glass crucible, method for producing the same, and method for producing silicon single crystal
JP2010280567A (en) Method for producing silica glass crucible
JP6324837B2 (en) Manufacturing method of quartz glass crucible for pulling single crystal silicon
KR101703691B1 (en) Quartz glass crucible, method for producing same, and method for producing monocrystalline silicon
JP2007091532A (en) Silica glass crucible
CN113564711B (en) Method for rapidly growing high-quality silicon carbide
JP5136278B2 (en) Method for producing silicon single crystal
US9499924B2 (en) Method for manufacturing silicon single crystal
KR101409424B1 (en) Method for decreasing defects of silicon-carbide seed
KR101395392B1 (en) Growing Method for Silicon Single Crystal Ingot
JP2008087973A (en) Apparatus for pulling single crystal and method for pulling single crystal
CN101760773B (en) Monocrystal-pulling insulated feeding method and device thereof
WO2013125161A1 (en) Device for producing single crystal and method for producing single crystal
JP2009023851A (en) Method for producing raw material for producing silicon single crystal, and method for producing silicon single crystal
JP5875744B1 (en) Method for producing silicon single crystal
JP5488519B2 (en) Quartz glass crucible, method for producing the same, and method for producing silicon single crystal
JP6515791B2 (en) Method of manufacturing silicon single crystal
CN101671021B (en) High purity silicon production device and preparation method thereof
JP5668717B2 (en) Method for producing silicon single crystal
JP2002274999A (en) Method of manufacturing lec process compound semiconductor single crystal

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20140120

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20140624

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20140701

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20141028