WO2018181592A1 - Permanent magnet and rotating machine - Google Patents

Permanent magnet and rotating machine Download PDF

Info

Publication number
WO2018181592A1
WO2018181592A1 PCT/JP2018/012997 JP2018012997W WO2018181592A1 WO 2018181592 A1 WO2018181592 A1 WO 2018181592A1 JP 2018012997 W JP2018012997 W JP 2018012997W WO 2018181592 A1 WO2018181592 A1 WO 2018181592A1
Authority
WO
WIPO (PCT)
Prior art keywords
permanent magnet
phase
content
atomic
squareness ratio
Prior art date
Application number
PCT/JP2018/012997
Other languages
French (fr)
Japanese (ja)
Inventor
敦 古田
孝裕 諏訪
信宏 神宮
Original Assignee
Tdk株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Tdk株式会社 filed Critical Tdk株式会社
Publication of WO2018181592A1 publication Critical patent/WO2018181592A1/en

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22FWORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
    • B22F3/00Manufacture of workpieces or articles from metallic powder characterised by the manner of compacting or sintering; Apparatus specially adapted therefor ; Presses and furnaces
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C33/00Making ferrous alloys
    • C22C33/02Making ferrous alloys by powder metallurgy
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01FMAGNETS; INDUCTANCES; TRANSFORMERS; SELECTION OF MATERIALS FOR THEIR MAGNETIC PROPERTIES
    • H01F1/00Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties
    • H01F1/01Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials
    • H01F1/03Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity
    • H01F1/032Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity of hard-magnetic materials
    • H01F1/04Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity of hard-magnetic materials metals or alloys
    • H01F1/047Alloys characterised by their composition
    • H01F1/053Alloys characterised by their composition containing rare earth metals
    • H01F1/055Alloys characterised by their composition containing rare earth metals and magnetic transition metals, e.g. SmCo5
    • H01F1/057Alloys characterised by their composition containing rare earth metals and magnetic transition metals, e.g. SmCo5 and IIIa elements, e.g. Nd2Fe14B

Definitions

  • the present invention relates to a permanent magnet and a rotating machine.
  • An RTB-based permanent magnet containing a rare earth element R, a transition metal element T such as iron (Fe) or cobalt (Co), and boron B has excellent magnetic properties.
  • the main phase of the RTB system permanent magnet contains, for example, a tetragonal R 2 T 14 B compound.
  • the RTB permanent magnet is a high-performance permanent magnet.
  • An RTB-based permanent magnet containing Nd, Pr, Dy, Tb, or Ho as the rare earth element R has a large anisotropic magnetic field Ha and is suitable for a permanent magnet.
  • an Nd—Fe—B permanent magnet containing Nd as the rare earth element R has a good balance between the saturation magnetization Is, the Curie temperature Tc, and the anisotropic magnetic field Ha.
  • the resource amount of Nd—Fe—B permanent magnets is large. Therefore, Nd—Fe—B permanent magnets are widely used in consumer equipment, industrial equipment, transportation equipment, and the like.
  • the RTB permanent magnet described in Patent Document 1 has a grain boundary phase containing Ce. This grain boundary phase is formed by a two-alloy method.
  • the present invention has been made in view of the above circumstances, and among permanent magnets containing Ce as a substitute element for Nd, a permanent magnet having both a high coercive force and a high squareness ratio, and a rotating machine including the permanent magnet are provided.
  • the purpose is to provide.
  • a permanent magnet according to one aspect of the present invention is a permanent magnet containing a rare earth element R, a transition metal element T, and boron B, and the rare earth element R contains at least Nd, Y, and Ce, and the transition metal element T Includes at least Fe, the total content of rare earth elements R in the permanent magnet is [R] atomic%, and the total content of the transition metal elements T in the permanent magnet is [T] atomic%.
  • the content of B in [B] is [B] atomic%
  • the content of Y in the permanent magnet is [Y] atomic%
  • the content of Ce in the permanent magnet is [Ce] atomic%
  • [Y] / [R] is 0.05 to 0.25
  • [Ce] / [R] is 0.10 to 0.55
  • [T] / [B] is 14 to 18.
  • the C content in the permanent magnet may be 0.00 to 0.25% by mass
  • the N content in the permanent magnet is 0.00 to 0.25% by mass
  • the content of O in the permanent magnet may be 0.00 to 0.25% by mass.
  • a rotating machine includes the permanent magnet.
  • a permanent magnet having a high coercive force and a high squareness ratio among permanent magnets containing Ce as an alternative element of Nd, and a rotating machine including the permanent magnet are provided.
  • FIG. 10 is a schematic diagram of a cross section 10cs of FIG.
  • FIG. 2 is an enlarged view of a part II of the cross section 10cs of the permanent magnet 10 shown in FIG.
  • FIG. 3 is a schematic perspective view of a rotating machine according to an embodiment of the present invention.
  • FIG. 4 is a diagram showing the relationship between [T] / [B] and HcJ in Experiment Group 1.
  • FIG. 5 is a diagram illustrating the relationship between [T] / [B] and the squareness ratio of the experimental group 1.
  • FIG. 6 is a diagram showing the relationship between [Y] / [R] and HcJ for each of the experimental groups 2-1 to 2-4.
  • FIG. 7 is a diagram showing the relationship between [Y] / [R] and the squareness ratio of each of the experimental groups 2-1 to 2-4.
  • FIG. 8 is a diagram showing the relationship between [Ce] / [R] and HcJ in the experimental group 3.
  • FIG. 9 is a diagram showing the relationship between [Ce] / [R] and the squareness ratio in the experimental group 3.
  • FIG. 10 is a diagram showing the relationship between [Y] / [R] and HcJ for each of the experimental groups 4-1 and 4-2.
  • FIG. 11 is a diagram showing the relationship between [Y] / [R] and the squareness ratio of each of the experimental groups 4-1 and 4-2.
  • the permanent magnet according to the present invention may be a sintered magnet or a hot-worked magnet.
  • the permanent magnet according to the present invention may be a rare earth magnet.
  • the whole permanent magnet 10 according to the present embodiment is shown in (a) of FIG.
  • a cross section 10cs of the permanent magnet 10 is shown in FIG.
  • FIG. 2 is an enlarged view of a part II of the cross section 10 cs of the permanent magnet 10.
  • the permanent magnet 10 may include a plurality of main phase particles 11 (main phase) and a grain boundary phase 9 located between the plurality of main phase particles 11.
  • the permanent magnet 10 may be a sintered body composed of a large number of main phase particles 11 via the grain boundary phase 9.
  • the permanent magnet 10 contains a rare earth element R, a transition metal element T, and boron B.
  • the main phase particle 11 may contain a rare earth element R, a transition metal element T, and B.
  • the rare earth element R contains at least Nd (neodymium), Y (yttrium), and Ce (cerium).
  • the transition metal element T contains at least Fe (iron).
  • the total content of rare earth elements R in the permanent magnet 10 is expressed as [R] atomic%.
  • the total content of the transition metal element T in the permanent magnet 10 is expressed as [T] atomic%.
  • the B content in the permanent magnet 10 is expressed as [B] atomic%.
  • the Y content in the permanent magnet 10 is expressed as [Y] atomic%.
  • the Ce content in the permanent magnet 10 is expressed as [Ce] atomic%.
  • [Y] / [R] is 0.05 to 0.25.
  • [Ce] / [R] is 0.10 to 0.55.
  • the present inventors examined a method for increasing the coercive force of a permanent magnet in which a part of the rare earth element R is replaced with Ce.
  • the main phase particles in the permanent magnet are, for example, tetragonal R 2 T 14 B compounds.
  • the stoichiometric ratio of T to B in R 2 T 14 B is 14.
  • the present inventors have found that a high coercive force can be obtained when [T] / [B] is 14 or more and 18 or less, which is the stoichiometric ratio.
  • the squareness ratio of the permanent magnet is likely to be lowered only when [T] / [B] is within the above range.
  • the R 2 T 17 phase is likely to be precipitated in the grain boundary phase, so that the squareness ratio of the permanent magnet is likely to be lowered.
  • the R 2 T 17 phase can be modified into the main phase by performing liquid phase sintering at a sufficiently high temperature.
  • the liquidus temperature of the main phase is lowered, so that the main phase becomes coarse due to abnormal grain growth even when the temperature of the liquid phase sintering is relatively low. Magnetic properties such as magnetic force are reduced.
  • [Y] / [R] is 0.05 to 0.25, and a part of R in the main phase is replaced with Y, so that the liquidus temperature of the main phase increases, The coarsening of the phase particles 11 is suppressed, and liquid phase sintering becomes possible at a relatively high temperature. As a result, the R 2 T 17 phase can be reformed to the main phase, and the squareness ratio of the permanent magnet 10 is increased.
  • [Ce] / [R] is 0.10 to 0.55, and the substitution amount of Ce in the main phase is not too large, so that the liquidus temperature of the main phase is unlikely to decrease.
  • the sintering can be performed at a sufficiently high temperature to modify the R 2 T 17 phase, the squareness ratio of the permanent magnet 10 is unlikely to decrease. From the above, even if a part of the rare earth element R is replaced with Ce, both a high coercive force and a high squareness ratio can be achieved.
  • the reason why the permanent magnet 10 has a high coercive force and a high squareness ratio is not limited to the above reason.
  • the rare earth element R may further contain other rare earth elements in addition to Nd, Y, and Ce.
  • Other rare earth elements include, for example, Sc (scandium), La (lanthanum), Pr (praseodymium), Sm (samarium), Eu (europium), Gd (gadolinium), Ho (holmium), Dy (dysprosium) and Tb ( May be at least one selected from the group consisting of terbium).
  • the rare earth element R may consist only of Nd, Y, and Ce.
  • [R] may be 11-18 atomic%.
  • the Nd content [Nd] in the permanent magnet 10 may be 2.2 to 14.4 atomic%.
  • [Y] may be 0.55 to 4.5 atomic%.
  • [Ce] may be 1.1 to 9.9 atomic%.
  • the transition metal element T may further contain Co (cobalt) in addition to Fe, and may further contain other transition metal elements.
  • the other transition metal element may be, for example, Ni (nickel).
  • the transition metal element T may consist only of Fe and Co. [T] may be 76.5 to 84.3 atomic%.
  • the Fe content [Fe] in the permanent magnet 10 may be 71.5 to 84.3 atomic%.
  • the Co content [Co] in the permanent magnet 10 may be 0 to 5 atomic%.
  • [B] may be 4.32 to 5.93 atomic%, or 4.65 to 5.41 atomic%.
  • [Y] / [R] may be 0.05 to 0.25, or 0.05 to 0.15. When [Y] / [R] is within the above range, the squareness ratio of the permanent magnet 10 tends to be high.
  • [Ce] / [R] may be 0.10 to 0.55, or 0.1 to 0.4.
  • [Ce] / [R] is within the above range, even if R in the main phase is replaced with Ce, the coercive force of the permanent magnet 10 is hardly reduced.
  • [T] / [B] may be 14.0 to 18.0, or 15.5 to 18.0.
  • [T] / [B] is within the above range, the coercive force of the permanent magnet 10 tends to be high.
  • the permanent magnet 10 includes Cu (copper), Al (aluminum), Mn (manganese), Nb (niobium), Ta (tantalum), Zr (zirconium), Ti (titanium), W (tungsten), Mo (molybdenum), You may further contain elements, such as V (vanadium), Ag (silver), Ge (germanium), Zn (zinc), Ga (gallium), Si (silicon), Sn (tin), and Bi (bismuth).
  • the C (carbon) content in the permanent magnet 10 may be 0.00 to 0.25% by mass, or 0.00 to 0.10% by mass.
  • the content of N (nitrogen) in the permanent magnet 10 may be 0.00 to 0.25% by mass, or 0.00 to 0.10% by mass.
  • the content of O (oxygen) in the permanent magnet 10 may be 0.00 to 0.25% by mass, or 0.00 to 0.10% by mass.
  • the Y-OCN phase may include at least one selected from the group consisting of yttrium oxide, yttrium carbide, and yttrium nitride, for example.
  • the composition of the permanent magnet 10 is X-ray fluorescence analysis, ICP (Inductively Coupled Plasma) emission analysis, inert gas melting-non-dispersive infrared absorption method, combustion in oxygen stream-infrared absorption method, inert gas melting- It may be specified by a thermal conductivity method or the like.
  • Each main phase particle 11 may include at least a rare earth element R, a transition metal element T, and boron (B).
  • the rare earth element R contains at least Nd (neodymium), Y (yttrium), and Ce (cerium). That is, a part of Nd is substituted with Y and Ce.
  • the transition metal element T contains at least Fe (iron).
  • the transition metal element T may contain Fe and Co (cobalt). That is, a part of the Fe may be replaced with Co.
  • Each main phase particle 11 may contain carbon (C) in addition to boron (B). That is, a part of the above B may be replaced with C.
  • the main phase particle 11 may contain R 2 T 14 M as a main phase.
  • the element M may be only B.
  • the element M may be B and C.
  • R 2 T 14 M may be represented as Nd 2 -xy Y x Ce y Fe 14 -s Co s B 1 -t C t .
  • x + y is greater than 0 and less than 2.
  • x is greater than 0 and less than 2.
  • y is greater than 0 and less than 2.
  • s is 0 or more and less than 14.
  • t is 0 or more and less than 1.
  • the main phase particles 11 may contain Nd 2 Fe 14 B.
  • the main phase particles 11 may include Y 2 Fe 14 B.
  • the main phase particles 11 may include Ce 2 Fe 14 B.
  • the grain boundary phase 9 may include an RT phase 3 containing an intermetallic compound of a rare earth element R and a transition metal element T.
  • the grain boundary phase 9 may include an R-rich phase 5, a heterogeneous phase 7, an R 6 T 13 E phase, and the like.
  • the element E may be at least one selected from the group consisting of Ga, Si, Sn, and Bi.
  • the definitions of RT phase 3, R rich phase 5, heterogeneous phase 7, and R 6 T 13 E phase may be as follows.
  • the content of C in the RT phase 3 is expressed as [C] L atomic%.
  • the N content in the RT phase 3 is expressed as [N] L atomic%.
  • the content of O in the RT phase 3 is expressed as [O] L atomic%.
  • the total content of rare earth elements R in the RT phase 3 is expressed as [R] L atomic%.
  • the total content of the transition metal element T in the RT phase 3 is expressed as [T] L atomic%.
  • the total content of the element E in the RT phase 3 is expressed as [E] L atomic%.
  • the RT phase 3 may be a phase that satisfies all of the following inequalities (1), (2), and (3).
  • the RT phase 3 may include, for example, an RT 2 phase. That is, the intermetallic compound contained in the RT phase 3 may be, for example, RT 2.
  • RT 2 may be represented as Nd 1- ⁇ Ce ⁇ Fe 2- ⁇ Co ⁇ . ⁇ is 0 or more and 1 or less. ⁇ is 0 or more and 2 or less.
  • RT 2 may be, for example, NdFe 2 or CeFe 2 .
  • the RT phase 3 may be a Laves phase.
  • the crystal structure of RT phase 3 may be C15 type.
  • the RT phase 3 may be specified based on the diffraction angle 2 ⁇ of the diffraction peak derived from the lattice plane (hkl) using an X-ray diffraction (XRD) pattern.
  • XRD X-ray diffraction
  • 2 ⁇ derived from the lattice plane (220) of the RT phase 3 may be 34.0 to 34.73 °.
  • 2 ⁇ derived from the lattice plane (311) of the RT phase 3 may be 40.10 to 40.97 °.
  • the 2 ⁇ may vary within the above range depending on the type of rare earth element R contained in the RT phase 3.
  • the content of C in the R-rich phase 5 is expressed as [C] R atomic%.
  • the N content in the R-rich phase 5 is expressed as [N] R atomic%.
  • the content of O in the R-rich phase 5 is expressed as [O] R atomic%.
  • the total content of rare earth elements R in the R-rich phase 5 is expressed as [R] R atomic%.
  • the total content of the transition metal element T in the R-rich phase 5 is expressed as [T] R atomic%.
  • the R-rich phase 5 may be a phase that satisfies the following inequalities (4) and (5). 0 ⁇ [C] R + [N] R + [O] R ⁇ 30 (4) 0.50 ⁇ [R] R / ([R] R + [T] R ) ⁇ 1.00 (5)
  • the content of C in the heterogeneous phase 7 is expressed as [C] D atomic%.
  • the N content in the different phase 7 is expressed as [N] D atomic%.
  • the content of O in the heterogeneous phase 7 is expressed as [O] D atomic%.
  • the hetero phase 7 may be a phase in which the sum of [C] D , [N] D, and [O] D [C] D + [N] D + [O] D is 30 or more and less than 100. That is, the different phase 7 may be a phase satisfying the following inequality (6).
  • the hetero phase 7 may include, for example, at least one selected from the group consisting of an oxide of R, a carbide of R, and a nitride of R. 30 ⁇ [C] D + [N] D + [O] D ⁇ 100 (6)
  • the content of C in the R 6 T 13 E phase is expressed as [C] A atomic%.
  • the content of N in the R 6 T 13 E phase is expressed as [N] A atomic%.
  • the content of O in the R 6 T 13 E phase is expressed as [O] A atomic%.
  • the total content of rare earth elements R in the R 6 T 13 E phase is expressed as [R] A atomic%.
  • the total content of the transition metal element T in the R 6 T 13 E phase is expressed as [T] A atomic%.
  • the total content of the element E in the R 6 T 13 E phase is expressed as [E] A atomic%.
  • the R 6 T 13 E phase may be a phase that satisfies all of the following inequalities (7), (8), and (9).
  • the manufacturing method of the permanent magnet 10 may be as follows.
  • the starting materials are weighed to match the desired permanent magnet 10 composition.
  • the starting material can be, for example, a metal, an alloy or an oxide.
  • a reduction process for removing oxygen may be performed at any point in the manufacturing process of the permanent magnet 10.
  • the raw material alloy may be produced from the above starting materials by the following strip casting method, high frequency induction melting method, arc melting method, and other melting methods.
  • a raw material alloy may be produced from a starting material by a reduction diffusion method.
  • a melting method such as a strip casting method may be performed in a non-oxidizing atmosphere.
  • the non-oxidizing atmosphere may be, for example, a vacuum or an inert gas such as Ar (argon).
  • the starting material is melted in a non-oxidizing atmosphere to produce a molten metal (melting material alloy).
  • the molten metal is poured onto the surface of a rotating roll in a non-oxidizing atmosphere. Since the metal roll is cooled by water cooling or the like, the molten metal is rapidly cooled on the surface of the roll and solidifies. By crushing the alloy peeled from the roll, a raw material alloy in the form of a thin plate or flakes (scales) is obtained.
  • the roll may be made of copper, for example.
  • the raw material alloy may be pulverized by, for example, hydrogen pulverization.
  • hydrogen pulverization the raw material alloy is placed in a hydrogen atmosphere, and the raw material alloy is made to store hydrogen.
  • the raw material alloy occludes hydrogen, the volume of the raw material alloy expands.
  • the hydrogenation reaction of the metal contained in the raw material alloy occurs, and the raw material alloy becomes brittle.
  • cracks occur in the raw material alloy, and the raw material alloy is pulverized.
  • the particle size of the coarse powder may be, for example, 10 to 1000 ⁇ m.
  • the coarse powder may be dehydrogenated by heating the coarse powder.
  • the dehydrogenation temperature may be 300-400 ° C.
  • the dehydrogenation time may be 0.5 to 20 hours.
  • a lubricant may be added to the coarse powder.
  • the lubricant may be, for example, an ester organic material or an amide organic material.
  • the amide-based organic substance may be, for example, oleic acid amide.
  • the coarse powder may be pulverized by an airflow pulverizer (jet mill) or the like.
  • fine powder is accelerated by an inert gas stream and then pulverized by colliding with a hard ceramic plate.
  • the obtained fine powder is recovered from the particle collecting part (cyclone) of the jet mill.
  • the inert gas may be nitrogen gas, argon gas or the like.
  • the particle size of the fine powder may be, for example, 0.5 to 10 ⁇ m.
  • the pressing direction may be a direction perpendicular to the magnetic field direction.
  • the strength of the magnetic field may be, for example, 960-1600 kA / m.
  • the pressure applied to the fine powder may be, for example, 10 to 500 MPa.
  • the sintering temperature may be 1000 to 1200 ° C., for example.
  • the sintering time may be, for example, 0.1 to 100 hours.
  • the green body may be sintered in a reduced pressure atmosphere, an inert atmosphere, or the like.
  • the permanent magnet 10 is obtained by subjecting the sintered body to an aging treatment.
  • the aging treatment the sintered body is heated.
  • the temperature of the aging treatment may be 450 to 950 ° C., for example.
  • the time for aging treatment may be, for example, 0.1 to 100 hours.
  • the aging treatment may be performed in a reduced pressure atmosphere, an inert atmosphere, or the like. By performing the aging treatment, the coercive force of the permanent magnet 10 tends to be higher.
  • the aging treatment may be composed of a one-stage heat treatment process or may be composed of two or more heat treatment processes. For example, after heating at a relatively high temperature, it may be heated at a relatively low temperature. In this case, the coercive force of the permanent magnet 10 tends to be higher.
  • the obtained permanent magnet 10 may be processed into a predetermined shape.
  • the processing method may be, for example, shape processing such as cutting and grinding, or chamfering processing such as barrel polishing.
  • shape processing such as cutting and grinding
  • chamfering processing such as barrel polishing.
  • the surface of the permanent magnet 10 serving as a measurement sample may be processed flat. Due to the flat surface, the exact dimensions of the measurement sample can be obtained.
  • the method for processing the surface to be flat may be, for example, a wet method, a dry method, or the like. The wet method is preferable because the processing time is short and the processing cost is low.
  • a protective layer may be formed on the surface of the sintered body.
  • the protective layer may be, for example, a resin layer or an inorganic layer (for example, a metal layer or an oxide layer).
  • the method for forming the protective layer may be, for example, a plating method, a coating method, a vapor deposition polymerization method, a gas phase method, or a chemical conversion treatment method.
  • the rotating machine according to the present embodiment includes the permanent magnet 10a.
  • An example of the internal structure of the rotating machine is shown in FIG.
  • the rotating machine 200 according to the present embodiment is a permanent magnet synchronous rotating machine (SPM rotating machine).
  • the rotating machine 200 includes a cylindrical rotor 50 and a stator 30 disposed inside the rotor 50.
  • the rotor 50 includes a cylindrical core 52 and a plurality of permanent magnets 10 a arranged along the inner peripheral surface of the core 52.
  • the plurality of permanent magnets 10 a are arranged so that N poles and S poles are alternately arranged along the inner peripheral surface of the core 52.
  • the stator 30 has a plurality of coils 32 provided along the outer peripheral surface thereof.
  • the coil 32 and the permanent magnet 10a are arranged so as to face each other.
  • the rotating machine 200 may be an electric motor.
  • the electric motor converts electrical energy into mechanical energy by the interaction between the field generated by the electromagnet generated by energizing the coil 32 and the field generated by the permanent magnet 10a.
  • the rotating machine 200 may be a generator.
  • the generator converts mechanical energy into electrical energy by the interaction (electromagnetic induction) between the field and the coil 32 by the permanent magnet 10a.
  • the rotating machine 200 that functions as an electric motor may be, for example, a permanent magnet DC motor, a linear synchronous motor, a permanent magnet synchronous motor (SPM motor, IPM motor), or a reciprocating motor.
  • the motor that functions as the reciprocating motor may be, for example, a voice coil motor or a vibration motor.
  • the rotating machine 200 that functions as a generator may be, for example, a permanent magnet synchronous generator, a permanent magnet commutator generator, or a permanent magnet AC generator.
  • the rotating machine 200 may be used for automobiles, industrial machines, household appliances, and the like.
  • the permanent magnet according to the present invention may be manufactured by a hot working method, a film forming method, a spark plasma sintering method, or the like.
  • Example 1 A permanent magnet was produced by the method described below. Nd, Y, Ce, Fe, FeB, Co, Cu, and Al were prepared as starting materials (single or alloy) for the permanent magnet. The purity of each starting material was 99.9% by mass. The composition of the permanent magnet is 13.60 atomic% Nd-0.80 atomic% Y-1.60 atomic% Ce-7.62 atomic% Fe-0.50 atomic% Co-5.58 atomic% B-0.20. Each starting material was weighed and mixed so as to be atomic% Al-0.10 atomic% Cu to prepare a mixed raw material. An alloy flake was obtained by quenching and crushing the melt of the mixed raw material on the surface of the roll by the strip casting method.
  • the flakes were pulverized by hydrogen pulverization to obtain a coarse powder.
  • the coarse powder was dehydrogenated.
  • the dehydrogenation temperature was 300 ° C.
  • the dehydrogenation time was 5 hours.
  • Lubricant was added to the coarse powder after dehydrogenation.
  • the lubricant was oleic amide.
  • the content of the lubricant in the coarse powder was 0.1% by mass.
  • the coarse powder to which the lubricant was added was pulverized by a jet mill in a high-pressure argon gas atmosphere to obtain a fine powder.
  • the fine powder was put into a molding space (cavity) in the molding machine.
  • a fine powder was pressed in a magnetic field and molded to obtain a molded body.
  • the pressing direction was a direction perpendicular to the magnetic field direction.
  • the strength of the magnetic field was 15 ⁇ (10 3 / 4 ⁇ ) kA / m.
  • the pressure applied to the fine powder was 140 MPa.
  • the sintered body was sintered to obtain a sintered body.
  • the sintering temperature was 1030 ° C.
  • the sintering time was 6 hours.
  • the sintered body was processed into a rectangular parallelepiped shape by inner peripheral cutting.
  • the volume and weight of the sintered body after processing were measured, and the relative density was calculated.
  • the relative density of the sintered body was 99.0% or more.
  • the fracture surface of the sintered body was observed with an optical microscope. As a result, coarse particles were not confirmed. From the observation of the relative density of the sintered body and the cross-sectional structure of the sintered body, it was confirmed that the molded body could be sintered under an appropriate temperature condition.
  • the sintered body was subjected to an aging treatment to obtain the permanent magnet of Example 1.
  • the temperature of the aging treatment was 700 ° C.
  • the time for aging treatment was 1 hour.
  • the content (unit: mass%) of O in the permanent magnet of Example 1 was measured by an inert gas melting-non-dispersive infrared absorption method.
  • the C content (unit: mass%) in the permanent magnet of Example 1 was measured by combustion in an oxygen stream-infrared absorption method.
  • the N content (unit: mass%) in the permanent magnet of Example 1 was measured by an inert gas melting-thermal conductivity method. Table 2 shows the results.
  • the coercive force HcJ (unit: kA / m) of the permanent magnet of Example 1 was measured using a BH tracer. Further, the external magnetic field Hk applied to the permanent magnet when the magnetic flux density of 90% of the residual magnetic flux density Br was obtained was obtained.
  • the squareness ratio 100 ⁇ Hk / HcJ (unit:%) of the permanent magnet of Example 1 was determined from HcJ and Hk. Table 2 shows the HcJ and the squareness ratio of Example 1.
  • the unit (kOe) of the coercive force HcJ in the following table is equivalent to “ ⁇ (10 3 / 4 ⁇ ) ⁇ (kA / m)”.
  • HcJ is preferably 12 ⁇ (10 3 / 4 ⁇ ) kA / m or more.
  • the squareness ratio is preferably 85% or more, and more preferably 90% or more.
  • Examples 2 to 9, Comparative Examples 1 to 24, Reference Example 1 Each starting material of Examples 2 to 9, Comparative Examples 1 to 24 and Reference Example 1 was weighed so that the composition of the permanent magnet was as shown in Tables 1 to 5. According to the following procedure, appropriately sintered sintered bodies (the sintered bodies of Examples 2 to 9, Comparative Examples 1 to 24, and Reference Example 1) were obtained. A plurality of molded bodies were individually produced by the same method as in Example 1. A plurality of sintered bodies were individually manufactured by changing the sintering temperature from 950 ° C. to 1100 ° C. in increments of 10 ° C. The relative density of each sintered body was measured by the same method as in Example 1, and the cross-sectional structure of each sintered body was observed. A sintered body in which the relative density of the sintered body was 99.0% or more and coarse particles were not confirmed on the fracture surface of the sintered body was determined to be an appropriately sintered sintered body.
  • compositions of the permanent magnets of Examples 2 to 9, Comparative Examples 1 to 24, and Reference Example 1 were analyzed in the same manner as in Example 1. The results are shown in Tables 1-5.
  • Example 10 to 15 In Examples 10 and 11, the contents of C, N, and O in the permanent magnet were adjusted to the values shown in Table 5 by adjusting the amount of oleic amide added to the coarse powder. Except for this point, the permanent magnets of Examples 10 and 11 were individually manufactured by the same method as in Example 4. When obtaining the fine powders of Examples 12 and 13, the contents of C, N and O in the permanent magnet were adjusted to the values shown in Table 5 by using a mixed gas of argon and nitrogen instead of argon gas. did. Except for this point, permanent magnets of Examples 12 and 13 were individually produced by the same method as in Example 4.
  • compositions of the permanent magnets of Examples 10 to 15 were analyzed in the same manner as in Example 1. The results are shown in Table 5.
  • FIG. 4 shows the relationship between [T] / [B] and HcJ in the experimental group 1 shown in Table 1.
  • FIG. 5 shows the relationship between [T] / [B] and the squareness ratio in Experimental Group 1.
  • [T] / [B] of the experimental group 2-1 shown in Table 2 is 14.
  • [T] / [B] in the experimental group 2-2 is 18.
  • [T] / [B] is 12 in the experimental group 2-3.
  • [T] / [B] in the experimental group 2-4 is 20.
  • FIG. 6 shows the relationship between [Y] / [R] and HcJ in each of the experimental groups 2-1 to 2-4.
  • FIG. 7 shows the relationship between [Y] / [R] and the squareness ratio in each of the experimental groups 2-1 to 2-4.
  • FIG. 8 shows the relationship between [Ce] / [R] and HcJ in the experimental group 3 shown in Table 3.
  • FIG. 9 shows the relationship between [Ce] / [R] and the squareness ratio in Experimental Group 3.
  • [Ce] / [R] of the experimental group 4-1 shown in Table 4 is 0.55.
  • [Ce] / [R] is 0.65.
  • FIG. 10 shows the relationship between [Y] / [R] and HcJ in each of the experimental groups 4-1 and 4-2.
  • FIG. 11 shows the relationship between [Y] / [R] and the squareness ratio in each of the experimental groups 4-1 and 4-2.
  • the C content, the N content, or the O content in the permanent magnets are different from each other.
  • HcJ of all examples was 12 kOe or more, and the squareness ratio of all examples was 85% or more.
  • the permanent magnet of Comparative Example 4 had a low liquidus temperature of the main phase and could not perform liquid phase sintering at a sufficiently high temperature. Therefore, the R 2 T 17 phase was used as the main phase. It is considered that the squareness ratio was lowered due to the inability to modify. In the permanent magnet of Comparative Example 7, the amount of substitution of Y in the main phase increased, and the anisotropy magnetic field Ha of the main phase decreased.
  • the permanent magnet of Reference Example 1 had a coercive force of 12 kOe or more and a squareness ratio of 85% or more.
  • the squareness ratio did not decrease even when part of the rare earth element R was replaced with Ce.
  • the Ce content in the permanent magnet since the Ce content in the permanent magnet is small, there is almost no effect of making the permanent magnet inexpensive.
  • the permanent magnets each Comparative Example 4, and 16-19 the main phase of the liquid phase temperature is low, because it could not implement the liquid-phase sintering at a sufficiently high temperature, the R 2 T 17 phase It is considered that the squareness ratio was lowered because the main phase could not be modified.
  • the permanent magnet of Comparative Example 4 had a low liquidus temperature of the main phase and could not perform liquid phase sintering at a sufficiently high temperature, so the R 2 T 17 phase was the main phase. It is considered that the squareness ratio was lowered due to the inability to modify.
  • the amount of substitution of Y in the main phase was increased, and the anisotropic magnetic field Ha of the main phase was decreased.
  • the permanent magnet according to the present invention is used, for example, in a rotating machine.

Landscapes

  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Mechanical Engineering (AREA)
  • Manufacturing & Machinery (AREA)
  • Materials Engineering (AREA)
  • Metallurgy (AREA)
  • Organic Chemistry (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Inorganic Chemistry (AREA)
  • Power Engineering (AREA)
  • Hard Magnetic Materials (AREA)
  • Powder Metallurgy (AREA)

Abstract

Provided are a permanent magnet having high coercive force and high squareness ratio among permanent magnets including Ce as an alternative element for Nd, and a rotating machine provided with the permanent magnet. The permanent magnet contains a rare-earth element R, a transition metal element T, and boron B, wherein: the rare-earth element R includes at least Nd, Y, and Ce; the transition metal element T includes at least Fe; a total content of the rare-earth element R in the permanent magnet is [R] at%; a total content of the transition metal element T in the permanent magnet is [T] at%; the content of B in the permanent magnet is [B] at%; the content of Y in the permanent magnet is [Y] at%; the content of Ce in the permanent magnet is [Ce] at%; [Y]/[R] is 0.05 to 0.25; [Ce]/[R] is 0.10 to 0.55; and [T]/[B] is 14 to 18.

Description

永久磁石及び回転機Permanent magnet and rotating machine
 本発明は、永久磁石及び回転機に関する。 The present invention relates to a permanent magnet and a rotating machine.
 希土類元素R、鉄(Fe)又はコバルト(Co)等の遷移金属元素T、及びホウ素Bを含有するR‐T‐B系永久磁石は、優れた磁気特性を有する。R‐T‐B系永久磁石の主相は、例えば、正方晶のR14B化合物を含有する。R‐T‐B系永久磁石は、高性能な永久磁石である。 An RTB-based permanent magnet containing a rare earth element R, a transition metal element T such as iron (Fe) or cobalt (Co), and boron B has excellent magnetic properties. The main phase of the RTB system permanent magnet contains, for example, a tetragonal R 2 T 14 B compound. The RTB permanent magnet is a high-performance permanent magnet.
 希土類元素RとしてNd、Pr、Dy、Tb、又はHoを含有するR‐T‐B系永久磁石は、異方性磁界Haが大きく、永久磁石に適している。特に、希土類元素RとしてNdを含有するNd‐Fe‐B系永久磁石は、飽和磁化Isと、キュリー温度Tcと、異方性磁界Haとのバランスが良い。また、Nd‐Fe‐B系永久磁石の資源量は多い。そのため、Nd‐Fe‐B系永久磁石は、民生機器、産業機器、輸送機器などに広く用いられている。 An RTB-based permanent magnet containing Nd, Pr, Dy, Tb, or Ho as the rare earth element R has a large anisotropic magnetic field Ha and is suitable for a permanent magnet. In particular, an Nd—Fe—B permanent magnet containing Nd as the rare earth element R has a good balance between the saturation magnetization Is, the Curie temperature Tc, and the anisotropic magnetic field Ha. In addition, the resource amount of Nd—Fe—B permanent magnets is large. Therefore, Nd—Fe—B permanent magnets are widely used in consumer equipment, industrial equipment, transportation equipment, and the like.
 今後、Nd‐Fe‐B系永久磁石の需要が増加することが予想される。そのため、Ndの価格が高騰する可能性がある。そこで、R‐T‐B系永久磁石に含まれるNdの一部をCeに置換することが試みられている。Ceの価格は低く、Ceの資源量は多い。例えば、特許文献1に記載のR‐T‐B系永久磁石は、Ceを含有する粒界相を有する。この粒界相は、二合金法により形成される。 Demand for Nd-Fe-B permanent magnets is expected to increase in the future. Therefore, there is a possibility that the price of Nd will soar. Therefore, an attempt has been made to replace part of Nd contained in the RTB permanent magnet with Ce. Ce prices are low and Ce resources are large. For example, the RTB permanent magnet described in Patent Document 1 has a grain boundary phase containing Ce. This grain boundary phase is formed by a two-alloy method.
特開2015-204390号公報Japanese Patent Laying-Open No. 2015-204390
 特許文献1に記載の永久磁石の保磁力HcJは高いが、この永久磁石のヒステリシスループの角型比は低下し易い。そのため、この永久磁石をモータ(回転機)に組み込むと、モータの出力が低下し易い。 Although the coercive force HcJ of the permanent magnet described in Patent Document 1 is high, the squareness ratio of the hysteresis loop of the permanent magnet is likely to decrease. Therefore, when this permanent magnet is incorporated in a motor (rotating machine), the output of the motor is likely to be reduced.
 本発明は、上記事情に鑑みてなされたものであり、Ndの代替元素としてCeを含む永久磁石の中でも高い保磁力と高い角型比とを兼ね備える永久磁石、及び当該永久磁石を備える回転機を提供することを目的とする。 The present invention has been made in view of the above circumstances, and among permanent magnets containing Ce as a substitute element for Nd, a permanent magnet having both a high coercive force and a high squareness ratio, and a rotating machine including the permanent magnet are provided. The purpose is to provide.
 本発明の一側面に係る永久磁石は、希土類元素R、遷移金属元素T、及びホウ素Bを含有する永久磁石であって、希土類元素Rが、少なくともNd、Y及びCeを含み、遷移金属元素Tが、少なくともFeを含み、永久磁石における希土類元素Rの含有量の合計が[R]原子%であり、永久磁石における遷移金属元素Tの含有量の合計が[T]原子%であり、永久磁石におけるBの含有量が[B]原子%であり、永久磁石におけるYの含有量が[Y]原子%であり、永久磁石におけるCeの含有量が[Ce]原子%であり、[Y]/[R]が0.05~0.25であり、[Ce]/[R]が0.10~0.55であり、[T]/[B]が14~18である。 A permanent magnet according to one aspect of the present invention is a permanent magnet containing a rare earth element R, a transition metal element T, and boron B, and the rare earth element R contains at least Nd, Y, and Ce, and the transition metal element T Includes at least Fe, the total content of rare earth elements R in the permanent magnet is [R] atomic%, and the total content of the transition metal elements T in the permanent magnet is [T] atomic%. The content of B in [B] is [B] atomic%, the content of Y in the permanent magnet is [Y] atomic%, the content of Ce in the permanent magnet is [Ce] atomic%, and [Y] / [R] is 0.05 to 0.25, [Ce] / [R] is 0.10 to 0.55, and [T] / [B] is 14 to 18.
 本発明の一側面に係る上記永久磁石では、永久磁石におけるCの含有量が0.00~0.25質量%であってよく、永久磁石におけるNの含有量が0.00~0.25質量%であってよく、永久磁石におけるOの含有量が0.00~0.25質量%であってよい。 In the permanent magnet according to one aspect of the present invention, the C content in the permanent magnet may be 0.00 to 0.25% by mass, and the N content in the permanent magnet is 0.00 to 0.25% by mass. The content of O in the permanent magnet may be 0.00 to 0.25% by mass.
 本発明の一側面に係る回転機は、上記永久磁石を備える。 A rotating machine according to one aspect of the present invention includes the permanent magnet.
 本発明によれば、Ndの代替元素としてCeを含む永久磁石の中でも高い保磁力と高い角型比とを兼ね備える永久磁石、及び当該永久磁石を備える回転機が提供される。 According to the present invention, a permanent magnet having a high coercive force and a high squareness ratio among permanent magnets containing Ce as an alternative element of Nd, and a rotating machine including the permanent magnet are provided.
図1中の(a)は、本発明の一実施形態に係る永久磁石10の模式的な斜視図であり、図1中の(b)は、図1中の(a)に示される永久磁石10の断面10csの模式図(b-b線方向の矢視図)である。(A) in FIG. 1 is a schematic perspective view of a permanent magnet 10 according to an embodiment of the present invention, and (b) in FIG. 1 is a permanent magnet shown in (a) in FIG. FIG. 10 is a schematic diagram of a cross section 10cs of FIG. 図2は、図1中の(b)に示される永久磁石10の断面10csの一部IIの拡大図である。FIG. 2 is an enlarged view of a part II of the cross section 10cs of the permanent magnet 10 shown in FIG. 図3は、本発明の一実施形態に係る回転機の模式的な斜視図である。FIG. 3 is a schematic perspective view of a rotating machine according to an embodiment of the present invention. 図4は、実験群1の[T]/[B]とHcJとの関係を示す図である。FIG. 4 is a diagram showing the relationship between [T] / [B] and HcJ in Experiment Group 1. 図5は、実験群1の[T]/[B]と角型比との関係を示す図である。FIG. 5 is a diagram illustrating the relationship between [T] / [B] and the squareness ratio of the experimental group 1. 図6は、実験群2‐1~2‐4それぞれの[Y]/[R]とHcJとの関係を示す図である。FIG. 6 is a diagram showing the relationship between [Y] / [R] and HcJ for each of the experimental groups 2-1 to 2-4. 図7は、実験群2‐1~2‐4それぞれの[Y]/[R]と角型比との関係を示す図である。FIG. 7 is a diagram showing the relationship between [Y] / [R] and the squareness ratio of each of the experimental groups 2-1 to 2-4. 図8は、実験群3の[Ce]/[R]とHcJとの関係を示す図である。FIG. 8 is a diagram showing the relationship between [Ce] / [R] and HcJ in the experimental group 3. 図9は、実験群3の[Ce]/[R]と角型比との関係を示す図である。FIG. 9 is a diagram showing the relationship between [Ce] / [R] and the squareness ratio in the experimental group 3. 図10は、実験群4‐1及び4‐2それぞれの[Y]/[R]とHcJとの関係を示す図である。FIG. 10 is a diagram showing the relationship between [Y] / [R] and HcJ for each of the experimental groups 4-1 and 4-2. 図11は、実験群4‐1及び4‐2それぞれの[Y]/[R]と角型比との関係を示す図である。FIG. 11 is a diagram showing the relationship between [Y] / [R] and the squareness ratio of each of the experimental groups 4-1 and 4-2.
 以下、場合により図面を参照して、本発明の好適な実施形態について説明する。ただし、本発明は下記実施形態に何ら限定されるものではない。図面において、同一又は同等の構成要素には同一の符号を付す。本発明に係る永久磁石は、焼結磁石、又は熱間加工磁石であってよい。本発明に係る永久磁石は、希土類磁石であってよい。 Hereinafter, preferred embodiments of the present invention will be described with reference to the drawings as the case may be. However, the present invention is not limited to the following embodiment. In the drawings, the same or equivalent components are denoted by the same reference numerals. The permanent magnet according to the present invention may be a sintered magnet or a hot-worked magnet. The permanent magnet according to the present invention may be a rare earth magnet.
 本実施形態に係る永久磁石10の全体は、図1中の(a)に示される。永久磁石10の断面10csは、図1中の(b)に示される。図2は、永久磁石10の断面10csの一部IIの拡大図である。図2に示されるように、永久磁石10は、複数の主相粒子11(主相)と、複数の主相粒子11の間に位置する粒界相9と、を備えてよい。例えば、永久磁石10は、粒界相9を介した多数の主相粒子11から構成される焼結体であってよい。 The whole permanent magnet 10 according to the present embodiment is shown in (a) of FIG. A cross section 10cs of the permanent magnet 10 is shown in FIG. FIG. 2 is an enlarged view of a part II of the cross section 10 cs of the permanent magnet 10. As shown in FIG. 2, the permanent magnet 10 may include a plurality of main phase particles 11 (main phase) and a grain boundary phase 9 located between the plurality of main phase particles 11. For example, the permanent magnet 10 may be a sintered body composed of a large number of main phase particles 11 via the grain boundary phase 9.
 永久磁石10は、希土類元素R、遷移金属元素T、及びホウ素Bを含有する。主相粒子11は、希土類元素R、遷移金属元素T、及びBを含有してよい。希土類元素Rは、少なくともNd(ネオジム)、Y(イットリウム)及びCe(セリウム)を含む。遷移金属元素Tは、少なくともFe(鉄)を含む。永久磁石10における希土類元素Rの含有量の合計が[R]原子%と表される。永久磁石10における遷移金属元素Tの含有量の合計が[T]原子%と表される。永久磁石10におけるBの含有量が[B]原子%と表される。永久磁石10におけるYの含有量が[Y]原子%と表される。永久磁石10におけるCeの含有量が[Ce]原子%と表される。[Y]/[R]は0.05~0.25である。[Ce]/[R]は0.10~0.55である。[T]/[B]は14~18である。 The permanent magnet 10 contains a rare earth element R, a transition metal element T, and boron B. The main phase particle 11 may contain a rare earth element R, a transition metal element T, and B. The rare earth element R contains at least Nd (neodymium), Y (yttrium), and Ce (cerium). The transition metal element T contains at least Fe (iron). The total content of rare earth elements R in the permanent magnet 10 is expressed as [R] atomic%. The total content of the transition metal element T in the permanent magnet 10 is expressed as [T] atomic%. The B content in the permanent magnet 10 is expressed as [B] atomic%. The Y content in the permanent magnet 10 is expressed as [Y] atomic%. The Ce content in the permanent magnet 10 is expressed as [Ce] atomic%. [Y] / [R] is 0.05 to 0.25. [Ce] / [R] is 0.10 to 0.55. [T] / [B] is 14-18.
 本発明者らは、希土類元素Rの一部をCeで置換した永久磁石の保磁力を高める方法を検討した。永久磁石における主相粒子は、例えば、正方晶のR14B化合物である。R14BにおけるBに対するTの化学量論比は14である。本発明者らは、[T]/[B]が上記化学量論比である14以上、且つ18以下であることにより、高い保磁力が得られることを見出した。しかしながら、[T]/[B]が上記範囲内であるだけでは、永久磁石の角型比が低下し易い。[T]/[B]が14以上である場合、粒界相にR17相が析出し易いため、永久磁石の角型比が低下し易いと考えられる。永久磁石がCeを含有しない場合、液相焼結を十分に高温で実施することにより、R17相を主相に改質することができる。しかしながら、希土類元素Rの一部をCeで置換した場合、主相の液相化温度が低下するため、液相焼結の温度が比較的低い場合でも主相が異常粒成長により粗大化し、保磁力などの磁気特性が低下する。磁気特性の低下を防ぐため、液相焼結を比較的低温で実施せざるを得ず、R17相を主相に改質することができないと考えられる。そこで、本発明者らは、[T]/[B]が14~18であることに加えて、[Y]/[R]が0.05~0.25であり、且つ[Ce]/[R]が0.10~0.55であることにより、高い保磁力と高い角型比との両方が得られることを見出した。永久磁石10の保磁力が高く、角型比が高い理由は以下の通りである、と本発明者らは考える。永久磁石10では、[Y]/[R]が0.05~0.25であり、主相のRの一部がYに置換されることで主相の液相化温度が高くなり、主相粒子11の粗大化が抑制されて比較的高温で液相焼結が可能となる。その結果、R17相を主相に改質することができ、永久磁石10の角型比が高くなる。また、[Ce]/[R]が0.10~0.55であり、主相におけるCeの置換量が多すぎないため、主相の液相化温度が低下し難い。その結果、R17相を改質するのに十分高温で焼結を実施できるため、永久磁石10の角型比が低下し難い。以上のことから、希土類元素Rの一部をCeで置換しても、高い保磁力と高い角型比とを両立することができる。なお、永久磁石10の保磁力が高く、角型比が高い理由は、上記理由に限定されない。 The present inventors examined a method for increasing the coercive force of a permanent magnet in which a part of the rare earth element R is replaced with Ce. The main phase particles in the permanent magnet are, for example, tetragonal R 2 T 14 B compounds. The stoichiometric ratio of T to B in R 2 T 14 B is 14. The present inventors have found that a high coercive force can be obtained when [T] / [B] is 14 or more and 18 or less, which is the stoichiometric ratio. However, the squareness ratio of the permanent magnet is likely to be lowered only when [T] / [B] is within the above range. When [T] / [B] is 14 or more, the R 2 T 17 phase is likely to be precipitated in the grain boundary phase, so that the squareness ratio of the permanent magnet is likely to be lowered. When the permanent magnet does not contain Ce, the R 2 T 17 phase can be modified into the main phase by performing liquid phase sintering at a sufficiently high temperature. However, when a part of the rare earth element R is replaced with Ce, the liquidus temperature of the main phase is lowered, so that the main phase becomes coarse due to abnormal grain growth even when the temperature of the liquid phase sintering is relatively low. Magnetic properties such as magnetic force are reduced. In order to prevent deterioration of the magnetic properties, liquid phase sintering must be performed at a relatively low temperature, and it is considered that the R 2 T 17 phase cannot be reformed to the main phase. Accordingly, the present inventors have [Y] / [R] of 0.05 to 0.25 and [Ce] / [B] in addition to [T] / [B] of 14 to 18. It was found that when R] is 0.10 to 0.55, both high coercive force and high squareness ratio can be obtained. The present inventors consider that the reason why the coercive force of the permanent magnet 10 is high and the squareness ratio is high is as follows. In the permanent magnet 10, [Y] / [R] is 0.05 to 0.25, and a part of R in the main phase is replaced with Y, so that the liquidus temperature of the main phase increases, The coarsening of the phase particles 11 is suppressed, and liquid phase sintering becomes possible at a relatively high temperature. As a result, the R 2 T 17 phase can be reformed to the main phase, and the squareness ratio of the permanent magnet 10 is increased. [Ce] / [R] is 0.10 to 0.55, and the substitution amount of Ce in the main phase is not too large, so that the liquidus temperature of the main phase is unlikely to decrease. As a result, since the sintering can be performed at a sufficiently high temperature to modify the R 2 T 17 phase, the squareness ratio of the permanent magnet 10 is unlikely to decrease. From the above, even if a part of the rare earth element R is replaced with Ce, both a high coercive force and a high squareness ratio can be achieved. The reason why the permanent magnet 10 has a high coercive force and a high squareness ratio is not limited to the above reason.
 希土類元素Rは、Nd、Y及びCeに加えて、その他の希土類元素をさらに含んでもよい。その他の希土類元素は、例えば、Sc(スカンジウム)、La(ランタン)、Pr(プラセオジム)、Sm(サマリウム)、Eu(ユウロピウム)、Gd(ガドリニウム)、Ho(ホルミウム)、Dy(ジスプロシウム)及びTb(テルビウム)からなる群より選ばれる少なくも一種であってよい。希土類元素Rは、Nd、Y及びCeのみからなっていてもよい。[R]は、11~18原子%であってよい。永久磁石10におけるNdの含有量[Nd]は、2.2~14.4原子%であってよい。[Y]は、0.55~4.5原子%であってよい。[Ce]は、1.1~9.9原子%であってよい。 The rare earth element R may further contain other rare earth elements in addition to Nd, Y, and Ce. Other rare earth elements include, for example, Sc (scandium), La (lanthanum), Pr (praseodymium), Sm (samarium), Eu (europium), Gd (gadolinium), Ho (holmium), Dy (dysprosium) and Tb ( May be at least one selected from the group consisting of terbium). The rare earth element R may consist only of Nd, Y, and Ce. [R] may be 11-18 atomic%. The Nd content [Nd] in the permanent magnet 10 may be 2.2 to 14.4 atomic%. [Y] may be 0.55 to 4.5 atomic%. [Ce] may be 1.1 to 9.9 atomic%.
 遷移金属元素Tは、Feに加えて、Co(コバルト)をさらに含んでもよく、その他の遷移金属元素をさらに含んでもよい。その他の遷移金属元素は、例えば、Ni(ニッケル)等であってよい。遷移金属元素Tは、Fe及びCoのみからなっていてもよい。[T]は、76.5~84.3原子%であってよい。永久磁石10におけるFeの含有量[Fe]は、71.5~84.3原子%であってよい。永久磁石10におけるCoの含有量[Co]は、0~5原子%であってよい。 The transition metal element T may further contain Co (cobalt) in addition to Fe, and may further contain other transition metal elements. The other transition metal element may be, for example, Ni (nickel). The transition metal element T may consist only of Fe and Co. [T] may be 76.5 to 84.3 atomic%. The Fe content [Fe] in the permanent magnet 10 may be 71.5 to 84.3 atomic%. The Co content [Co] in the permanent magnet 10 may be 0 to 5 atomic%.
 [B]は、4.32~5.93原子%、又は4.65~5.41原子%であってよい。 [B] may be 4.32 to 5.93 atomic%, or 4.65 to 5.41 atomic%.
 [Y]/[R]は、0.05~0.25、又は0.05~0.15であってよい。[Y]/[R]が上記範囲内である場合、永久磁石10の角型比が高くなり易い。 [Y] / [R] may be 0.05 to 0.25, or 0.05 to 0.15. When [Y] / [R] is within the above range, the squareness ratio of the permanent magnet 10 tends to be high.
 [Ce]/[R]は、0.10~0.55、又は0.1~0.4であってよい。[Ce]/[R]が上記範囲内である場合、主相中のRがCeで置換されても永久磁石10の保磁力が大幅に低下し難い。 [Ce] / [R] may be 0.10 to 0.55, or 0.1 to 0.4. When [Ce] / [R] is within the above range, even if R in the main phase is replaced with Ce, the coercive force of the permanent magnet 10 is hardly reduced.
 [T]/[B]は、14.0~18.0、又は15.5~18.0であってよい。[T]/[B]が上記範囲内である場合、永久磁石10の保磁力が高くなり易い。 [T] / [B] may be 14.0 to 18.0, or 15.5 to 18.0. When [T] / [B] is within the above range, the coercive force of the permanent magnet 10 tends to be high.
 永久磁石10は、Cu(銅)、Al(アルミニウム)、Mn(マンガン)、Nb(ニオブ)、Ta(タンタル)、Zr(ジルコニウム)、Ti(チタン)、W(タングステン)、Mo(モリブデン)、V(バナジウム)、Ag(銀)、Ge(ゲルマニウム)、Zn(亜鉛)、Ga(ガリウム)、Si(ケイ素)、Sn(錫)及びBi(ビスマス)等の元素をさらに含んでもよい。 The permanent magnet 10 includes Cu (copper), Al (aluminum), Mn (manganese), Nb (niobium), Ta (tantalum), Zr (zirconium), Ti (titanium), W (tungsten), Mo (molybdenum), You may further contain elements, such as V (vanadium), Ag (silver), Ge (germanium), Zn (zinc), Ga (gallium), Si (silicon), Sn (tin), and Bi (bismuth).
 永久磁石10におけるC(炭素)の含有量は、0.00~0.25質量%、又は0.00~0.10質量%であってよい。永久磁石10におけるN(窒素)の含有量は0.00~0.25質量%、又は0.00~0.10質量%であってよい。永久磁石10におけるO(酸素)の含有量は0.00~0.25質量%、又は0.00~0.10質量%であってよい。C、N及びOそれぞれの含有量が上記範囲内である場合、粒界相にY‐OCN相が生成し難く、主相におけるYの置換量が低下し難い。その結果、主相の液相化温度が高くなり易く、比較的高温での液相焼結によりR17相を主相へと改質できるため、永久磁石10の角型比が高くなり易い。Y‐OCN相は、例えば、酸化イットリウム、炭化イットリウム、及び窒化イットリウムからなる群より選ばれる少なくとも一種を含んでよい。 The C (carbon) content in the permanent magnet 10 may be 0.00 to 0.25% by mass, or 0.00 to 0.10% by mass. The content of N (nitrogen) in the permanent magnet 10 may be 0.00 to 0.25% by mass, or 0.00 to 0.10% by mass. The content of O (oxygen) in the permanent magnet 10 may be 0.00 to 0.25% by mass, or 0.00 to 0.10% by mass. When the contents of C, N, and O are within the above ranges, the Y-OCN phase is hardly generated in the grain boundary phase, and the substitution amount of Y in the main phase is difficult to decrease. As a result, the liquidus temperature of the main phase is likely to be high, and the R 2 T 17 phase can be reformed to the main phase by liquid phase sintering at a relatively high temperature, so that the squareness ratio of the permanent magnet 10 is increased. easy. The Y-OCN phase may include at least one selected from the group consisting of yttrium oxide, yttrium carbide, and yttrium nitride, for example.
 永久磁石10の組成は、蛍光X線分析法、ICP(Inductively Coupled Plasma)発光分析法、不活性ガス融解‐非分散型赤外線吸収法、酸素気流中燃焼‐赤外吸収法、不活性ガス融解‐熱伝導度法等によって特定されてよい。 The composition of the permanent magnet 10 is X-ray fluorescence analysis, ICP (Inductively Coupled Plasma) emission analysis, inert gas melting-non-dispersive infrared absorption method, combustion in oxygen stream-infrared absorption method, inert gas melting- It may be specified by a thermal conductivity method or the like.
 各主相粒子11は、少なくとも希土類元素R、遷移金属元素T、及びホウ素(B)を含んでよい。希土類元素Rは、少なくともNd(ネオジム)、Y(イットリウム)及びCe(セリウム)を含む。つまり、Ndの一部が、Y及びCeで置換されている。遷移金属元素Tは、少なくともFe(鉄)を含む。遷移金属元素Tは、FeとCo(コバルト)とを含んでよい。つまり、上記のFeの一部がCoで置換されてよい。各主相粒子11は、ホウ素(B)に加えて炭素(C)を含んでよい。つまり、上記のBの一部がCで置換されてよい。主相粒子11は、主相としてR14Mを含んでよい。元素MはBのみであってよい。元素Mは、B及びCであってもよい。換言すれば、R14Mは、Nd2-x-yCeFe14-sCo1-tと表されてよい。x+yは、0より大きく2未満である。xは、0より大きく2未満である。yは、0より大きく2未満である。sは、0以上14未満である。tは、0以上1未満である。例えば、主相粒子11は、NdFe14Bを含んでよい。例えば、主相粒子11は、YFe14Bを含んでもよい。例えば、主相粒子11は、CeFe14Bを含んでもよい。 Each main phase particle 11 may include at least a rare earth element R, a transition metal element T, and boron (B). The rare earth element R contains at least Nd (neodymium), Y (yttrium), and Ce (cerium). That is, a part of Nd is substituted with Y and Ce. The transition metal element T contains at least Fe (iron). The transition metal element T may contain Fe and Co (cobalt). That is, a part of the Fe may be replaced with Co. Each main phase particle 11 may contain carbon (C) in addition to boron (B). That is, a part of the above B may be replaced with C. The main phase particle 11 may contain R 2 T 14 M as a main phase. The element M may be only B. The element M may be B and C. In other words, R 2 T 14 M may be represented as Nd 2 -xy Y x Ce y Fe 14 -s Co s B 1 -t C t . x + y is greater than 0 and less than 2. x is greater than 0 and less than 2. y is greater than 0 and less than 2. s is 0 or more and less than 14. t is 0 or more and less than 1. For example, the main phase particles 11 may contain Nd 2 Fe 14 B. For example, the main phase particles 11 may include Y 2 Fe 14 B. For example, the main phase particles 11 may include Ce 2 Fe 14 B.
 図2に示されるように、粒界相9は、希土類元素R及び遷移金属元素Tの金属間化合物を含有するR‐T相3を含んでよい。粒界相9は、Rリッチ相5、異相7、R13E相等を含んでもよい。元素Eは、Ga、Si、Sn、及びBiからなる群より選択される少なくとも一種であってよい。R‐T相3、Rリッチ相5、異相7、及びR13E相それぞれの定義は、下記の通りであってよい。 As shown in FIG. 2, the grain boundary phase 9 may include an RT phase 3 containing an intermetallic compound of a rare earth element R and a transition metal element T. The grain boundary phase 9 may include an R-rich phase 5, a heterogeneous phase 7, an R 6 T 13 E phase, and the like. The element E may be at least one selected from the group consisting of Ga, Si, Sn, and Bi. The definitions of RT phase 3, R rich phase 5, heterogeneous phase 7, and R 6 T 13 E phase may be as follows.
 R‐T相3におけるCの含有量が[C]原子%と表される。R‐T相3におけるNの含有量が[N]原子%と表される。R‐T相3におけるOの含有量が[O]原子%と表される。R‐T相3における希土類元素Rの含有量の合計が[R]原子%と表される。R‐T相3における遷移金属元素Tの含有量の合計が[T]原子%と表される。R‐T相3における元素Eの含有量の合計が[E]原子%と表される。R‐T相3は、下記不等式(1)、(2)、及び(3)の全てを満たす相であってよい。
0≦[C]+[N]+[O]<30   (1)
0.26≦[R]/([R]+[T])≦0.40   (2)
0.00≦[E]/([R]+[T]+[E])≦0.03   (3)
The content of C in the RT phase 3 is expressed as [C] L atomic%. The N content in the RT phase 3 is expressed as [N] L atomic%. The content of O in the RT phase 3 is expressed as [O] L atomic%. The total content of rare earth elements R in the RT phase 3 is expressed as [R] L atomic%. The total content of the transition metal element T in the RT phase 3 is expressed as [T] L atomic%. The total content of the element E in the RT phase 3 is expressed as [E] L atomic%. The RT phase 3 may be a phase that satisfies all of the following inequalities (1), (2), and (3).
0 ≦ [C] L + [N] L + [O] L <30 (1)
0.26 ≦ [R] L / ([R] L + [T] L ) ≦ 0.40 (2)
0.00 ≦ [E] L / ([R] L + [T] L + [E] L ) ≦ 0.03 (3)
 R‐T相3は、例えば、RT相を含んでよい。つまり、R‐T相3に含まれる金属間化合物は、例えば、RTであってよい。RTは、Nd1-γCeγFe2-δCoδと表されてよい。γは0以上1以下である。δは0以上2以下である。RTは、例えば、NdFe、又はCeFeであってよい。R‐T相3は、ラーベス(Laves)相であってよい。R‐T相3の結晶構造は、C15型であってよい。R‐T相3は、X線回折(XRD)パターンを用いて、格子面(hkl)に由来する回折ピークの回折角2θに基づいて特定されてよい。例えば、XRDパターンの測定にCuKα線を用いた場合、R‐T相3の格子面(220)に由来する2θが、34.0~34.73°であってよい。また、XRDパターンの測定にCuKα線を用いた場合、R‐T相3の格子面(311)に由来する2θが、40.10~40.97°であってよい。上記2θは、R‐T相3に含まれる希土類元素Rの種類に応じて、上記範囲内で変化してよい。 The RT phase 3 may include, for example, an RT 2 phase. That is, the intermetallic compound contained in the RT phase 3 may be, for example, RT 2. RT 2 may be represented as Nd 1-γ Ce γ Fe 2-δ Co δ . γ is 0 or more and 1 or less. δ is 0 or more and 2 or less. RT 2 may be, for example, NdFe 2 or CeFe 2 . The RT phase 3 may be a Laves phase. The crystal structure of RT phase 3 may be C15 type. The RT phase 3 may be specified based on the diffraction angle 2θ of the diffraction peak derived from the lattice plane (hkl) using an X-ray diffraction (XRD) pattern. For example, when CuKα rays are used for measurement of the XRD pattern, 2θ derived from the lattice plane (220) of the RT phase 3 may be 34.0 to 34.73 °. Further, when CuKα rays are used for measurement of the XRD pattern, 2θ derived from the lattice plane (311) of the RT phase 3 may be 40.10 to 40.97 °. The 2θ may vary within the above range depending on the type of rare earth element R contained in the RT phase 3.
 Rリッチ相5におけるCの含有量が[C]原子%と表される。Rリッチ相5におけるNの含有量が[N]原子%と表される。Rリッチ相5におけるOの含有量が[O]原子%と表される。Rリッチ相5における希土類元素Rの含有量の合計が[R]原子%と表される。Rリッチ相5における遷移金属元素Tの含有量の合計が[T]原子%と表される。Rリッチ相5は、下記不等式(4)及び(5)を満たす相であってよい。
0≦[C]+[N]+[O]<30   (4)
0.50≦[R]/([R]+[T])≦1.00   (5)
The content of C in the R-rich phase 5 is expressed as [C] R atomic%. The N content in the R-rich phase 5 is expressed as [N] R atomic%. The content of O in the R-rich phase 5 is expressed as [O] R atomic%. The total content of rare earth elements R in the R-rich phase 5 is expressed as [R] R atomic%. The total content of the transition metal element T in the R-rich phase 5 is expressed as [T] R atomic%. The R-rich phase 5 may be a phase that satisfies the following inequalities (4) and (5).
0 ≦ [C] R + [N] R + [O] R <30 (4)
0.50 ≦ [R] R / ([R] R + [T] R ) ≦ 1.00 (5)
 異相7におけるCの含有量が[C]原子%と表される。異相7におけるNの含有量が[N]原子%と表される。異相7におけるOの含有量が[O]原子%と表される。異相7は、[C]と[N]と[O]との合計[C]+[N]+[O]が30以上100未満である相であってよい。つまり、異相7は、下記不等式(6)を満たす相であってよい。異相7は、例えば、Rの酸化物、Rの炭化物及びRの窒化物からなる群より選ばれる少なくとも一種を含んでよい。
30≦[C]+[N]+[O]<100   (6)
The content of C in the heterogeneous phase 7 is expressed as [C] D atomic%. The N content in the different phase 7 is expressed as [N] D atomic%. The content of O in the heterogeneous phase 7 is expressed as [O] D atomic%. The hetero phase 7 may be a phase in which the sum of [C] D , [N] D, and [O] D [C] D + [N] D + [O] D is 30 or more and less than 100. That is, the different phase 7 may be a phase satisfying the following inequality (6). The hetero phase 7 may include, for example, at least one selected from the group consisting of an oxide of R, a carbide of R, and a nitride of R.
30 ≦ [C] D + [N] D + [O] D <100 (6)
 R13E相におけるCの含有量が[C]原子%と表される。R13E相におけるNの含有量が[N]原子%と表される。R13E相におけるOの含有量が[O]原子%と表される。R13E相における希土類元素Rの含有量の合計が[R]原子%と表される。R13E相における遷移金属元素Tの含有量の合計が[T]原子%と表される。R13E相における元素Eの含有量の合計が[E]原子%と表される。R13E相は、下記不等式(7)、(8)及び(9)の全てを満たす相であってよい。
0≦[C]+[N]+[O]<30   (7)
0.26≦[R]/([R]+[T])≦0.40   (8)
0.03<[E]/([R]+[T]+[E])≦1.00   (9)
The content of C in the R 6 T 13 E phase is expressed as [C] A atomic%. The content of N in the R 6 T 13 E phase is expressed as [N] A atomic%. The content of O in the R 6 T 13 E phase is expressed as [O] A atomic%. The total content of rare earth elements R in the R 6 T 13 E phase is expressed as [R] A atomic%. The total content of the transition metal element T in the R 6 T 13 E phase is expressed as [T] A atomic%. The total content of the element E in the R 6 T 13 E phase is expressed as [E] A atomic%. The R 6 T 13 E phase may be a phase that satisfies all of the following inequalities (7), (8), and (9).
0 ≦ [C] A + [N] A + [O] A <30 (7)
0.26 ≦ [R] A / ([R] A + [T] A ) ≦ 0.40 (8)
0.03 <[E] A / ([R] A + [T] A + [E] A ) ≦ 1.00 (9)
(永久磁石の製造方法)
 永久磁石10の製造方法は、以下の通りであってよい。所望の永久磁石10の組成に一致するように出発原料を秤量する。出発原料は、例えば、金属、合金又は酸化物であってよい。出発原料として、酸化物を用いる場合、永久磁石10の製造過程のいずれかの時点において、酸素を除去するための還元処理を実施すればよい。ただし、永久磁石10の組成を容易に制御するためには、出発原料として酸化物を用いないほうがよい。
(Permanent magnet manufacturing method)
The manufacturing method of the permanent magnet 10 may be as follows. The starting materials are weighed to match the desired permanent magnet 10 composition. The starting material can be, for example, a metal, an alloy or an oxide. When an oxide is used as a starting material, a reduction process for removing oxygen may be performed at any point in the manufacturing process of the permanent magnet 10. However, in order to easily control the composition of the permanent magnet 10, it is better not to use an oxide as a starting material.
 下記のストリップキャスト法、高周波誘導溶解法、アーク溶解法、その他の溶解法により、上記の出発原料から原料合金を作製してよい。還元拡散法によって出発原料から原料合金を作製してもよい。原料合金の酸化を抑制するために、ストリップキャスト法等の溶解法を非酸化雰囲気中で実施してよい。非酸化雰囲気は、例えば、真空、又はAr(アルゴン)等の不活性ガスであってよい。 The raw material alloy may be produced from the above starting materials by the following strip casting method, high frequency induction melting method, arc melting method, and other melting methods. A raw material alloy may be produced from a starting material by a reduction diffusion method. In order to suppress oxidation of the raw material alloy, a melting method such as a strip casting method may be performed in a non-oxidizing atmosphere. The non-oxidizing atmosphere may be, for example, a vacuum or an inert gas such as Ar (argon).
 ストリップキャスト法では、上記出発原料を非酸化雰囲気中で溶解して、溶湯(原料合金の融液)を作製する。溶湯を非酸化雰囲気中で回転するロールの表面へ出湯(pour)する。金属ロールは水冷等で冷却されているので、溶湯がロールの表面で急冷され、凝固する。ロールから剥離した合金を破砕することで薄板又は薄片(鱗片)状の原料合金が得られる。ロールは、例えば、銅製であってよい。 In the strip casting method, the starting material is melted in a non-oxidizing atmosphere to produce a molten metal (melting material alloy). The molten metal is poured onto the surface of a rotating roll in a non-oxidizing atmosphere. Since the metal roll is cooled by water cooling or the like, the molten metal is rapidly cooled on the surface of the roll and solidifies. By crushing the alloy peeled from the roll, a raw material alloy in the form of a thin plate or flakes (scales) is obtained. The roll may be made of copper, for example.
 上記の溶解及び急冷によって得られた原料合金を粉砕して、粗粉末を得る。原料合金の粉砕方法は、例えば、水素粉砕であってよい。水素粉砕では、原料合金を水素雰囲気に置いて、原料合金に水素を吸蔵させる。原料合金が水素を吸蔵すると、原料合金の体積が膨張する。また、原料合金に含まれる金属の水素化反応が生じて、原料合金が脆くなる。その結果、原料合金にクラックが生じて、原料合金が粉砕される。粗粉末の粒径は、例えば、10~1000μmであってよい。 Crushed the raw material alloy obtained by the above melting and quenching to obtain a coarse powder. The raw material alloy may be pulverized by, for example, hydrogen pulverization. In hydrogen pulverization, the raw material alloy is placed in a hydrogen atmosphere, and the raw material alloy is made to store hydrogen. When the raw material alloy occludes hydrogen, the volume of the raw material alloy expands. Moreover, the hydrogenation reaction of the metal contained in the raw material alloy occurs, and the raw material alloy becomes brittle. As a result, cracks occur in the raw material alloy, and the raw material alloy is pulverized. The particle size of the coarse powder may be, for example, 10 to 1000 μm.
 粗粉末を加熱することにより、粗粉末の脱水素を行ってよい。脱水素温度は、300~400℃であってよい。脱水素時間は、0.5~20時間であってよい。粗粉末の脱水素を上記範囲の温度及び時間で行うことにより、従来の方法に比べて、粗粉末及び後述の成形体に残存する水素の量が適度に増え易い。そのため、後述の成形体を焼結して焼結体を得る過程で、成形体に含まれる水素と、成形体に含まれるC、N及びOのそれぞれとが結合して、これらの元素が成形体の外へ放出され易い。その結果、焼結体におけるC、N、及びOそれぞれの含有量が少なくなり易い。焼結体におけるC、N、及びOそれぞれの含有量が少ないと、Y‐OCNなどの異相の析出が抑制され、主相におけるYの置換量が増加し易く、主相の液相化温度が高くなり易い。そのため、高温での液相焼結によりR17相を主相へと改質することができ、永久磁石10の角型比が高くなり易い。 The coarse powder may be dehydrogenated by heating the coarse powder. The dehydrogenation temperature may be 300-400 ° C. The dehydrogenation time may be 0.5 to 20 hours. By performing dehydrogenation of the coarse powder at the temperature and time within the above ranges, the amount of hydrogen remaining in the coarse powder and the molded body described later is likely to increase moderately as compared with the conventional method. Therefore, in the process of obtaining a sintered body by sintering a molded body described later, hydrogen contained in the molded body and each of C, N, and O contained in the molded body are combined to form these elements. Easily released out of the body. As a result, the contents of C, N, and O in the sintered body tend to decrease. When the contents of C, N, and O in the sintered body are small, precipitation of heterogeneous phases such as Y-OCN is suppressed, the amount of substitution of Y in the main phase is likely to increase, and the liquidus temperature of the main phase is increased. It tends to be expensive. Therefore, the R 2 T 17 phase can be reformed to the main phase by liquid phase sintering at a high temperature, and the squareness ratio of the permanent magnet 10 tends to be high.
 粗粉末を粉砕して、微粉末を得る。粗粉末を粉砕する前に、粗粉末に潤滑剤を添加してよい。粗粉末に潤滑剤を添加することにより、粗粉末を粉砕するときに、粗粉末同士が凝集し難く、粗粉末が粉砕装置の内壁に融着し難い。潤滑剤は、例えば、エステル系の有機物、アミド系の有機物であってよい。アミド系の有機物は、例えば、オレイン酸アミドであってよい。粗粉末は、気流式粉砕機(ジェットミル)等により粉砕してよい。ジェットミルによる粉砕では、粗粉末が、不活性ガスの気流によって加速された後、硬質のセラミック板に衝突することによって粉砕される。得られた微粉末は、ジェットミルの粒子捕集部(サイクロン)から回収される。不活性ガスは、窒素ガス、アルゴンガス等であってよい。微粉末の粒径は、例えば、0.5~10μmであってよい。 Crushed coarse powder to obtain fine powder. Before pulverizing the coarse powder, a lubricant may be added to the coarse powder. By adding a lubricant to the coarse powder, when the coarse powder is pulverized, the coarse powders are less likely to agglomerate and the coarse powder is less likely to fuse to the inner wall of the pulverizer. The lubricant may be, for example, an ester organic material or an amide organic material. The amide-based organic substance may be, for example, oleic acid amide. The coarse powder may be pulverized by an airflow pulverizer (jet mill) or the like. In pulverization by a jet mill, coarse powder is accelerated by an inert gas stream and then pulverized by colliding with a hard ceramic plate. The obtained fine powder is recovered from the particle collecting part (cyclone) of the jet mill. The inert gas may be nitrogen gas, argon gas or the like. The particle size of the fine powder may be, for example, 0.5 to 10 μm.
 微粉末を成型機の成形空間(キャビティ)に入れ、微粉末を磁場中で加圧することにより、成形体を得る。加圧方向は、磁場方向に対して垂直な方向であってよい。磁場の強さは、例えば、960~1600kA/mであってよい。微粉末に加える圧力は、例えば、10~500MPaであってよい。 入 れ Place the fine powder into the molding space (cavity) of the molding machine and press the fine powder in a magnetic field to obtain a compact. The pressing direction may be a direction perpendicular to the magnetic field direction. The strength of the magnetic field may be, for example, 960-1600 kA / m. The pressure applied to the fine powder may be, for example, 10 to 500 MPa.
 成形体を焼結して、焼結体を得る。焼結温度は、例えば、1000~1200℃であってよい。焼結時間は、例えば、0.1~100時間であってよい。成形体の焼結は、減圧雰囲気、不活性雰囲気等で行ってよい。 Sintering the molded body to obtain a sintered body. The sintering temperature may be 1000 to 1200 ° C., for example. The sintering time may be, for example, 0.1 to 100 hours. The green body may be sintered in a reduced pressure atmosphere, an inert atmosphere, or the like.
 焼結体に時効処理を施すことにより、永久磁石10を得る。時効処理では、焼結体を加熱する。時効処理の温度は、例えば、450~950℃であってよい。時効処理の時間は、例えば、0.1~100時間であってよい。時効処理は、減圧雰囲気、不活性雰囲気等で行ってよい。時効処理を施すことにより、永久磁石10の保磁力がより高くなり易い。時効処理は、1段階の熱処理工程から構成されても、2段階以上の熱処理工程から構成されてもよい。例えば、比較的高温で加熱した後、比較的低温で加熱してもよい。この場合、永久磁石10の保磁力がより高くなり易い。 The permanent magnet 10 is obtained by subjecting the sintered body to an aging treatment. In the aging treatment, the sintered body is heated. The temperature of the aging treatment may be 450 to 950 ° C., for example. The time for aging treatment may be, for example, 0.1 to 100 hours. The aging treatment may be performed in a reduced pressure atmosphere, an inert atmosphere, or the like. By performing the aging treatment, the coercive force of the permanent magnet 10 tends to be higher. The aging treatment may be composed of a one-stage heat treatment process or may be composed of two or more heat treatment processes. For example, after heating at a relatively high temperature, it may be heated at a relatively low temperature. In this case, the coercive force of the permanent magnet 10 tends to be higher.
 必要に応じて、得られた永久磁石10を所定の形状に加工してもよい。加工方法は、例えば、切断、研削などの形状加工、又は、バレル研磨などの面取り加工等であってよい。例えば、磁気特性を精密に測定するため、測定試料となる永久磁石10の表面を平坦に加工してよい。表面が平坦であることにより、測定試料の正確な寸法が得られる。表面を平坦に加工する方法は、例えば、湿式法、乾式法等であってよい。加工時間が短く、加工費用が安いことから、湿式法が好ましい。 If necessary, the obtained permanent magnet 10 may be processed into a predetermined shape. The processing method may be, for example, shape processing such as cutting and grinding, or chamfering processing such as barrel polishing. For example, in order to accurately measure the magnetic characteristics, the surface of the permanent magnet 10 serving as a measurement sample may be processed flat. Due to the flat surface, the exact dimensions of the measurement sample can be obtained. The method for processing the surface to be flat may be, for example, a wet method, a dry method, or the like. The wet method is preferable because the processing time is short and the processing cost is low.
 必要に応じて、焼結体の表面に保護層を形成してもよい。保護層は、例えば、樹脂層、又は無機物層(例えば、金属層若しくは酸化物層)であってよい。保護層の形成方法は、例えば、めっき法、塗布法、蒸着重合法、気相法、又は化成処理法であってよい。 If necessary, a protective layer may be formed on the surface of the sintered body. The protective layer may be, for example, a resin layer or an inorganic layer (for example, a metal layer or an oxide layer). The method for forming the protective layer may be, for example, a plating method, a coating method, a vapor deposition polymerization method, a gas phase method, or a chemical conversion treatment method.
 (回転機)
 本実施形態に係る回転機は、上記の永久磁石10aを備える。回転機の内部構造の一例は、図3に示される。本実施形態に係る回転機200は、永久磁石同期回転機(SPM回転機)である。回転機200は、円筒状のロータ50と、ロータ50の内側に配置されるステータ30と、を備えている。ロータ50は、円筒状のコア52と、コア52の内周面に沿って配置された複数の永久磁石10aと、を有している。複数の永久磁石10aは、コア52の内周面に沿ってN極とS極が交互に並ぶように配置されている。ステータ30は、その外周面に沿って設けられた複数のコイル32を有している。コイル32と永久磁石10aとは互いに対面するように配置されている。
(Rotating machine)
The rotating machine according to the present embodiment includes the permanent magnet 10a. An example of the internal structure of the rotating machine is shown in FIG. The rotating machine 200 according to the present embodiment is a permanent magnet synchronous rotating machine (SPM rotating machine). The rotating machine 200 includes a cylindrical rotor 50 and a stator 30 disposed inside the rotor 50. The rotor 50 includes a cylindrical core 52 and a plurality of permanent magnets 10 a arranged along the inner peripheral surface of the core 52. The plurality of permanent magnets 10 a are arranged so that N poles and S poles are alternately arranged along the inner peripheral surface of the core 52. The stator 30 has a plurality of coils 32 provided along the outer peripheral surface thereof. The coil 32 and the permanent magnet 10a are arranged so as to face each other.
 回転機200は、電動機(モータ)であってよい。電動機は、コイル32への通電によって生成する電磁石による界磁と、永久磁石10aによる界磁と、の相互作用により、電気エネルギーを機械的エネルギーに変換する。回転機200は、発電機(ジェネレータ)であってもよい。発電機は、永久磁石10aによる界磁とコイル32との相互作用(電磁誘導)により、機械的エネルギーを電気的エネルギーに変換する。 The rotating machine 200 may be an electric motor. The electric motor converts electrical energy into mechanical energy by the interaction between the field generated by the electromagnet generated by energizing the coil 32 and the field generated by the permanent magnet 10a. The rotating machine 200 may be a generator. The generator converts mechanical energy into electrical energy by the interaction (electromagnetic induction) between the field and the coil 32 by the permanent magnet 10a.
 電動機(モータ)として機能する回転機200は、例えば、永久磁石直流モータ、リニア同期モータ、永久磁石同期モータ(SPMモータ、IPMモータ)、又は往復動モータであってよい。往復動モータとして機能するモータは、例えば、ボイスコイルモータ、又は振動モータであってよい。発電機(ジェネレータ)として機能する回転機200は、例えば、永久磁石同期発電機、永久磁石整流子発電機、又は永久磁石交流発電機であってよい。回転機200は、自動車、産業機械、又は家庭用電化製品等に用いられてよい。 The rotating machine 200 that functions as an electric motor (motor) may be, for example, a permanent magnet DC motor, a linear synchronous motor, a permanent magnet synchronous motor (SPM motor, IPM motor), or a reciprocating motor. The motor that functions as the reciprocating motor may be, for example, a voice coil motor or a vibration motor. The rotating machine 200 that functions as a generator may be, for example, a permanent magnet synchronous generator, a permanent magnet commutator generator, or a permanent magnet AC generator. The rotating machine 200 may be used for automobiles, industrial machines, household appliances, and the like.
 以上、本発明の好適な実施形態について説明したが、本発明は必ずしも上述した実施形態に限定されるものではない。本発明の趣旨を逸脱しない範囲において、本発明の種々の変更が可能であり、これ等の変更例も本発明に含まれる。例えば、本発明に係る永久磁石は、熱間加工法、成膜法、又は放電プラズマ焼結(Spark Plasma Sintering)法等によって製造されてもよい。 The preferred embodiment of the present invention has been described above, but the present invention is not necessarily limited to the above-described embodiment. Various modifications of the present invention are possible without departing from the spirit of the present invention, and these modified examples are also included in the present invention. For example, the permanent magnet according to the present invention may be manufactured by a hot working method, a film forming method, a spark plasma sintering method, or the like.
 以下では、実施例及び比較例により本発明をさらに詳細に説明するが、本発明はこれらの例によって何ら限定されるものではない。 Hereinafter, the present invention will be described in more detail with reference to examples and comparative examples, but the present invention is not limited to these examples.
 (実施例1)
 以下に示す方法により、永久磁石を作製した。永久磁石の出発原料(単体又は合金)として、Nd、Y、Ce、Fe、FeB、Co、Cu、及びAlを準備した。各出発原料の純度は99.9質量%であった。永久磁石の組成が13.60原子%Nd‐0.80原子%Y‐1.60原子%Ce‐77.62原子%Fe‐0.50原子%Co‐5.58原子%B‐0.20原子%Al‐0.10原子%Cuとなるように、各出発原料を秤量して混合し、混合原料を調製した。ストリップキャスト法により、混合原料の溶湯をロールの表面で急冷し、破砕することにより、合金の薄片を得た。
Example 1
A permanent magnet was produced by the method described below. Nd, Y, Ce, Fe, FeB, Co, Cu, and Al were prepared as starting materials (single or alloy) for the permanent magnet. The purity of each starting material was 99.9% by mass. The composition of the permanent magnet is 13.60 atomic% Nd-0.80 atomic% Y-1.60 atomic% Ce-7.62 atomic% Fe-0.50 atomic% Co-5.58 atomic% B-0.20. Each starting material was weighed and mixed so as to be atomic% Al-0.10 atomic% Cu to prepare a mixed raw material. An alloy flake was obtained by quenching and crushing the melt of the mixed raw material on the surface of the roll by the strip casting method.
 水素粉砕により薄片を粉砕して、粗粉末を得た。粗粉末を加熱することにより、粗粉末の脱水素を行った。脱水素温度は300℃であった。脱水素時間は5時間であった。 The flakes were pulverized by hydrogen pulverization to obtain a coarse powder. By heating the coarse powder, the coarse powder was dehydrogenated. The dehydrogenation temperature was 300 ° C. The dehydrogenation time was 5 hours.
 脱水素後の粗粉末に潤滑剤を添加した。潤滑剤はオレイン酸アミドであった。粗粉末における潤滑剤の含有量は0.1質量%であった。潤滑剤を添加した粗粉末を、高圧のアルゴンガス雰囲気中でジェットミルにより粉砕して、微粉末を得た。 Lubricant was added to the coarse powder after dehydrogenation. The lubricant was oleic amide. The content of the lubricant in the coarse powder was 0.1% by mass. The coarse powder to which the lubricant was added was pulverized by a jet mill in a high-pressure argon gas atmosphere to obtain a fine powder.
 微粉末を成型機内の成型空間(キャビティ)に入れた。磁場中で微粉末を加圧して成形し、成形体を得た。加圧方向は、磁場方向に対して垂直な方向であった。磁場の強さは15×(10/4π)kA/mであった。微粉末に加えた圧力は140MPaであった。 The fine powder was put into a molding space (cavity) in the molding machine. A fine powder was pressed in a magnetic field and molded to obtain a molded body. The pressing direction was a direction perpendicular to the magnetic field direction. The strength of the magnetic field was 15 × (10 3 / 4π) kA / m. The pressure applied to the fine powder was 140 MPa.
 成形体を焼結して、焼結体を得た。焼結温度は1030℃であった。焼結時間は6時間であった。内周刃加工により、焼結体を直方体の形状に加工した。加工後の焼結体の体積及び重量を測定し、相対密度を算出した。その結果、焼結体の相対密度が99.0%以上であることが確認された。また、焼結体の破断面を光学顕微鏡で観察した。その結果、粗大粒は確認されなかった。焼結体の相対密度、及び、焼結体の断面組織の観察から、適切な温度条件で成形体を焼結できたことが確認された。 The sintered body was sintered to obtain a sintered body. The sintering temperature was 1030 ° C. The sintering time was 6 hours. The sintered body was processed into a rectangular parallelepiped shape by inner peripheral cutting. The volume and weight of the sintered body after processing were measured, and the relative density was calculated. As a result, it was confirmed that the relative density of the sintered body was 99.0% or more. The fracture surface of the sintered body was observed with an optical microscope. As a result, coarse particles were not confirmed. From the observation of the relative density of the sintered body and the cross-sectional structure of the sintered body, it was confirmed that the molded body could be sintered under an appropriate temperature condition.
 焼結体を加熱することにより、焼結体に時効処理を施して、実施例1の永久磁石を得た。時効処理の温度は700℃であった。時効処理の時間は1時間であった。 By heating the sintered body, the sintered body was subjected to an aging treatment to obtain the permanent magnet of Example 1. The temperature of the aging treatment was 700 ° C. The time for aging treatment was 1 hour.
[組成の分析]
 蛍光X線分析法により、実施例1の永久磁石におけるNd、Y、Ce、Fe、Co、Al、及びCuそれぞれの含有量(単位:原子%)を測定した。ICP発光分析法により、実施例1の永久磁石におけるBの含有量[B](単位:原子%)を測定した。Ndの含有量[Nd]と、Yの含有量[Y]と、Ceの含有量[Ce]とを合計して、希土類元素Rの含有量の合計[R]を求めた。Feの含有量[Fe]と、Coの含有量[Co]とを合計して、遷移金属元素Tの含有量の合計[T]を求めた。[Y]/[R]、[Ce]/[R]、及び[T]/[B]を求めた。なお、上記の各含有量は、上記で測定された全ての元素の含有量の合計100原子%を基準として算出された。各結果を表2に示す。下記表中のat%は、原子%を意味する。
[Analysis of composition]
Each content (unit: atomic%) of Nd, Y, Ce, Fe, Co, Al, and Cu in the permanent magnet of Example 1 was measured by fluorescent X-ray analysis. The B content [B] (unit: atomic%) in the permanent magnet of Example 1 was measured by ICP emission analysis. The Nd content [Nd], the Y content [Y], and the Ce content [Ce] were summed to obtain the total rare earth element R content [R]. The Fe content [Fe] and the Co content [Co] were totaled to obtain the total content [T] of the transition metal element T. [Y] / [R], [Ce] / [R], and [T] / [B] were determined. In addition, each said content was computed on the basis of the total of 100 atomic% of content of all the elements measured above. Table 2 shows the results. At% in the following table means atomic%.
 不活性ガス融解‐非分散型赤外線吸収法により、実施例1の永久磁石におけるOの含有量(単位:質量%)を測定した。酸素気流中燃焼‐赤外吸収法により、実施例1の永久磁石におけるCの含有量(単位:質量%)を測定した。不活性ガス融解‐熱伝導度法により、実施例1の永久磁石におけるNの含有量(単位:質量%)を測定した。各結果を表2に示す。 The content (unit: mass%) of O in the permanent magnet of Example 1 was measured by an inert gas melting-non-dispersive infrared absorption method. The C content (unit: mass%) in the permanent magnet of Example 1 was measured by combustion in an oxygen stream-infrared absorption method. The N content (unit: mass%) in the permanent magnet of Example 1 was measured by an inert gas melting-thermal conductivity method. Table 2 shows the results.
[磁気特性の測定]
 B‐Hトレーサーを用いて、実施例1の永久磁石の保磁力HcJ(単位:kA/m)を測定した。また、残留磁束密度Brの90%の磁束密度が得られたときに永久磁石に印加した外部磁場Hkを求めた。HcJとHkとから、実施例1の永久磁石の角型比100×Hk/HcJ(単位:%)を求めた。実施例1のHcJ及び角型比を表2に示す。下記表中の保磁力HcJの単位(kOe)は、「×(10/4π)×(kA/m)」と等価である。HcJは、12×(10/4π)kA/m以上であることが好ましい。角型比は、85%以上であることが好ましく、90%以上であることがより好ましい。
[Measurement of magnetic properties]
The coercive force HcJ (unit: kA / m) of the permanent magnet of Example 1 was measured using a BH tracer. Further, the external magnetic field Hk applied to the permanent magnet when the magnetic flux density of 90% of the residual magnetic flux density Br was obtained was obtained. The squareness ratio 100 × Hk / HcJ (unit:%) of the permanent magnet of Example 1 was determined from HcJ and Hk. Table 2 shows the HcJ and the squareness ratio of Example 1. The unit (kOe) of the coercive force HcJ in the following table is equivalent to “× (10 3 / 4π) × (kA / m)”. HcJ is preferably 12 × (10 3 / 4π) kA / m or more. The squareness ratio is preferably 85% or more, and more preferably 90% or more.
 (実施例2~9、比較例1~24、参考例1)
 永久磁石の組成が表1~5に示す組成となるように、実施例2~9、比較例1~24及び参考例1それぞれの各出発原料を秤量した。以下の手順により、適切に焼結された焼結体(実施例2~9、比較例1~24及び参考例1それぞれの焼結体)を得た。実施例1と同様の方法により、複数の成形体を個別に作製した。焼結温度を950℃から1100℃まで10℃刻みで変化させて、複数の焼結体を個別に作製した。実施例1と同様の方法により、各焼結体の相対密度を測定し、各焼結体の断面組織を観察した。焼結体の相対密度が99.0%以上であり、かつ焼結体の破断面に粗大粒が確認されなかった焼結体を、適切に焼結された焼結体と判断した。
(Examples 2 to 9, Comparative Examples 1 to 24, Reference Example 1)
Each starting material of Examples 2 to 9, Comparative Examples 1 to 24 and Reference Example 1 was weighed so that the composition of the permanent magnet was as shown in Tables 1 to 5. According to the following procedure, appropriately sintered sintered bodies (the sintered bodies of Examples 2 to 9, Comparative Examples 1 to 24, and Reference Example 1) were obtained. A plurality of molded bodies were individually produced by the same method as in Example 1. A plurality of sintered bodies were individually manufactured by changing the sintering temperature from 950 ° C. to 1100 ° C. in increments of 10 ° C. The relative density of each sintered body was measured by the same method as in Example 1, and the cross-sectional structure of each sintered body was observed. A sintered body in which the relative density of the sintered body was 99.0% or more and coarse particles were not confirmed on the fracture surface of the sintered body was determined to be an appropriately sintered sintered body.
 以上の点を除いて、実施例1と同様の方法により、実施例2~9、比較例1~24及び参考例1それぞれの永久磁石を個別に作製した。 Except for the above points, permanent magnets of Examples 2 to 9, Comparative Examples 1 to 24, and Reference Example 1 were individually produced in the same manner as in Example 1.
 実施例1と同様の方法により、実施例2~9、比較例1~24及び参考例1それぞれの永久磁石の組成を分析した。結果を表1~5に示す。 The compositions of the permanent magnets of Examples 2 to 9, Comparative Examples 1 to 24, and Reference Example 1 were analyzed in the same manner as in Example 1. The results are shown in Tables 1-5.
 実施例1と同様の方法により、実施例2~9、比較例1~24及び参考例1それぞれの永久磁石の磁気特性を測定した。結果を表1~5に示す。 The magnetic properties of the permanent magnets of Examples 2 to 9, Comparative Examples 1 to 24 and Reference Example 1 were measured in the same manner as in Example 1. The results are shown in Tables 1-5.
 (実施例10~15)
 実施例10及び11では、粗粉末に添加するオレイン酸アミドの量を調整することにより、永久磁石におけるC、N及びOそれぞれの含有量を表5に示す値に調整した。この点を除いて、実施例4と同様の方法により、実施例10及び11それぞれの永久磁石を個別に作製した。実施例12及び13それぞれの微粉末を得る際に、アルゴンガスの代わりにアルゴン及び窒素の混合ガスを用いることにより、永久磁石におけるC、N及びOそれぞれの含有量を表5に示す値に調整した。この点を除いて、実施例4と同様の方法により、実施例12及び13それぞれの永久磁石を個別に作製した。実施例14及び15それぞれの微粉末を得る際に、アルゴンガスの代わりにアルゴン及び酸素の混合ガスを用いることにより、永久磁石におけるC、N及びOそれぞれの含有量を表5に示す値に調整した。この点を除いて、実施例4と同様の方法により、実施例14及び15それぞれの永久磁石を個別に作製した。
(Examples 10 to 15)
In Examples 10 and 11, the contents of C, N, and O in the permanent magnet were adjusted to the values shown in Table 5 by adjusting the amount of oleic amide added to the coarse powder. Except for this point, the permanent magnets of Examples 10 and 11 were individually manufactured by the same method as in Example 4. When obtaining the fine powders of Examples 12 and 13, the contents of C, N and O in the permanent magnet were adjusted to the values shown in Table 5 by using a mixed gas of argon and nitrogen instead of argon gas. did. Except for this point, permanent magnets of Examples 12 and 13 were individually produced by the same method as in Example 4. When obtaining the fine powders of Examples 14 and 15, the contents of C, N and O in the permanent magnet were adjusted to the values shown in Table 5 by using a mixed gas of argon and oxygen instead of argon gas. did. Except for this point, permanent magnets of Examples 14 and 15 were individually manufactured by the same method as in Example 4.
 実施例1と同様の方法により、実施例10~15それぞれの永久磁石の組成を分析した。結果を表5に示す。 The compositions of the permanent magnets of Examples 10 to 15 were analyzed in the same manner as in Example 1. The results are shown in Table 5.
 実施例1と同様の方法により、実施例10~15それぞれの永久磁石の磁気特性を測定した。結果を表5に示す。 The magnetic properties of the permanent magnets of Examples 10 to 15 were measured in the same manner as in Example 1. The results are shown in Table 5.
Figure JPOXMLDOC01-appb-T000001
Figure JPOXMLDOC01-appb-T000001
Figure JPOXMLDOC01-appb-T000002
Figure JPOXMLDOC01-appb-T000002
Figure JPOXMLDOC01-appb-T000003
Figure JPOXMLDOC01-appb-T000003
Figure JPOXMLDOC01-appb-T000004
Figure JPOXMLDOC01-appb-T000004
Figure JPOXMLDOC01-appb-T000005
Figure JPOXMLDOC01-appb-T000005
 表1に示される実験群1の[T]/[B]とHcJとの関係を図4に示す。実験群1の[T]/[B]と角型比との関係を図5に示す。表2に示される実験群2‐1の[T]/[B]が14である。実験群2‐2の[T]/[B]は18である。実験群2‐3の[T]/[B]は12である。実験群2‐4の[T]/[B]は20である。実験群2‐1~2‐4それぞれの[Y]/[R]とHcJとの関係を図6に示す。実験群2‐1~2‐4それぞれの[Y]/[R]と角型比との関係を図7に示す。表3に示される実験群3の[Ce]/[R]とHcJとの関係を図8に示す。実験群3の[Ce]/[R]と角型比との関係を図9に示す。表4に示される実験群4‐1の[Ce]/[R]は0.55である。実験群4‐2の[Ce]/[R]は0.65である。実験群4‐1及び4‐2それぞれの[Y]/[R]とHcJとの関係を図10に示す。実験群4‐1及び4‐2それぞれの[Y]/[R]と角型比との関係を図11に示す。表5に示される実験群5では、永久磁石におけるCの含有量、Nの含有量、又はOの含有量が互いに異なる。 FIG. 4 shows the relationship between [T] / [B] and HcJ in the experimental group 1 shown in Table 1. FIG. 5 shows the relationship between [T] / [B] and the squareness ratio in Experimental Group 1. [T] / [B] of the experimental group 2-1 shown in Table 2 is 14. [T] / [B] in the experimental group 2-2 is 18. [T] / [B] is 12 in the experimental group 2-3. [T] / [B] in the experimental group 2-4 is 20. FIG. 6 shows the relationship between [Y] / [R] and HcJ in each of the experimental groups 2-1 to 2-4. FIG. 7 shows the relationship between [Y] / [R] and the squareness ratio in each of the experimental groups 2-1 to 2-4. FIG. 8 shows the relationship between [Ce] / [R] and HcJ in the experimental group 3 shown in Table 3. FIG. 9 shows the relationship between [Ce] / [R] and the squareness ratio in Experimental Group 3. [Ce] / [R] of the experimental group 4-1 shown in Table 4 is 0.55. In the experimental group 4-2, [Ce] / [R] is 0.65. FIG. 10 shows the relationship between [Y] / [R] and HcJ in each of the experimental groups 4-1 and 4-2. FIG. 11 shows the relationship between [Y] / [R] and the squareness ratio in each of the experimental groups 4-1 and 4-2. In the experimental group 5 shown in Table 5, the C content, the N content, or the O content in the permanent magnets are different from each other.
 表1~5に示すように、全ての実施例のHcJは12kOe以上であり、且つ全ての実施例の角型比は85%以上であった。一方、HcJが12kOe以上であり、且つ角型比が85%以上である比較例はなかった。本発明によれば、Ndの代替元素としてCeを含む永久磁石の中でも高い保磁力と高い角型比とを兼ね備える永久磁石が提供されることが確認された。 As shown in Tables 1 to 5, HcJ of all examples was 12 kOe or more, and the squareness ratio of all examples was 85% or more. On the other hand, there was no comparative example in which HcJ was 12 kOe or more and the squareness ratio was 85% or more. According to the present invention, it has been confirmed that a permanent magnet having both a high coercive force and a high squareness ratio among the permanent magnets containing Ce as an alternative element of Nd is provided.
 実験群1の結果から、比較例1~5それぞれの永久磁石では、主相の液相化温度が低く、十分高温での液相焼結を実施できなかったため、R17相を主相に改質できず、角型比が低下したと考えられる。 From the results of the experimental group 1, in each of the permanent magnets of Comparative Examples 1 to 5, since the liquidus temperature of the main phase was low and liquid phase sintering could not be performed at a sufficiently high temperature, the R 2 T 17 phase was used as the main phase. It is considered that the squareness ratio was lowered due to the inability to improve.
 実験群2‐1の結果から、比較例2の永久磁石では、主相の液相化温度が低く、十分高温での液相焼結を実施できなかったため、R17相を主相に改質できず、角型比が低下したと考えられる。比較例6の永久磁石では、主相におけるYの置換量が増加し、主相の異方性磁界Haが減少したため、保磁力が低下したと考えられる。 From the results of the experimental group 2-1, since the liquid phase temperature of the main phase was low in the permanent magnet of Comparative Example 2 and liquid phase sintering could not be performed at a sufficiently high temperature, the R 2 T 17 phase was used as the main phase. It is considered that the squareness ratio was lowered due to the inability to modify. In the permanent magnet of Comparative Example 6, it is considered that the coercive force was lowered because the amount of substitution of Y in the main phase increased and the anisotropic magnetic field Ha of the main phase decreased.
 実験群2‐2の結果から、比較例4の永久磁石では、主相の液相化温度が低く、十分高温での液相焼結を実施できなかったため、R17相を主相に改質できず、角型比が低下したと考えられる。比較例7の永久磁石では、主相におけるYの置換量が増加し、主相の異方性磁界Haが減少したため、保磁力が低下したと考えられる。 From the results of Experimental Group 2-2, the permanent magnet of Comparative Example 4 had a low liquidus temperature of the main phase and could not perform liquid phase sintering at a sufficiently high temperature. Therefore, the R 2 T 17 phase was used as the main phase. It is considered that the squareness ratio was lowered due to the inability to modify. In the permanent magnet of Comparative Example 7, the amount of substitution of Y in the main phase increased, and the anisotropy magnetic field Ha of the main phase decreased.
 実験群2‐3の結果から、比較例1の永久磁石では、主相の液相化温度が低く、十分高温での液相焼結を実施できなかったため、R17相を主相に改質できず、角型比が低下したと考えられる。比較例8~10それぞれの永久磁石では、永久磁石におけるBの含有量が多かったため、保磁力が低下したと考えられる。比較例11の永久磁石では、主相におけるYの置換量が増加し、主相の異方性磁界Haが減少したため、保磁力が低下したと考えられる。 From the results of the experimental group 2-3, since the liquid phase temperature of the main phase was low in the permanent magnet of Comparative Example 1 and liquid phase sintering could not be performed at a sufficiently high temperature, the R 2 T 17 phase was used as the main phase. It is considered that the squareness ratio was lowered due to the inability to modify. In each of the permanent magnets of Comparative Examples 8 to 10, it was considered that the coercive force decreased because the B content in the permanent magnet was large. In the permanent magnet of Comparative Example 11, the amount of substitution of Y in the main phase increased and the anisotropy magnetic field Ha of the main phase decreased, so it is considered that the coercive force decreased.
 実験群2‐4の結果から、比較例5及び12~14それぞれの永久磁石では、永久磁石におけるBの含有量が少なかったため、角型比が低かったと考えられる。比較例15の永久磁石では、主相におけるYの置換量が増加し、主相の異方性磁界Haが減少したため、保磁力が低下し、また、永久磁石におけるBの含有量が少なかったため、R17相を全て改質できず、角型比が低かったと考えられる。 From the results of the experimental group 2-4, it is considered that in each of the permanent magnets of Comparative Examples 5 and 12 to 14, the squareness ratio was low because the B content in the permanent magnet was small. In the permanent magnet of Comparative Example 15, the amount of substitution of Y in the main phase increased, the anisotropy magnetic field Ha of the main phase decreased, the coercive force decreased, and the content of B in the permanent magnet was small. It is considered that the R 2 T 17 phase could not be completely modified and the squareness ratio was low.
 表3に示されるように、参考例1の永久磁石では、保磁力が12kOe以上であり、角型比が85%以上であった。参考例1の永久磁石では、希土類元素Rの一部をCeで置換しても角型比が低下しなかった。しかしながら、参考例1の永久磁石では、永久磁石におけるCeの含有量が少ないため、永久磁石を安価にする効果がほとんどない。実験群3の結果から、比較例4及び16~19それぞれの永久磁石では、主相の液相化温度が低く、十分高温での液相焼結を実施できなかったため、R17相を主相に改質できず、角型比が低下したと考えられる。 As shown in Table 3, the permanent magnet of Reference Example 1 had a coercive force of 12 kOe or more and a squareness ratio of 85% or more. In the permanent magnet of Reference Example 1, the squareness ratio did not decrease even when part of the rare earth element R was replaced with Ce. However, in the permanent magnet of Reference Example 1, since the Ce content in the permanent magnet is small, there is almost no effect of making the permanent magnet inexpensive. From the results of the experimental group 3, the permanent magnets each Comparative Example 4, and 16-19, the main phase of the liquid phase temperature is low, because it could not implement the liquid-phase sintering at a sufficiently high temperature, the R 2 T 17 phase It is considered that the squareness ratio was lowered because the main phase could not be modified.
 実験群4‐1の結果から、比較例4の永久磁石では、主相の液相化温度が低く、十分高温での液相焼結を実施できなかったため、R17相を主相に改質できず、角型比が低下したと考えられる。比較例20の永久磁石では、主相におけるYの置換量が増加し、主相の異方性磁界Haが減少したため、保磁力が低下したと考えられる。 From the results of the experimental group 4-1, the permanent magnet of Comparative Example 4 had a low liquidus temperature of the main phase and could not perform liquid phase sintering at a sufficiently high temperature, so the R 2 T 17 phase was the main phase. It is considered that the squareness ratio was lowered due to the inability to modify. In the permanent magnet of Comparative Example 20, the amount of substitution of Y in the main phase was increased, and the anisotropic magnetic field Ha of the main phase was decreased.
 実験群4‐2の結果から、比較例19及び21~24それぞれの永久磁石では、主相の液相化温度が低く、十分高温での液相焼結を実施できなかったため、R17相を主相に改質できず、角型比が低下したと考えられる。 From the results of the experimental group 4-2, in each of the permanent magnets of Comparative Examples 19 and 21 to 24, the liquidus temperature of the main phase was low, and liquid phase sintering at a sufficiently high temperature could not be performed. Therefore, R 2 T 17 It is thought that the squareness ratio was lowered because the phase could not be reformed to the main phase.
 表5に示されるように、実施例11、13及び15それぞれの永久磁石では、実施例4、10、12及び14それぞれの永久磁石に比べて、角型比が低かった。実験群5の結果から、実施例11、13及び15それぞれの永久磁石では、永久磁石の粒界相にY‐OCN相が析出し、主相におけるYの置換量が低下してしまい、液相焼結を十分高温で実施できなかった。その結果、R17相を主相へ改質できず、角型比が低下したと考えられる。 As shown in Table 5, in each of the permanent magnets of Examples 11, 13 and 15, the squareness ratio was lower than that of each of the permanent magnets of Examples 4, 10, 12 and 14. From the results of the experimental group 5, in each of the permanent magnets of Examples 11, 13, and 15, the Y-OCN phase was precipitated in the grain boundary phase of the permanent magnet, and the amount of substitution of Y in the main phase was reduced. Sintering could not be performed at a sufficiently high temperature. As a result, it is considered that the R 2 T 17 phase could not be reformed to the main phase and the squareness ratio was lowered.
 本発明に係る永久磁石は、例えば、回転機に用いられる。 The permanent magnet according to the present invention is used, for example, in a rotating machine.
 3…R‐T相、5…Rリッチ相、7…異相、9…粒界相、10,10a…永久磁石、10cs…永久磁石の断面、11…主相粒子、30…ステータ、32…コイル、52…コア、200…回転機。 DESCRIPTION OF SYMBOLS 3 ... RT phase, 5 ... R rich phase, 7 ... Different phase, 9 ... Grain boundary phase, 10, 10a ... Permanent magnet, 10cs ... Permanent magnet cross section, 11 ... Main phase particle, 30 ... Stator, 32 ... Coil 52 ... Core, 200 ... Rotating machine.

Claims (3)

  1.  希土類元素R、遷移金属元素T、及びホウ素Bを含有する永久磁石であって、
     前記希土類元素Rが、少なくともNd、Y及びCeを含み、
     前記遷移金属元素Tが、少なくともFeを含み、
     前記永久磁石における前記希土類元素Rの含有量の合計が[R]原子%であり、
     前記永久磁石における前記遷移金属元素Tの含有量の合計が[T]原子%であり、
     前記永久磁石におけるBの含有量が[B]原子%であり、
     前記永久磁石におけるYの含有量が[Y]原子%であり、
     前記永久磁石におけるCeの含有量が[Ce]原子%であり、
     [Y]/[R]が0.05~0.25であり、
     [Ce]/[R]が0.10~0.55であり、
     [T]/[B]が14~18である、
    永久磁石。
    A permanent magnet containing a rare earth element R, a transition metal element T, and boron B,
    The rare earth element R includes at least Nd, Y and Ce;
    The transition metal element T contains at least Fe;
    The total content of the rare earth element R in the permanent magnet is [R] atomic%,
    The total content of the transition metal element T in the permanent magnet is [T] atomic%,
    The content of B in the permanent magnet is [B] atomic%,
    The Y content in the permanent magnet is [Y] atomic%,
    The Ce content in the permanent magnet is [Ce] atomic%,
    [Y] / [R] is 0.05 to 0.25,
    [Ce] / [R] is 0.10 to 0.55,
    [T] / [B] is 14 to 18,
    permanent magnet.
  2.  前記永久磁石におけるCの含有量が0.00~0.25質量%であり、
     前記永久磁石におけるNの含有量が0.00~0.25質量%であり、
     前記永久磁石におけるOの含有量が0.00~0.25質量%である、
    請求項1に記載の永久磁石。
    The content of C in the permanent magnet is 0.00 to 0.25% by mass;
    The N content in the permanent magnet is 0.00 to 0.25% by mass;
    The content of O in the permanent magnet is 0.00 to 0.25% by mass.
    The permanent magnet according to claim 1.
  3.  請求項1又は2に記載の永久磁石を備える回転機。 A rotating machine comprising the permanent magnet according to claim 1 or 2.
PCT/JP2018/012997 2017-03-30 2018-03-28 Permanent magnet and rotating machine WO2018181592A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2017-068798 2017-03-30
JP2017068798A JP2020095992A (en) 2017-03-30 2017-03-30 Sintered magnet and rotary machine

Publications (1)

Publication Number Publication Date
WO2018181592A1 true WO2018181592A1 (en) 2018-10-04

Family

ID=63677863

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2018/012997 WO2018181592A1 (en) 2017-03-30 2018-03-28 Permanent magnet and rotating machine

Country Status (2)

Country Link
JP (1) JP2020095992A (en)
WO (1) WO2018181592A1 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN110853856A (en) * 2019-11-22 2020-02-28 安泰科技股份有限公司 High-coercivity cerium-containing magnet and preparation method thereof
CN113782292A (en) * 2021-06-04 2021-12-10 钢铁研究总院 Yttrium cerium-based rare earth permanent magnetic material with improved temperature stability

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN116600916A (en) * 2020-12-09 2023-08-15 Tdk株式会社 R-T-B permanent magnet

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2014027268A (en) * 2012-06-22 2014-02-06 Tdk Corp Sintered magnet
WO2014148076A1 (en) * 2013-03-22 2014-09-25 Tdk株式会社 R-t-b-type permanent magnet
JP2015192043A (en) * 2014-03-28 2015-11-02 Tdk株式会社 R-t-b-based permanent magnet
JP2015204390A (en) * 2014-04-15 2015-11-16 Tdk株式会社 permanent magnet and motor
JP2015207663A (en) * 2014-04-21 2015-11-19 Tdk株式会社 R-t-b-based permanent magnet, and raw material alloy for r-t-b-based permanent magnets

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2014027268A (en) * 2012-06-22 2014-02-06 Tdk Corp Sintered magnet
WO2014148076A1 (en) * 2013-03-22 2014-09-25 Tdk株式会社 R-t-b-type permanent magnet
JP2015192043A (en) * 2014-03-28 2015-11-02 Tdk株式会社 R-t-b-based permanent magnet
JP2015204390A (en) * 2014-04-15 2015-11-16 Tdk株式会社 permanent magnet and motor
JP2015207663A (en) * 2014-04-21 2015-11-19 Tdk株式会社 R-t-b-based permanent magnet, and raw material alloy for r-t-b-based permanent magnets

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN110853856A (en) * 2019-11-22 2020-02-28 安泰科技股份有限公司 High-coercivity cerium-containing magnet and preparation method thereof
CN110853856B (en) * 2019-11-22 2021-07-13 安泰科技股份有限公司 High-coercivity cerium-containing magnet and preparation method thereof
CN113782292A (en) * 2021-06-04 2021-12-10 钢铁研究总院 Yttrium cerium-based rare earth permanent magnetic material with improved temperature stability
CN113782292B (en) * 2021-06-04 2022-06-10 钢铁研究总院 Yttrium cerium-based rare earth permanent magnetic material with improved temperature stability

Also Published As

Publication number Publication date
JP2020095992A (en) 2020-06-18

Similar Documents

Publication Publication Date Title
JP5767788B2 (en) R-T-B rare earth permanent magnet, motor, automobile, generator, wind power generator
JP6733576B2 (en) R-T-B system permanent magnet
JP6269279B2 (en) Permanent magnet and motor
JP6330813B2 (en) R-T-B system sintered magnet and motor
JP5754232B2 (en) Manufacturing method of high coercive force NdFeB magnet
WO2012002059A1 (en) R-t-b type rare earth permanent magnet, motor, automobile, power generator, and wind power generation system
JP6257890B2 (en) Permanent magnet and motor and generator using the same
JP6848735B2 (en) RTB series rare earth permanent magnet
JP6733577B2 (en) R-T-B system permanent magnet
JP7180096B2 (en) Permanent magnet and rotating machine
JP6076705B2 (en) Permanent magnet and motor and generator using the same
WO2018181594A1 (en) Permanent magnet and rotary machine
JP4951703B2 (en) Alloy material for RTB-based rare earth permanent magnet, method for manufacturing RTB-based rare earth permanent magnet, and motor
WO2018181592A1 (en) Permanent magnet and rotating machine
JPWO2011030387A1 (en) Magnet material, permanent magnet, and motor and generator using the same
WO2018181581A1 (en) Permanent magnet and rotary machine
CN111261353B (en) R-T-B based permanent magnet
JP5743458B2 (en) Alloy material for RTB-based rare earth permanent magnet, method for manufacturing RTB-based rare earth permanent magnet, and motor
CN112204680B (en) R-T-B system magnet, motor and generator
JP5359383B2 (en) Magnet molded body and manufacturing method thereof
EP3276639A1 (en) Magnet material, permanent magnet, motor, and generator
WO2018181580A1 (en) Permanent magnet and rotating machine
WO2012171490A1 (en) Neodymium/iron/boron-based permanent magnet
JP2022068679A (en) Rare-earth magnet and manufacturing method thereof
JP2017139454A (en) Permanent magnet, motor and power generator using the same, and vehicle

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 18774341

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 18774341

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: JP