JP2013145769A - Anisotropic rare earth bond magnet and method for manufacturing the same - Google Patents

Anisotropic rare earth bond magnet and method for manufacturing the same Download PDF

Info

Publication number
JP2013145769A
JP2013145769A JP2010175039A JP2010175039A JP2013145769A JP 2013145769 A JP2013145769 A JP 2013145769A JP 2010175039 A JP2010175039 A JP 2010175039A JP 2010175039 A JP2010175039 A JP 2010175039A JP 2013145769 A JP2013145769 A JP 2013145769A
Authority
JP
Japan
Prior art keywords
rare earth
magnet
anisotropic
bonded magnet
molding
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2010175039A
Other languages
Japanese (ja)
Inventor
Hitoshi Yamamoto
日登志 山本
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Kansai Research Institute KRI Inc
Original Assignee
Kansai Research Institute KRI Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kansai Research Institute KRI Inc filed Critical Kansai Research Institute KRI Inc
Priority to JP2010175039A priority Critical patent/JP2013145769A/en
Priority to PCT/JP2011/001857 priority patent/WO2012017574A1/en
Priority to JP2012527533A priority patent/JPWO2012017574A1/en
Publication of JP2013145769A publication Critical patent/JP2013145769A/en
Pending legal-status Critical Current

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/005Ferrous alloys, e.g. steel alloys containing rare earths, i.e. Sc, Y, Lanthanides
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/06Ferrous alloys, e.g. steel alloys containing aluminium
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/08Ferrous alloys, e.g. steel alloys containing nickel
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01FMAGNETS; INDUCTANCES; TRANSFORMERS; SELECTION OF MATERIALS FOR THEIR MAGNETIC PROPERTIES
    • H01F1/00Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties
    • H01F1/01Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials
    • H01F1/03Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity
    • H01F1/032Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity of hard-magnetic materials
    • H01F1/04Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity of hard-magnetic materials metals or alloys
    • H01F1/047Alloys characterised by their composition
    • H01F1/053Alloys characterised by their composition containing rare earth metals
    • H01F1/055Alloys characterised by their composition containing rare earth metals and magnetic transition metals, e.g. SmCo5
    • H01F1/0555Alloys characterised by their composition containing rare earth metals and magnetic transition metals, e.g. SmCo5 pressed, sintered or bonded together
    • H01F1/0558Alloys characterised by their composition containing rare earth metals and magnetic transition metals, e.g. SmCo5 pressed, sintered or bonded together bonded together
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01FMAGNETS; INDUCTANCES; TRANSFORMERS; SELECTION OF MATERIALS FOR THEIR MAGNETIC PROPERTIES
    • H01F1/00Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties
    • H01F1/01Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials
    • H01F1/03Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity
    • H01F1/032Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity of hard-magnetic materials
    • H01F1/04Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity of hard-magnetic materials metals or alloys
    • H01F1/047Alloys characterised by their composition
    • H01F1/053Alloys characterised by their composition containing rare earth metals
    • H01F1/055Alloys characterised by their composition containing rare earth metals and magnetic transition metals, e.g. SmCo5
    • H01F1/057Alloys characterised by their composition containing rare earth metals and magnetic transition metals, e.g. SmCo5 and IIIa elements, e.g. Nd2Fe14B
    • H01F1/0571Alloys characterised by their composition containing rare earth metals and magnetic transition metals, e.g. SmCo5 and IIIa elements, e.g. Nd2Fe14B in the form of particles, e.g. rapid quenched powders or ribbon flakes
    • H01F1/0575Alloys characterised by their composition containing rare earth metals and magnetic transition metals, e.g. SmCo5 and IIIa elements, e.g. Nd2Fe14B in the form of particles, e.g. rapid quenched powders or ribbon flakes pressed, sintered or bonded together
    • H01F1/0578Alloys characterised by their composition containing rare earth metals and magnetic transition metals, e.g. SmCo5 and IIIa elements, e.g. Nd2Fe14B in the form of particles, e.g. rapid quenched powders or ribbon flakes pressed, sintered or bonded together bonded together
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01FMAGNETS; INDUCTANCES; TRANSFORMERS; SELECTION OF MATERIALS FOR THEIR MAGNETIC PROPERTIES
    • H01F41/00Apparatus or processes specially adapted for manufacturing or assembling magnets, inductances or transformers; Apparatus or processes specially adapted for manufacturing materials characterised by their magnetic properties
    • H01F41/02Apparatus or processes specially adapted for manufacturing or assembling magnets, inductances or transformers; Apparatus or processes specially adapted for manufacturing materials characterised by their magnetic properties for manufacturing cores, coils, or magnets
    • H01F41/0253Apparatus or processes specially adapted for manufacturing or assembling magnets, inductances or transformers; Apparatus or processes specially adapted for manufacturing materials characterised by their magnetic properties for manufacturing cores, coils, or magnets for manufacturing permanent magnets
    • H01F41/0273Imparting anisotropy
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22FWORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
    • B22F2998/00Supplementary information concerning processes or compositions relating to powder metallurgy
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22FWORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
    • B22F2998/00Supplementary information concerning processes or compositions relating to powder metallurgy
    • B22F2998/10Processes characterised by the sequence of their steps
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22FWORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
    • B22F2999/00Aspects linked to processes or compositions used in powder metallurgy
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C2202/00Physical properties
    • C22C2202/02Magnetic

Abstract

PROBLEM TO BE SOLVED: To provide an anisotropic bond magnet provided with high magnetic characteristics, temperature characteristics and corrosion resistance by recycling municipal scraps of rare earth sintered magnets at low cost.SOLUTION: A method for manufacturing an anisotropic rare earth bond magnet includes the steps of: mechanically pulverizing rare earth magnets in an inert atmosphere; performing annealing treatment for eliminating strains to the pulverized material at a temperature from 400°C to 600°C during a retention time of 12 hours or more in a high vacuum or inert atmosphere; and kneading a binder and the material having been subjected to the annealing treatment for eliminating strains to be subjected to magnetic field molding. The method eliminates separation/purification of Sm and Nd, peeling of a magnet surface processing coating such as Ni plating, and removal of an adhesive.

Description

本発明は、回収された希土類異方性焼結磁石から製造した異方性希土類ボンド磁石およびその製造方法に関する。   The present invention relates to an anisotropic rare earth bonded magnet manufactured from a recovered rare earth anisotropic sintered magnet and a method for manufacturing the same.

希土類焼結磁石は省エネ、機器の小型軽量化、高性能化のニーズを背景に家電、パソコン、デジカメ、携帯電話、事務機のOA,モータ等のFA機器、最近ではCO温暖化問題によりハイブリッド自動車、電気自動車等の用途も加わり、これら需要は益々拡大する勢いでありその消費量も年々増大している。
希土類焼結磁石に含まれる希土類は日本には殆ど無く、中国、米国、オーストラリアから輸入100%輸入に依存し、その95%以上は中国である。近年長期的な希土類(以下適宜「RE」と記載する。)資源の供給が懸念されており、希土類資源問題は日本の先端技術を維持するために極めて重要な課題である。
Rare earth sintered magnets are used for home appliances, personal computers, digital cameras, mobile phones, office equipment OA, motors, and other FA equipment, and recently hybrids due to CO 2 warming issues, against the backdrop of energy saving, downsizing and weight reduction, and high performance With the addition of applications such as automobiles and electric cars, these demands are growing more and more and their consumption is increasing year by year.
Rare earths contained in rare earth sintered magnets are rare in Japan, relying on 100% imports from China, the United States and Australia, more than 95% of which are China. In recent years, there has been concern about the supply of long-term rare earth (hereinafter referred to as “RE” as appropriate) resources, and the rare earth resource problem is an extremely important issue for maintaining Japan's advanced technology.

上述のように今後廃棄される希土類焼結磁石スクラップ量が増加することが予測され、これら希少資源である希土類元素が相当量含まれるため、その回収と再利用技術が求められている。 As described above, it is predicted that the amount of rare earth sintered magnet scrap to be discarded in the future will increase, and since these rare resources, which are rare resources, are included in a considerable amount, there is a need for recovery and reuse technology.

希土類磁石屑は再度溶解し合金化して磁石合金を得る提案が多くなされている(例えば、特許文献1)。これらは再度磁石製品を製造する為に再溶解、合金化のみならず、さらに粉砕、成型、燒結、熱処理の磁石工程が必要であり、現状RE原料新規購入の方がコストメリットが高い。また磁石屑を各希土類に分離した後還元する工程(特許文献2)や脱炭素処理とCa還元工程を取る方法(特許文献3),脱炭素、還元、洗浄工程が必要である(特許文献4)。また工場廃液コストが高く、環境対策上も問題が大きい。あるいはまたこれら回収工程リサイクル時に不純物であるメッキ除去の方法(特許文献5)や接着剤除去(特許文献6)も必要でありいまだ実用化されていない。 Many proposals have been made to obtain a magnet alloy by remelting and alloying rare earth magnet scraps (for example, Patent Document 1). These require not only remelting and alloying in order to produce a magnet product again, but also a magnet process of crushing, molding, sintering, and heat treatment, and the purchase of RE raw materials is more cost-effective. Moreover, the process (patent document 2) which reduces | reduces after separating magnet scraps into each rare earth, the method (patent document 3) which takes a decarbonization process and a Ca reduction | restoration process, decarbonization, a reduction | restoration, and a washing | cleaning process are required (patent document 4) ). In addition, the cost of waste liquid from the factory is high, and there are significant problems in terms of environmental measures. Alternatively, a plating removal method (Patent Document 5) and an adhesive removal (Patent Document 6) which are impurities at the time of recycling these recovery processes are necessary and not yet put into practical use.

以上の背景の下で希土類磁石市中屑を有効活用して従来以上の高い磁気特性、温度特性、耐食性を具備する異方性ボンド磁石を提供することにある。 In view of the above background, an object of the present invention is to provide an anisotropic bonded magnet having high magnetic characteristics, temperature characteristics, and corrosion resistance, which is higher than before, by effectively utilizing rare earth magnets.

特開2003―113429JP 2003-113429 A 特開2002―60855JP2002-60855 特開2004―91811JP 2004-91811 A 特開2005―57191JP 2005-57191 A 特開2001―40425JP2001-40425 特開2003―176459JP2003-176659

上記したように、現状希土類燒結磁石市中屑を低コストかつ有効にリサイクルする方法が見つかっていない。本発明は希土類焼結磁石をリサイクルした新規な異方性希土類ボンド磁石とその製造方法を提案するものである。 As described above, no method has been found to efficiently recycle the rare earth sintered magnet city scrap at low cost. The present invention proposes a novel anisotropic rare earth bonded magnet obtained by recycling a rare earth sintered magnet and a method for producing the same.

以上の背景の下で希土類焼結磁石市中屑を有効活用して従来以上の高い磁気特性、温度特性、耐食性を具備する異方性ボンド磁石を提供することにある。 In view of the above background, an object of the present invention is to provide an anisotropic bonded magnet having high magnetic characteristics, temperature characteristics, and corrosion resistance, which is higher than before, by effectively utilizing rare earth sintered magnet scraps.

本発明は、高性能な異方性希土類ボンド磁石を提供することを目的として、従来の希土類磁石材料のリサイクル工程を全く用いず、酸等廃液処理問題も全く無く、またSm、Ndの分離精製工程も不要、Niメッキ等の磁石表面処理皮膜の剥離も不要、接着剤除去も不要なる磁気特性としては市販のNd燒結磁石よりも劣るが、省エネ、省資源で環境に優しい市販の等方性ボンド磁石よりも優れた新規な異方性希土類ボンド磁石およびその製造方法を提供するものであり、以下のような特徴を有する。 The present invention aims to provide a high performance anisotropic rare earth bonded magnet, does not use any conventional recycling process of rare earth magnet materials, has no problem of waste liquid treatment such as acid, and separates and refines Sm and Nd. No need for process, no need for peeling of surface treatment film such as Ni plating, no need to remove adhesive, but magnetic properties are inferior to those of commercially available Nd sintered magnets. The present invention provides a novel anisotropic rare earth bonded magnet superior to a bonded magnet and a method for producing the same, and has the following characteristics.

〔1〕回収された希土類異方性焼結磁石から製造した異方性希土類ボンド磁石であって、
鉄(Fe)以外の成分として、少なくともネオジム(Nd)を3〜35wt%、ホウ素(B)を0.3〜1.3wt%、サマリウム(Sm)を0〜30wt%、コバルト(Co)を0〜15wt%、ニッケル(Ni)を0〜5.5wt%、アルミニウム(Al)を0〜5.5wt%を含み、かつ、ニッケル(Ni)とアルミニウム(Al)を合わせて0.3wt%以上を含み、最大エネルギー積(BH)maxが96から270kJ/m3の磁気特性を有することを特徴とする異方性希土類ボンド磁石。
[1] An anisotropic rare earth bonded magnet manufactured from the recovered rare earth anisotropic sintered magnet,
As components other than iron (Fe), at least neodymium (Nd) is 3 to 35 wt%, boron (B) is 0.3 to 1.3 wt%, samarium (Sm) is 0 to 30 wt%, and cobalt (Co) is 0. -15 wt%, nickel (Ni) 0-5.5 wt%, aluminum (Al) 0-5.5 wt%, and nickel (Ni) and aluminum (Al) combined 0.3 wt% or more An anisotropic rare earth bonded magnet having a maximum energy product (BH) max of 96 to 270 kJ / m 3 .

〔2〕前記希土類異方性燒結磁石が、ネオジム焼結磁石又はネオジム焼結磁石及びサマリウムコバルト焼結磁石であることを特徴とする前記〔1〕に記載の異方性希土類ボンド磁石。 [2] The anisotropic rare earth bonded magnet according to [1], wherein the rare earth anisotropic sintered magnet is a neodymium sintered magnet or a neodymium sintered magnet and a samarium cobalt sintered magnet.

〔3〕前記異方性希土類ボンド磁石において、粉砕した前記原料の粒子平均粒径が30から200μm(ミクロン)、かつ各粒子を形成する主相の平均結晶粒径が1から15μm(ミクロン)の組織構造を有することを特徴とする前記〔1〕又は〔2〕に記載の異方性希土類ボンド磁石。 [3] In the anisotropic rare earth bonded magnet, the pulverized raw material has an average particle size of 30 to 200 μm (micron), and an average crystal particle size of the main phase forming each particle is 1 to 15 μm (micron). The anisotropic rare earth bonded magnet according to [1] or [2], wherein the anisotropic rare earth bonded magnet has a texture structure.

〔4〕希土類異方性燒結磁石を原料として異方性希土類ボンド磁石の製造方法であって、前記希土類異方性燒結磁石を不活性雰囲気下で機械的に粉砕する工程と、前記粉砕した材料を高真空または不活性雰囲気下で400から600℃の温度で保持時間12時間以上のひずみ取焼鈍処理する工程と、前記ひずみ取焼鈍処理した材料とバインダーを混錬し、磁場成型する工程とからなることを特徴とする異方性希土類ボンド磁石の製造方法。 [4] A method for producing an anisotropic rare earth bonded magnet using a rare earth anisotropic sintered magnet as a raw material, the step of mechanically grinding the rare earth anisotropic sintered magnet in an inert atmosphere, and the ground material From a step of strain relief annealing at a temperature of 400 to 600 ° C. at a temperature of 400 to 600 ° C. in a high vacuum or an inert atmosphere, and a step of kneading the material subjected to the strain relief annealing treatment with a binder to form a magnetic field. A method for producing an anisotropic rare earth bonded magnet, comprising:

〔5〕前記磁場成型の圧縮成型工程において、湿式成型方法を用いることを特徴する前記〔4〕に記載の異方性希土類ボンド磁石の製造方法。 [5] The method for producing an anisotropic rare earth bonded magnet according to [4], wherein a wet molding method is used in the compression molding step of the magnetic field molding.

〔6〕前記磁場成型の圧縮成型工程において、圧縮成型後にCIP工程を加える2段プレス成型を行うことを特徴する前記〔5〕に記載の異方性希土類ボンド磁石の製造方法。 [6] The method for producing an anisotropic rare earth bonded magnet according to [5], wherein in the compression molding step of the magnetic field molding, a two-stage press molding is performed in which a CIP step is added after the compression molding.

本発明によると、従来提案されている希土類焼結磁石のリサイクル手法の一つである希土類磁石屑を再度溶解し合金化して磁石合金を得る必要がなく希土類焼結磁石を再利用することができる。 According to the present invention, it is possible to reuse rare earth sintered magnets without having to obtain a magnet alloy by remelting and alloying rare earth magnet scraps, which is one of the methods for recycling rare earth sintered magnets conventionally proposed. .

また、本発明によれば、磁石に付着する接着剤の除去とNiメッキ、Alメッキあるいはエポキシ樹脂等の表面処理剥離除去の前工程なしに、異方性希土類ボンド磁石を製造できるため製造工程の簡略化ができる。 In addition, according to the present invention, an anisotropic rare earth bonded magnet can be manufactured without removing the adhesive adhering to the magnet and before the surface treatment peeling removal such as Ni plating, Al plating or epoxy resin. It can be simplified.

さらに、本発明は、希土類焼結磁石の廃磁石にSmCo磁石が含まれている場合であっても、従来不可避であったSmCoとNd磁石屑のRE精製時の分離工程が全く不要になる。従来は、回収屑を焼結磁石用途への利用を目的としているが、本発明はボンド磁石への適用である。本発明のボンド磁石製造の工程中には、高温処理工程が無く、個々のボンド磁石粉末が独立した磁気特性を示す為任意の混合が可能となる。 Furthermore, the present invention eliminates the need for a separation step during RE refining of SmCo and Nd magnet scraps, which was unavoidable in the past, even when the rare-earth sintered magnet waste magnet contains an SmCo magnet. Conventionally, the purpose is to use the recovered scrap for sintered magnet applications, but the present invention is applied to a bonded magnet. There is no high-temperature processing step in the process of manufacturing the bonded magnet of the present invention, and individual bonding magnet powders show independent magnetic characteristics, so that arbitrary mixing is possible.

すなわち、本発明の特徴は、上述のSmCo磁石、Nd磁石の相互の分離回収の問題点が無いこと、現状の磁石再利用工程において不可避である磁石表面処理皮膜の剥離除去が不要、接着剤の除去のほとんど不要かつ再利用出来る磁石材料組成において、表面処理材料であるNi,AI,Cr量や不純物元素であるOやC量の回収材料制限が全く無く、ほとんどあらゆる希土類焼結磁石市中屑の回収が可能であることである。 That is, the feature of the present invention is that there is no problem of separation and recovery of the above-mentioned SmCo magnet and Nd magnet, there is no need to peel and remove the magnet surface treatment film, which is inevitable in the current magnet recycling process, With almost no removal and reusable magnet material composition, there is no limit to the amount of recovered materials such as Ni, AI, Cr as surface treatment materials and O and C as impurity elements. It is possible to recover.

また本磁石の成型工程に関しては、成型時に発生する表面亀裂や破損の極めて少ないために耐食信頼性の優れたボンド磁石粉末を提供できる利点もこの材料が微結晶焼結材料を原料とするという理由で内包する。 In addition, regarding the molding process of this magnet, the advantage of being able to provide bonded magnet powder with excellent corrosion resistance reliability due to extremely few surface cracks and breakage that occur during molding is the reason that this material is made from a microcrystalline sintered material Enclose with.

本発明の更なる特徴は、このように原料として異方性希土類燒結磁石原料を利用することを特徴とするため為、従来の異方性希土類ボンド磁石よりもはるかに高い保磁力と高い耐熱性(すなわち、後述のように定義する規格化角型比p値(p=Hk/HcJ)が高い)が得られることである。 A further feature of the present invention is that it is characterized by using an anisotropic rare earth sintered magnet raw material as a raw material, and thus has a much higher coercive force and higher heat resistance than conventional anisotropic rare earth bonded magnets. (That is, a normalized squareness ratio p value (p = Hk / HcJ) defined as described later) is obtained.

そして、本発明の希土類系異方性ボンド磁石の性能上の最大の特徴のひとつは耐熱性、具体的には熱減磁特性である。 One of the greatest performance features of the rare earth anisotropic bonded magnet of the present invention is heat resistance, specifically, thermal demagnetization characteristics.

また、本発明の希土類系異方性ボンド磁石の磁石性能上の更なる特徴の一つは高い耐食性であり、本磁石が長期間の使用に十分適用可能な長期安定性を有していることである。 In addition, one of the further characteristics in the magnet performance of the rare earth anisotropic bonded magnet of the present invention is high corrosion resistance, and the magnet has long-term stability that can be sufficiently applied for long-term use. It is.

本発明において、使用する原料を市中から回収された異方性希土類燒結磁石のみに限定する。市中回収屑には、等方性Ndボンド磁石、等方性full dense(稠密)Nd磁石もありこれらの回収屑も混合して回収再利用するアイデアもあるが、本発明ではこの再利用方法は取らない。なんとなれば、異方性希土類焼結磁石は合金溶解、粉砕、磁場成型、焼結、熱処理、加工、表面処理の非常に長い工程、即ち屑といえども”付加価値の非常に高い回収屑”であり、リユース、エネルギー再利用効率をそれら混合により低下さえるのは望ましくないからである。本発明は高付加価値の異方性希土類焼結磁石材料でかつさまざまな回収屑の素性を考慮し最大限の屑回収再利用を視野に置いたことが特徴である In the present invention, the raw materials used are limited to only anisotropic rare earth sintered magnets recovered from the city. There are also isotropic Nd bonded magnets and isotropic full dense Nd magnets in the city's collected waste, and there is an idea to mix and collect these recovered waste, but in the present invention this recycling method Do not take. After all, anisotropic rare earth sintered magnets are a very long process of alloy melting, crushing, magnetic field molding, sintering, heat treatment, processing, and surface treatment, that is, even if it is scrap, it is “recovered scrap with very high added value” This is because it is not desirable to reduce reuse and energy reuse efficiency by mixing them. The present invention is a high-value-added anisotropic rare-earth sintered magnet material and is characterized by considering the characteristics of various recovered scraps with a view to maximizing scrap recovery and reuse.

本発明の回収された希土類燒結磁石とは、いわゆるNd系燒結磁石であるが、一部市場に使用され回収屑として出回っているSmCo系燒結磁石も原料とすることができることが特徴である。 The recovered rare earth sintered magnet of the present invention is a so-called Nd-based sintered magnet, but is characterized in that SmCo-based sintered magnets that are used in some markets and are available as recovered scrap can also be used as raw materials.

すなわち、最大エネルギー積(BH)maxが96から270kJ/m3の磁気特性を有する異方性希土類ボンド磁石を製造するためには、磁石の組成として、鉄(Fe)以外の成分として、少なくともネオジム(Nd)を3〜35wt%、ホウ素(B)を0.3〜1.3wt%、サマリウム(Sm)を0〜30wt%、コバルト(Co)を0〜15wt%、ニッケル(Ni)を0〜5.5wt%、アルミニウム(Al)を0〜5.5wt%を含み、かつ、ニッケル(Ni)とアルミニウム(Al)を合わせて0.3wt%以上を含んでいることが必要である。 That is, in order to produce an anisotropic rare earth bonded magnet having a magnetic characteristic with a maximum energy product (BH) max of 96 to 270 kJ / m 3 , the composition of the magnet is at least neodymium as a component other than iron (Fe). (Nd) 3 to 35 wt%, boron (B) 0.3 to 1.3 wt%, samarium (Sm) 0 to 30 wt%, cobalt (Co) 0 to 15 wt%, nickel (Ni) 0 to It is necessary to contain 5.5 wt%, 0 to 5.5 wt% of aluminum (Al), and 0.3 wt% or more in total of nickel (Ni) and aluminum (Al).

本発明においては、回収された希土類燒結磁石を原料とするため通常ALコーティング、Ni-コーティングがされていることで、AlとNi成分が、通常ニッケル(Ni)とアルミニウム(Al)を合わせて0.3wt%以上、場合によっては、1wt%以上含まれている。AlまたはNiの含有量は、それぞれ最大5.5wt%まで含まれていても十分な磁気特性を発揮することが可能である。 In the present invention, since the recovered rare earth sintered magnet is used as a raw material, AL coating and Ni-coating are usually performed, so that Al and Ni components are usually combined with nickel (Ni) and aluminum (Al). .3 wt% or more, and in some cases, 1 wt% or more. Even if the content of Al or Ni is up to 5.5 wt% at the maximum, sufficient magnetic properties can be exhibited.

本発明の磁石には、Fe、Nd、B、Sm、Co、Ni及びAl以外の成分も含まれており、通常その成分は以下の組成(wt%)を有する。
Nd;3-35、Pr;0-10、Dy;0-12、Tb;0-3、Sm;0-30、Ce;0-10、B;0.3-1.3、Co;0-15、Nb;0-1.5、Cu;0-10、Al;0-5.5、Ga;0-1.5、Ni0-5.5、Zr;0-0.5、Hf;0-0.5、Fe;bal。
The magnet of the present invention also contains components other than Fe, Nd, B, Sm, Co, Ni and Al, and usually the components have the following composition (wt%).
Nd; 3-35, Pr; 0-10, Dy; 0-12, Tb; 0-3, Sm; 0-30, Ce; 0-10, B; 0.3-1.3, Co; 0-15, Nb; 0-1.5, Cu; 0-10, Al; 0-5.5, Ga; 0-1.5, Ni0-5.5, Zr; 0-0.5, Hf; 0-0.5, Fe; bal.

さらに高い磁気特性を実現するに望ましい組成は以下である。
Nd;3-33、Pr;0-6、Dy;0-7、Tb;0-1、Sm;0-10、Ce;0-4、B;0.8-1.1、Co;0-5、Nb;0-0.5、Cu;0-4、Al;0-3.5、Ga; 0-0.2、Ni0-3.5、Zr;0-0.2、Hf;0-0.2、Fe;bal。
A desirable composition for realizing higher magnetic properties is as follows.
Nd; 3-33, Pr; 0-6, Dy; 0-7, Tb; 0-1, Sm; 0-10, Ce; 0-4, B; 0.8-1.1, Co; 0-5, Nb; 0-0.5, Cu; 0-4, Al; 0-3.5, Ga; 0-0.2, Ni0-3.5, Zr; 0-0.2, Hf; 0-0.2, Fe; bal.

本発明の磁石屑は、より高い磁気性能を発揮させるためにNd磁石の屑だけで構成されているのがもっとも好ましいが、Nd磁石の屑にSmCo系の磁石屑を含んでいても高い磁気性能を発揮することが可能である。但しSmCo焼結磁石屑の配合比率が増加するにつれて、その際得られる残留磁束密度Brや最大エネルギー積(BH)max等の磁気特性は単調に減少するため、実用上の観点から、或る上限を持つSm含有量に限定している。 The magnet scrap of the present invention is most preferably composed only of Nd magnet scrap in order to exert higher magnetic performance, but high magnetic performance even if the Nd magnet scrap contains SmCo-based magnet scrap. It is possible to demonstrate. However, as the mixing ratio of SmCo sintered magnet scrap increases, the magnetic properties such as residual magnetic flux density Br and maximum energy product (BH) max that are obtained at that time monotonously decrease. It is limited to Sm content.

すなわち、ここで本発明の特徴のひとつは、通常のNd系異方性ボンド磁石では実現出来ない組成領域でも高Sm含有量で優れた磁気特性が実現出来ることであり、具体的にはSm量として最大30wt%,のSm含有量でも可能である。 That is, one of the features of the present invention is that excellent magnetic properties can be realized with a high Sm content even in a composition region that cannot be realized with a normal Nd-based anisotropic bonded magnet. It is possible even with a Sm content of up to 30 wt%.

ここで通常のNd磁石組成と本原料屑の大きな違いは、Sm,Co,Cu含有量であり、これらはNd磁石の通常の組成外である。これは市中屑の全量または大部分がSmCo系の組成である屑についても従来の再溶解、合金手法では不可能な再利用が、本手法で新たに回収が可能となることを特徴としている。 Here, the major difference between the normal Nd magnet composition and the raw material scrap is the Sm, Co, and Cu contents, which are outside the normal composition of the Nd magnet. This is characterized by the fact that the entire amount of municipal waste or most of the waste with SmCo-based composition can be newly recovered by this method, which can not be reused by conventional remelting and alloying methods. .

なおエポキシ樹脂塗装品も同様に,樹脂剥離除去をすること無く、本発明の方法で全く問題なく優れた異方性希土類ボンド磁石が得られる。 Similarly, an epoxy resin-coated product can be obtained with an anisotropic rare earth bonded magnet without any problem by the method of the present invention without removing the resin.

本発明の異方性希土類ボンド磁石は、前記のように回収した磁石を前処理、不純物の除去等をせずにそのまま用いるため、比較的高い比率のO(酸素)量、C(炭素)量をふくむことになるが、その場合であっても、従来の等方性ボンド磁石および異方性ボンド磁石と同等またはそれ以上の性能を有するものである。 The anisotropic rare earth bonded magnet of the present invention uses the magnet collected as described above as it is without pretreatment, removal of impurities, etc., so that a relatively high ratio of O (oxygen) amount, C (carbon) amount Even in this case, it has a performance equal to or higher than that of conventional isotropic bonded magnets and anisotropic bonded magnets.

従来の異方性希土類ボンド磁石の原料合金は、優れた磁気特性を得る為、不純物のO(酸素)とC(炭素)量に限定がある。OやCが多いと磁気特性が著しく低下する。異方性希土類ボンド磁石は高純度希土類金属、鉄、ボロン他必須元素は全て高純度原料を用いる為にこれらを用いて溶解精製された磁石合金のO量は少なくとも0.08wt%、以下、通常は0.01wt%以下、C量は少なくとも0.03wt%以下、通常は0.05wt%が不可欠である。 Conventional alloy alloys for anisotropic rare earth bonded magnets have limited amounts of impurities O (oxygen) and C (carbon) in order to obtain excellent magnetic properties. When there is much O and C, a magnetic characteristic falls remarkably. An anisotropic rare earth bonded magnet is a high purity rare earth metal, iron, boron and other essential elements are all made of high purity raw materials. Therefore, a magnet alloy dissolved and refined using these materials has an O content of at least 0.08 wt%, usually less Is 0.01 wt% or less, and the C content is at least 0.03 wt% or less, usually 0.05 wt%.

一方、本発明の異方性希土類ボンド磁石の原料合金は、回収された希土類異方性焼結磁石を用いるため、焼結磁石製造工程中の酸化やバインダー添加等で増大したO量、C量を本質的に不可避で含み、その量は少なくともO量が1wt%以上、通常は4wt%以上、C量が0.4wt%以上、通常0.5wt%以上である。 On the other hand, since the raw material alloy of the anisotropic rare earth bonded magnet of the present invention uses the recovered rare earth anisotropic sintered magnet, the amount of O and C increased due to oxidation and binder addition during the sintered magnet manufacturing process. The amount of O is at least 1 wt%, usually 4 wt% or more, and the amount of C is 0.4 wt% or more, usually 0.5 wt% or more.

但し、回収原料の状態によっては磁石が著しく酸化、腐食したり、あるいは磁石回収時に著しく接着剤が付着したり、あるいは塗装が付着している回収屑もあり、これらは十分な磁気特性が得られない。従って、本発明の異方性希土類ボンド磁石が、最大エネルギー積(BH)max 96kJ/m3以上の磁気特性を保持するためには、上限としてO量は8wt%以下、望むべくは5wt%以下、C量は7wt%以下、望むべくは4wt%以下であることが必要である。 However, depending on the state of the recovered material, the magnet may be significantly oxidized and corroded, or there may be recovered scraps that are markedly adhered with adhesive or coated when the magnet is recovered, and these have sufficient magnetic properties. Absent. Therefore, in order for the anisotropic rare earth bonded magnet of the present invention to maintain a magnetic property having a maximum energy product (BH) max of 96 kJ / m 3 or more, the upper limit of the O amount is 8 wt% or less, and preferably 5 wt% or less. , C content is required to be 7 wt% or less, preferably 4 wt% or less.

本発明の異方性希土類ボンド磁石は、通常使用不可の高い量のO,Cを不純物として有する原料を使用しても、従来の等方性ボンド磁石および異方性ボンド磁石と同等またはそれ以上の優れた磁石特性、耐熱特性、耐食性を具備することを特徴のひとつとしている。 The anisotropic rare earth bonded magnet of the present invention is equivalent to or more than conventional isotropic bonded magnets and anisotropic bonded magnets even if a raw material having a high amount of O, C as impurities, which is normally unusable, is used. One of the features is that it has excellent magnet characteristics, heat resistance characteristics, and corrosion resistance.

そして、本発明の異方性希土類ボンド磁石は、優れた磁気特性を得るためその磁石組織構造に特徴を有する。具体的には、本磁石を構成する磁石粉末平均粒径が30から200μm、さらに望ましくは50から170μmでありなおかつ、各粒子を形成する主相の平均結晶粒径が1から15μmの微細組織構造を有する異方性希土類ボンド磁石である。 The anisotropic rare earth bonded magnet of the present invention is characterized by its magnet structure in order to obtain excellent magnetic properties. Specifically, a fine structure in which the average particle size of the magnet powder constituting the magnet is 30 to 200 μm, more preferably 50 to 170 μm, and the average crystal particle size of the main phase forming each particle is 1 to 15 μm. An anisotropic rare earth bonded magnet having

希土類磁石の保磁力は、大きい結晶粒径では多磁区構造になるため保磁力は低下、小さい結晶粒径では単磁区構造ではあるものの酸化あるいは加工ひずみにより保磁力が低下する。よって磁石工程に依存する最適な結晶粒径が存在する。 The coercive force of the rare earth magnet is reduced because of a multi-domain structure when the crystal grain size is large, and the coercive force is decreased due to oxidation or processing strain, although it is a single domain structure when the crystal grain size is small. Therefore, there is an optimal crystal grain size that depends on the magnet process.

本発明の異方性希土類ボンド磁石の各粒子を形成する主相の平均結晶粒径については、1から15μm(ミクロン)の組織構造を有することを特徴とし、さらに優れた高保磁力を得、なおかつ酸素含有量を抑えるためには、1.5から10μm、さらに好ましくは2.0から7.0μmが最も望ましい。ここで主相とはNd系回収屑の場合はNd2Fe14B金属間化合物相が主相であり、SmCo系ではSmCo5もしくはSm2(Fe,Co,Cu)17金属間化合物相が主相である。主相の体積比は全磁石の90%以上とする。 The average crystal grain size of the main phase forming each particle of the anisotropic rare earth bonded magnet of the present invention is characterized by having a texture structure of 1 to 15 μm (microns), and further obtaining an excellent high coercive force, In order to suppress the oxygen content, 1.5 to 10 μm, more preferably 2.0 to 7.0 μm is most desirable. Here, the main phase is the Nd 2 Fe 14 B intermetallic compound phase in the case of Nd-based recovered scrap, and the SmCo 5 or Sm 2 (Fe, Co, Cu) 17 intermetallic compound phase is the main phase in the SmCo system. Is a phase. The volume ratio of the main phase is 90% or more of the entire magnet.

磁石粉末の平均粒径は高密度かつ生産性を考慮したボンド磁石製造条件からの条件である。一方、本磁石は本質的に回収屑原料であるため、従来のナノコンポジットやMQI粉末のような急冷プロセス(いわゆるメルトスピニング)でサブミクロン以下の平均結晶粒径を有するボンド磁石と本質的に異なり、またNd系原料のためSmFeNボンドとは磁石組成が異なる。 The average particle diameter of the magnet powder is a condition from the bond magnet manufacturing condition in consideration of high density and productivity. On the other hand, since this magnet is essentially a recovered scrap material, it is essentially different from conventional bonded magnets with an average crystal grain size of submicron or less in a rapid cooling process (so-called melt spinning) such as MQI powder. Also, because of the Nd-based material, the magnet composition is different from that of the SmFeN bond.

なおここで平均粒径測定は空孔透過方法(フィッシャ・サブシーズ・サイザー等)による測定値であり、結晶粒径は2次元金属組織写真を画像解析して導出した結晶粒径である。 Here, the average particle size measurement is a value measured by a hole permeation method (Fischer, subseed sizer, etc.), and the crystal particle size is a crystal particle size derived by image analysis of a two-dimensional metal structure photograph.

続いて、異方性希土類ボンド磁石の製造方法について説明する。
本発明の希土類異方性燒結磁石を原料とする異方性希土類ボンド磁石の製造方法は、希土類異方性燒結磁石を不活性雰囲気下で機械的に粉砕する工程と、前記粉砕した材料を高真空または不活性雰囲気下で400から600℃の温度で保持時間12時間以上のひずみ取焼鈍処理する工程と、前記ひずみ取焼鈍処理した材料とバインダーを混錬し、磁場成型する工程とからなることを特徴とする。
Then, the manufacturing method of an anisotropic rare earth bond magnet is demonstrated.
The method for producing an anisotropic rare earth bonded magnet using the rare earth anisotropic sintered magnet of the present invention as a raw material includes a step of mechanically crushing the rare earth anisotropic sintered magnet in an inert atmosphere, It consists of a step of strain relief annealing at a temperature of 400 to 600 ° C. in a vacuum or an inert atmosphere and a holding time of 12 hours or more, and a step of kneading the strain relief annealed material and a binder to form a magnetic field. It is characterized by.

要望する最大エネルギー積(BH)maxを得る為に、磁石回収屑の成分分析と磁気特性測定は不可欠である。 In order to obtain the desired maximum energy product (BH) max, component analysis and magnetic property measurement of magnet recovery scrap are indispensable.

すなわち、最大エネルギー積(BH)maxが96から270kJ/m3の範囲の任意の望む磁気特性を有する異方性希土類ボンド磁石を製造するためには、あらかじめ、回収した希土類焼結磁石をサンプリングして、その回収磁石素材の成分分析を行って、磁石の組成として、ネオジム(Nd)とサマリウム(Sm)の組成を確認しておく必要がある。その分析値から判断して、望む磁気特性を得る為にさらに他の成分が既知の磁石屑を追加配合調整してボンド磁石を作成することが出来る。ただそのためには種々の回収屑で後述するCR値のデータを蓄積する必要がある。 That is, in order to produce an anisotropic rare earth bonded magnet having any desired magnetic property with a maximum energy product (BH) max ranging from 96 to 270 kJ / m 3 , the collected rare earth sintered magnet is sampled in advance. Then, it is necessary to perform a component analysis of the recovered magnet material and confirm the composition of neodymium (Nd) and samarium (Sm) as the composition of the magnet. Judging from the analysis value, in order to obtain a desired magnetic characteristic, a bonded magnet can be prepared by further blending and adjusting magnet scraps with other components already known. However, for that purpose, it is necessary to accumulate data of CR values, which will be described later, with various collected scraps.

なお、回収された希土類異方性燒結磁石が単一の磁石屑である場合は、この成分分析は省略することができるが、特に、回収された希土類異方性燒結磁石が、種々雑多な場合は必須となり、そのサンプリング数も多い方が好ましい。 In addition, when the collected rare earth anisotropic sintered magnet is a single magnet scrap, this component analysis can be omitted, but in particular, when the collected rare earth anisotropic sintered magnet is various. Is essential, and it is preferable to have a large number of samplings.

なお廃却前の燒結磁石の磁気特性は回収屑が混合市中屑の場合、通常n=3〜10ヶサンプリングした磁気特性を代表磁気特性とすることができる。磁石屑成分分析も同様にICP等により、同じくn=3〜10ヶサンプリング分析を行う。 In addition, the magnetic characteristic of the sintered magnet before disposal can be made the representative magnetic characteristic when n = 3 to 10 samples are usually sampled when the collected scrap is mixed municipal waste. Similarly, the magnetic scrap component analysis is also performed by ICP etc. and n = 3 to 10 sampling analysis.

得られた成分分析値と磁気特性により、1種以上の種類の屑を混合して使用することも可能である。
成分分析によりサマリウム(Sm)が、30wt%以上検出された場合は、サマリウムコバルト焼結磁石の混入率が高く、Nd磁石ベースのよりも高い磁気特性を有する優れた異方性希土類ボンド磁石の製造には適さない原料である。
Depending on the obtained component analysis values and magnetic characteristics, it is possible to mix and use one or more kinds of scraps.
When samarium (Sm) is detected by 30% by weight or more by component analysis, production of excellent anisotropic rare earth bonded magnets with higher magnetic properties than those of Nd magnet base with high mixing ratio of samarium cobalt sintered magnet It is a raw material not suitable for.

すなわち、回収された希土類異方性燒結磁石に成分分析の結果30wt%以上のサマリウムが検出され、サマリウムコバルト焼結磁石の混入が多い場合は、該当回収屑を他のNd磁石ベースの回収屑と希釈混合等することにより使用する。
本回収工程において、回収した希土類焼結磁石素材を有効活用し、最適な製造工程にて処理し最大限の異方性希土類ボンド磁石磁気特性を発揮する為に、用いた磁石素材の成分分析は不可欠である。
That is, when 30% by weight or more of samarium is detected as a result of component analysis in the collected rare earth anisotropic sintered magnet and the samarium-cobalt sintered magnet is mixed in a lot, the corresponding recovered scrap is replaced with other Nd magnet-based recovered scrap. Used by diluting and mixing.
In this collection process, in order to make effective use of the recovered rare earth sintered magnet material and process it in the optimal manufacturing process to exhibit the maximum anisotropic rare earth bonded magnet magnetic properties, component analysis of the magnet material used is It is essential.

成分分析はICPあるいはX線蛍光分析による。また同様の理由で回収原料の磁気特性測定を行うことを必須とする。必要とする磁気特性を発揮するため、1種以上の磁石素材屑を混合して使用することも可能で、本製造方法の特徴である。成分分析と磁気特性測定により、屑性能評価を行い、用途により使用する屑の選別、配合を調整して最大の最大エネルギー積(BH)maxを得て最適化有効する必要があるためである。 Component analysis is based on ICP or X-ray fluorescence analysis. For the same reason, it is essential to measure the magnetic properties of the recovered raw material. In order to exhibit the required magnetic properties, it is possible to use one or more kinds of magnet material scraps in combination, which is a feature of this manufacturing method. This is because it is necessary to evaluate the waste performance by component analysis and magnetic property measurement, and to optimize and obtain the maximum maximum energy product (BH) max by adjusting the selection and mixing of the waste to be used according to the application.

前記した希土類異方性燒結磁石を原料とする異方性希土類ボンド磁石の製造方法の工程を以下詳細に述べる。   The steps of the method for producing an anisotropic rare earth bonded magnet using the rare earth anisotropic sintered magnet as a raw material will be described in detail below.

まず回収された磁石を粉砕する。粉砕はボールミル、アトライター、ジョークラッシャ等機械粉砕で行うことが可能である。ジョークラッシャで租粉砕した後、ボールミル微粉砕するといった2段処理も有効で、粒度分布を均一に出来、磁気特性を向上出来る。なお粉砕雰囲気は酸化防止の為、Ar,N等の不活性雰囲気もしくはアルコール、アセトン等の溶媒中で行う。 First, the collected magnet is pulverized. The pulverization can be performed by mechanical pulverization such as a ball mill, an attritor, and a jaw crusher. A two-stage treatment such as grinding with a jaw crusher and then finely grinding with a ball mill is also effective, the particle size distribution can be made uniform, and the magnetic properties can be improved. In order to prevent oxidation, the grinding atmosphere is carried out in an inert atmosphere such as Ar or N or in a solvent such as alcohol or acetone.

本回収屑は、従来の磁石製造工程で不可欠とされている水素粉砕を一切必要としない粉砕工程を用いる。水素粉砕を用いると、プレス成型時にマイクロクラックを発生して、粉末の著しい酸化により磁気特性が低下するためである。 The recovered scrap uses a pulverization process that does not require any hydrogen pulverization, which is essential in the conventional magnet manufacturing process. This is because when hydrogen pulverization is used, microcracks are generated during press molding, and magnetic properties are deteriorated due to significant oxidation of the powder.

微粉砕は一般のボールミル粉砕等を用いるが、用いる原料が希土類焼結磁石という微結晶で極めて硬い合金のため、従来の高速で2から6時間のボールミルでは無く、12から24時間の低速のボール工程を用いる方が磁気特性が高い。 For fine pulverization, general ball mill pulverization or the like is used. However, since the raw material used is a rare-earth sintered magnet, which is a microcrystalline and extremely hard alloy, it is not a conventional high speed ball mill of 2 to 6 hours, but a low speed ball of 12 to 24 hours Using the process has higher magnetic properties.

なお粉砕粉末の平均粒径は30から200μm、さらに望ましくは50から170μmにすることが必要である。 The average particle size of the pulverized powder needs to be 30 to 200 μm, more preferably 50 to 170 μm.

後述するように、プレス成型時に充填密度を上げることにより、磁気特性を向上させるため、粒度の異なる2種類の粉末を用いることも有効である。特に成形性の悪い本粉末は2種類の粉末を用いる等の成型条件改善が重要である。 As will be described later, it is also effective to use two types of powders having different particle sizes in order to improve magnetic properties by increasing the packing density during press molding. In particular, it is important to improve molding conditions such as using two types of powders with poor moldability.

本磁石製造工程の特徴の一つは水素粉砕を用いない工程である。水素粉砕は、Sm磁石やNd磁石が本質的に水素吸蔵、水素脆性を有するため、しばしば用いられている製造手法であるが、希土類屑回収産業が社会スキームとして安価、安全に大量に処理普及出来るべく汎用性のある提案とする為、水素粉砕工程を一切用いない工程を提案している。勿論水素粉砕による粉砕方法を除外するものではない。 One of the features of this magnet manufacturing process is a process that does not use hydrogen crushing. Hydrogen crushing is a production method that is often used because Sm magnets and Nd magnets have inherently hydrogen storage and hydrogen embrittlement, but the rare earth scrap recovery industry can spread and process a large amount safely and safely as a social scheme. In order to make the proposal as versatile as possible, a process that does not use any hydrogen pulverization process is proposed. Of course, the pulverization method by hydrogen pulverization is not excluded.

本磁石粉末は粉砕後に高真空または不活性雰囲気中で熱処理が必要不可欠である。熱処理を行わないと、従来特許に見られるように(特願平4-303254)得られる保磁力の値HCJが800kA/m(10kOe)以下と極めて低く、磁石の耐熱特性が低い。
熱処理温度は400〜600℃の熱処理温度であるが、熱処理時間が長時間の12時間以上、望むべくは48時間以上必要である。600℃を越えると、粉末が溶着、さらに拡散が起こるので、これを防ぐ為に出来れば500℃以下が望ましい。400℃の低温ではひずみとり熱処理時間が長く必要であり24時間以上、あるいは48時間以上が望ましい。
The magnet powder must be heat-treated in a high vacuum or inert atmosphere after pulverization. Without heat treatment, as seen in the prior patent (Japanese Patent Application No. 4-303254), the coercive force value HCJ obtained is extremely low at 800 kA / m (10 kOe) or less, and the heat resistance of the magnet is low.
The heat treatment temperature is 400 to 600 ° C., but the heat treatment time is 12 hours or longer, and 48 hours or longer as desired. If the temperature exceeds 600 ° C., the powder is welded and further diffusion occurs. Therefore, if possible, the temperature is preferably 500 ° C. or lower. At a low temperature of 400 ° C., it takes a long time for heat treatment to remove strain, and it is preferably 24 hours or more, or 48 hours or more.

本ひずみとり熱処理は機械粉砕時に生じたマイクロクラック等不可避の機械ひずみの焼鈍が目的であるが、なお熱処理中の磁石粉末の酸化を防ぐ為、Ti等のゲッター粉末を試料別容器に挿入して行うのが望ましい。 The purpose of this strain removal heat treatment is to inevit the inevitable mechanical strain such as micro cracks generated during mechanical crushing, but in order to prevent oxidation of the magnet powder during heat treatment, a getter powder such as Ti is inserted into a sample-specific container. It is desirable to do it.

得られた粉末を次にバインダー混錬する。バインダーとしては圧縮成型では、エポキシ樹脂、射出成型ではPA樹脂(ナイロン12等)、耐熱性PPS等の熱可塑性樹脂を用いる。高い磁気特性を維持するために、バインダー量は成形性を損なうことの無い下限の添加量に抑えることが必要で、圧縮成型では3-7wt%, 射出成型では5-10wt%にする。そのほか、酸化防止剤、ステアリン酸系の金型潤滑剤等を製品形状寸法に応じて、0.8wt%以下添加してもよい。 The resulting powder is then kneaded with a binder. As the binder, an epoxy resin is used for compression molding, and a thermoplastic resin such as PA resin (nylon 12 or the like) or heat-resistant PPS is used for injection molding. In order to maintain high magnetic properties, it is necessary to keep the amount of the binder at the lower limit that does not impair the moldability, and it is 3-7 wt% for compression molding and 5-10 wt% for injection molding. In addition, an antioxidant, a stearic acid-based mold lubricant, or the like may be added in an amount of 0.8 wt% or less depending on the product shape.

本粉末の最大の問題点はプレス成型性である。原料は磁石合金屑であり、通常の溶解合金と異なり結晶粒径が非常に均一微細でかつ機械的に硬い。そのため、粉末の粒度分布が非常に急峻で、成形性が極めて困難、通常の希土類焼結磁石の成型圧力の0.5-1.2Ton/cm2では十分な成型体密度が得られない。圧縮プレス成型では磁場プレス方式が採用可能で、直角成型、平行成型、ラジアル成型、径2極成型等の磁石形状に対応した成型が可能である。成型圧力は高成型密度化により高い磁気特性を実現するため0.9Ton/cm2以上、望ましくは6.5Ton/cm2以上、さらに望ましくは8.5Ton/cm2以上である。このように通常の燒結磁石製造工程で用いられている成型圧力よりも極めて高い圧力が必要であることが特徴であり、金型の高寿命等は今後の量産上の課題である。 The biggest problem of this powder is press formability. The raw material is magnet alloy scrap, and unlike ordinary molten alloys, the crystal grain size is very uniform and fine and mechanically hard. Therefore, the particle size distribution of the powder is very steep and the formability is extremely difficult. If the molding pressure of a normal rare earth sintered magnet is 0.5 to 1.2 Ton / cm 2 , a sufficient compact density cannot be obtained. In compression press molding, a magnetic field press method can be adopted, and molding corresponding to a magnet shape such as right-angle molding, parallel molding, radial molding, or diameter dipole molding is possible. The molding pressure is 0.9 Ton / cm 2 or more, preferably 6.5 Ton / cm 2 or more, and more preferably 8.5 Ton / cm 2 or more in order to realize high magnetic properties by increasing the molding density. Thus, it is a feature that a pressure extremely higher than the molding pressure used in the normal sintered magnet manufacturing process is required, and the long life of the mold is a problem in the future mass production.

磁石成型工程において2種類以上の粒度を有する粉末を用いて磁場成型する手法も有効であるが、本原料合金系ではこの手法は極めて有効で、混合する2種の粉末の平均粒度比CpがCp=0.1〜0.3を有する粉末を用いた場合に磁気特性が優れる。なお望ましくはCp=0.15〜0.25である。 In the magnet forming process, a magnetic field forming method using powders having two or more types of particle sizes is also effective. However, this method is extremely effective in this raw material alloy system, and the average particle size ratio Cp of the two types of powders to be mixed is Cp. When the powder having = 0.1 to 0.3 is used, the magnetic properties are excellent. Desirably, Cp = 0.15 to 0.25.

またこの2種の粉末の混合配合比Kpとすると、Kp=1.5〜4.0に混錬すると高密度化され高い優れた磁気特性が得られる。Kpはさらに望ましくはKp=2.0〜3.5である。なおKpは(粗大粒子重量)/(微小粒子重量)である。本Cp、Kpの条件は射出成型プレスにおいても同様である。 When the mixing ratio Kp of these two kinds of powders is kneaded to Kp = 1.5 to 4.0, the density is increased and high excellent magnetic properties are obtained. Kp is more preferably Kp = 2.0 to 3.5. Kp is (coarse particle weight) / (microparticle weight). The conditions for Cp and Kp are the same for the injection molding press.

本粉末は成型プレスが非常に困難であることから、成型体密度を上げやすい湿式成型も極めて有効な方法である。湿式成型法は既に希土類燒結磁石の製造方法で用いられているが、通常乾式工程より高コストでありまた焼結時に脱溶媒工程が必要なため限定的に採用されているが、市中回収屑の成型方法として報告された特許は見当たらない。本粉末は、この湿式成型が極めて有効であることを見出した。 Since the present powder is very difficult to mold, wet molding, which easily increases the density of the molded body, is also an extremely effective method. Although the wet molding method is already used in the production method of rare earth sintered magnets, it is usually used at a higher cost than the dry process and requires a solvent removal process during sintering. There is no patent reported as a molding method. The present powder has been found to be very effective in this wet molding.

本希土類燒結屑粉末は上述のようにプレス成形性の悪い粉末である為、圧縮成型もしくは湿式成型に続いて冷間等方性プレス(以下CIP)をする2段プレス成型を採用する。CIPによる高成型圧力を印加して成型体を高密度化することにより高磁気特性化することが有効であるからである。CIPが効果のある圧力は200MPa以上、望ましくは300MPa以上である。CIP媒体はグリセリン等の溶媒、CIP圧力印加時間は10から20分である。 Since the rare earth sintered waste powder is a powder having poor press moldability as described above, a two-stage press molding in which a cold isotropic press (hereinafter referred to as CIP) is performed after compression molding or wet molding is employed. This is because it is effective to increase the magnetic properties by increasing the density of the molded body by applying a high molding pressure by CIP. The pressure at which CIP is effective is 200 MPa or more, preferably 300 MPa or more. The CIP medium is a solvent such as glycerin, and the CIP pressure application time is 10 to 20 minutes.

湿式プレス成型は主として、主として金型表面の摩擦係数の改善による高密度化に、CIPは全方向からの静水圧による高密度化にと異なった寄与をするため、湿式成型とCIPを組み合わせた複合的な効果を有する多段プレスが有効である。これら粉体成型は従来の希土類燒結磁石の効果にはほとんど顕在しなかった希土類燒結屑粉末の機械的性質、粒度分布等の粉末物性に固有の特徴である。 Wet press molding mainly contributes to densification mainly by improving the friction coefficient of the mold surface, and CIP contributes differently to densification by hydrostatic pressure from all directions, so a combination of wet molding and CIP. A multi-stage press having a special effect is effective. These powder moldings are unique to the powder physical properties such as mechanical properties and particle size distribution of rare earth sintered dust powder, which are hardly manifested in the effects of conventional rare earth sintered magnets.

湿式成型に用いる溶媒はアルコール系やアセトン等の有機溶媒あるいは潤滑オイルやガソリン等が可能である。これら溶媒下の磁場成型により、プレス成型圧力を通常の乾式圧力よりも20−30%低減可能であり、かつ成型時の剥離、割れ、欠け等が著しく改善される。湿式成型では本質的に不可避の脱溶媒工程が必要であるが、本提案の異方性希土類ボンド磁石の製造方法において一切不要であるため極めて有効な成型となる。 The solvent used for the wet molding can be an organic solvent such as alcohol or acetone, lubricating oil, gasoline or the like. By the magnetic field molding under these solvents, the press molding pressure can be reduced by 20-30% from the normal dry pressure, and peeling, cracking, chipping, etc. during molding are remarkably improved. Wet molding essentially requires an inevitable solvent removal step, but it is extremely effective molding because it is not necessary at all in the proposed anisotropic rare earth bonded magnet manufacturing method.

またプレス磁石製造方法において、高密度化を図る為、磁場成型工程中にエアタッピング、超音波タッピング等の粉末充填タッピング工程が高タップ密度を得て本粉末の成型手法として極めて有効である。タッピングは磁場成型の金型に振動伝達盤を取り付ける等により、圧搾空気の圧力振動を伝播して行う。あるいは、予め仮プレスパッケージ内でエアタッピングを行ったグリーン成型体を金型内に挿入することにより、高密度化する。 Further, in the press magnet manufacturing method, in order to increase the density, a powder filling tapping process such as air tapping and ultrasonic tapping in the magnetic field forming process obtains a high tap density and is extremely effective as a molding technique for the present powder. Tapping is performed by propagating the pressure vibration of the compressed air, such as by attaching a vibration transmission board to a magnetic mold. Alternatively, the density is increased by inserting a green molded body previously air-tapped in a temporary press package into a mold.

圧縮成型、射出成型で得られた磁石はそのまま製品として実使用可能であるが、Niメッキ、エポキシコーティング、等を行うことにより、腐食性、耐食性を要求される用途への適用も可能である。これら表面処理を施すことにより、通常市販の異方性ボンド磁石と同等またはそれ以上の耐食信頼性を有する。耐食性評価は、具体的には80℃x90%RH条件において行う。 A magnet obtained by compression molding or injection molding can be used as a product as it is, but by applying Ni plating, epoxy coating, etc., it can be applied to applications requiring corrosiveness and corrosion resistance. By applying these surface treatments, the corrosion resistance is equal to or higher than that of commercially available anisotropic bonded magnets. Specifically, the corrosion resistance is evaluated under the condition of 80 ° C. × 90% RH.

以上の異方性希土類ボンド磁石の製造方法により、最大エネルギー積(BH)maxが96から270kJ/m3のエネルギー積と、高い規格角型比p0.70を実現、さらに分析値に基づいて焼結磁石屑を選定する事により、保磁力HcJが800kA/m以上の優れた磁気特性を実現できる。 The above anisotropic rare earth bonded magnet manufacturing method realizes an energy product with a maximum energy product (BH) max of 96 to 270 kJ / m 3 and a high standard squareness ratio p0.70, and further, based on the analysis value, By selecting magnetized scraps, excellent magnetic properties with a coercive force HcJ of 800 kA / m or more can be realized.

本発明においては、廃棄される希土類焼結磁石を再利用することを目的とするため、廃棄する前に当初磁石材料が保有していた磁気特性の再現性を確保するのではなく、廃棄磁石材料の形態、不純物、コーティングの有無等に応じて、一段または数段下(カスケード)の磁気特性を有する磁石材料を具現化して有効利用することになるが、それでもその磁力は従来の等方性ボンド磁石および異方性ボンド磁石と同等またはそれ以上の性能を有するものである。 In the present invention, since the purpose is to reuse the rare earth sintered magnet to be discarded, it is not necessary to ensure the reproducibility of the magnetic properties originally possessed by the magnet material before the disposal, but the discarded magnet material. Depending on the form, impurities, and the presence or absence of coating, etc., the magnetic material with one or several steps (cascade) magnetic properties will be realized and used effectively, but the magnetic force is still the conventional isotropic bond. It has the same or better performance as a magnet and an anisotropic bonded magnet.

ここで実施例に示すCR率の定義を以下示す。
廃却前の焼結磁石の最大エネルギー積をα、作製された異方性ボンド磁石の最大エネルギー積(β)とし、CR率= β/α
Here, the definition of the CR rate shown in the examples is shown below.
The maximum energy product of the sintered magnet before disposal is α, and the maximum energy product (β) of the manufactured anisotropic bonded magnet is used. CR ratio = β / α

本発明においてCR率は、通常0.3から0.7になる。CR率は、回収した磁石を前処理なしに粉砕するだけで原料とするため0.7が上限であり、通常は0.65もしくは大量生産では最大0.60が量産可能レベルである。下限は磁石コスト/磁気パーフォーマンス上、通常0.30以上、望ましくは0.45、さらに望ましくは0.55以上である。CR率が0.3以下では通常の市販等方性ボンド磁石に対してコストメリットが少ない。 In the present invention, the CR rate is usually 0.3 to 0.7. The upper limit of the CR rate is 0.7 because the recovered magnet is simply pulverized without pretreatment, and the upper limit is usually 0.75. The lower limit is usually 0.30 or more, preferably 0.45, more preferably 0.55 or more in terms of magnet cost / magnetic performance. When the CR ratio is 0.3 or less, the cost merit is small compared to a normal commercially available isotropic bonded magnet.

最大エネルギー積(BH)maxが96から270kJ/m3のエネルギー積と、高い規格角型比p0.70を実現、さらに分析値に基づいて焼結磁石屑を選定する事により、保磁力HcJが800kA/m以上の優れた磁気特性を実現できる。
このことは、永久磁石の実用上極めて重要である耐熱性、具体的には熱減磁特性が十分に高いことを示している。
The maximum energy product (BH) max is 96 to 270 kJ / m 3 , and a high standard squareness ratio p0.70 is achieved. Furthermore, by selecting sintered magnet debris based on the analysis value, the coercive force HcJ is Excellent magnetic characteristics of 800 kA / m or more can be realized.
This indicates that the heat resistance, which is extremely important in practical use of the permanent magnet, specifically, the heat demagnetization property is sufficiently high.

一般に永久磁石の熱減磁特性を上げるには、保磁力HcJと減磁曲線の角型性Hkが大きいことが必要である。ここでHkはJ−H減磁曲線上で磁化Jの値が残留磁束密度(Br)の90%となる磁界Hの値として定義される。ただし、角型性Hkの値は永久磁石材質で異なる為、数値を規格化して評価する必要があり、本発明では、便宜的に保磁力HcJで規格化した値、規格化角型比pをp=Hk/HcJで定義して用いる。 In general, in order to improve the thermal demagnetization characteristics of a permanent magnet, it is necessary that the coercive force HcJ and the squareness Hk of the demagnetization curve are large. Here, Hk is defined as the value of the magnetic field H at which the value of the magnetization J is 90% of the residual magnetic flux density (Br) on the JH demagnetization curve. However, since the squareness Hk value differs depending on the material of the permanent magnet, it is necessary to standardize and evaluate the numerical value. In the present invention, the value normalized by the coercive force HcJ and the normalized squareness ratio p are set for convenience. It defines and uses by p = Hk / HcJ.

現在の異方性希土類ボンド磁石の熱減磁特性が実用上いまだ不十分な最大の理由は、保磁力HcJの値が低いことと、規格化角型比p値が低いことである。現在の異方性ボンド磁石はHDDR又はd-HDDRという工程を用いているHDDR型磁石とSmFe合金を窒化処理して作成するSmFeN型の2種類である。これらHDDR型異方性希土類ボンド磁石もSmFeN型異方性希土類ボンド磁石いずれも燒結磁石並みの高い保磁力HcJと高い規格化角型比p値は得られていない。 The main reasons why the thermal demagnetization characteristics of current anisotropic rare earth bonded magnets are still insufficient in practical use are that the value of coercive force HcJ is low and the normalized squareness ratio p value is low. Currently, there are two types of anisotropic bonded magnets: an HDDR type magnet using a process called HDDR or d-HDDR and an SmFeN type produced by nitriding a SmFe alloy. Neither of these HDDR type anisotropic rare earth bonded magnets nor SmFeN type anisotropic rare earth bonded magnets has a high coercive force HcJ and a high normalized squareness ratio p value comparable to sintered magnets.

特に熱減磁特性に大きく影響する規格化角型比p値は、磁石の製造プロセス、均一性に大きく起因する。HDDR磁石ではその再結合過程(Desorption)工程で結晶粒を完全に同一方向に配向形成させる異方性化技術は非常に困難、またSmFeNに関してもSmFe合金に表面から窒素を均一に拡散かつ均一に反応させる技術が非常に難しく、高い規格化角型比pは得られていない。 In particular, the normalized squareness ratio p value that greatly affects the thermal demagnetization characteristics is largely attributable to the magnet manufacturing process and uniformity. With HDDR magnets, it is very difficult to make anisotropy technology in which crystal grains are oriented in the same direction during the resorption process (desorption), and even for SmFeN, nitrogen diffuses uniformly from the surface to the SmFe alloy. The reaction technique is very difficult, and a high normalized squareness ratio p has not been obtained.

一方、希土類燒結磁石は数ミクロンの微小単結晶に機械的に微粉砕された粉末を磁場成型しているため極めて結晶粒配向度が高く、かつ本発明は粉末粒子平均結晶粒径が30から200ミクロンと当初の結晶粒よりもはるかに大きいため、結晶粒配向度を乱すことなく高い規格化角型比pがそのまま比較的容易に実現可能である。本発明磁石は通常工程においても規格化角型比0.70以上、最大0.90以上を有する極めてp値の高い、即ち熱減磁等の温度特性の優れた異方性希土類ボンド磁石となる。優れた耐熱性を有するためには、保磁力が高いことに加えて、規格化角型比pが高いことが不可欠である。 On the other hand, since rare earth sintered magnets are magnetically molded from a powder that is mechanically pulverized into a micro single crystal of several microns, the degree of crystal grain orientation is extremely high, and the present invention has an average powder particle size of 30 to 200. Since micron and much larger than the original crystal grain, a high normalized squareness ratio p can be realized relatively easily without disturbing the degree of crystal grain orientation. The magnet of the present invention becomes an anisotropic rare earth bonded magnet having a normalized squareness ratio of 0.70 or more and a maximum of 0.90 or more even in a normal process and having an extremely high p value, that is, excellent temperature characteristics such as thermal demagnetization. In order to have excellent heat resistance, it is essential that the normalized squareness ratio p is high in addition to high coercivity.

本発明は、このように原料として異方性希土類燒結磁石原料を利用することを特徴とするため為、従来の異方性希土類ボンド磁石よりも本質的にはるかに高い保磁力とかつ高いp値が得られる。 Since the present invention is characterized by using an anisotropic rare earth sintered magnet raw material as a raw material in this way, the coercive force is substantially higher than that of a conventional anisotropic rare earth bonded magnet, and a high p value. Is obtained.

現在の市販の異方性ボンド磁石の保磁力HcJは1,100から1,500kA/m,
規格化角型比pは、0.2から0.3、最大でも0.4である。この等方性ボンド磁石耐熱性、具体的には熱減磁は大よそ約120−140℃である。
一方、本発明の異方性ボンド磁石は、保磁力HcJが最大で2,000kA/m, 規格化角型比pは通常工程でも0.70-0.85、最大で燒結磁石並みの0.90以上が可能である。保磁力が2,000kA/m、規格化角型比pが0.85の優れた特性を有する本発明磁石によれば、耐熱性200℃が実現可能である。このように極めて高い角型性を有する異方性燒結磁石材料を原料とするため、本発明の磁石は本質的に極めて優れた規格化角型比pを有する高耐熱性の異方性希土類ボンド磁石となる。
Current commercially available anisotropic bonded magnets have a coercivity HcJ of 1,100 to 1,500 kA / m,
The normalized squareness ratio p is 0.2 to 0.3, and at most 0.4. This isotropic bonded magnet heat resistance, specifically thermal demagnetization, is approximately 120-140 ° C.
On the other hand, the anisotropic bonded magnet of the present invention has a maximum coercive force HcJ of 2,000 kA / m, a normalized squareness ratio p of 0.70-0.85 even in the normal process, and a maximum of 0.90, which is the same as a sintered magnet. According to the magnet of the present invention having excellent characteristics such as coercive force of 2,000 kA / m and normalized squareness ratio p of 0.85, heat resistance of 200 ° C. can be realized. Since the anisotropic sintered magnet material having extremely high squareness is used as a raw material, the magnet of the present invention is essentially a highly heat-resistant anisotropic rare earth bond having a normalized squareness ratio p. It becomes a magnet.

このように、本発明の希土類系異方性ボンド磁石の性能上の最大の特徴のひとつは耐熱性、具体的には熱減磁特性である。 As described above, one of the greatest performance characteristics of the rare earth anisotropic bonded magnet of the present invention is heat resistance, specifically, thermal demagnetization characteristics.

熱減磁特性は或るPc(パーミアンス係数、通常Pc=1もしくは2)で高温、長時間(通常1000hr)後の磁束の減少量で評価される。その磁束減少量の目安が通常5%となる最高温度で耐熱性を評価する。現在異方性希土類ボンド磁石の耐熱性は通常約120℃である、と言われるのは、1000hr後の磁束減少量が120℃で5%となるため、実用上はこの120℃温度が使用可能上限温度であるという意味である。 Thermal demagnetization characteristics are evaluated by the amount of decrease in magnetic flux after high temperature and long time (usually 1000 hr) at a certain Pc (permeance coefficient, usually Pc = 1 or 2). The heat resistance is evaluated at the highest temperature at which the standard for the amount of magnetic flux reduction is normally 5%. It is said that the heat resistance of anisotropic rare earth bonded magnets is usually about 120 ° C because the decrease in magnetic flux after 1000 hours is 5% at 120 ° C, so this 120 ° C temperature can be used in practice. It means that it is the upper limit temperature.

現状市販の異方性希土類ボンド磁石耐熱性は大よそ約120−140℃である。たとえば異方性のSmFeNボンド磁石は、量産レベルで高々130℃、研究レベルで最高温度150℃が報告されている。(例えば日本ボンド磁性材料協会 BMNews、No43, 2010)。 The heat resistance of currently available anisotropic rare earth bonded magnets is about 120-140 ° C. For example, anisotropic SmFeN bonded magnets are reported to be 130 ° C. at the maximum for mass production and 150 ° C. at the research level. (For example, Japan Bond Magnetic Materials Association BMNews, No43, 2010).

本発明は、回収屑に含まれるNd磁石回収屑が量的に多い市場であることから基本的にNd基の材料系であり、その耐熱性が通常でも140℃、さらに180℃を越える良好な温度特性を有する異方性ボンド磁石である。 The present invention is basically a Nd-based material system because the Nd magnet recovered scrap contained in the recovered scrap is a large amount in the market, and its heat resistance is normally 140 ° C., more than 180 ° C. An anisotropic bonded magnet having temperature characteristics.

本発明は具体的にはPc=2, 140℃x1000hr条件で熱減磁5%以下、さらには同上条件下で160℃を超えるもの、さらに回収屑を選別利用かつバインダー種類と添加量等の磁粉以外の製造条件も併せて選定することにより耐熱性180℃を超えるきわめて優れた耐熱性を提供することができる。 Specifically, the present invention is such that Pc = 2, heat demagnetization is 5% or less under the condition of 140 ° C. × 1000 hr, further exceeds 160 ° C. under the same conditions as above, and the recovered waste is sorted and used, and the magnetic powder such as the kind and addition amount of the binder By selecting the production conditions other than those, extremely excellent heat resistance exceeding 180 ° C. can be provided.

一方では、現在市販されているα―HDDRの製造方法による異方性ボンド磁石の熱減磁特性はPc=2, 150℃x1000hrで、熱減磁約11%と大きいことが知られている。 On the other hand, it is known that the thermal demagnetization characteristic of the anisotropic bonded magnet by the manufacturing method of α-HDDR currently on the market is as large as about 11% of thermal demagnetization at Pc = 2, 150 ° C. × 1000 hr.

本発明の希土類系異方性ボンド磁石の磁石性能上のもう一つの特徴は高い耐食性であり、本磁石が長期間の使用に十分適用可能な長期信頼性と安定性を有していることである。 Another feature of the magnet performance of the rare earth anisotropic bonded magnet of the present invention is high corrosion resistance, and the magnet has long-term reliability and stability that can be sufficiently applied for long-term use. is there.

圧縮成型、射出成型で得られた本磁石はそのまま製品として実使用可能であるが、Niメッキ、エポキシコーティング、等の表面処理を施すことにより、通常市販の異方性ボンド磁石以上の高耐食信頼性を有する。耐食性評価は、通常実施されている80℃x90%RH条件において行い、通常異方性希土類ボンド磁石材料は200から400時間が耐食性の限界であることが知られている。 This magnet obtained by compression molding and injection molding can be used as a product as it is, but by applying surface treatment such as Ni plating, epoxy coating, etc., it has higher corrosion resistance than that of commercially available anisotropic bonded magnets. Have sex. Corrosion resistance evaluation is performed under the conditions of 80 ° C. × 90% RH, which is usually performed, and it is known that an anisotropic rare earth bonded magnet material has a limit of corrosion resistance of 200 to 400 hours.

本発明の希土類異方性ボンド磁石は80℃x90%RH条件下での耐食性が約300時間以上有する。さらに十分な表面処理を施すことにより最長で500時間まで外貌変化の無い優れた耐食性を有するものも可能である。 The rare earth anisotropic bonded magnet of the present invention has a corrosion resistance of about 300 hours or more under the condition of 80 ° C. × 90% RH. Furthermore, by performing sufficient surface treatment, it is possible to have excellent corrosion resistance with no change in appearance up to 500 hours.

温度と湿度の腐食加速試験から推定される寿命予測に参考までに換算すると、80℃x90%RHx500時間は、例えば23.8℃x78%RHで約20年、16.2℃x67%RHで約115年に相当し、本希土類異方性ボンド磁石が実用上十分な長期耐食性、長期信頼性を有していることがわかる。 When converted to a reference for the life prediction estimated from the accelerated corrosion test of temperature and humidity, 80 ° C x 90% RH x 500 hours is equivalent to, for example, 23.8 ° C x 78% RH, about 20 years, 16.2 ° C x 67% RH, about 115 years It can be seen that the rare earth anisotropic bonded magnet has practically sufficient long-term corrosion resistance and long-term reliability.

通常市販の異方性ボンド磁石材料では200から400時間が耐食性の限界であることが知られている。本発明の異方性ボンド磁石はこれらより同等またはそれ以上の約300時間、さらに十分な表面処理を施すことにより最長で500時間まで外貌変化の無い優れた長期耐食性、長期信頼性を有する磁石も可能である。 It is known that a commercially available anisotropic bonded magnet material has a limit of 200 to 400 hours in corrosion resistance. The anisotropic bonded magnet according to the present invention is a magnet having excellent long-term corrosion resistance and long-term reliability with no change in appearance for up to 500 hours by applying a sufficient surface treatment for about 300 hours equivalent to or longer than these. Is possible.

<実施例1>
出発原料の市中回収屑の磁気特性測定とICP成分分析(n=3)を行い、以下の特性と分析値を得た(表1―1、表1―2)。この回収屑のO量、C量の分析値は、おのおの4.3wt%、0.8wt%であった。また平均結晶粒径はn=5測定により、6.2μmであった。この合金粉末をアセトン中でボールミル粉砕行い、プレス成型粉末を得た。平均粒度は75μmである。得られた粉末は550℃x24hrでTiゲッター材を入れた高真空中で熱処理後、この成型粉末にエポキシバインダーを4.5t%添加して混錬してコンパウンドを得、磁場中で4.0Ton/cm2で圧縮成型した後、さらに300MPaの圧力で10分間CIP処理する。得られた異方性ボンド磁気特性と回収した磁石の磁気特性(n=5)測定した平均磁気特性と共に以下示す。
本回収屑はNd磁石単独の成分であり得られたCRは0.64であった。

Figure 2013145769
Figure 2013145769
<Example 1>
We measured the magnetic properties and ICP component analysis (n = 3) of the municipal waste recovered from the starting materials, and obtained the following properties and analysis values (Table 1-1, Table 1-2). The analytical values of the amount of O and C of the recovered waste were 4.3 wt% and 0.8 wt%, respectively. The average crystal grain size was 6.2 μm as measured by n = 5. This alloy powder was ball milled in acetone to obtain a press-molded powder. The average particle size is 75 μm. The resulting powder was heat-treated in a high vacuum containing Ti getter material at 550 ° C x 24hr, then added with 4.5t% of epoxy binder and kneaded to obtain a compound, and 4.0Ton / cm in a magnetic field After compression molding at 2 , CIP treatment is further performed at a pressure of 300 MPa for 10 minutes. The obtained anisotropic bond magnetic properties and the magnetic properties (n = 5) of the collected magnets are shown below together with the measured average magnetic properties.
The recovered scrap was a component of the Nd magnet alone, and the CR obtained was 0.64.
Figure 2013145769
Figure 2013145769

<実施例2>
出発原料の市中回収屑の磁気特性測定とICP成分分析(n=3)を行い、以下の特性と分析値を得た(表2―1、表2―2)。この回収屑のO量、C量の分析値は、おのおの4.8wt%、0.9wt%であった。また平均結晶粒径はn=5測定により、8.2μmであった。この合金粉末をアセトン中でボールミル粉砕行い、プレス成型粉末を得た。平均粒度は51μmである。得られた粉末は550℃x24hrでTiゲッター材を入れた高真空中で熱処理後、この成型粉末にエポキシバインダーを4.5%添加して混錬してコンパウンドを得、4.0Ton/cm2で磁場中圧縮成型した後、さらに300MPaの圧力で10分間CIP処理する。
本回収屑はNd磁石とSmを一部含有する成分であり得られたCRは0.69であった。

Figure 2013145769
Figure 2013145769
<Example 2>
We measured the magnetic properties and ICP component analysis (n = 3) of the municipal waste recovered from the starting materials, and obtained the following properties and analysis values (Tables 2-1 and 2-2). The analytical values of the O amount and the C amount of the recovered waste were 4.8 wt% and 0.9 wt%, respectively. The average crystal grain size was 8.2 μm as measured by n = 5. This alloy powder was ball milled in acetone to obtain a press-molded powder. The average particle size is 51 μm. The resulting powder was heat-treated in a high vacuum containing Ti getter material at 550 ° C x 24hr, and then compounded by adding 4.5% of epoxy binder to this molded powder to obtain a compound, and in a magnetic field at 4.0 Ton / cm 2 After compression molding, CIP treatment is further performed at a pressure of 300 MPa for 10 minutes.
The recovered scrap was a component containing a part of Nd magnet and Sm, and CR obtained was 0.69.
Figure 2013145769
Figure 2013145769

<実施例3>
出発原料の市中回収屑の磁気特性測定とICP成分分析(n=3)を行い、以下の特性と分析値を得た(表3―1、表3―2)。この回収屑のO量、C量の分析値は、おのおの3.5wt%、2.4wt%であった。また平均結晶粒径はn=5測定により、9.5μmであった。この合金粉末をアセトン中でボールミル粉砕行い、プレス成型粉末を得た。平均粒度は85μmである。得られた粉末は550℃x24hrでTiゲッター材を入れた高真空中で熱処理後、この成型粉末にナイロン12バインダーを6.5wt%添加して混錬してコンパウンドを得、磁場中で射出成型した。得られた異方性ボンド磁気特性の回収した磁石の磁気特性から導出したCRは0.47であった。
本回収屑はNd磁石とSmを一部含有する成分であるが、SmCo磁石の含有量は実施例2よりも多く、得られたCRは0.47であった。

Figure 2013145769
Figure 2013145769
<Example 3>
We measured the magnetic properties and ICP component analysis (n = 3) of the municipal waste recovered from the market, and obtained the following properties and analysis values (Tables 3-1 and 3-2). The analytical values of the O amount and C amount of the recovered waste were 3.5 wt% and 2.4 wt%, respectively. The average crystal grain size was 9.5 μm as measured by n = 5. This alloy powder was ball milled in acetone to obtain a press-molded powder. The average particle size is 85 μm. The obtained powder was heat-treated in a high vacuum containing Ti getter material at 550 ° C x 24hr, then kneaded by adding 6.5 wt% of nylon 12 binder to this molded powder, and obtained a compound, which was injection molded in a magnetic field. . The CR derived from the magnetic properties of the recovered magnet of the obtained anisotropic bond magnetic properties was 0.47.
Although this collection | recovery waste is a component which contains a part of Nd magnet and Sm, content of SmCo magnet is more than Example 2, and obtained CR was 0.47.
Figure 2013145769
Figure 2013145769

<実施例4>
出発原料の市中回収屑の磁気特性測定とICP成分分析(n=3)を行い、以下の特性と分析値を得た(表4―1、表4―2)。この回収屑のO量、C量の分析値は、おのおの6.9wt%、3.2wt%であった。なお用いた市中屑はほとんど全量Niメッキ品の回収屑である。また平均結晶粒径はn=5測定により、7.0μmであった。この合金粉末をまずジョークラッシャで粗粉砕した後、アセトン中でボールミル微粉砕行い、プレス成型粉末を得た。平均粒度は63μmである。得られた粉末は550℃x24hrでTiゲッター材を入れた高真空中で熱処理後、この成型粉末にエポキシバインダーを4.5t%添加して混錬してコンパウンドを得、3.5Ton/cm2で磁場中圧縮射出成型した後、さらに300MPaの圧力で10分間CIP処理する。
またエアタッピング効果を検証する為、磁場成型時に圧搾空気を用いたエアタッピングを行って、成型前のグリーン密度を高めた後に成型しさらに圧縮成型後後、さらに300MPaの圧力で10分間CIP処理して異方性ボンド磁石を作成した。
本回収屑は全量Nd磁石屑の成分であった。
得られた異方性ボンド磁気特性のCRは0.61,エアタッピングするとCRは0.68と向上することがわかった。エアタッピング有り無しにかかわらず、Niメッキ回収屑も良好な磁気特性が得られることを確認した。

Figure 2013145769

Figure 2013145769
<Example 4>
We measured the magnetic properties and ICP component analysis (n = 3) of the municipal waste recovered from the starting materials, and obtained the following properties and analytical values (Tables 4-1 and 4-2). The analytical values of the amount of O and the amount of C of the collected waste were 6.9 wt% and 3.2 wt%, respectively. The municipal waste used was almost entirely recovered from Ni-plated products. The average crystal grain size was 7.0 μm as measured by n = 5. This alloy powder was first roughly pulverized with a jaw crusher and then finely pulverized in acetone to obtain a press-molded powder. The average particle size is 63 μm. The resulting powder was heat-treated in a high vacuum containing Ti getter material at 550 ° C x 24hr, then added with 4.5t% of epoxy binder to this molded powder and kneaded to obtain a compound, and a magnetic field of 3.5Ton / cm 2 After medium compression injection molding, CIP treatment is further performed at a pressure of 300 MPa for 10 minutes.
In addition, in order to verify the air tapping effect, air tapping using compressed air is performed at the time of magnetic field molding, the green density before molding is increased and then molded, and after further compression molding, CIP treatment is further performed at a pressure of 300 MPa for 10 minutes. An anisotropic bonded magnet was prepared.
This recovered scrap was a component of the total amount of Nd magnet scrap.
It was found that CR of the obtained anisotropic bond magnetic properties was 0.61, and CR improved to 0.68 when air tapping was performed. It was confirmed that good magnetic properties can be obtained for Ni plating scraps with or without air tapping.
Figure 2013145769

Figure 2013145769

<実施例5>
出発原料の市中回収屑の磁気特性測定とICP成分分析(n=3)を行い、以下の特性と分析値を得た(表5―1、表5―2)。この回収屑のO量、C量の分析値は、おのおの5.8wt%、1.8wt%であった。また平均結晶粒径はn=5測定により、8.7μであった。この合金粉末をアセトン中でボールミル粉砕行い、プレス成型粉末を得た。平均粒度は95ミクロンである。得られた粉末は550℃x24hrでTiゲッター材を入れた高真空中で熱処理後、この成型粉末にPPSバインダーを6.5t%添加して混錬してコンパウンドを得、磁場中で射出成型した。成型後にエポキシスプレーコーティングを施して信頼性も確認した。
本回収屑はNd磁石とSm等を一部含有する成分であり得られたCRは0.49であった。
また本発明の磁石の耐食性、信頼性を市販のSmFeN異方性ボンド磁石と共に評価した(表5―3)。比較例の市販SmFeN異方性ボンド磁石は入手後、本発明磁石と同一エポキシスプレーコーティング条件で処理した。耐食性を80℃x90%RHの条件で試験したところ、市販のSmFeN赤点錆発生磁石は300時間で既に微小赤点錆発生、一方本発明磁石は600時間まで錆発生は起こらず、現状市販異方性ボンド磁石よりも極めて優れた長期耐食性、長期安定性を有することがわかった。これは用いた原料が微細でかつ均一な組織を有する焼結磁石のため、結晶粒界等からの腐食とその内部進行が非常に起こりにくい為と推定している。

Figure 2013145769

Figure 2013145769
Figure 2013145769
<Example 5>
We measured the magnetic properties and ICP component analysis (n = 3) of the municipal waste recovered from the starting materials, and obtained the following properties and analytical values (Tables 5-1 and 5-2). The analytical values of the O amount and C amount of the recovered waste were 5.8 wt% and 1.8 wt%, respectively. The average crystal grain size was 8.7 μm as measured by n = 5. This alloy powder was ball milled in acetone to obtain a press-molded powder. The average particle size is 95 microns. The obtained powder was heat treated in a high vacuum containing a Ti getter material at 550 ° C. × 24 hr, and then kneaded by adding 6.5 t% of PPS binder to this molded powder, and injection molded in a magnetic field. Reliability was also confirmed by applying an epoxy spray coating after molding.
The recovered scrap was a component containing a part of Nd magnet and Sm, and CR obtained was 0.49.
Further, the corrosion resistance and reliability of the magnet of the present invention were evaluated together with a commercially available SmFeN anisotropic bonded magnet (Table 5-3). The commercially available SmFeN anisotropic bonded magnet of the comparative example was obtained and treated under the same epoxy spray coating conditions as the magnet of the present invention. When the corrosion resistance was tested under the conditions of 80 ° C. × 90% RH, the commercially available SmFeN red spot rust generating magnet already generated micro red spot rust in 300 hours, while the magnet of the present invention did not generate rust until 600 hours. It has been found that it has long-term corrosion resistance and long-term stability that are significantly better than isotropic bonded magnets. This is presumed to be because the raw material used is a sintered magnet having a fine and uniform structure, so that corrosion from the crystal grain boundaries and the internal progress thereof are very unlikely to occur.
Figure 2013145769

Figure 2013145769
Figure 2013145769

<実施例6>
出発原料の市中回収屑の磁気特性測定とICP成分分析(n=3)を行い、以下の特性と分析ちを得た(表6―1、表6―2)。この回収屑のO量、C量の分析値は、おのおの4.1wt%、2.6wt%であった。Nd磁石の一部は大部分Al(アルミニューム)表面処理の回収屑であった。また平均結晶粒径はn=5測定により、6.3μmであった。この合金粉末をアセトン中でボールミル粉砕行い、粉砕時サンプリングにより、プレス成型粉末を得た。各々平均粒度は14,59μmである。(Cp=0.24)
これら得られた粉末は550℃x24hrでTiゲッター材を入れた高真空中で熱処理後、この2種の粉末をKp=2.0で配合し混合、さらにこの成型粉末にエポキシバインダーを4.5wt%添加して混錬してコンパウンドを得、4.0Ton/cm2で磁場中圧縮成型、その後さらに300MPaの圧力で10分間CIP処理する。
得られた異方性ボンド磁気特性のCRは0.43であり、回収屑はAl表面処理したNd磁石、一部SmCo磁石であったが、良好な異方性ボンド磁石の磁気特性が得られている。

Figure 2013145769

Figure 2013145769

得られた異方性ボンド磁石の熱減磁特性を比較の為市販の等方性ボンド磁石、異方性ボンド磁石と比較評価した(表6―3)。熱減磁評価条件はPc=2, 保持温度が140℃もしくは180℃で1,000hrである。本表にあるように、本発明磁石は140℃で1.8%、180℃においても3.6%という極めて低い熱減磁量を達成していることがわかる。一方、比較例の市販の等方性、異方性いずれの磁石においても熱減磁量が140℃、180℃いずれの温度においても極めて熱減磁量が大きく、本発明磁石が優れた耐熱使用温度を具備していることがわかる。この理由は、用いた回収焼結磁石屑が成分分析結果からわかるようにDyやTb等の多い高耐熱性を有する磁石成分であることに大きく起因していると推測する。
Figure 2013145769
<Example 6>
We measured the magnetic properties and ICP component analysis (n = 3) of the municipal waste recovered from the starting materials, and obtained the following properties and analysis (Tables 6-1 and 6-2). The analytical values of the amount of O and the amount of C of the collected waste were 4.1 wt% and 2.6 wt%, respectively. Part of the Nd magnet was mostly recovered scrap from Al (aluminum) surface treatment. The average crystal grain size was 6.3 μm as measured by n = 5. This alloy powder was ball milled in acetone, and a press-molded powder was obtained by sampling during grinding. Each average particle size is 14,59 μm. (Cp = 0.24)
These obtained powders were heat-treated in a high vacuum containing Ti getter material at 550 ° C x 24hr, then these two kinds of powders were blended and mixed at Kp = 2.0, and epoxy binder was added to this molded powder at 4.5wt%. Kneading is performed to obtain a compound, compression molding in a magnetic field at 4.0 Ton / cm 2 , and then CIP treatment for 10 minutes at a pressure of 300 MPa.
The CR of the obtained anisotropic bonded magnetic property was 0.43, and the recovered scrap was an Al surface-treated Nd magnet and partly SmCo magnet, but good anisotropic bonded magnet magnetic properties were obtained. .
Figure 2013145769

Figure 2013145769

For comparison, the thermal demagnetization characteristics of the obtained anisotropic bonded magnets were compared with those of commercially available isotropic bonded magnets and anisotropic bonded magnets (Table 6-3). Thermal demagnetization evaluation conditions are Pc = 2, holding temperature is 140 ° C or 180 ° C and 1,000 hours. As shown in this table, it can be seen that the magnet of the present invention achieves a very low thermal demagnetization amount of 1.8% at 140 ° C. and 3.6% at 180 ° C. On the other hand, the thermal demagnetization amount is 140 ° C and 180 ° C both in the commercially available isotropic and anisotropic magnets of the comparative example, and the heat demagnetization amount is extremely large at any temperature. It turns out that it has temperature. This reason is presumably due to the fact that the recovered sintered magnet scrap used is a magnet component having a high heat resistance such as Dy and Tb as can be seen from the component analysis results.
Figure 2013145769

<実施例7>
出発原料の市中回収屑の磁気特性測定とICP成分分析(n=3)を行い、以下の特性と分析値を得た(表7―1、表7―2)。この回収屑のO量、C量の分析値は、おのおの3.7wt%、2.1wt%であった。また平均結晶粒径はn=5測定により、7.2μmであった。この合金粉末をアセトン中でボールミル粉砕行い、プレス成型粉末を得た。平均粒度は58μmである。得られた粉末は550℃x24hrでTiゲッター材を入れた高真空中で熱処理後、この成型粉末にエポキシバインダーを4.5wt%添加して混錬してコンパウンドを得、さらに無機溶媒と混合して磁場中で4.0Ton/cm2で湿式圧縮成型した後、さらに300MPaの圧力で10分間CIP処理する。得られた異方性ボンド磁気特性のCRは0.62であった。

Figure 2013145769
Figure 2013145769

得られた異方性ボンド磁石の熱減磁特性を比較の為市販の等方性ボンド磁石、異方性ボンド磁石と比較評価した(表7―3)。熱減磁評価条件はPc=2, 保持温度が140℃もしくは180℃で1,000hrである。本表にあるように、本発明磁石は140℃で2.3%、180℃においても4.2%という極めて低い熱減磁量を達成していることがわかる。一方、比較例の異方性SmFeNボンド磁石は熱減磁量が140℃、180℃いずれの温度でも極めて大きく、本発明磁石が優れた耐熱使用温度を具備していることがわかる。この理由は、用いた回収焼結磁石屑が成分分析からわかるようにDyやTb等の多い高耐熱性を有する焼結磁石であることに大きく起因していると推測する。
Figure 2013145769
<Example 7>
We measured the magnetic properties and ICP component analysis (n = 3) of the municipal waste recovered from the starting materials, and obtained the following properties and analytical values (Tables 7-1 and 6-2). The analytical values of the O amount and C amount of the recovered waste were 3.7 wt% and 2.1 wt%, respectively. The average crystal grain size was 7.2 μm as measured by n = 5. This alloy powder was ball milled in acetone to obtain a press-molded powder. The average particle size is 58 μm. The obtained powder was heat-treated in a high vacuum containing Ti getter material at 550 ° C x 24hr, then added with 4.5 wt% of epoxy binder to this molded powder and kneaded to obtain a compound, and further mixed with an inorganic solvent. After wet compression molding at 4.0 Ton / cm 2 in a magnetic field, CIP treatment is further performed at a pressure of 300 MPa for 10 minutes. The obtained anisotropic bond magnetic property CR was 0.62.
Figure 2013145769
Figure 2013145769

For comparison, the thermal demagnetization characteristics of the obtained anisotropic bonded magnet were compared with those of commercially available isotropic bonded magnets and anisotropic bonded magnets (Table 7-3). Thermal demagnetization evaluation conditions are Pc = 2, holding temperature is 140 ° C or 180 ° C and 1,000 hours. As shown in this table, it can be seen that the magnet of the present invention achieves a very low thermal demagnetization amount of 2.3% at 140 ° C. and 4.2% at 180 ° C. On the other hand, the anisotropic SmFeN bonded magnet of the comparative example has a very large amount of thermal demagnetization at both 140 ° C. and 180 ° C., indicating that the magnet of the present invention has an excellent heat resistant use temperature. This reason is presumably due to the fact that the recovered sintered magnet scrap used is a sintered magnet having a high heat resistance with a large amount of Dy, Tb, etc. as can be seen from the component analysis.
Figure 2013145769

希土類ボンド磁石の市場は、JABM(日本ボンド磁性材料協会)によれば、2008年統計では国内市場が約100億、全世界での市場は約500億と推定されている。また市場の伸び率は年間約11%、今後も需要拡大が予測されている。
現在の市販の希土類ボンド磁石は大部分が等方性ボンド磁石である。異方性ボンド磁石は現在までその市場性、磁石材料性能、量産コスト等理由で大量に普及可能な材料が無いのが現状であり、希土類異方性ボンド磁石の希土類ボンド磁石の全市場に対する現在の市場占有率は数%と非常に低い。
本発明の磁石材料が入手可能となれば、まず等方性から本発明の異方性ボンド磁石への転換が急速に進むであろう。即ち等方性から異方性への転換により、電子部品の小型、軽量、省資源、省エネルギー、高効率化が可能となる。
また従来等方性ボンド磁石では実現不可能であった新規な用途、分野への適用も可能となる。
According to JABM (Japan Bond Magnetic Materials Association), the market for rare earth bonded magnets is estimated to be about 10 billion for the domestic market and about 50 billion for the global market, according to 2008 statistics. The market growth rate is about 11% per year, and demand is expected to continue expanding.
Most of the commercially available rare earth bonded magnets are isotropic bonded magnets. There are currently no materials that can be used in large quantities for anisotropic bonded magnets because of their marketability, magnet material performance, mass production costs, etc. Has a very low market share of several percent.
If the magnet material of the present invention becomes available, the conversion from isotropic to the anisotropic bonded magnet of the present invention will proceed rapidly. In other words, by switching from isotropic to anisotropic, electronic components can be reduced in size, weight, resources, energy, and efficiency.
Also, it can be applied to new applications and fields that could not be realized with conventional isotropic bonded magnets.

Claims (6)

回収された希土類異方性焼結磁石から製造した異方性希土類ボンド磁石であって、
鉄(Fe)以外の成分として、少なくともネオジム(Nd)を3〜35wt%、ホウ素(B)を0.3〜1.3wt%、サマリウム(Sm)を0〜30wt%、コバルト(Co)を0〜15wt%、ニッケル(Ni)を0〜5.5wt%、アルミニウム(Al)を0〜5.5wt%を含み、かつ、ニッケル(Ni)とアルミニウム(Al)を合わせて0.3wt%以上を含み、最大エネルギー積(BH)maxが96から270kJ/m3の磁気特性を有することを特徴とする異方性希土類ボンド磁石。
An anisotropic rare earth bonded magnet manufactured from the recovered rare earth anisotropic sintered magnet,
As components other than iron (Fe), at least neodymium (Nd) is 3 to 35 wt%, boron (B) is 0.3 to 1.3 wt%, samarium (Sm) is 0 to 30 wt%, and cobalt (Co) is 0. -15 wt%, nickel (Ni) 0-5.5 wt%, aluminum (Al) 0-5.5 wt%, and nickel (Ni) and aluminum (Al) combined 0.3 wt% or more An anisotropic rare earth bonded magnet having a maximum energy product (BH) max of 96 to 270 kJ / m 3 .
前記希土類異方性燒結磁石が、ネオジム焼結磁石又はネオジム焼結磁石及びサマリウムコバルト焼結磁石であることを特徴とする請求項1に記載の異方性希土類ボンド磁石。   The anisotropic rare earth bonded magnet according to claim 1, wherein the rare earth anisotropic sintered magnet is a neodymium sintered magnet or a neodymium sintered magnet and a samarium cobalt sintered magnet. 前記異方性希土類ボンド磁石において、粉砕した前記原料の粒子平均粒径が30から200μm(ミクロン)、かつ各粒子を形成する主相の平均結晶粒径が1から15μm(ミクロン)の組織構造を有することを特徴とする請求項1又は請求項2に記載の異方性希土類ボンド磁石。   In the anisotropic rare earth bonded magnet, the pulverized raw material has an average particle size of 30 to 200 μm (micron) and a main phase forming each particle has an average crystal particle size of 1 to 15 μm (micron). The anisotropic rare earth bonded magnet according to claim 1, wherein the anisotropic rare earth bonded magnet is provided. 希土類異方性燒結磁石を原料として異方性希土類ボンド磁石の製造方法であって、前記希土類異方性燒結磁石を不活性雰囲気下で機械的に粉砕する工程と、前記粉砕した材料を高真空または不活性雰囲気下で400から600℃の温度で保持時間12時間以上のひずみ取焼鈍処理する工程と、前記ひずみ取焼鈍処理した材料とバインダーを混錬し、磁場成型する工程とからなることを特徴とする異方性希土類ボンド磁石の製造方法。   A method for producing an anisotropic rare earth bonded magnet using a rare earth anisotropic sintered magnet as a raw material, wherein the rare earth anisotropic sintered magnet is mechanically pulverized in an inert atmosphere, and the pulverized material is subjected to high vacuum. Alternatively, the method comprises a step of strain relief annealing at a temperature of 400 to 600 ° C. in an inert atmosphere and a holding time of 12 hours or more, and a step of kneading the strain relief annealed material and a binder to form a magnetic field. A method for producing an anisotropic rare earth bonded magnet. 前記磁場成型の圧縮成型工程において、湿式成型方法を用いることを特徴する請求項4に記載の異方性希土類ボンド磁石の製造方法。   The method for producing an anisotropic rare earth bonded magnet according to claim 4, wherein a wet molding method is used in the compression molding step of the magnetic field molding. 前記磁場成型の圧縮成型工程において、圧縮成型後にCIP工程を加える2段プレス成型を行うことを特徴する請求項5に記載の異方性希土類ボンド磁石の製造方法。
6. The method for producing an anisotropic rare earth bonded magnet according to claim 5, wherein, in the compression molding step of the magnetic field molding, two-stage press molding is performed in which a CIP step is added after the compression molding.
JP2010175039A 2010-08-04 2010-08-04 Anisotropic rare earth bond magnet and method for manufacturing the same Pending JP2013145769A (en)

Priority Applications (3)

Application Number Priority Date Filing Date Title
JP2010175039A JP2013145769A (en) 2010-08-04 2010-08-04 Anisotropic rare earth bond magnet and method for manufacturing the same
PCT/JP2011/001857 WO2012017574A1 (en) 2010-08-04 2011-03-29 Anisotropic rare earth bonded magnet and production method therefor
JP2012527533A JPWO2012017574A1 (en) 2010-08-04 2011-03-29 Anisotropic rare earth bonded magnet and manufacturing method thereof

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2010175039A JP2013145769A (en) 2010-08-04 2010-08-04 Anisotropic rare earth bond magnet and method for manufacturing the same

Publications (1)

Publication Number Publication Date
JP2013145769A true JP2013145769A (en) 2013-07-25

Family

ID=45559100

Family Applications (2)

Application Number Title Priority Date Filing Date
JP2010175039A Pending JP2013145769A (en) 2010-08-04 2010-08-04 Anisotropic rare earth bond magnet and method for manufacturing the same
JP2012527533A Pending JPWO2012017574A1 (en) 2010-08-04 2011-03-29 Anisotropic rare earth bonded magnet and manufacturing method thereof

Family Applications After (1)

Application Number Title Priority Date Filing Date
JP2012527533A Pending JPWO2012017574A1 (en) 2010-08-04 2011-03-29 Anisotropic rare earth bonded magnet and manufacturing method thereof

Country Status (2)

Country Link
JP (2) JP2013145769A (en)
WO (1) WO2012017574A1 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN104851543A (en) * 2015-05-21 2015-08-19 唐海峰 Preparing method of anticorrosion samarium cobalt-based permanent magnet material
CN109396444A (en) * 2018-11-05 2019-03-01 湖南航天磁电有限责任公司 A kind of processing method of sintered samarium cobalt permanent magnet tailing

Families Citing this family (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2013225533A (en) * 2012-03-19 2013-10-31 Hitachi Metals Ltd Method of manufacturing r-t-b-based sintered magnet
AU2014281646A1 (en) 2013-06-17 2016-02-11 Urban Mining Technology Company, Llc Magnet recycling to create Nd-Fe-B magnets with improved or restored magnetic performance
KR102070869B1 (en) * 2013-09-11 2020-01-29 엘지전자 주식회사 Recycled neodymium-based sintered magnets having high coercivity and residual magnetic flux density and method of preparing the same
EP3693386A1 (en) 2014-05-16 2020-08-12 Ablynx NV Immunoglobulin variable domains
CA2948945C (en) 2014-05-16 2023-08-08 Ablynx Nv Methods for detecting and/or measuring anti-drug antibodies, in particular treatment-emergent anti-drug antibodies
US9336932B1 (en) 2014-08-15 2016-05-10 Urban Mining Company Grain boundary engineering
CN104846255B (en) * 2015-05-21 2016-12-07 新昌县辰逸服饰有限公司 A kind of preparation method of yttrium iron based permanent magnetic material
CN110546506B (en) 2017-03-31 2023-04-04 埃博灵克斯股份有限公司 Improved immunogenicity assays

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5816002A (en) * 1981-07-21 1983-01-29 Namiki Precision Jewel Co Ltd Production of resin bound permament magnet
JP3933415B2 (en) * 2001-06-12 2007-06-20 独立行政法人科学技術振興機構 Rare earth bonded magnets made from recycled magnet waste
JP2006274344A (en) * 2005-03-29 2006-10-12 Tdk Corp Production method of r-t-b system sintered magnet
JP2009231391A (en) * 2008-03-19 2009-10-08 Hitachi Metals Ltd R-t-b based sintered magnet

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN104851543A (en) * 2015-05-21 2015-08-19 唐海峰 Preparing method of anticorrosion samarium cobalt-based permanent magnet material
CN109396444A (en) * 2018-11-05 2019-03-01 湖南航天磁电有限责任公司 A kind of processing method of sintered samarium cobalt permanent magnet tailing
CN109396444B (en) * 2018-11-05 2021-08-31 湖南航天磁电有限责任公司 Method for processing leftover bits and pieces of sintered samarium cobalt permanent magnet

Also Published As

Publication number Publication date
WO2012017574A1 (en) 2012-02-09
JPWO2012017574A1 (en) 2013-09-19

Similar Documents

Publication Publication Date Title
JP2013145769A (en) Anisotropic rare earth bond magnet and method for manufacturing the same
JP6201446B2 (en) Sintered magnet
Brown et al. Developments in the processing and properties of NdFeb-type permanent magnets
JP5767788B2 (en) R-T-B rare earth permanent magnet, motor, automobile, generator, wind power generator
CN102956336B (en) A kind of method preparing the sintered Nd-Fe-B permanent magnetic material of compound interpolation gadolinium, holmium and yttrium
Davies et al. Recent developments in the sintering of NdFeB
US10563276B2 (en) High-performance NdFeB permanent magnet comprising nitride phase and production method thereof
JP6439876B2 (en) Magnet particle and magnet molded body using the same
WO2010082492A1 (en) Method for producing r-t-b sintered magnet
CN101630557A (en) Gadolinium-containing sintered rare earth permanent magnet alloy and preparation method thereof
CN104575920B (en) Rare-earth permanent magnet and preparation method thereof
CN111261352B (en) Method for producing R-T-B permanent magnet
CN102034583A (en) Mixed rare-earth permanent magnet and method of fabrication
JP2022543487A (en) High Cu high Al neodymium iron boron magnet and its manufacturing method
CN101582317A (en) Novel sintered neodymium-iron-boron permanent-magnet material and manufacture method thereof
WO2021135143A1 (en) R-t-b-based sintered magnet and preparation method therefor
EP3355319A1 (en) Corrosion-resistant sintered neodymium-iron-boron magnet rich in lanthanum and cerium, and manufacturing method
US20220319773A1 (en) Grain boundary diffusion method for bulk rare earth permanent magnetic material
JP4951703B2 (en) Alloy material for RTB-based rare earth permanent magnet, method for manufacturing RTB-based rare earth permanent magnet, and motor
JP5366779B2 (en) Magnetic powder recovery method for rare earth bonded magnet, magnet material for rare earth bonded magnet using recovered magnetic powder, magnet material and method for manufacturing rare earth bonded magnet
JP2011014631A (en) R-t-b-based rare-earth permanent magnet, and motor, automobile, generator and wind turbine generator
JP2011124394A5 (en)
WO2018181592A1 (en) Permanent magnet and rotating machine
CN111863369B (en) Magnetic binder and preparation method thereof, and preparation method of composite permanent magnet material
JP5743458B2 (en) Alloy material for RTB-based rare earth permanent magnet, method for manufacturing RTB-based rare earth permanent magnet, and motor