WO2012017574A1 - Anisotropic rare earth bonded magnet and production method therefor - Google Patents
Anisotropic rare earth bonded magnet and production method therefor Download PDFInfo
- Publication number
- WO2012017574A1 WO2012017574A1 PCT/JP2011/001857 JP2011001857W WO2012017574A1 WO 2012017574 A1 WO2012017574 A1 WO 2012017574A1 JP 2011001857 W JP2011001857 W JP 2011001857W WO 2012017574 A1 WO2012017574 A1 WO 2012017574A1
- Authority
- WO
- WIPO (PCT)
- Prior art keywords
- rare earth
- magnet
- anisotropic
- scrap
- sintered magnet
- Prior art date
Links
Classifications
-
- C—CHEMISTRY; METALLURGY
- C22—METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
- C22C—ALLOYS
- C22C38/00—Ferrous alloys, e.g. steel alloys
- C22C38/005—Ferrous alloys, e.g. steel alloys containing rare earths, i.e. Sc, Y, Lanthanides
-
- C—CHEMISTRY; METALLURGY
- C22—METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
- C22C—ALLOYS
- C22C38/00—Ferrous alloys, e.g. steel alloys
- C22C38/06—Ferrous alloys, e.g. steel alloys containing aluminium
-
- C—CHEMISTRY; METALLURGY
- C22—METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
- C22C—ALLOYS
- C22C38/00—Ferrous alloys, e.g. steel alloys
- C22C38/08—Ferrous alloys, e.g. steel alloys containing nickel
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01F—MAGNETS; INDUCTANCES; TRANSFORMERS; SELECTION OF MATERIALS FOR THEIR MAGNETIC PROPERTIES
- H01F1/00—Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties
- H01F1/01—Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials
- H01F1/03—Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity
- H01F1/032—Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity of hard-magnetic materials
- H01F1/04—Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity of hard-magnetic materials metals or alloys
- H01F1/047—Alloys characterised by their composition
- H01F1/053—Alloys characterised by their composition containing rare earth metals
- H01F1/055—Alloys characterised by their composition containing rare earth metals and magnetic transition metals, e.g. SmCo5
- H01F1/0555—Alloys characterised by their composition containing rare earth metals and magnetic transition metals, e.g. SmCo5 pressed, sintered or bonded together
- H01F1/0558—Alloys characterised by their composition containing rare earth metals and magnetic transition metals, e.g. SmCo5 pressed, sintered or bonded together bonded together
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01F—MAGNETS; INDUCTANCES; TRANSFORMERS; SELECTION OF MATERIALS FOR THEIR MAGNETIC PROPERTIES
- H01F1/00—Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties
- H01F1/01—Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials
- H01F1/03—Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity
- H01F1/032—Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity of hard-magnetic materials
- H01F1/04—Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity of hard-magnetic materials metals or alloys
- H01F1/047—Alloys characterised by their composition
- H01F1/053—Alloys characterised by their composition containing rare earth metals
- H01F1/055—Alloys characterised by their composition containing rare earth metals and magnetic transition metals, e.g. SmCo5
- H01F1/057—Alloys characterised by their composition containing rare earth metals and magnetic transition metals, e.g. SmCo5 and IIIa elements, e.g. Nd2Fe14B
- H01F1/0571—Alloys characterised by their composition containing rare earth metals and magnetic transition metals, e.g. SmCo5 and IIIa elements, e.g. Nd2Fe14B in the form of particles, e.g. rapid quenched powders or ribbon flakes
- H01F1/0575—Alloys characterised by their composition containing rare earth metals and magnetic transition metals, e.g. SmCo5 and IIIa elements, e.g. Nd2Fe14B in the form of particles, e.g. rapid quenched powders or ribbon flakes pressed, sintered or bonded together
- H01F1/0578—Alloys characterised by their composition containing rare earth metals and magnetic transition metals, e.g. SmCo5 and IIIa elements, e.g. Nd2Fe14B in the form of particles, e.g. rapid quenched powders or ribbon flakes pressed, sintered or bonded together bonded together
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01F—MAGNETS; INDUCTANCES; TRANSFORMERS; SELECTION OF MATERIALS FOR THEIR MAGNETIC PROPERTIES
- H01F41/00—Apparatus or processes specially adapted for manufacturing or assembling magnets, inductances or transformers; Apparatus or processes specially adapted for manufacturing materials characterised by their magnetic properties
- H01F41/02—Apparatus or processes specially adapted for manufacturing or assembling magnets, inductances or transformers; Apparatus or processes specially adapted for manufacturing materials characterised by their magnetic properties for manufacturing cores, coils, or magnets
- H01F41/0253—Apparatus or processes specially adapted for manufacturing or assembling magnets, inductances or transformers; Apparatus or processes specially adapted for manufacturing materials characterised by their magnetic properties for manufacturing cores, coils, or magnets for manufacturing permanent magnets
- H01F41/0273—Imparting anisotropy
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B22—CASTING; POWDER METALLURGY
- B22F—WORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
- B22F2998/00—Supplementary information concerning processes or compositions relating to powder metallurgy
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B22—CASTING; POWDER METALLURGY
- B22F—WORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
- B22F2998/00—Supplementary information concerning processes or compositions relating to powder metallurgy
- B22F2998/10—Processes characterised by the sequence of their steps
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B22—CASTING; POWDER METALLURGY
- B22F—WORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
- B22F2999/00—Aspects linked to processes or compositions used in powder metallurgy
-
- C—CHEMISTRY; METALLURGY
- C22—METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
- C22C—ALLOYS
- C22C2202/00—Physical properties
- C22C2202/02—Magnetic
Definitions
- the present invention relates to an anisotropic rare earth bonded magnet manufactured from a rare earth anisotropic sintered magnet and a manufacturing method thereof.
- Rare-earth sintered magnet is energy saving, reduction in size and weight of the equipment, home appliances against the background of the needs of high performance, personal computers, digital cameras, mobile phones, office equipment OA, such as a motor FA equipment, hybrid by CO 2 warming in recent years With the addition of applications such as automobiles and electric cars, these demands are growing more and more and their consumption is increasing year by year.
- Rare earths contained in rare earth sintered magnets are rare in Japan, relying 100% on imports from China, the United States and Australia, more than 95% of which are in China.
- RE long-term rare earth
- Patent Document 1 Many proposals have been made to obtain a magnet alloy by melting and alloying rare earth magnet scraps again (for example, Patent Document 1). These require not only remelting and alloying in order to produce a magnet product again, but also a magnet process of crushing, molding, sintering, and heat treatment, and the purchase of RE raw materials is more cost-effective. Moreover, the process (patent document 2) which reduces
- Patent Document 5 a plating removal method
- JP 2003-113429 A JP2002-60855 JP 2004-91811 A JP 2005-57191 A JP2001-40425 JP2003-176659
- the present invention proposes a novel anisotropic rare earth bonded magnet obtained by recycling a rare earth sintered magnet and a method for producing the same.
- the present invention aims to provide a high performance anisotropic rare earth bonded magnet, does not use any conventional recycling process of rare earth magnet materials, has no problem of waste liquid treatment such as acid, and separates and refines Sm and Nd. No need for process, no need for peeling of surface treatment film such as Ni plating, no need to remove adhesive, but magnetic properties are inferior to those of commercially available Nd sintered magnets.
- the present invention provides a novel anisotropic rare earth bonded magnet superior to a bonded magnet and a method for producing the same, and has the following characteristics.
- At least neodymium (Nd) is 13 to 35 wt%, boron (B) is 0.3 to 1.3 wt%, samarium (Sm) is 0 to 30 wt%, cobalt (Co ) 0-15 wt%, nickel (Ni) 0-5.5 wt%, aluminum (Al) 0-5.5 wt%, and nickel (Ni) and aluminum (Al) combined at 0.3 wt% %,
- the balance being iron (Fe) the maximum energy product (BH) max is 96 to 270 kJ / m 3 , and the average particle size of the pulverized raw material is 30 to 200 ⁇ m (micron)
- an anisotropic rare earth bonded magnet characterized in that the main phase forming each particle has a structure with an average crystal grain size of 1 to 15 ⁇ m (microns).
- a method for producing an anisotropic rare earth bonded magnet comprising:
- the rare earth anisotropic sintered magnet may be neodymium sintered magnet collection waste or a mixture of neodymium sintered magnet collection waste and samarium cobalt sintered magnet collection waste.
- the rare earth anisotropic sintered magnet recovery scrap is a mixed scrap
- the recovered scrap is sampled in advance and subjected to component analysis of the recovered magnet material before being subjected to the pulverization process, and the composition of neodymium and neodymium and samarium is determined.
- the manufacturing method of the anisotropic rare earth bond magnet as described in said [3] including the process to confirm.
- an anisotropic rare earth bonded magnet having remarkably excellent magnetic properties can be obtained. Further, one of the greatest characteristics in performance of the anisotropic bonded magnet according to the present invention is heat resistance, specifically, thermal demagnetization characteristics.
- one of the additional features of the anisotropic rare earth bonded magnet of the present invention is high corrosion resistance, and the magnet has long-term stability that can be applied to long-term use. is there.
- an anisotropic rare earth bonded magnet can be manufactured without removing the adhesive adhering to the magnet and before the surface treatment peeling removal such as Ni plating, Al plating or epoxy resin. It can be simplified.
- the separation step at the time of RE purification of SmCo and Nd magnet waste, which has been inevitable in the past, is completely unnecessary.
- the purpose is to use the recovered scrap for sintered magnet applications, but the present invention is applied to a bonded magnet. There is no high-temperature processing step in the process of manufacturing the bonded magnet of the present invention, and individual bonding magnet powders show independent magnetic characteristics, so that arbitrary mixing is possible.
- the feature of the present invention is that there is no problem of separation and recovery of the above-mentioned SmCo magnet and Nd magnet, there is no need to peel and remove the magnet surface treatment film, which is inevitable in the current magnet recycling process, With almost no removal and reusable magnet material composition, there is no limit to the amount of recovered materials such as Ni, AI, Cr as surface treatment materials and O and C as impurity elements. It is possible to recover.
- the anisotropic rare earth bonded magnet according to the present invention is an anisotropic rare earth bonded magnet manufactured from a rare earth anisotropic sintered magnet.
- a rare earth anisotropic sintered magnet As the rare earth anisotropic sintered magnet as a raw material, an anisotropic rare earth sintered magnet recovered from the city can be used.
- isotropic Nd bond magnets and isotropic full dense (dense) Nd magnets in the city's collected scrap there is an idea to collect and reuse these collected scraps. It is preferable to use a rare earth anisotropic sintered magnet.
- anisotropic rare earth sintered magnets are very long processes of alloy melting, grinding, magnetic field molding, sintering, heat treatment, processing, and surface treatment, that is, even “waste” is “recovered waste with very high added value”. This is because it is not desirable to reduce the reuse and energy reuse efficiency by mixing other magnets.
- the present invention is a high-value-added anisotropic rare earth sintered magnet material, and is characterized by considering the characteristics of various recovered scraps and focusing on the maximum scrap recovery and reuse.
- the recovered rare earth sintered magnet of the present invention is a so-called Nd-based sintered magnet, but is characterized in that SmCo-based sintered magnets that are used in some markets and are available as recovered scrap can also be used as raw materials.
- neodymium sintered magnet collection waste or a mixture of neodymium sintered magnet collection waste and samarium cobalt sintered magnet collection waste is used.
- the maximum energy product (BH) max is 96 to 270 kJ / m 3 equal to or higher than that of the conventional anisotropic rare earth bonded magnet.
- the composition of the magnet is at least 13 to 35 wt% of neodymium (Nd) and 0.3% of boron (B) as components other than iron (Fe).
- an anisotropic rare earth bonded magnet having a magnetic property with a maximum energy product (BH) max of 170 to 270 kJ / m 3.
- the composition of the magnet is other than iron (Fe).
- Fe iron
- at least neodymium (Nd) is 17 to 33 wt%
- boron (B) is 0.55 to 1.25 wt%
- samarium (Sm) is 0 to 14 wt%
- cobalt (Co) is 0 to 13 wt%
- nickel ( Ni) must be 0 to 4.9 wt%
- aluminum (Al) should be 0 to 4.8 wt%
- nickel (Ni) and aluminum (Al) must be combined to contain 0.3 wt% or more. It is.
- it is an anisotropic rare earth bonded magnet having a magnetic property with a maximum energy product (BH) max of 205 to 270 kJ / m 3 , and in order to produce it, the composition of the magnet is other than iron (Fe).
- Fe iron
- nickel (Ni) contains 0 to 3.5 wt%
- aluminum (Al) contains 0 to 3.5 wt%
- nickel (Ni) and aluminum (Al) together contain 0.3 wt% or more. is necessary.
- the recovered rare earth sintered magnet since the recovered rare earth sintered magnet is used as a raw material, it is usually provided with an AL coating and Ni-coating, so that Al and Ni components are usually combined with nickel (Ni) and aluminum (Al). .3 wt% or more, and in some cases, 1 wt% or more. Even if the content of Al or Ni is up to 5.5% by weight, sufficient magnetic properties can be exhibited.
- the magnet of the present invention includes components other than Fe, Nd, B, Sm, Co, Ni, and Al, and usually the components have the following composition (wt%).
- Nd 13-35, Pr; 0-10, Dy; 0-12, Tb; 0-3, Sm; 0-30, Ce; 0-10, B; 0.3-1.3, Co; 0- 15, Nb; 0-1.5, Cu; 0-10, Al; 0-5.5, Ga; 0-1.5, Ni0-5.5, Zr; 0-0.5, Hf; 0- 0.5, Fe; balance.
- a desirable composition (wt%) for realizing higher magnetic properties is as follows. Nd; 17-33, Pr; 0-5, Dy; 0-9, Tb; 0-2, Sm; 0-14, Ce; 0-3, B; 0.55-1.25, Co; 0- 13, Nb; 0-0.8, Cu; 0-8, Al; 0-4.8, Ga; 0-0.8, Ni; 0-4.9, Zr; 0-0.3, Hf; 0-0.3, Fe; balance.
- a desirable composition (wt%) for realizing higher magnetic properties is as follows. Nd; 20-30, Pr; 0-3, Dy; 0-7, Tb; 0-1, Sm; 0-8, Ce; 0-1, B; 0.8-1.1, Co; 0- 8, Nb; 0-0.6, Cu; 0-7, Al; 0-3.5, Ga; 0-0.2, Ni; 0-3.5, Zr; 0-0.3, Hf; 0-0.2, Fe; balance.
- Nd is an important essential element for obtaining excellent magnetic properties, and the most excellent magnetic properties can be realized when Nd is 20 to 30 wt%.
- the magnet scrap of the present invention is most preferably composed only of Nd magnet scrap in order to exhibit higher magnetic performance, but high magnetic performance even if the Nd magnet scrap contains SmCo-based magnet scrap. It is possible to demonstrate. However, as the blending ratio of SmCo sintered magnet scrap increases, the magnetic properties such as residual magnetic flux density Br and maximum energy product (BH) max that are obtained at that time monotonously decrease. The Sm content is limited.
- one of the features of the present invention is that excellent magnetic properties can be realized even in a composition region containing Sm that cannot be realized by a normal Nd-based anisotropic bonded magnet. Even Sm content up to 6 wt% is possible. If it exceeds 6 wt%, the magnetic properties will gradually deteriorate.
- the major difference between the normal Nd magnet composition and the raw material scrap is the Sm, Co, and Cu contents, which are outside the normal composition of the Nd magnet.
- This is characterized by the fact that the entire amount or most of the city waste is SmCo-based, and that it is possible to newly recover the waste that is impossible with the conventional remelting and alloying methods. .
- an anisotropic rare earth bonded magnet excellent in the method of the present invention can be obtained without any problem without removing the resin from the epoxy resin coated product.
- the anisotropic rare earth bonded magnet of the present invention uses the magnet collected as described above as it is without pretreatment, removal of impurities, etc., so that a relatively high ratio of O (oxygen) amount, C (carbon) amount Even in this case, it has a performance equal to or higher than that of conventional isotropic bonded magnets and anisotropic bonded magnets.
- An anisotropic rare earth bonded magnet is a high purity rare earth metal, iron, boron and other essential elements are all made of high purity raw materials. Therefore, a magnet alloy dissolved and refined using these materials has an O content of at least 0.08 wt%, usually less Is 0.01 wt% or less, and the C content is at least 0.03 wt% or less, usually 0.05 wt%.
- the raw material alloy of the anisotropic rare earth bonded magnet of the present invention uses the recovered rare earth anisotropic sintered magnet, the amount of O and C increased due to oxidation and binder addition during the sintered magnet manufacturing process.
- the amount of O is at least 1 wt%, usually 4 wt% or more, and the amount of C is 0.4 wt% or more, usually 0.5 wt% or more.
- the magnet may be significantly oxidized and corroded, or there may be recovered scraps that are markedly adhered with adhesive or coated when the magnet is recovered, and these have sufficient magnetic properties. Absent. Therefore, in order for the anisotropic rare earth bonded magnet of the present invention to maintain a magnetic property having a maximum energy product (BH) max of 96 kJ / m 3 or more, the upper limit of the O amount is 8 wt% or less, and preferably 5 wt% or less. , C content is required to be 7 wt% or less, preferably 4 wt% or less.
- BH maximum energy product
- the anisotropic rare earth bonded magnet of the present invention is equivalent to or more than conventional isotropic bonded magnets and anisotropic bonded magnets even if a raw material having a high amount of O, C as impurities, which is normally unusable, is used.
- One of the features is that it has excellent magnet characteristics, heat resistance characteristics, and corrosion resistance.
- the anisotropic rare earth bonded magnet of the present invention is characterized by its magnet structure in order to obtain excellent magnetic properties.
- the average particle size of the magnet powder constituting this magnet is 30 to 200 ⁇ m, more preferably 50 to 170 ⁇ m, and the average crystal particle size of the main phase forming each particle is a conventional anisotropic rare earth.
- the coercive force of rare earth magnets is reduced due to a multi-domain structure when the crystal grain size is large, and the coercive force decreases due to oxidation or processing strain, although it is a single domain structure when the crystal grain size is small. Therefore, there is an optimal crystal grain size that depends on the magnet process.
- the average crystal grain size of the main phase forming each particle of the anisotropic rare earth bonded magnet of the present invention has a structure of 1 to 15 ⁇ m (micron) completely different from the grain size of the conventional anisotropic rare earth bonded magnet. In order to obtain an excellent high coercive force and to suppress the oxygen content, 1.5 to 10 ⁇ m, more preferably 2.0 to 7.0 ⁇ m is most desirable.
- the main phase is Nd 2 Fe 14 B intermetallic compound phase in the case of Nd-based recovered scrap, and SmCo 5 or Sm 2 (Fe, Co, Cu) 17 intermetallic compound phase is main in the SmCo system. Is a phase.
- the volume ratio of the main phase is 90% or more of the entire magnet.
- the average particle size of the magnet powder is a condition from the manufacturing conditions of the bonded magnet in consideration of high density and productivity.
- this magnet since this magnet is essentially a recovered scrap material, it has an average crystal grain size of submicron or less obtained by a rapid cooling process (so-called melt spinning) such as a conventional nanocomposite or MQI powder or a HDDR manufacturing method. It is essentially different from the bond magnets that it has, and because of the Nd-based material, it has a completely different magnet composition from the SmFeN bond.
- typical average grain sizes of MQI powder, HDDR, and SmFeN are 0.05 ⁇ m, 0.3 ⁇ m, and 0.4 ⁇ m, which are extremely smaller than 1 to 15 ⁇ m of the average crystal grain size of the magnet of the present invention.
- the characteristics of the magnet according to the present invention make the best use of the characteristics of the recovered scrap raw material, and at the crystal grain size that has not been realized in the past, magnetic characteristics equivalent to or higher than those of conventional anisotropic rare earth bonds can be obtained. It has been found that it can be.
- the average particle size measurement is a value measured by a hole permeation method (Fischer, subseed sizer, etc.), and the crystal particle size is a crystal particle size derived by image analysis of a two-dimensional metal structure photograph.
- the pore permeation method commonly called the Fischer method (FSSS)
- FSSS Fischer method
- the method for producing an anisotropic rare earth bonded magnet using the rare earth anisotropic sintered magnet of the present invention as a raw material includes a step of mechanically crushing the rare earth anisotropic sintered magnet in an inert atmosphere, It consists of a step of strain relief annealing at a temperature of 400 to 600 ° C. in a vacuum or an inert atmosphere and a holding time of 12 hours or more, and a step of kneading the strain relief annealed material and a binder to form a magnetic field. It is characterized by.
- the anisotropic rare earth sintered magnet as a raw material for the anisotropic rare earth bonded magnet according to the present invention, the anisotropic rare earth sintered magnet recovered scrap recovered from the market as described above can be used.
- the collected rare earth sintered magnet is sampled in advance. Then, it is preferable to conduct a component analysis of the recovered magnet material and confirm the composition of neodymium (Nd) and samarium (Sm) as the composition of the magnet. Judging from the analysis value, in order to obtain a desired magnetic characteristic, a bonded magnet can be prepared by further blending and adjusting magnet scraps with other components already known. However, for that purpose, it is preferable to accumulate data of CR values, which will be described later, with various collected scraps.
- BH maximum energy product
- the recovered rare earth anisotropic sintered magnet is a single magnet scrap, this component analysis can be omitted.
- the recovered rare earth anisotropic sintered magnet is a mixture of various kinds. Is essential, and it is preferable that the number of sampling is large.
- the rare earth anisotropic sintered magnet as a raw material is preferably a neodymium sintered magnet recovery scrap or a mixture of neodymium sintered magnet recovery scrap and samarium cobalt sintered magnet recovery scrap.
- component analysis of the magnet material used is It is essential.
- Component analysis is based on ICP or X-ray fluorescence analysis. For the same reason, it is essential to measure the magnetic properties of the recovered raw material. In order to exhibit the required magnetic properties, it is possible to use one or more kinds of magnet material scraps in combination, which is a feature of this manufacturing method. This is because it is necessary to evaluate the waste performance by component analysis and magnetic property measurement, and to optimize and obtain the maximum maximum energy product (BH) max by adjusting the selection and mixing of the waste to be used according to the application.
- BH maximum energy product
- the pulverization can be performed by mechanical pulverization such as a ball mill, an attritor, and a jaw crusher.
- a two-stage treatment such as grinding with a jaw crusher and then finely grinding with a ball mill is also effective, the particle size distribution can be made uniform, and the magnetic properties can be improved.
- the grinding atmosphere is performed in an inert atmosphere such as Ar or N or in a solvent such as alcohol or acetone.
- the recovered waste uses a crushing process that does not require any hydrogen crushing, which is essential in the conventional magnet manufacturing process. This is because when hydrogen pulverization is used, microcracks are generated during press molding, and magnetic properties are deteriorated due to significant oxidation of the powder.
- the average particle size of the pulverized powder is 30 to 200 ⁇ m, more preferably 50 to 170 ⁇ m, in order to obtain high magnetic properties.
- This magnet manufacturing process is a process that does not use hydrogen crushing.
- Hydrogen crushing is a production method that is often used because Sm magnets and Nd magnets have inherently hydrogen storage and hydrogen embrittlement, but the rare earth scrap recovery industry can disseminate a large amount of processing safely and inexpensively as a social scheme.
- a process that does not use any hydrogen pulverization process is proposed.
- the pulverization method by hydrogen pulverization is not excluded.
- This magnet powder must be heat-treated in a high vacuum or inert atmosphere after grinding. If heat treatment is not performed, the coercive force value HCJ obtained is extremely low at 800 kA / m (10 kOe) or less, as shown in the prior patent (Japanese Patent Application No. 4-303254), and the heat resistance of the magnet is low.
- the heat treatment temperature is 400 to 600 ° C., but a heat treatment time of 12 hours or longer, preferably 48 hours or longer, is desired. If the temperature exceeds 600 ° C., the powder is welded and further diffusion occurs. Therefore, if possible, the temperature is preferably 500 ° C. or lower. At a low temperature of 400 ° C., it takes a long time for heat treatment to remove strain, and it is preferably 24 hours or more or 48 hours or more.
- the magnet molding process is not particularly limited, and may be compression molding or injection molding.
- the obtained powder is first kneaded with a binder.
- a binder an epoxy resin is used in compression molding, and a thermoplastic resin such as PA resin (nylon 12 or the like) or heat-resistant PPS is used in injection molding.
- PA resin polyamide resin
- PPS heat-resistant PPS
- an antioxidant, a stearic acid-based mold lubricant, and the like may be added in an amount of 0.8 wt% or less depending on the product shape.
- a magnetic field press method can be adopted, and molding corresponding to a magnet shape such as right-angle molding, parallel molding, radial molding, and diameter dipole molding is possible.
- the molding pressure is 0.9 Ton / cm 2 or more, preferably 6.5 Ton / cm 2 or more, more preferably 8.5 Ton / cm 2 or more in order to realize high magnetic properties by increasing the molding density.
- Kp is (coarse particle weight) / (microparticle weight). The conditions of the present Cp and Kp are the same in the injection molding press.
- wet molding that is easy to increase the density of the molded body is also an extremely effective method.
- the wet molding method is already used in the production method of rare earth sintered magnets, it is usually used at a higher cost than the dry process and requires a solvent removal process during sintering.
- two-stage press molding in which cold isotropic pressing (hereinafter referred to as CIP) is further performed following compression molding or wet molding may be employed.
- CIP cold isotropic pressing
- the pressure at which CIP is effective is 200 MPa or more, desirably 300 MPa or more.
- the CIP medium is a solvent such as glycerin, and the CIP pressure application time is 10 to 20 minutes.
- Wet press molding mainly contributes to densification by improving the coefficient of friction on the mold surface, and CIP contributes differently to densification by hydrostatic pressure from all directions, so a combination of wet molding and CIP.
- a multi-stage press having various effects is effective.
- These powder moldings are unique to the powder physical properties such as mechanical properties and particle size distribution of rare earth sintered dust powder, which are hardly manifested in the effects of conventional rare earth sintered magnets.
- the solvent used for the wet molding can be an organic solvent such as alcohol or acetone, lubricating oil, gasoline or the like.
- the press molding pressure can be reduced by 20-30% from the usual dry pressure, and peeling, cracking, chipping, etc. during molding are remarkably improved.
- Wet molding essentially requires an inevitable solvent removal step, but it is extremely effective molding because it is not necessary at all in the proposed anisotropic rare earth bonded magnet manufacturing method.
- a powder filling tapping process such as air tapping and ultrasonic tapping during the magnetic field forming process obtains a high tap density and is extremely effective as a molding technique for this powder.
- Tapping is performed by propagating the pressure vibration of the compressed air, such as by attaching a vibration transmission board to a magnetic mold.
- the density is increased by inserting a green molded body previously air-tapped in a temporary press package into a mold.
- a magnet obtained by compression molding or injection molding can be used as a product as it is, but by applying Ni plating, epoxy coating, etc., it can be applied to applications requiring corrosiveness and corrosion resistance.
- these surface treatments although they are manufactured from the collected rare earth anisotropic sintered magnet, they have corrosion resistance reliability equivalent to or higher than that of commercially available anisotropic rare earth bonded magnets. Specifically, the corrosion resistance evaluation is performed under the condition of 80 ° C. ⁇ 90% RH.
- the above anisotropic rare earth bonded magnet manufacturing method realizes an energy product with a maximum energy product (BH) max of 96 to 270 kJ / m 3 and a high standard squareness ratio p0.70, and further, based on the analysis value
- BH maximum energy product
- HcJ coercive force
- the magnetic material having one or several steps (cascade) magnetic properties will be embodied and used effectively, but the magnetic force is still the conventional isotropic rare earth It has performances higher than those of bonded magnets and anisotropic rare earth bonded magnets.
- the CR rate is usually 0.3 to 0.7.
- the upper limit of the CR rate is 0.7 because the recovered magnet is simply pulverized without pretreatment, and the upper limit is usually 0.75.
- the lower limit is usually 0.30 or more, preferably 0.45, more preferably 0.55 or more in terms of magnet cost / magnetic performance.
- the cost merit is small compared to a normal commercially available isotropic rare earth bonded magnet.
- the coercive force HcJ is Excellent magnetic characteristics of 800 kA / m or more can be realized. This indicates that the heat resistance, which is extremely important in practical use of the permanent magnet, specifically, the heat demagnetization property is sufficiently high.
- Hk is defined as the value of the magnetic field H at which the value of magnetization J is 90% of the residual magnetic flux density (Br) on the JH demagnetization curve.
- the squareness Hk value differs depending on the material of the permanent magnet, it is necessary to standardize and evaluate the numerical value.
- anisotropic rare earth bonded magnets there are two types of anisotropic rare earth bonded magnets: an HDDR type magnet using a process called HDDR or d-HDDR and an SmFeN type produced by nitriding an SmFe alloy. Neither of these HDDR type anisotropic rare earth bonded magnets nor SmFeN type anisotropic rare earth bonded magnets have a high coercive force HcJ and a high normalized squareness ratio p value comparable to those of sintered magnets.
- the normalized squareness ratio p-value that greatly affects the thermal demagnetization characteristics is largely attributable to the magnet manufacturing process and uniformity.
- HDDR magnets it is very difficult to make anisotropy technology in which crystal grains are oriented in the same direction during the resorption process (desorption), and even for SmFeN, nitrogen diffuses uniformly from the surface to the SmFe alloy.
- the reaction technique is very difficult, and a high normalized squareness ratio p has not been obtained.
- rare earth sintered magnets are magnetically molded from finely pulverized powder of several microns, so that the degree of crystal grain orientation is extremely high, and the average grain size of the powder particles of the present invention is the conventional one. Since the grain size of anisotropic rare-earth bonded magnets is completely different from 30 to 200 microns, which is much larger than the original crystal grains, a high normalized squareness ratio p can be realized relatively easily without disturbing the degree of crystal grain orientation. Is possible.
- the magnet of the present invention is an anisotropic rare earth bonded magnet having a normalized pragmatic ratio of 0.70 or more and a maximum of 0.90 or more even in a normal process and having an extremely high p value, ie, excellent temperature characteristics such as thermal demagnetization. .
- the normalized squareness ratio p is high in addition to high coercivity.
- the present invention is characterized by using an anisotropic rare earth sintered magnet raw material as a raw material in this way, the coercive force is substantially higher than that of a conventional anisotropic rare earth bonded magnet and a high p value is obtained. can get.
- the coercive force HcJ of current commercially available anisotropic rare earth bonded magnets is 1,100 to 1,500 kA / m, the normalized squareness ratio p is 0.2 to 0.3, and at most 0.4.
- the heat resistance of the isotropic rare earth bonded magnet, specifically, thermal demagnetization is about 120 to 140 ° C.
- the anisotropic rare earth bonded magnet of the present invention has a maximum coercive force HcJ of 2,000 kA / m, a normalized squareness ratio p of 0.70-0.85 even in a normal process, and a maximum of 0, which is the same as a sintered magnet. .90 or more is possible.
- the magnet of the present invention having excellent characteristics such as a coercive force of 2,000 kA / m and a normalized squareness ratio p of 0.85, heat resistance can be realized at 140 ° C. or 180 ° C. even at a maximum of 200 ° C. It is.
- the anisotropic sintered magnet material having extremely high squareness is used as a raw material, the magnet of the present invention is essentially a highly heat-resistant anisotropic rare earth bond having a normalized squareness ratio p. It becomes a magnet.
- one of the greatest characteristics of the anisotropic rare earth bonded magnet of the present invention is heat resistance, specifically, thermal demagnetization characteristics.
- the heat resistance is evaluated at the highest temperature at which the standard for the amount of magnetic flux reduction is normally 5%. It is said that the heat resistance of anisotropic rare earth bonded magnets is usually about 120 ° C because the decrease in magnetic flux after 1000 hours is 5% at 120 ° C, so this 120 ° C temperature can be used in practice. It means that it is the upper limit temperature.
- anisotropic rare earth bonded magnets The heat resistance of currently available anisotropic rare earth bonded magnets is about 120-140 ° C.
- anisotropic SmFeN bonded magnets are reported to be 130 ° C. at the maximum for mass production and 150 ° C. at the research level. (For example, Japan Bond Magnetic Materials Association, BMNews, No43, 2010).
- the present invention is basically a Nd-based material system because the Nd magnet recovered scrap contained in the recovered scrap is a large amount in the market, and its heat resistance is normally 140 ° C., more than 180 ° C.
- Another feature of the magnet performance of the anisotropic rare earth bonded magnet of the present invention is high corrosion resistance, and that this magnet has long-term reliability and stability that can be sufficiently applied for long-term use. .
- This magnet obtained by compression molding or injection molding can be used as a product as it is, but by applying surface treatment such as Ni plating, epoxy coating, etc., it has higher corrosion resistance than that of the usual anisotropic rare earth bonded magnets. Reliable. Corrosion resistance evaluation is performed under the condition of 80 ° C. ⁇ 90% RH which is usually performed, and it is known that an anisotropic rare earth bonded magnet material has a limit of corrosion resistance for 200 to 400 hours.
- the anisotropic rare earth bonded magnet of the present invention has a corrosion resistance under 80 ° C. ⁇ 90% RH condition for about 300 hours or more. Furthermore, by performing sufficient surface treatment, it is possible to have excellent corrosion resistance with no change in appearance up to 500 hours.
- anisotropic bonded magnet material has a limit of 200 to 400 hours in corrosion resistance.
- the anisotropic bonded magnet according to the present invention is a magnet having excellent long-term corrosion resistance and long-term reliability with no change in appearance for up to 500 hours by applying a sufficient surface treatment for about 300 hours equivalent to or longer than these. Is possible.
- the analytical values of the amount of O and C of the recovered waste were 4.3 wt% and 0.8 wt%, respectively.
- This alloy powder was ball milled in acetone to obtain a press-molded powder. The average particle size is 75 ⁇ m.
- the obtained powder was heat-treated in a high vacuum containing a Ti getter material at 550 ° C. ⁇ 24 hours, and then kneaded by adding 4.5 t% of an epoxy binder to this molded powder to obtain a compound.
- the analytical values of the O amount and the C amount of the recovered waste were 4.8 wt% and 0.9 wt%, respectively.
- This alloy powder was ball milled in acetone to obtain a press-molded powder. The average particle size is 51 ⁇ m.
- the obtained powder was heat treated in a high vacuum containing a Ti getter material at 550 ° C. ⁇ 24 hr, and then kneaded by adding 4.5% of an epoxy binder to the molded powder to obtain a compound of 4.0 Ton / cm 2. Then, CIP treatment is performed at a pressure of 300 MPa for 10 minutes.
- the recovered waste was a component containing a part of Nd magnet and Sm, and CR obtained was 0.69.
- the analytical values of the O amount and C amount of the recovered waste were 3.5 wt% and 2.4 wt%, respectively.
- This alloy powder was ball milled in acetone to obtain a press-molded powder. The average particle size is 85 ⁇ m. The obtained powder was heat-treated in a high vacuum containing a Ti getter material at 550 ° C.
- This recovered waste is a component containing a part of Nd magnet and Sm, but the content of SmCo magnet is larger than that in Example 2, and the obtained CR was 0.47.
- the analytical values of the amount of O and the amount of C of the collected waste were 6.9 wt% and 3.2 wt%, respectively.
- the municipal waste used was almost entirely recovered from Ni-plated products.
- This alloy powder was first roughly pulverized with a jaw crusher and then finely pulverized in acetone to obtain a press-molded powder. The average particle size is 63 ⁇ m.
- the obtained powder was heat-treated in a high vacuum containing a Ti getter material at 550 ° C.
- the collected waste was a component of the total amount of Nd magnet waste.
- the analytical values of the O amount and C amount of the recovered waste were 5.8 wt% and 1.8 wt%, respectively.
- This alloy powder was ball milled in acetone to obtain a press-molded powder. The average particle size is 95 microns.
- the obtained powder was heat-treated in a high vacuum containing a Ti getter material at 550 ° C. ⁇ 24 hr, then kneaded by adding 6.5 t% of PPS binder to this molded powder, and obtained by injection molding in a magnetic field. . Reliability was also confirmed by applying an epoxy spray coating after molding.
- the recovered waste was a component containing a part of Nd magnet and Sm, and CR obtained was 0.49.
- the corrosion resistance and reliability of the magnet of the present invention were evaluated together with a commercially available SmFeN anisotropic bonded magnet (Table 5-3).
- a commercially available SmFeN anisotropic bonded magnet (Table 5-3).
- the commercially available SmFeN anisotropic bonded magnet of the comparative example it was processed under the same epoxy spray coating conditions as the magnet of the present invention.
- the corrosion resistance was tested under the conditions of 80 ° C. ⁇ 90% RH, the commercially available SmFeN red spot rust-generating magnet already generated minute red spot rust in 300 hours, while the magnet of the present invention did not generate rust until 600 hours. It has been found that it has long-term corrosion resistance and long-term stability that are significantly better than isotropic bonded magnets. This is presumed to be because the raw material used is a sintered magnet having a fine and uniform structure, so that corrosion from the crystal grain boundaries and the internal progress thereof are very unlikely to occur.
- the magnet of the present invention has an excellent heat resistant use temperature. I understand that. This reason is presumed to be largely attributable to the fact that the recovered sintered magnet scrap used is a magnet component having high heat resistance such as Dy and Tb as can be seen from the component analysis results.
- the analytical values of the O amount and C amount of the recovered waste were 3.7 wt% and 2.1 wt%, respectively.
- This alloy powder was ball milled in acetone to obtain a press-molded powder. The average particle size is 58 ⁇ m.
- the obtained powder was heat-treated in a high vacuum containing a Ti getter material at 550 ° C.
- the magnet of the present invention has an excellent heat resistant use temperature. This reason is presumed to be largely attributable to the fact that the recovered sintered magnet scrap used is a sintered magnet having a high heat resistance with a large amount of Dy, Tb, etc. as can be seen from the component analysis.
- Example 7-2> After heat-treating the powder having an average particle size of 58 ⁇ m obtained from the municipal waste recovered in Example 7 together with the Ti getter material in a high vacuum under the conditions of (a) 400 ° C. ⁇ 48 hr, (b) 600 ° C. ⁇ 12 hr, After adding 4.5 wt% of an epoxy binder to the molded powder and kneading, a compound is obtained, and further mixed with an inorganic solvent and wet compression molded at 4.0 Ton / cm 2 in a magnetic field, and further 10 at a pressure of 300 MPa. CIP for minutes. The CR of each of the obtained anisotropic bond magnetic properties was (a) 0.57 and (b) 0.55. Table 7-4 shows the magnetic characteristics of Example 7-2 (a) and (b).
- Example 8> Measurement of the magnetic properties and ICP component analysis (n 3) of the municipal waste recovered as the starting material gave the following properties and analysis values (Tables 8-1 and 8-2).
- the analytical values of the amount of O and C of the recovered waste were 6.5 wt% and 3.9 wt%, respectively.
- This alloy powder was ball milled in acetone to obtain a press-molded powder. The average particle size is 84 ⁇ m. The obtained powder was heat treated in a high vacuum containing Ca getter material at 400 ° C.
- the obtained anisotropic bonded magnet had a CR of 0.43.
- the anisotropic rare earth bonded magnet according to the present invention and the anisotropic rare earth bonded magnet obtained by the production method according to the present invention have a specific component composition, an average particle diameter of 30 to 200 ⁇ m, and It has been found that it has an average crystal grain size of 1 to 15 ⁇ m and high magnet properties (maximum energy product) of 96 to 270 kJ / m 3 .
- the anisotropic rare earth bonded magnet according to the present invention has excellent magnetic properties as compared with conventional magnets, and according to the manufacturing method of the present invention, such an excellent performance can be obtained even when recovered waste is used. It was found that a magnet was obtained.
- JABM Joint Bond Magnetic Materials Association
- the market for rare earth bonded magnets is estimated to be about 10 billion in the domestic market and about 50 billion worldwide.
- the market growth rate is about 11% per year, and demand is expected to continue expanding.
- the magnet material of the present invention becomes available, the conversion from isotropic to the anisotropic bonded magnet of the present invention will proceed rapidly.
- electronic components can be reduced in size, weight, resources, energy, and efficiency.
Landscapes
- Chemical & Material Sciences (AREA)
- Engineering & Computer Science (AREA)
- Mechanical Engineering (AREA)
- Power Engineering (AREA)
- Materials Engineering (AREA)
- Metallurgy (AREA)
- Organic Chemistry (AREA)
- Inorganic Chemistry (AREA)
- Crystallography & Structural Chemistry (AREA)
- Manufacturing & Machinery (AREA)
- Hard Magnetic Materials (AREA)
- Powder Metallurgy (AREA)
- Manufacturing Cores, Coils, And Magnets (AREA)
Abstract
Although anisotropic rare earth bonded magnets have superior magnetic properties to isotropic bonded magnets, there are currently issues with temperature properties, corrosion resistance, and magnet costs, and mass production is not widespread. Meanwhile, although methods are available for recycling sintered magnet scrap, such as dissolving and alloying scrap to obtain magnet alloys, and using oxide reduction, separation of SmCo and Nd magnets is unavoidable, and scrap must first be returned to a rare earth oxide state. A low-cost, highly-efficient recycling method has currently not been found. The present invention proposes a novel anisotropic rare earth bonded and a production method therefor that utilize this sintered magnet scrap to produce magnets that are superior to commercially-available isotropic bonded magnets, and that are easy on the environment due to energy saving and resource conservation. Anisotropic rare earth bonded magnets are produced by means of crushing, strain relief annealing heat treatment, kneading, and magnetic field forming.
Description
本発明は、希土類異方性焼結磁石から製造した異方性希土類ボンド磁石およびその製造方法に関する。
The present invention relates to an anisotropic rare earth bonded magnet manufactured from a rare earth anisotropic sintered magnet and a manufacturing method thereof.
希土類焼結磁石は省エネ、機器の小型軽量化、高性能化のニーズを背景に家電、パソコン、デジカメ、携帯電話、事務機のOA、モータ等のFA機器、最近ではCO2温暖化問題によりハイブリッド自動車、電気自動車等の用途も加わり、これら需要は益々拡大する勢いでありその消費量も年々増大している。
Rare-earth sintered magnet is energy saving, reduction in size and weight of the equipment, home appliances against the background of the needs of high performance, personal computers, digital cameras, mobile phones, office equipment OA, such as a motor FA equipment, hybrid by CO 2 warming in recent years With the addition of applications such as automobiles and electric cars, these demands are growing more and more and their consumption is increasing year by year.
希土類焼結磁石に含まれる希土類は日本には殆ど無く、中国、米国、オーストラリアからの輸入に100%依存し、その95%以上は中国である。近年長期的な希土類(以下適宜「RE」と記載する。)資源の供給が懸念されており、希土類資源問題は日本の先端技術を維持するために極めて重要な課題である。
Rare earths contained in rare earth sintered magnets are rare in Japan, relying 100% on imports from China, the United States and Australia, more than 95% of which are in China. In recent years, there has been concern about the supply of long-term rare earth (hereinafter referred to as “RE” as appropriate) resources, and the rare earth resource problem is an extremely important issue for maintaining Japan's advanced technology.
上述のように今後廃棄される希土類焼結磁石スクラップ量が増加することが予測され、これら希少資源である希土類元素が相当量含まれるため、その回収と再利用技術が求められている。
As described above, it is predicted that the amount of rare earth sintered magnet scrap to be discarded in the future will increase, and since these rare resources, which are rare resources, are included in considerable quantities, recovery and reuse technologies are required.
希土類磁石屑は再度溶解し合金化して磁石合金を得る提案が多くなされている(例えば、特許文献1)。これらは再度磁石製品を製造する為に再溶解、合金化のみならず、さらに粉砕、成型、燒結、熱処理の磁石工程が必要であり、現状RE原料新規購入の方がコストメリットが高い。また磁石屑を各希土類に分離した後還元する工程(特許文献2)や脱炭素処理とCa還元工程を取る方法(特許文献3),脱炭素、還元、洗浄工程が必要である(特許文献4)。また工場廃液コストが高く、環境対策上も問題が大きい。あるいはまたこれら回収工程リサイクル時に不純物であるメッキ除去の方法(特許文献5)や接着剤除去(特許文献6)も必要でありいまだ実用化されていない。
Many proposals have been made to obtain a magnet alloy by melting and alloying rare earth magnet scraps again (for example, Patent Document 1). These require not only remelting and alloying in order to produce a magnet product again, but also a magnet process of crushing, molding, sintering, and heat treatment, and the purchase of RE raw materials is more cost-effective. Moreover, the process (patent document 2) which reduces | reduces after separating magnet scraps into each rare earth, the method (patent document 3) which takes a decarbonization process and a Ca reduction | restoration process, decarbonization, a reduction | restoration, and a washing | cleaning process are required (patent document 4) ). In addition, the cost of waste liquid from the factory is high, and there are significant problems in terms of environmental measures. Alternatively, a plating removal method (Patent Document 5) and an adhesive removal (Patent Document 6) which are impurities at the time of recycling these recovery processes are necessary and not yet put into practical use.
上記したように、現状希土類燒結磁石市中屑を低コストかつ有効にリサイクルする方法が見つかっていない。本発明は希土類焼結磁石をリサイクルした新規な異方性希土類ボンド磁石とその製造方法を提案するものである。
As mentioned above, no method has been found to efficiently recycle the rare earth sintered magnet scraps at low cost. The present invention proposes a novel anisotropic rare earth bonded magnet obtained by recycling a rare earth sintered magnet and a method for producing the same.
以上の背景の下で希土類焼結磁石市中屑を有効活用して従来以上の高い磁気特性、温度特性、耐食性を具備する異方性ボンド磁石を提供することにある。
In view of the above background, it is an object to provide an anisotropic bonded magnet having high magnetic characteristics, temperature characteristics, and corrosion resistance, which is higher than before, by effectively utilizing rare earth sintered magnet scraps.
本発明は、高性能な異方性希土類ボンド磁石を提供することを目的として、従来の希土類磁石材料のリサイクル工程を全く用いず、酸等廃液処理問題も全く無く、またSm、Ndの分離精製工程も不要、Niメッキ等の磁石表面処理皮膜の剥離も不要、接着剤除去も不要なる磁気特性としては市販のNd燒結磁石よりも劣るが、省エネ、省資源で環境に優しい市販の等方性ボンド磁石よりも優れた新規な異方性希土類ボンド磁石およびその製造方法を提供するものであり、以下のような特徴を有する。
The present invention aims to provide a high performance anisotropic rare earth bonded magnet, does not use any conventional recycling process of rare earth magnet materials, has no problem of waste liquid treatment such as acid, and separates and refines Sm and Nd. No need for process, no need for peeling of surface treatment film such as Ni plating, no need to remove adhesive, but magnetic properties are inferior to those of commercially available Nd sintered magnets. The present invention provides a novel anisotropic rare earth bonded magnet superior to a bonded magnet and a method for producing the same, and has the following characteristics.
〔1〕鉄(Fe)以外の成分として、少なくともネオジム(Nd)を13~35wt%、ホウ素(B)を0.3~1.3wt%、サマリウム(Sm)を0~30wt%、コバルト(Co)を0~15wt%、ニッケル(Ni)を0~5.5wt%、アルミニウム(Al)を0~5.5wt%を含み、かつ、ニッケル(Ni)とアルミニウム(Al)を合わせて0.3wt%以上を含み、残部を鉄(Fe)とし、最大エネルギー積(BH)maxが96から270kJ/m3の磁気特性を有すること、並びに粉砕した前記原料の粒子平均粒径が30~200μm(ミクロン)、かつ各粒子を形成する主相の平均結晶粒径が1~15μm(ミクロン)の組織構造を有することを特徴とする、異方性希土類ボンド磁石。
[1] As components other than iron (Fe), at least neodymium (Nd) is 13 to 35 wt%, boron (B) is 0.3 to 1.3 wt%, samarium (Sm) is 0 to 30 wt%, cobalt (Co ) 0-15 wt%, nickel (Ni) 0-5.5 wt%, aluminum (Al) 0-5.5 wt%, and nickel (Ni) and aluminum (Al) combined at 0.3 wt% %, The balance being iron (Fe), the maximum energy product (BH) max is 96 to 270 kJ / m 3 , and the average particle size of the pulverized raw material is 30 to 200 μm (micron) And an anisotropic rare earth bonded magnet characterized in that the main phase forming each particle has a structure with an average crystal grain size of 1 to 15 μm (microns).
〔2〕希土類異方性燒結磁石を原料として異方性希土類ボンド磁石の製造方法であって、前記希土類異方性燒結磁石を不活性雰囲気下で機械的に粉砕する工程と、前記粉砕した材料を高真空または不活性雰囲気下で400から600℃の温度で保持時間12時間以上のひずみ取焼鈍処理する工程と、前記ひずみ取焼鈍処理した材料とバインダーを混錬し、磁場成型する工程とからなることを特徴とする、異方性希土類ボンド磁石の製造方法。
[2] A method for producing an anisotropic rare earth bonded magnet using a rare earth anisotropic sintered magnet as a raw material, the step of mechanically grinding the rare earth anisotropic sintered magnet in an inert atmosphere, and the pulverized material From a step of strain relief annealing at a temperature of 400 to 600 ° C. at a temperature of 400 to 600 ° C. in a high vacuum or an inert atmosphere, and a step of kneading the material subjected to the strain relief annealing treatment with a binder to form a magnetic field. A method for producing an anisotropic rare earth bonded magnet, comprising:
〔3〕前記希土類異方性燒結磁石が回収屑である、前記〔2〕に記載の異方性希土類ボンド磁石の製造方法。
[3] The method for producing an anisotropic rare earth bonded magnet according to [2], wherein the rare earth anisotropic sintered magnet is recovered scrap.
〔4〕前記希土類異方性燒結磁石がネオジム焼結磁石回収屑、又はネオジム焼結磁石回収屑とサマリウムコバルト焼結磁石回収屑との混合物であることを特徴とする前記〔3〕に記載の異方性希土類ボンド磁石の製造方法。
[4] The rare earth anisotropic sintered magnet may be neodymium sintered magnet collection waste or a mixture of neodymium sintered magnet collection waste and samarium cobalt sintered magnet collection waste. An anisotropic rare earth bonded magnet manufacturing method.
〔5〕前記希土類異方性燒結磁石回収屑が混合屑である場合、粉砕工程に供する前に、あらかじめ回収屑をサンプリングし、回収磁石素材の成分分析を行い、ネオジウムおよびネオジウムとサマリウムの組成を確認する工程を含む、前記〔3〕に記載の異方性希土類ボンド磁石の製造方法。
[5] When the rare earth anisotropic sintered magnet recovery scrap is a mixed scrap, the recovered scrap is sampled in advance and subjected to component analysis of the recovered magnet material before being subjected to the pulverization process, and the composition of neodymium and neodymium and samarium is determined. The manufacturing method of the anisotropic rare earth bond magnet as described in said [3] including the process to confirm.
〔6〕前記磁場成型が圧縮成型工程を含み、該圧縮成型工程において、湿式成型方法を用いることを特徴とする前記〔2〕に記載の異方性希土類ボンド磁石の製造方法。
[6] The method for producing an anisotropic rare earth bonded magnet according to [2], wherein the magnetic field molding includes a compression molding step, and a wet molding method is used in the compression molding step.
〔7〕前記圧縮成型工程において、圧縮成型後にCIP工程を加える2段プレス成型を行うことを特徴とする前記〔6〕に記載の異方性希土類ボンド磁石の製造方法。
[7] The method for producing an anisotropic rare earth bonded magnet according to [6], wherein in the compression molding step, two-stage press molding is performed in which a CIP step is performed after the compression molding.
本発明によれば、著しく優れた磁気特性を有する異方性希土類ボンド磁石を得ることができる。また、本発明に係る異方性ボンド磁石の性能上の最大の特徴のひとつは耐熱性、具体的には熱減磁特性である。
According to the present invention, an anisotropic rare earth bonded magnet having remarkably excellent magnetic properties can be obtained. Further, one of the greatest characteristics in performance of the anisotropic bonded magnet according to the present invention is heat resistance, specifically, thermal demagnetization characteristics.
また、本発明の異方性希土類ボンド磁石の磁石性能上の更なる特徴の一つは高い耐食性であり、本磁石が長期間の使用に十分適用可能な長期安定性を有していることである。
In addition, one of the additional features of the anisotropic rare earth bonded magnet of the present invention is high corrosion resistance, and the magnet has long-term stability that can be applied to long-term use. is there.
さらに、本発明の製造方法によると、従来提案されている希土類焼結磁石のリサイクル手法の一つである希土類磁石屑を再度溶解し合金化して磁石合金を得る必要がなく希土類焼結磁石を再利用することができる。
Furthermore, according to the manufacturing method of the present invention, it is not necessary to re-dissolve and alloy rare earth magnet scraps, which is one of the conventionally proposed methods for recycling rare earth sintered magnets, to regenerate rare earth sintered magnets. Can be used.
また、本発明によれば、磁石に付着する接着剤の除去とNiメッキ、Alメッキあるいはエポキシ樹脂等の表面処理剥離除去の前工程なしに、異方性希土類ボンド磁石を製造できるため製造工程の簡略化ができる。
In addition, according to the present invention, an anisotropic rare earth bonded magnet can be manufactured without removing the adhesive adhering to the magnet and before the surface treatment peeling removal such as Ni plating, Al plating or epoxy resin. It can be simplified.
さらに、本発明は、希土類焼結磁石の廃磁石にSmCo磁石が含まれている場合であっても、従来不可避であったSmCoとNd磁石屑のRE精製時の分離工程が全く不要になる。従来は、回収屑を焼結磁石用途への利用を目的としているが、本発明はボンド磁石への適用である。本発明のボンド磁石製造の工程中には、高温処理工程が無く、個々のボンド磁石粉末が独立した磁気特性を示す為任意の混合が可能となる。
Furthermore, in the present invention, even if the waste magnet of the rare earth sintered magnet contains an SmCo magnet, the separation step at the time of RE purification of SmCo and Nd magnet waste, which has been inevitable in the past, is completely unnecessary. Conventionally, the purpose is to use the recovered scrap for sintered magnet applications, but the present invention is applied to a bonded magnet. There is no high-temperature processing step in the process of manufacturing the bonded magnet of the present invention, and individual bonding magnet powders show independent magnetic characteristics, so that arbitrary mixing is possible.
すなわち、本発明の特徴は、上述のSmCo磁石、Nd磁石の相互の分離回収の問題点が無いこと、現状の磁石再利用工程において不可避である磁石表面処理皮膜の剥離除去が不要、接着剤の除去のほとんど不要かつ再利用出来る磁石材料組成において、表面処理材料であるNi,AI,Cr量や不純物元素であるOやC量の回収材料制限が全く無く、ほとんどあらゆる希土類焼結磁石市中屑の回収が可能であることである。
That is, the feature of the present invention is that there is no problem of separation and recovery of the above-mentioned SmCo magnet and Nd magnet, there is no need to peel and remove the magnet surface treatment film, which is inevitable in the current magnet recycling process, With almost no removal and reusable magnet material composition, there is no limit to the amount of recovered materials such as Ni, AI, Cr as surface treatment materials and O and C as impurity elements. It is possible to recover.
また本磁石の成型工程に関しては、成型時に発生する表面亀裂や破損の極めて少ないために耐食信頼性の優れたボンド磁石粉末を提供できる利点もこの材料が微結晶焼結材料を原料とするという理由で内包する。
In addition, regarding the molding process of this magnet, the advantage of being able to provide bonded magnet powder with excellent corrosion resistance reliability due to extremely few surface cracks and breakage that occur during molding is the reason that this material is made from a microcrystalline sintered material Enclose with.
本発明の更なる特徴は、このように原料として異方性希土類燒結磁石原料を利用することを特徴とするため為、従来の異方性希土類ボンド磁石よりもはるかに高い保磁力と高い耐熱性(すなわち、後述のように定義する規格化角型比p値(p=Hk/HcJ)が高い)が得られることである。
A further feature of the present invention is that it is characterized by using an anisotropic rare earth sintered magnet raw material as a raw material, and thus has a much higher coercive force and higher heat resistance than conventional anisotropic rare earth bonded magnets. (That is, a normalized squareness ratio p value (p = Hk / HcJ) defined as described later) is obtained.
本発明に係る異方性希土類ボンド磁石は、希土類異方性焼結磁石から製造した異方性希土類ボンド磁石である。原料となる希土類異方性焼結磁石としては、市中から回収された異方性希土類燒結磁石を使用することができる。市中回収屑には、等方性Ndボンド磁石、等方性full dense(稠密)Nd磁石もありこれらの回収屑も混合して回収再利用するアイデアもあるが、本発明では、これらよりも希土類異方性焼結磁石を用いることが好ましい。即ち、異方性希土類焼結磁石は合金溶解、粉砕、磁場成型、焼結、熱処理、加工、表面処理の非常に長い工程、即ち屑といえども“付加価値の非常に高い回収屑”であり、リユース、エネルギー再利用効率をそれ以外の磁石の混合により低下させるのは望ましくないからである。本発明は高付加価値の異方性希土類焼結磁石材料でかつさまざまな回収屑の素性を考慮し最大限の屑回収再利用を視野に置いたことが特徴である。
The anisotropic rare earth bonded magnet according to the present invention is an anisotropic rare earth bonded magnet manufactured from a rare earth anisotropic sintered magnet. As the rare earth anisotropic sintered magnet as a raw material, an anisotropic rare earth sintered magnet recovered from the city can be used. There are also isotropic Nd bond magnets and isotropic full dense (dense) Nd magnets in the city's collected scrap, and there is an idea to collect and reuse these collected scraps. It is preferable to use a rare earth anisotropic sintered magnet. In other words, anisotropic rare earth sintered magnets are very long processes of alloy melting, grinding, magnetic field molding, sintering, heat treatment, processing, and surface treatment, that is, even “waste” is “recovered waste with very high added value”. This is because it is not desirable to reduce the reuse and energy reuse efficiency by mixing other magnets. The present invention is a high-value-added anisotropic rare earth sintered magnet material, and is characterized by considering the characteristics of various recovered scraps and focusing on the maximum scrap recovery and reuse.
本発明の回収された希土類燒結磁石とは、いわゆるNd系燒結磁石であるが、一部市場に使用され回収屑として出回っているSmCo系燒結磁石も原料とすることができることが特徴である。
The recovered rare earth sintered magnet of the present invention is a so-called Nd-based sintered magnet, but is characterized in that SmCo-based sintered magnets that are used in some markets and are available as recovered scrap can also be used as raw materials.
より好ましくは、ネオジム焼結磁石回収屑、又はネオジム焼結磁石回収屑とサマリウムコバルト焼結磁石回収屑との混合物を用いる。
More preferably, neodymium sintered magnet collection waste or a mixture of neodymium sintered magnet collection waste and samarium cobalt sintered magnet collection waste is used.
すなわち、回収した希土類異方性焼結磁石から製造しているにも関わらず、最大エネルギー積(BH)maxが従来の異方性希土類ボンド磁石と同等又はそれを上回る96から270kJ/m3の磁気特性を有する異方性希土類ボンド磁石を製造するためには、磁石の組成として、鉄(Fe)以外の成分として、少なくともネオジム(Nd)を13~35wt%、ホウ素(B)を0.3~1.3wt%、サマリウム(Sm)を0~30wt%、コバルト(Co)を0~15wt%、ニッケル(Ni)を0~5.5wt%、アルミニウム(Al)を0~5.5wt%を含み、かつ、ニッケル(Ni)とアルミニウム(Al)を合わせて0.3wt%以上を含んでいることが必要である。
That is, although it is manufactured from the recovered rare earth anisotropic sintered magnet, the maximum energy product (BH) max is 96 to 270 kJ / m 3 equal to or higher than that of the conventional anisotropic rare earth bonded magnet. In order to produce an anisotropic rare earth bonded magnet having magnetic properties, the composition of the magnet is at least 13 to 35 wt% of neodymium (Nd) and 0.3% of boron (B) as components other than iron (Fe). ~ 1.3wt%, Samarium (Sm) 0 ~ 30wt%, Cobalt (Co) 0 ~ 15wt%, Nickel (Ni) 0 ~ 5.5wt%, Aluminum (Al) 0 ~ 5.5wt% It is necessary that nickel (Ni) and aluminum (Al) are included and 0.3 wt% or more is included.
好ましくは、最大エネルギー積(BH)maxが170から270kJ/m3の磁気特性を有する異方性希土類ボンド磁石であり、それを製造するためには、磁石の組成として、鉄(Fe)以外の成分として、少なくともネオジム(Nd)を17~33wt%、ホウ素(B)を0.55~1.25wt%、サマリウム(Sm)を0~14wt%、コバルト(Co)を0~13wt%、ニッケル(Ni)を0~4.9wt%、アルミニウム(Al)を0~4.8wt%を含み、かつ、ニッケル(Ni)とアルミニウム(Al)を合わせて0.3wt%以上を含んでいることが必要である。
Preferably, an anisotropic rare earth bonded magnet having a magnetic property with a maximum energy product (BH) max of 170 to 270 kJ / m 3. In order to manufacture the magnet, the composition of the magnet is other than iron (Fe). As components, at least neodymium (Nd) is 17 to 33 wt%, boron (B) is 0.55 to 1.25 wt%, samarium (Sm) is 0 to 14 wt%, cobalt (Co) is 0 to 13 wt%, nickel ( Ni) must be 0 to 4.9 wt%, aluminum (Al) should be 0 to 4.8 wt%, and nickel (Ni) and aluminum (Al) must be combined to contain 0.3 wt% or more. It is.
さらに好ましくは、最大エネルギー積(BH)maxが205から270kJ/m3の磁気特性を有する異方性希土類ボンド磁石であり、それを製造するためには、磁石の組成として、鉄(Fe)以外の成分として、少なくともネオジム(Nd)を20~30wt%、ホウ素(B)を0.8~1.1wt%、サマリウム(Sm)を0~8wt%、コバルト(Co)を0~8wt%、ニッケル(Ni)を0~3.5wt%、アルミニウム(Al)を0~3.5wt%を含み、かつ、ニッケル(Ni)とアルミニウム(Al)を合わせて0.3wt%以上を含んでいることが必要である。
More preferably, it is an anisotropic rare earth bonded magnet having a magnetic property with a maximum energy product (BH) max of 205 to 270 kJ / m 3 , and in order to produce it, the composition of the magnet is other than iron (Fe). At least 20-30 wt% neodymium (Nd), 0.8-1.1 wt% boron (B), 0-8 wt% samarium (Sm), 0-8 wt% cobalt (Co), nickel (Ni) contains 0 to 3.5 wt%, aluminum (Al) contains 0 to 3.5 wt%, and nickel (Ni) and aluminum (Al) together contain 0.3 wt% or more. is necessary.
本発明においては、回収された希土類燒結磁石を原料とするため通常ALコーティング、Ni-コーティングがされていることで、AlとNi成分が、通常ニッケル(Ni)とアルミニウム(Al)を合わせて0.3wt%以上、場合によっては、1wt%以上含まれている。AlまたはNiの含有量は、それぞれ最大5.5wt%まで含まれていても十分な磁気特性を発揮することが可能である。
In the present invention, since the recovered rare earth sintered magnet is used as a raw material, it is usually provided with an AL coating and Ni-coating, so that Al and Ni components are usually combined with nickel (Ni) and aluminum (Al). .3 wt% or more, and in some cases, 1 wt% or more. Even if the content of Al or Ni is up to 5.5% by weight, sufficient magnetic properties can be exhibited.
本発明の磁石には、Fe、Nd、B、Sm、Co、Ni及びAl以外の成分も含まれており、通常その成分は以下の組成(wt%)を有する。
Nd;13-35、Pr;0-10、Dy;0-12、Tb;0-3、Sm;0-30、Ce;0-10、B;0.3-1.3、Co;0-15、Nb;0-1.5、Cu;0-10、Al;0-5.5、Ga;0-1.5、Ni0-5.5、Zr;0-0.5、Hf;0-0.5、Fe;残部。 The magnet of the present invention includes components other than Fe, Nd, B, Sm, Co, Ni, and Al, and usually the components have the following composition (wt%).
Nd; 13-35, Pr; 0-10, Dy; 0-12, Tb; 0-3, Sm; 0-30, Ce; 0-10, B; 0.3-1.3, Co; 0- 15, Nb; 0-1.5, Cu; 0-10, Al; 0-5.5, Ga; 0-1.5, Ni0-5.5, Zr; 0-0.5, Hf; 0- 0.5, Fe; balance.
Nd;13-35、Pr;0-10、Dy;0-12、Tb;0-3、Sm;0-30、Ce;0-10、B;0.3-1.3、Co;0-15、Nb;0-1.5、Cu;0-10、Al;0-5.5、Ga;0-1.5、Ni0-5.5、Zr;0-0.5、Hf;0-0.5、Fe;残部。 The magnet of the present invention includes components other than Fe, Nd, B, Sm, Co, Ni, and Al, and usually the components have the following composition (wt%).
Nd; 13-35, Pr; 0-10, Dy; 0-12, Tb; 0-3, Sm; 0-30, Ce; 0-10, B; 0.3-1.3, Co; 0- 15, Nb; 0-1.5, Cu; 0-10, Al; 0-5.5, Ga; 0-1.5, Ni0-5.5, Zr; 0-0.5, Hf; 0- 0.5, Fe; balance.
より高い磁気特性を実現するに望ましい組成(wt%)は以下である。
Nd;17-33、Pr;0-5、Dy;0-9、Tb;0-2、Sm;0-14、Ce;0-3、B;0.55-1.25、Co;0-13、Nb;0-0.8、Cu;0-8、Al;0-4.8、Ga;0-0.8、Ni;0-4.9、Zr;0-0.3、Hf;0-0.3、Fe;残部。 A desirable composition (wt%) for realizing higher magnetic properties is as follows.
Nd; 17-33, Pr; 0-5, Dy; 0-9, Tb; 0-2, Sm; 0-14, Ce; 0-3, B; 0.55-1.25, Co; 0- 13, Nb; 0-0.8, Cu; 0-8, Al; 0-4.8, Ga; 0-0.8, Ni; 0-4.9, Zr; 0-0.3, Hf; 0-0.3, Fe; balance.
Nd;17-33、Pr;0-5、Dy;0-9、Tb;0-2、Sm;0-14、Ce;0-3、B;0.55-1.25、Co;0-13、Nb;0-0.8、Cu;0-8、Al;0-4.8、Ga;0-0.8、Ni;0-4.9、Zr;0-0.3、Hf;0-0.3、Fe;残部。 A desirable composition (wt%) for realizing higher magnetic properties is as follows.
Nd; 17-33, Pr; 0-5, Dy; 0-9, Tb; 0-2, Sm; 0-14, Ce; 0-3, B; 0.55-1.25, Co; 0- 13, Nb; 0-0.8, Cu; 0-8, Al; 0-4.8, Ga; 0-0.8, Ni; 0-4.9, Zr; 0-0.3, Hf; 0-0.3, Fe; balance.
さらに高い磁気特性を実現するに望ましい組成(wt%)は以下である。
Nd;20-30、Pr;0-3、Dy;0-7、Tb;0-1、Sm;0-8、Ce;0-1、B;0.8-1.1、Co;0-8、Nb;0-0.6、Cu;0-7、Al;0-3.5、Ga;0-0.2、Ni;0-3.5、Zr;0-0.3、Hf;0-0.2、Fe;残部。 A desirable composition (wt%) for realizing higher magnetic properties is as follows.
Nd; 20-30, Pr; 0-3, Dy; 0-7, Tb; 0-1, Sm; 0-8, Ce; 0-1, B; 0.8-1.1, Co; 0- 8, Nb; 0-0.6, Cu; 0-7, Al; 0-3.5, Ga; 0-0.2, Ni; 0-3.5, Zr; 0-0.3, Hf; 0-0.2, Fe; balance.
Nd;20-30、Pr;0-3、Dy;0-7、Tb;0-1、Sm;0-8、Ce;0-1、B;0.8-1.1、Co;0-8、Nb;0-0.6、Cu;0-7、Al;0-3.5、Ga;0-0.2、Ni;0-3.5、Zr;0-0.3、Hf;0-0.2、Fe;残部。 A desirable composition (wt%) for realizing higher magnetic properties is as follows.
Nd; 20-30, Pr; 0-3, Dy; 0-7, Tb; 0-1, Sm; 0-8, Ce; 0-1, B; 0.8-1.1, Co; 0- 8, Nb; 0-0.6, Cu; 0-7, Al; 0-3.5, Ga; 0-0.2, Ni; 0-3.5, Zr; 0-0.3, Hf; 0-0.2, Fe; balance.
なお、Ndは優れた磁気特性を得る重要必須元素であり、Ndが20から30wt%で最も優れた磁気特性が具現できる。
Nd is an important essential element for obtaining excellent magnetic properties, and the most excellent magnetic properties can be realized when Nd is 20 to 30 wt%.
本発明の磁石屑は、より高い磁気性能を発揮させるためにNd磁石の屑だけで構成されているのがもっとも好ましいが、Nd磁石の屑にSmCo系の磁石屑を含んでいても高い磁気性能を発揮することが可能である。但しSmCo焼結磁石屑の配合比率が増加するにつれて、その際得られる残留磁束密度Brや最大エネルギー積(BH)max等の磁気特性は単調に減少するため、実用上の観点から、或る上限を持つSm含有量に限定している。
The magnet scrap of the present invention is most preferably composed only of Nd magnet scrap in order to exhibit higher magnetic performance, but high magnetic performance even if the Nd magnet scrap contains SmCo-based magnet scrap. It is possible to demonstrate. However, as the blending ratio of SmCo sintered magnet scrap increases, the magnetic properties such as residual magnetic flux density Br and maximum energy product (BH) max that are obtained at that time monotonously decrease. The Sm content is limited.
すなわち、ここで本発明の特徴のひとつは、通常のNd系異方性ボンド磁石では実現出来ないSmを含有する組成領域でも優れた磁気特性が実現出来ることであり、具体的にはSm量として最大6wt%のSm含有量でも可能である。6wt%を超えると磁気特性が徐々に低下する。
That is, one of the features of the present invention is that excellent magnetic properties can be realized even in a composition region containing Sm that cannot be realized by a normal Nd-based anisotropic bonded magnet. Even Sm content up to 6 wt% is possible. If it exceeds 6 wt%, the magnetic properties will gradually deteriorate.
ここで通常のNd磁石組成と本原料屑の大きな違いは、Sm,Co,Cu含有量であり、これらはNd磁石の通常の組成外である。これは市中屑の全量または大部分がSmCo系の組成である屑についても従来の再溶解、合金手法では不可能な再利用が、本手法で新たに回収が可能となることを特徴としている。
Here, the major difference between the normal Nd magnet composition and the raw material scrap is the Sm, Co, and Cu contents, which are outside the normal composition of the Nd magnet. This is characterized by the fact that the entire amount or most of the city waste is SmCo-based, and that it is possible to newly recover the waste that is impossible with the conventional remelting and alloying methods. .
なおエポキシ樹脂塗装品も同様に、樹脂剥離除去をすること無く、本発明の方法で全く問題なく優れた異方性希土類ボンド磁石が得られる。
In addition, an anisotropic rare earth bonded magnet excellent in the method of the present invention can be obtained without any problem without removing the resin from the epoxy resin coated product.
本発明の異方性希土類ボンド磁石は、前記のように回収した磁石を前処理、不純物の除去等をせずにそのまま用いるため、比較的高い比率のO(酸素)量、C(炭素)量をふくむことになるが、その場合であっても、従来の等方性ボンド磁石および異方性ボンド磁石と同等またはそれ以上の性能を有するものである。
The anisotropic rare earth bonded magnet of the present invention uses the magnet collected as described above as it is without pretreatment, removal of impurities, etc., so that a relatively high ratio of O (oxygen) amount, C (carbon) amount Even in this case, it has a performance equal to or higher than that of conventional isotropic bonded magnets and anisotropic bonded magnets.
従来の異方性希土類ボンド磁石の原料合金は、優れた磁気特性を得る為、不純物のO(酸素)とC(炭素)量に限定がある。OやCが多いと磁気特性が著しく低下する。異方性希土類ボンド磁石は高純度希土類金属、鉄、ボロン他必須元素は全て高純度原料を用いる為にこれらを用いて溶解精製された磁石合金のO量は少なくとも0.08wt%、以下、通常は0.01wt%以下、C量は少なくとも0.03wt%以下、通常は0.05wt%が不可欠である。
Conventional material alloys for anisotropic rare earth bonded magnets have limited amounts of impurities O (oxygen) and C (carbon) in order to obtain excellent magnetic properties. When there is much O and C, a magnetic characteristic will fall remarkably. An anisotropic rare earth bonded magnet is a high purity rare earth metal, iron, boron and other essential elements are all made of high purity raw materials. Therefore, a magnet alloy dissolved and refined using these materials has an O content of at least 0.08 wt%, usually less Is 0.01 wt% or less, and the C content is at least 0.03 wt% or less, usually 0.05 wt%.
一方、本発明の異方性希土類ボンド磁石の原料合金は、回収された希土類異方性焼結磁石を用いるため、焼結磁石製造工程中の酸化やバインダー添加等で増大したO量、C量を本質的に不可避で含み、その量は少なくともO量が1wt%以上、通常は4wt%以上、C量が0.4wt%以上、通常0.5wt%以上である。
On the other hand, since the raw material alloy of the anisotropic rare earth bonded magnet of the present invention uses the recovered rare earth anisotropic sintered magnet, the amount of O and C increased due to oxidation and binder addition during the sintered magnet manufacturing process. The amount of O is at least 1 wt%, usually 4 wt% or more, and the amount of C is 0.4 wt% or more, usually 0.5 wt% or more.
但し、回収原料の状態によっては磁石が著しく酸化、腐食したり、あるいは磁石回収時に著しく接着剤が付着したり、あるいは塗装が付着している回収屑もあり、これらは十分な磁気特性が得られない。従って、本発明の異方性希土類ボンド磁石が、最大エネルギー積(BH)max 96kJ/m3以上の磁気特性を保持するためには、上限としてO量は8wt%以下、望むべくは5wt%以下、C量は7wt%以下、望むべくは4wt%以下であることが必要である。
However, depending on the state of the recovered material, the magnet may be significantly oxidized and corroded, or there may be recovered scraps that are markedly adhered with adhesive or coated when the magnet is recovered, and these have sufficient magnetic properties. Absent. Therefore, in order for the anisotropic rare earth bonded magnet of the present invention to maintain a magnetic property having a maximum energy product (BH) max of 96 kJ / m 3 or more, the upper limit of the O amount is 8 wt% or less, and preferably 5 wt% or less. , C content is required to be 7 wt% or less, preferably 4 wt% or less.
本発明の異方性希土類ボンド磁石は、通常使用不可の高い量のO,Cを不純物として有する原料を使用しても、従来の等方性ボンド磁石および異方性ボンド磁石と同等またはそれ以上の優れた磁石特性、耐熱特性、耐食性を具備することを特徴のひとつとしている。
The anisotropic rare earth bonded magnet of the present invention is equivalent to or more than conventional isotropic bonded magnets and anisotropic bonded magnets even if a raw material having a high amount of O, C as impurities, which is normally unusable, is used. One of the features is that it has excellent magnet characteristics, heat resistance characteristics, and corrosion resistance.
そして、本発明の異方性希土類ボンド磁石は、優れた磁気特性を得るためその磁石組織構造に特徴を有する。具体的には、本磁石を構成する磁石粉末平均粒径が30から200μm、さらに望ましくは50から170μmであり、なおかつ、各粒子を形成する主相の平均結晶粒径が従来の異方性希土類ボンド磁石の粒径と全く異なる粒径、すなわち、1から15μmさらに望ましくは1.5から10μm、最も好ましくは2.0から7.0μmの微細組織構造を有する異方性希土類ボンド磁石である。
And the anisotropic rare earth bonded magnet of the present invention is characterized by its magnet structure in order to obtain excellent magnetic properties. Specifically, the average particle size of the magnet powder constituting this magnet is 30 to 200 μm, more preferably 50 to 170 μm, and the average crystal particle size of the main phase forming each particle is a conventional anisotropic rare earth. An anisotropic rare earth bonded magnet having a microstructure that is completely different from that of the bonded magnet, that is, 1 to 15 μm, more desirably 1.5 to 10 μm, most preferably 2.0 to 7.0 μm.
希土類磁石の保磁力は、大きい結晶粒径では多磁区構造になるため保磁力は低下、小さい結晶粒径では単磁区構造ではあるものの酸化あるいは加工ひずみにより保磁力が低下する。よって磁石工程に依存する最適な結晶粒径が存在する。
The coercive force of rare earth magnets is reduced due to a multi-domain structure when the crystal grain size is large, and the coercive force decreases due to oxidation or processing strain, although it is a single domain structure when the crystal grain size is small. Therefore, there is an optimal crystal grain size that depends on the magnet process.
本発明の異方性希土類ボンド磁石の各粒子を形成する主相の平均結晶粒径については、従来の異方性希土類ボンド磁石の粒径と全く異なる1から15μm(ミクロン)の組織構造を有することを特徴とし、さらに優れた高保磁力を得、なおかつ酸素含有量を抑えるためには、1.5から10μm、さらに好ましくは2.0から7.0μmが最も望ましい。ここで主相とはNd系回収屑の場合はNd2Fe14B金属間化合物相が主相であり、SmCo系ではSmCo5もしくはSm2(Fe,Co,Cu)17金属間化合物相が主相である。主相の体積比は全磁石の90%以上とする。
The average crystal grain size of the main phase forming each particle of the anisotropic rare earth bonded magnet of the present invention has a structure of 1 to 15 μm (micron) completely different from the grain size of the conventional anisotropic rare earth bonded magnet. In order to obtain an excellent high coercive force and to suppress the oxygen content, 1.5 to 10 μm, more preferably 2.0 to 7.0 μm is most desirable. Here, the main phase is Nd 2 Fe 14 B intermetallic compound phase in the case of Nd-based recovered scrap, and SmCo 5 or Sm 2 (Fe, Co, Cu) 17 intermetallic compound phase is main in the SmCo system. Is a phase. The volume ratio of the main phase is 90% or more of the entire magnet.
磁石粉末の平均粒径は高密度かつ生産性を考慮したボンド磁石製造条件からの条件である。一方、本磁石は本質的に回収屑原料であるため、従来のナノコンポジットやMQI粉末のような急冷プロセス(いわゆるメルトスピニング)やHDDR系の製造方法で得られるサブミクロン以下の平均結晶粒径を有するボンド磁石と本質的に異なり、またNd系原料のためSmFeNボンドとは磁石組成が全く異なる。ちなみにMQI粉末、HDDR,SmFeNの代表的な平均結晶粒径は0.05μm、0.3μm、0.4μmであり、当該発明磁石の平均結晶粒径の1から15μmよりも極めて小さい。本発明に係る磁石の特徴は、回収屑原料の特徴を最大限に生かして、従来では実現不可であった結晶粒径寸法において従来の異方性希土類ボンドと同等またはそれ以上の磁気特性が得られる事を見出した事である。
The average particle size of the magnet powder is a condition from the manufacturing conditions of the bonded magnet in consideration of high density and productivity. On the other hand, since this magnet is essentially a recovered scrap material, it has an average crystal grain size of submicron or less obtained by a rapid cooling process (so-called melt spinning) such as a conventional nanocomposite or MQI powder or a HDDR manufacturing method. It is essentially different from the bond magnets that it has, and because of the Nd-based material, it has a completely different magnet composition from the SmFeN bond. Incidentally, typical average grain sizes of MQI powder, HDDR, and SmFeN are 0.05 μm, 0.3 μm, and 0.4 μm, which are extremely smaller than 1 to 15 μm of the average crystal grain size of the magnet of the present invention. The characteristics of the magnet according to the present invention make the best use of the characteristics of the recovered scrap raw material, and at the crystal grain size that has not been realized in the past, magnetic characteristics equivalent to or higher than those of conventional anisotropic rare earth bonds can be obtained. It has been found that it can be.
なおここで平均粒径測定は空孔透過方法(フィッシャ・サブシーズ・サイザー等)による測定値であり、結晶粒径は2次元金属組織写真を画像解析して導出した結晶粒径である。空孔透過方法、通称フィッシャー法(FSSS)とは、試料に加圧空気を透過し、透過後の圧力低下量からある換算式に基づいて平均粒度を測定するという工業的な一般的方法である。また画像解析は具体的には、倍率400倍の金属組織写真の50μm領域の視野に10μmピッチで縦横5本の直線を引きその切片の長さ(L)から以下の式で求めるいわゆる切断法による公称結晶粒径(d)により求めている。
(式)d=1.128L Here, the average particle size measurement is a value measured by a hole permeation method (Fischer, subseed sizer, etc.), and the crystal particle size is a crystal particle size derived by image analysis of a two-dimensional metal structure photograph. The pore permeation method, commonly called the Fischer method (FSSS), is a general industrial method in which pressurized air is permeated through a sample and the average particle size is measured based on a certain conversion formula from the pressure drop after permeation. . Specifically, the image analysis is performed by a so-called cutting method in which five vertical and horizontal straight lines are drawn at a pitch of 10 μm in a visual field of a 50 μm region of a metal structure photograph at a magnification of 400 times and the length (L) of the slice is obtained by the following formula. It is determined from the nominal crystal grain size (d).
(Formula) d = 1.128L
(式)d=1.128L Here, the average particle size measurement is a value measured by a hole permeation method (Fischer, subseed sizer, etc.), and the crystal particle size is a crystal particle size derived by image analysis of a two-dimensional metal structure photograph. The pore permeation method, commonly called the Fischer method (FSSS), is a general industrial method in which pressurized air is permeated through a sample and the average particle size is measured based on a certain conversion formula from the pressure drop after permeation. . Specifically, the image analysis is performed by a so-called cutting method in which five vertical and horizontal straight lines are drawn at a pitch of 10 μm in a visual field of a 50 μm region of a metal structure photograph at a magnification of 400 times and the length (L) of the slice is obtained by the following formula. It is determined from the nominal crystal grain size (d).
(Formula) d = 1.128L
続いて、異方性希土類ボンド磁石の製造方法について説明する。
Then, the manufacturing method of an anisotropic rare earth bond magnet is demonstrated.
本発明の希土類異方性燒結磁石を原料とする異方性希土類ボンド磁石の製造方法は、希土類異方性燒結磁石を不活性雰囲気下で機械的に粉砕する工程と、前記粉砕した材料を高真空または不活性雰囲気下で400から600℃の温度で保持時間12時間以上のひずみ取焼鈍処理する工程と、前記ひずみ取焼鈍処理した材料とバインダーを混錬し、磁場成型する工程とからなることを特徴とする。
The method for producing an anisotropic rare earth bonded magnet using the rare earth anisotropic sintered magnet of the present invention as a raw material includes a step of mechanically crushing the rare earth anisotropic sintered magnet in an inert atmosphere, It consists of a step of strain relief annealing at a temperature of 400 to 600 ° C. in a vacuum or an inert atmosphere and a holding time of 12 hours or more, and a step of kneading the strain relief annealed material and a binder to form a magnetic field. It is characterized by.
本発明に係る異方性希土類ボンド磁石の原料となる希土類異方性燒結磁石としては、上述したような市中から回収された異方性希土類燒結磁石回収屑を使用することができる。
As the rare earth anisotropic sintered magnet as a raw material for the anisotropic rare earth bonded magnet according to the present invention, the anisotropic rare earth sintered magnet recovered scrap recovered from the market as described above can be used.
要望する最大エネルギー積(BH)maxを得る為に、磁石回収屑の成分分析と磁気特性測定を行うことが好ましい。
In order to obtain the desired maximum energy product (BH) max, it is preferable to perform component analysis and magnetic property measurement of magnet recovery scrap.
すなわち、最大エネルギー積(BH)maxが96から270kJ/m3の範囲の任意の望む磁気特性を有する異方性希土類ボンド磁石を製造するためには、あらかじめ、回収した希土類焼結磁石をサンプリングして、その回収磁石素材の成分分析を行って、磁石の組成として、ネオジム(Nd)とサマリウム(Sm)の組成を確認しておくことが好ましい。その分析値から判断して、望む磁気特性を得る為にさらに他の成分が既知の磁石屑を追加配合調整してボンド磁石を作成することが出来る。ただそのためには種々の回収屑で後述するCR値のデータを蓄積することが好ましい。
That is, in order to produce an anisotropic rare earth bonded magnet having any desired magnetic property with a maximum energy product (BH) max in the range of 96 to 270 kJ / m 3 , the collected rare earth sintered magnet is sampled in advance. Then, it is preferable to conduct a component analysis of the recovered magnet material and confirm the composition of neodymium (Nd) and samarium (Sm) as the composition of the magnet. Judging from the analysis value, in order to obtain a desired magnetic characteristic, a bonded magnet can be prepared by further blending and adjusting magnet scraps with other components already known. However, for that purpose, it is preferable to accumulate data of CR values, which will be described later, with various collected scraps.
なお、回収された希土類異方性燒結磁石が単一の磁石屑である場合は、この成分分析は省略することができるが、特に、回収された希土類異方性燒結磁石が、種々雑多な混合物である場合は必須となり、そのサンプリング数も多い方が好ましい。
In addition, when the recovered rare earth anisotropic sintered magnet is a single magnet scrap, this component analysis can be omitted. In particular, the recovered rare earth anisotropic sintered magnet is a mixture of various kinds. Is essential, and it is preferable that the number of sampling is large.
なお廃却前の燒結磁石の磁気特性は回収屑が混合市中屑の場合、通常、例えば、n=3~10ヶサンプリングした磁気特性を代表磁気特性とすることができる。磁石屑成分分析も同様にICP等により、同じくn=3~10ヶサンプリング分析を行うことができる。なお実施例に示す磁気特性と成分分析の数値はn=3で行っている。
Note that the magnetic characteristics of the sintered magnet before being discarded can be set as representative magnetic characteristics, for example, when n = 3 to 10 samples are collected, for example, when the collected waste is mixed municipal waste. Similarly, the magnetic scrap component analysis can also be performed by n = 3 to 10 sampling analysis by ICP or the like. In addition, the magnetic characteristic and the numerical value of component analysis which are shown in the examples are performed with n = 3.
得られた成分分析値と磁気特性により、1種以上の種類の屑を混合して使用することも可能である。望ましくは、原料となる希土類異方性燒結磁石がネオジム焼結磁石回収屑、又はネオジム焼結磁石回収屑とサマリウムコバルト焼結磁石回収屑との混合物であることが好ましい。
It is also possible to mix and use one or more kinds of scraps according to the obtained component analysis values and magnetic characteristics. Desirably, the rare earth anisotropic sintered magnet as a raw material is preferably a neodymium sintered magnet recovery scrap or a mixture of neodymium sintered magnet recovery scrap and samarium cobalt sintered magnet recovery scrap.
なお、成分分析によりサマリウム(Sm)が、30wt%以上検出された場合は、サマリウムコバルト焼結磁石の混入率が高く、Nd磁石ベースのよりも高い磁気特性を有する優れた異方性希土類ボンド磁石の製造には適さない原料である。
In addition, when samarium (Sm) is detected by 30% by weight or more by component analysis, an excellent anisotropic rare earth bonded magnet having a higher mixing ratio of the samarium cobalt sintered magnet and higher magnetic characteristics than that of the Nd magnet base. This material is not suitable for the production of
すなわち、回収された希土類異方性燒結磁石に成分分析の結果30wt%以上のサマリウムが検出され、サマリウムコバルト焼結磁石の混入が多い場合は、該当回収屑を他のNd磁石ベースの回収屑と希釈混合等することにより使用する。
That is, when 30% by weight or more of samarium is detected as a result of component analysis in the collected rare earth anisotropic sintered magnet and the samarium-cobalt sintered magnet is mixed in a lot, the corresponding recovered scrap is replaced with other Nd magnet-based recovered scrap. Used by diluting and mixing.
本回収工程において、回収した希土類焼結磁石素材を有効活用し、最適な製造工程にて処理し最大限の異方性希土類ボンド磁石磁気特性を発揮する為に、用いた磁石素材の成分分析は不可欠である。
In this collection process, in order to make effective use of the recovered rare earth sintered magnet material and process it in the optimal manufacturing process to exhibit the maximum anisotropic rare earth bonded magnet magnetic properties, component analysis of the magnet material used is It is essential.
成分分析はICPあるいはX線蛍光分析による。また同様の理由で回収原料の磁気特性測定を行うことを必須とする。必要とする磁気特性を発揮するため、1種以上の磁石素材屑を混合して使用することも可能で、本製造方法の特徴である。成分分析と磁気特性測定により、屑性能評価を行い、用途により使用する屑の選別、配合を調整して最大の最大エネルギー積(BH)maxを得て最適化有効する必要があるためである。
Component analysis is based on ICP or X-ray fluorescence analysis. For the same reason, it is essential to measure the magnetic properties of the recovered raw material. In order to exhibit the required magnetic properties, it is possible to use one or more kinds of magnet material scraps in combination, which is a feature of this manufacturing method. This is because it is necessary to evaluate the waste performance by component analysis and magnetic property measurement, and to optimize and obtain the maximum maximum energy product (BH) max by adjusting the selection and mixing of the waste to be used according to the application.
前記した希土類異方性燒結磁石を原料とする異方性希土類ボンド磁石の製造方法の工程を以下詳細に述べる。
The steps of the method for producing an anisotropic rare earth bonded magnet using the rare earth anisotropic sintered magnet as a raw material will be described in detail below.
まず回収された磁石を粉砕する。粉砕はボールミル、アトライター、ジョークラッシャ等機械粉砕で行うことが可能である。ジョークラッシャで租粉砕した後、ボールミル微粉砕するといった2段処理も有効で、粒度分布を均一に出来、磁気特性を向上出来る。なお粉砕雰囲気は酸化防止の為、Ar、N等の不活性雰囲気もしくはアルコール、アセトン等の溶媒中で行う。
First, the collected magnets are crushed. The pulverization can be performed by mechanical pulverization such as a ball mill, an attritor, and a jaw crusher. A two-stage treatment such as grinding with a jaw crusher and then finely grinding with a ball mill is also effective, the particle size distribution can be made uniform, and the magnetic properties can be improved. In order to prevent oxidation, the grinding atmosphere is performed in an inert atmosphere such as Ar or N or in a solvent such as alcohol or acetone.
本回収屑は、従来の磁石製造工程で不可欠とされている水素粉砕を一切必要としない粉砕工程を用いる。水素粉砕を用いると、プレス成型時にマイクロクラックを発生して、粉末の著しい酸化により磁気特性が低下するためである。
本 The recovered waste uses a crushing process that does not require any hydrogen crushing, which is essential in the conventional magnet manufacturing process. This is because when hydrogen pulverization is used, microcracks are generated during press molding, and magnetic properties are deteriorated due to significant oxidation of the powder.
微粉砕は一般のボールミル粉砕等を用いるが、用いる原料が希土類焼結磁石という微結晶で極めて硬い合金のため、従来の高速で2から6時間のボールミルでは無く、12から24時間の低速のボール工程を用いる方が、磁気特性が高い。
For fine pulverization, general ball mill pulverization or the like is used. However, since the raw material used is a rare-earth sintered magnet, which is a microcrystalline and extremely hard alloy, it is not a conventional high speed ball mill of 2 to 6 hours, but a low speed ball of 12 to 24 hours Using the process has higher magnetic properties.
なお粉砕粉末の平均粒径は30から200μm、さらに望ましくは50から170μmにすることが高い磁気特性を得るために必要である。
The average particle size of the pulverized powder is 30 to 200 μm, more preferably 50 to 170 μm, in order to obtain high magnetic properties.
後述するように、プレス成型時に充填密度を上げることにより、磁気特性を向上させるため、粒度の異なる2種類の粉末を用いることも有効である。特に成形性の悪い本粉末は2種類の粉末を用いる等の成型条件改善が重要である。
As will be described later, it is also effective to use two kinds of powders having different particle sizes in order to improve the magnetic properties by increasing the packing density during press molding. In particular, it is important to improve molding conditions such as using two types of powders with poor moldability.
本磁石製造工程の特徴の一つは水素粉砕を用いない工程である。水素粉砕は、Sm磁石やNd磁石が本質的に水素吸蔵、水素脆性を有するため、しばしば用いられている製造手法であるが、希土類屑回収産業が社会スキームとして安価、安全に大量に処理普及出来るべく汎用性のある提案とする為、水素粉砕工程を一切用いない工程を提案している。勿論水素粉砕による粉砕方法を除外するものではない。
One of the features of this magnet manufacturing process is a process that does not use hydrogen crushing. Hydrogen crushing is a production method that is often used because Sm magnets and Nd magnets have inherently hydrogen storage and hydrogen embrittlement, but the rare earth scrap recovery industry can disseminate a large amount of processing safely and inexpensively as a social scheme. In order to make the proposal as versatile as possible, a process that does not use any hydrogen pulverization process is proposed. Of course, the pulverization method by hydrogen pulverization is not excluded.
本磁石粉末は粉砕後に高真空または不活性雰囲気中で熱処理が必要不可欠である。熱処理を行わないと、従来特許に見られるように(特願平4-303254)得られる保磁力の値HCJが800kA/m(10kOe)以下と極めて低く、磁石の耐熱特性が低い。
This magnet powder must be heat-treated in a high vacuum or inert atmosphere after grinding. If heat treatment is not performed, the coercive force value HCJ obtained is extremely low at 800 kA / m (10 kOe) or less, as shown in the prior patent (Japanese Patent Application No. 4-303254), and the heat resistance of the magnet is low.
熱処理温度は400~600℃の熱処理温度であるが、熱処理時間が長時間の12時間以上、望むべくは48時間以上必要である。600℃を越えると、粉末が溶着、さらに拡散が起こるので、これを防ぐ為に出来れば500℃以下が望ましい。400℃の低温ではひずみとり熱処理時間が長く必要であり24時間以上、あるいは48時間以上が望ましい。
The heat treatment temperature is 400 to 600 ° C., but a heat treatment time of 12 hours or longer, preferably 48 hours or longer, is desired. If the temperature exceeds 600 ° C., the powder is welded and further diffusion occurs. Therefore, if possible, the temperature is preferably 500 ° C. or lower. At a low temperature of 400 ° C., it takes a long time for heat treatment to remove strain, and it is preferably 24 hours or more or 48 hours or more.
本ひずみとり熱処理は機械粉砕時に生じたマイクロクラック等不可避の機械ひずみの焼鈍が目的であるが、なお熱処理中の磁石粉末の酸化を防ぐ為、Ti,Ca,Mg等のゲッター粉末を試料別容器に挿入して行うのが望ましい。
The purpose of this heat treatment for strain relief is to anneal inevitable mechanical strains such as microcracks generated during mechanical crushing. However, in order to prevent oxidation of magnet powder during heat treatment, getter powder such as Ti, Ca, Mg, etc. is used for each sample container. It is desirable to insert it into
磁石成型工程は特に限定はされず、圧縮成型でも射出成型でもよい。具体的には、例えば、まず得られた粉末を次にバインダー混錬する。バインダーとしては圧縮成型では、エポキシ樹脂、射出成型ではPA樹脂(ナイロン12等)、耐熱性PPS等の熱可塑性樹脂を用いる。高い磁気特性を維持するために、バインダー量は成形性を損なうことの無い下限の添加量に抑えることが必要で、圧縮成型では3-7wt%、射出成型では5-10wt%にする。そのほか、酸化防止剤、ステアリン酸系の金型潤滑剤等を製品形状寸法に応じて、0.8wt%以下添加してもよい。
The magnet molding process is not particularly limited, and may be compression molding or injection molding. Specifically, for example, the obtained powder is first kneaded with a binder. As the binder, an epoxy resin is used in compression molding, and a thermoplastic resin such as PA resin (nylon 12 or the like) or heat-resistant PPS is used in injection molding. In order to maintain high magnetic properties, it is necessary to suppress the amount of the binder to the lower limit addition amount that does not impair the moldability, and is 3-7 wt% for compression molding and 5-10 wt% for injection molding. In addition, an antioxidant, a stearic acid-based mold lubricant, and the like may be added in an amount of 0.8 wt% or less depending on the product shape.
圧縮プレス成型では、磁場プレス方式が採用可能で、直角成型、平行成型、ラジアル成型、径2極成型等の磁石形状に対応した成型が可能である。成型圧力は高成型密度化により高い磁気特性を実現するため0.9Ton/cm2以上、望ましくは6.5Ton/cm2以上、さらに望ましくは8.5Ton/cm2以上である。
In compression press molding, a magnetic field press method can be adopted, and molding corresponding to a magnet shape such as right-angle molding, parallel molding, radial molding, and diameter dipole molding is possible. The molding pressure is 0.9 Ton / cm 2 or more, preferably 6.5 Ton / cm 2 or more, more preferably 8.5 Ton / cm 2 or more in order to realize high magnetic properties by increasing the molding density.
磁石成型工程において2種類以上の粒度を有する粉末を用いて磁場成型する手法も有効であるが、本原料合金系ではこの手法は極めて有効で、混合する2種の粉末の平均粒度比CpがCp=0.1~0.3を有する粉末を用いた場合に磁気特性が優れる。なお望ましくはCp=0.15~0.25である。
In the magnet molding process, a method of magnetic field molding using powders having two or more types of particle sizes is also effective, but this method is extremely effective in this raw material alloy system, and the average particle size ratio Cp of the two types of powders to be mixed is Cp. = Excellent magnetic properties when using powder having 0.1 to 0.3. Desirably, Cp = 0.15 to 0.25.
またこの2種の粉末の混合配合比Kpとすると、Kp=1.5~4.0に混錬すると高密度化され高い優れた磁気特性が得られる。Kpはさらに望ましくはKp=2.0~3.5である。なおKpは(粗大粒子重量)/(微小粒子重量)である。本Cp、Kpの条件は射出成型プレスにおいても同様である。
Also, when the mixing ratio Kp of these two kinds of powders is kneaded to Kp = 1.5 to 4.0, the density is increased and high excellent magnetic properties are obtained. Kp is more preferably Kp = 2.0 to 3.5. Kp is (coarse particle weight) / (microparticle weight). The conditions of the present Cp and Kp are the same in the injection molding press.
本実施形態においては、成型体密度を上げやすい湿式成型も極めて有効な方法である。湿式成型法は既に希土類燒結磁石の製造方法で用いられているが、通常乾式工程より高コストでありまた焼結時に脱溶媒工程が必要なため限定的に採用されているが、市中回収屑の成型方法として報告された先行技術論文は見当たらない。本実施形態では、この湿式成型が極めて有効であることを見出した。
In this embodiment, wet molding that is easy to increase the density of the molded body is also an extremely effective method. Although the wet molding method is already used in the production method of rare earth sintered magnets, it is usually used at a higher cost than the dry process and requires a solvent removal process during sintering. There are no prior art papers reported as molding methods. In the present embodiment, it has been found that this wet molding is extremely effective.
本実施形態においては、さらに、圧縮成型もしくは湿式成型に続いて冷間等方性プレス(以下CIP)をする2段プレス成型を採用してもよい。CIPによる高成型圧力を印加して成型体を高密度化することにより高磁気特性化することが有効であるからである。CIPが効果のある圧力は200MPa以上、望ましくは300MPa以上である。CIP媒体はグリセリン等の溶媒、CIP圧力印加時間は10から20分である。
In the present embodiment, two-stage press molding in which cold isotropic pressing (hereinafter referred to as CIP) is further performed following compression molding or wet molding may be employed. This is because it is effective to increase the magnetic properties by increasing the density of the molded body by applying a high molding pressure by CIP. The pressure at which CIP is effective is 200 MPa or more, desirably 300 MPa or more. The CIP medium is a solvent such as glycerin, and the CIP pressure application time is 10 to 20 minutes.
湿式プレス成型は、主として金型表面の摩擦係数の改善による高密度化に、CIPは全方向からの静水圧による高密度化にと異なった寄与をするため、湿式成型とCIPを組み合わせた複合的な効果を有する多段プレスが有効である。これら粉体成型は従来の希土類燒結磁石の効果にはほとんど顕在しなかった希土類燒結屑粉末の機械的性質、粒度分布等の粉末物性に固有の特徴である。
Wet press molding mainly contributes to densification by improving the coefficient of friction on the mold surface, and CIP contributes differently to densification by hydrostatic pressure from all directions, so a combination of wet molding and CIP. A multi-stage press having various effects is effective. These powder moldings are unique to the powder physical properties such as mechanical properties and particle size distribution of rare earth sintered dust powder, which are hardly manifested in the effects of conventional rare earth sintered magnets.
湿式成型に用いる溶媒はアルコール系やアセトン等の有機溶媒あるいは潤滑オイルやガソリン等が可能である。これら溶媒下の磁場成型により、プレス成型圧力を通常の乾式圧力よりも20-30%低減可能であり、かつ成型時の剥離、割れ、欠け等が著しく改善される。湿式成型では本質的に不可避の脱溶媒工程が必要であるが、本提案の異方性希土類ボンド磁石の製造方法において一切不要であるため極めて有効な成型となる。
The solvent used for the wet molding can be an organic solvent such as alcohol or acetone, lubricating oil, gasoline or the like. By magnetic field molding under these solvents, the press molding pressure can be reduced by 20-30% from the usual dry pressure, and peeling, cracking, chipping, etc. during molding are remarkably improved. Wet molding essentially requires an inevitable solvent removal step, but it is extremely effective molding because it is not necessary at all in the proposed anisotropic rare earth bonded magnet manufacturing method.
またプレス磁石製造方法において、高密度化を図る為、磁場成型工程中にエアタッピング、超音波タッピング等の粉末充填タッピング工程が高タップ密度を得て本粉末の成型手法として極めて有効である。タッピングは磁場成型の金型に振動伝達盤を取り付ける等により、圧搾空気の圧力振動を伝播して行う。あるいは、予め仮プレスパッケージ内でエアタッピングを行ったグリーン成型体を金型内に挿入することにより、高密度化する。
Also, in the press magnet manufacturing method, in order to increase the density, a powder filling tapping process such as air tapping and ultrasonic tapping during the magnetic field forming process obtains a high tap density and is extremely effective as a molding technique for this powder. Tapping is performed by propagating the pressure vibration of the compressed air, such as by attaching a vibration transmission board to a magnetic mold. Alternatively, the density is increased by inserting a green molded body previously air-tapped in a temporary press package into a mold.
圧縮成型、射出成型で得られた磁石はそのまま製品として実使用可能であるが、Niメッキ、エポキシコーティング、等を行うことにより、腐食性、耐食性を要求される用途への適用も可能である。これら表面処理を施すことにより、回収した希土類異方性焼結磁石から製造しているにも関わらず、通常市販の異方性希土類ボンド磁石と同等またはそれ以上の耐食信頼性を有する。耐食性評価は、具体的には80℃×90%RH条件において行う。
A magnet obtained by compression molding or injection molding can be used as a product as it is, but by applying Ni plating, epoxy coating, etc., it can be applied to applications requiring corrosiveness and corrosion resistance. By carrying out these surface treatments, although they are manufactured from the collected rare earth anisotropic sintered magnet, they have corrosion resistance reliability equivalent to or higher than that of commercially available anisotropic rare earth bonded magnets. Specifically, the corrosion resistance evaluation is performed under the condition of 80 ° C. × 90% RH.
以上の異方性希土類ボンド磁石の製造方法により、最大エネルギー積(BH)maxが96から270kJ/m3のエネルギー積と、高い規格角型比p0.70を実現、さらに分析値に基づいて焼結磁石屑を選定する事により、保磁力HcJが800kA/m以上の従来の異方性希土類ボンド磁石を上回る優れた磁気特性を実現できる。
The above anisotropic rare earth bonded magnet manufacturing method realizes an energy product with a maximum energy product (BH) max of 96 to 270 kJ / m 3 and a high standard squareness ratio p0.70, and further, based on the analysis value By selecting the magnetized scraps, it is possible to realize excellent magnetic properties that exceed the conventional anisotropic rare earth bonded magnet having a coercive force HcJ of 800 kA / m or more.
本発明においては、廃棄される希土類焼結磁石を再利用することを目的とするため、廃棄する前に当初磁石材料が保有していた磁気特性の再現性を確保するのではなく、廃棄磁石材料の形態、不純物、コーティングの有無等に応じて、一段または数段下(カスケード)の磁気特性を有する磁石材料を具現化して有効利用することになるが、それでもその磁力は従来の等方性希土類ボンド磁石および異方性希土類ボンド磁石以上の性能を有するものである。
In the present invention, since the purpose is to reuse the rare earth sintered magnet to be discarded, it is not necessary to ensure the reproducibility of the magnetic properties originally possessed by the magnet material before the disposal, but the discarded magnet material. Depending on the form, impurities, and the presence or absence of coating, etc., the magnetic material having one or several steps (cascade) magnetic properties will be embodied and used effectively, but the magnetic force is still the conventional isotropic rare earth It has performances higher than those of bonded magnets and anisotropic rare earth bonded magnets.
ここで実施例に示すCR率の定義を以下に示す。
Here, the definition of the CR rate shown in the examples is shown below.
廃却前の焼結磁石の最大エネルギー積をα、作製された異方性希土類ボンド磁石の最大エネルギー積(β)とし、CR率=β/α
The maximum energy product of sintered magnets before disposal is α, and the maximum energy product (β) of manufactured anisotropic rare earth bonded magnets, CR ratio = β / α
本発明においてCR率は、通常0.3から0.7になる。CR率は、回収した磁石を前処理なしに粉砕するだけで原料とするため0.7が上限であり、通常は0.65もしくは大量生産では最大0.60が量産可能レベルである。下限は磁石コスト/磁気パーフォーマンス上、通常0.30以上、望ましくは0.45、さらに望ましくは0.55以上である。CR率が0.3以下では通常の市販等方性希土類ボンド磁石に対してコストメリットが少ない。
In the present invention, the CR rate is usually 0.3 to 0.7. The upper limit of the CR rate is 0.7 because the recovered magnet is simply pulverized without pretreatment, and the upper limit is usually 0.75. The lower limit is usually 0.30 or more, preferably 0.45, more preferably 0.55 or more in terms of magnet cost / magnetic performance. When the CR ratio is 0.3 or less, the cost merit is small compared to a normal commercially available isotropic rare earth bonded magnet.
最大エネルギー積(BH)maxが96から270kJ/m3のエネルギー積と、高い規格角型比p0.70を実現、さらに分析値に基づいて焼結磁石屑を選定する事により、保磁力HcJが800kA/m以上の優れた磁気特性を実現できる。このことは、永久磁石の実用上極めて重要である耐熱性、具体的には熱減磁特性が十分に高いことを示している。
By realizing an energy product with a maximum energy product (BH) max of 96 to 270 kJ / m 3 and a high standard squareness ratio p0.70, and selecting sintered magnet debris based on the analysis value, the coercive force HcJ is Excellent magnetic characteristics of 800 kA / m or more can be realized. This indicates that the heat resistance, which is extremely important in practical use of the permanent magnet, specifically, the heat demagnetization property is sufficiently high.
一般に永久磁石の熱減磁特性を上げるには、保磁力HcJと減磁曲線の角型性Hkが大きいことが必要である。ここでHkはJ-H減磁曲線上で磁化Jの値が残留磁束密度(Br)の90%となる磁界Hの値として定義される。ただし、角型性Hkの値は永久磁石材質で異なる為、数値を規格化して評価する必要があり、本発明では、便宜的に保磁力HcJで規格化した値、規格化角型比pをp=Hk/HcJで定義して用いる。
Generally, in order to improve the thermal demagnetization characteristics of a permanent magnet, it is necessary that the coercive force HcJ and the squareness Hk of the demagnetization curve are large. Here, Hk is defined as the value of the magnetic field H at which the value of magnetization J is 90% of the residual magnetic flux density (Br) on the JH demagnetization curve. However, since the squareness Hk value differs depending on the material of the permanent magnet, it is necessary to standardize and evaluate the numerical value. In the present invention, the value normalized by the coercive force HcJ and the normalized squareness ratio p are used for convenience. It defines and uses by p = Hk / HcJ.
現在の異方性希土類ボンド磁石の熱減磁特性が実用上いまだ不十分な最大の理由は、保磁力HcJの値が低いことと、規格化角型比p値が低いことである。現在の異方性希土類ボンド磁石はHDDR又はd-HDDRという工程を用いているHDDR型磁石とSmFe合金を窒化処理して作成するSmFeN型の2種類である。これらHDDR型異方性希土類ボンド磁石もSmFeN型異方性希土類ボンド磁石いずれも燒結磁石並みの高い保磁力HcJと高い規格化角型比p値は得られていない。
The main reasons why the thermal demagnetization characteristics of the present anisotropic rare earth bonded magnets are still insufficient in practical use are that the coercive force HcJ is low and the normalized squareness ratio p value is low. At present, there are two types of anisotropic rare earth bonded magnets: an HDDR type magnet using a process called HDDR or d-HDDR and an SmFeN type produced by nitriding an SmFe alloy. Neither of these HDDR type anisotropic rare earth bonded magnets nor SmFeN type anisotropic rare earth bonded magnets have a high coercive force HcJ and a high normalized squareness ratio p value comparable to those of sintered magnets.
特に熱減磁特性に大きく影響する規格化角型比p値は、磁石の製造プロセス、均一性に大きく起因する。HDDR磁石ではその再結合過程(Desorption)工程で結晶粒を完全に同一方向に配向形成させる異方性化技術は非常に困難、またSmFeNに関してもSmFe合金に表面から窒素を均一に拡散かつ均一に反応させる技術が非常に難しく、高い規格化角型比pは得られていない。
Especially, the normalized squareness ratio p-value that greatly affects the thermal demagnetization characteristics is largely attributable to the magnet manufacturing process and uniformity. With HDDR magnets, it is very difficult to make anisotropy technology in which crystal grains are oriented in the same direction during the resorption process (desorption), and even for SmFeN, nitrogen diffuses uniformly from the surface to the SmFe alloy. The reaction technique is very difficult, and a high normalized squareness ratio p has not been obtained.
一方、希土類燒結磁石は数ミクロンの微小単結晶に機械的に微粉砕された粉末を磁場成型しているため極めて結晶粒配向度が高く、かつ本発明の粉末粒子の平均結晶粒径は従来の異方性希土類ボンド磁石の粒径と全く異なる30から200ミクロンと当初の結晶粒よりもはるかに大きいため、結晶粒配向度を乱すことなく高い規格化角型比pがそのまま比較的容易に実現可能である。本発明磁石は通常工程においても規格化角型比0.70以上、最大0.90以上を有する極めてp値の高い、即ち熱減磁等の温度特性の優れた異方性希土類ボンド磁石となる。優れた耐熱性を有するためには、保磁力が高いことに加えて、規格化角型比pが高いことが不可欠である。
On the other hand, rare earth sintered magnets are magnetically molded from finely pulverized powder of several microns, so that the degree of crystal grain orientation is extremely high, and the average grain size of the powder particles of the present invention is the conventional one. Since the grain size of anisotropic rare-earth bonded magnets is completely different from 30 to 200 microns, which is much larger than the original crystal grains, a high normalized squareness ratio p can be realized relatively easily without disturbing the degree of crystal grain orientation. Is possible. The magnet of the present invention is an anisotropic rare earth bonded magnet having a normalized pragmatic ratio of 0.70 or more and a maximum of 0.90 or more even in a normal process and having an extremely high p value, ie, excellent temperature characteristics such as thermal demagnetization. . In order to have excellent heat resistance, it is essential that the normalized squareness ratio p is high in addition to high coercivity.
本発明は、このように原料として異方性希土類燒結磁石原料を利用することを特徴とするため、従来の異方性希土類ボンド磁石よりも本質的にはるかに高い保磁力とかつ高いp値が得られる。
Since the present invention is characterized by using an anisotropic rare earth sintered magnet raw material as a raw material in this way, the coercive force is substantially higher than that of a conventional anisotropic rare earth bonded magnet and a high p value is obtained. can get.
現在の市販の異方性希土類ボンド磁石の保磁力HcJは1,100から1,500kA/m,規格化角型比pは、0.2から0.3、最大でも0.4である。この等方性希土類ボンド磁石耐熱性、具体的には熱減磁は大よそ約120-140℃である。
The coercive force HcJ of current commercially available anisotropic rare earth bonded magnets is 1,100 to 1,500 kA / m, the normalized squareness ratio p is 0.2 to 0.3, and at most 0.4. The heat resistance of the isotropic rare earth bonded magnet, specifically, thermal demagnetization is about 120 to 140 ° C.
一方、本発明の異方性希土類ボンド磁石は、保磁力HcJが最大で2,000kA/m,規格化角型比pは通常工程でも0.70-0.85、最大で燒結磁石並みの0.90以上が可能である。保磁力が2,000kA/m、規格化角型比pが0.85の優れた特性を有する本発明磁石によれば、耐熱性は通常でも140℃あるいは180℃、最高で200℃が実現可能である。このように極めて高い角型性を有する異方性燒結磁石材料を原料とするため、本発明の磁石は本質的に極めて優れた規格化角型比pを有する高耐熱性の異方性希土類ボンド磁石となる。
On the other hand, the anisotropic rare earth bonded magnet of the present invention has a maximum coercive force HcJ of 2,000 kA / m, a normalized squareness ratio p of 0.70-0.85 even in a normal process, and a maximum of 0, which is the same as a sintered magnet. .90 or more is possible. According to the magnet of the present invention having excellent characteristics such as a coercive force of 2,000 kA / m and a normalized squareness ratio p of 0.85, heat resistance can be realized at 140 ° C. or 180 ° C. even at a maximum of 200 ° C. It is. Since the anisotropic sintered magnet material having extremely high squareness is used as a raw material, the magnet of the present invention is essentially a highly heat-resistant anisotropic rare earth bond having a normalized squareness ratio p. It becomes a magnet.
このように、本発明の異方性希土類ボンド磁石の性能上の最大の特徴のひとつは耐熱性、具体的には熱減磁特性である。
Thus, one of the greatest characteristics of the anisotropic rare earth bonded magnet of the present invention is heat resistance, specifically, thermal demagnetization characteristics.
熱減磁特性は或るPc(パーミアンス係数、通常Pc=1もしくは2)で高温、長時間(通常1000hr)後の磁束の減少量で評価される。その磁束減少量の目安が通常5%となる最高温度で耐熱性を評価する。現在異方性希土類ボンド磁石の耐熱性は通常約120℃である、と言われるのは、1000hr後の磁束減少量が120℃で5%となるため、実用上はこの120℃温度が使用可能上限温度であるという意味である。
熱 Thermal demagnetization characteristics are evaluated by the amount of decrease in magnetic flux after a long period of time (usually 1000 hours) at a certain Pc (permeance coefficient, usually Pc = 1 or 2). The heat resistance is evaluated at the highest temperature at which the standard for the amount of magnetic flux reduction is normally 5%. It is said that the heat resistance of anisotropic rare earth bonded magnets is usually about 120 ° C because the decrease in magnetic flux after 1000 hours is 5% at 120 ° C, so this 120 ° C temperature can be used in practice. It means that it is the upper limit temperature.
現状市販の異方性希土類ボンド磁石耐熱性は大よそ約120-140℃である。たとえば異方性のSmFeNボンド磁石は、量産レベルで高々130℃、研究レベルで最高温度150℃が報告されている。(例えば日本ボンド磁性材料協会 BMNews、No43, 2010)。
The heat resistance of currently available anisotropic rare earth bonded magnets is about 120-140 ° C. For example, anisotropic SmFeN bonded magnets are reported to be 130 ° C. at the maximum for mass production and 150 ° C. at the research level. (For example, Japan Bond Magnetic Materials Association, BMNews, No43, 2010).
本発明は、回収屑に含まれるNd磁石回収屑が量的に多い市場であることから基本的にNd基の材料系であり、その耐熱性が通常でも140℃、さらに180℃を越える良好な温度特性を有する異方性希土類ボンド磁石である。すなわち従来の異方性希土類ボンドの耐熱性120-140℃を上回る耐熱性が得られている。
The present invention is basically a Nd-based material system because the Nd magnet recovered scrap contained in the recovered scrap is a large amount in the market, and its heat resistance is normally 140 ° C., more than 180 ° C. An anisotropic rare earth bonded magnet having temperature characteristics. That is, the heat resistance exceeding 120-140 ° C. of the conventional anisotropic rare earth bond is obtained.
本発明は具体的にはPc=2, 140℃x1000hr条件で熱減磁5%以下、さらには同上条件下で160℃を超えるもの、さらに回収屑を選別利用かつバインダー種類と添加量等の磁粉以外の製造条件も併せて選定することにより耐熱性180℃を超えるきわめて優れた耐熱性を提供することができる。
Specifically, the present invention is such that Pc = 2, thermal demagnetization is 5% or less under the condition of 140 ° C. × 1000 hr, further exceeds 160 ° C. under the same conditions, and the recovered waste is sorted and used, and the magnetic powder such as the kind of binder and the added amount By selecting the production conditions other than those, extremely excellent heat resistance exceeding 180 ° C. can be provided.
一方では、現在市販されているα―HDDRの製造方法による異方性希土類ボンド磁石の熱減磁特性はPc=2, 150℃x1000hrで、熱減磁約11%と大きいことが知られている。
On the other hand, it is known that the thermal demagnetization characteristics of anisotropic rare earth bonded magnets by the α-HDDR manufacturing method currently on the market are as large as Pc = 2, 150 ° C. × 1000 hr and thermal demagnetization of about 11%. .
本発明の異方性希土類ボンド磁石の磁石性能上のもう一つの特徴は高い耐食性であり、本磁石が長期間の使用に十分適用可能な長期信頼性と安定性を有していることである。
Another feature of the magnet performance of the anisotropic rare earth bonded magnet of the present invention is high corrosion resistance, and that this magnet has long-term reliability and stability that can be sufficiently applied for long-term use. .
圧縮成型、射出成型で得られた本磁石はそのまま製品として実使用可能であるが、Niメッキ、エポキシコーティング、等の表面処理を施すことにより、通常市販の異方性希土類ボンド磁石以上の高耐食信頼性を有する。耐食性評価は、通常実施されている80℃×90%RH条件において行い、通常異方性希土類ボンド磁石材料は200から400時間が耐食性の限界であることが知られている。
This magnet obtained by compression molding or injection molding can be used as a product as it is, but by applying surface treatment such as Ni plating, epoxy coating, etc., it has higher corrosion resistance than that of the usual anisotropic rare earth bonded magnets. Reliable. Corrosion resistance evaluation is performed under the condition of 80 ° C. × 90% RH which is usually performed, and it is known that an anisotropic rare earth bonded magnet material has a limit of corrosion resistance for 200 to 400 hours.
本発明の異方性希土類ボンド磁石は80℃×90%RH条件下での耐食性が約300時間以上有する。さらに十分な表面処理を施すことにより最長で500時間まで外貌変化の無い優れた耐食性を有するものも可能である。
The anisotropic rare earth bonded magnet of the present invention has a corrosion resistance under 80 ° C. × 90% RH condition for about 300 hours or more. Furthermore, by performing sufficient surface treatment, it is possible to have excellent corrosion resistance with no change in appearance up to 500 hours.
温度と湿度の腐食加速試験から推定される寿命予測に参考までに換算すると、80℃×90%RH×500時間は、例えば23.8℃×78%RHで約20年、16.2℃×67%RHで約115年に相当し、本異方性希土類ボンド磁石が実用上十分な長期耐食性、長期信頼性を有していることがわかる。
When converted to reference for life prediction estimated from the accelerated corrosion test of temperature and humidity, 80 ° C. × 90% RH × 500 hours is, for example, 23.8 ° C. × 78% RH, about 20 years, 16.2 ° C. × 67% RH, corresponding to about 115 years, it can be seen that this anisotropic rare earth bonded magnet has practically sufficient long-term corrosion resistance and long-term reliability.
通常市販の異方性ボンド磁石材料では200から400時間が耐食性の限界であることが知られている。本発明の異方性ボンド磁石はこれらより同等またはそれ以上の約300時間、さらに十分な表面処理を施すことにより最長で500時間まで外貌変化の無い優れた長期耐食性、長期信頼性を有する磁石も可能である。
It is known that a commercially available anisotropic bonded magnet material has a limit of 200 to 400 hours in corrosion resistance. The anisotropic bonded magnet according to the present invention is a magnet having excellent long-term corrosion resistance and long-term reliability with no change in appearance for up to 500 hours by applying a sufficient surface treatment for about 300 hours equivalent to or longer than these. Is possible.
<実施例1>
出発原料の市中回収屑の磁気特性測定とICP成分分析(n=3)を行い、以下の特性と分析値を得た(表1-1、表1-2)。この回収屑のO量、C量の分析値は、おのおの4.3wt%、0.8wt%であった。また平均結晶粒径はn=5測定により、6.2μmであった。この合金粉末をアセトン中でボールミル粉砕行い、プレス成型粉末を得た。平均粒度は75μmである。得られた粉末は550℃x24hrでTiゲッター材を入れた高真空中で熱処理後、この成型粉末にエポキシバインダーを4.5t%添加して混錬してコンパウンドを得、磁場中で4.0Ton/cm2で圧縮成型した後、さらに300MPaの圧力で10分間CIP処理する。得られた異方性ボンド磁気特性と回収した磁石の磁気特性(n=5)測定した平均磁気特性と共に以下示す。本回収屑はNd磁石単独の成分であり得られたCRは0.64であった。 <Example 1>
Measurement of the magnetic properties and ICP component analysis (n = 3) of the municipal waste recovered as the starting material gave the following properties and analysis values (Table 1-1, Table 1-2). The analytical values of the amount of O and C of the recovered waste were 4.3 wt% and 0.8 wt%, respectively. The average crystal grain size was 6.2 μm as measured by n = 5. This alloy powder was ball milled in acetone to obtain a press-molded powder. The average particle size is 75 μm. The obtained powder was heat-treated in a high vacuum containing a Ti getter material at 550 ° C. × 24 hours, and then kneaded by adding 4.5 t% of an epoxy binder to this molded powder to obtain a compound. After compression molding at / cm 2 , CIP treatment is further performed at a pressure of 300 MPa for 10 minutes. The obtained anisotropic bond magnetic properties and the magnetic properties (n = 5) of the collected magnets are shown below together with the measured average magnetic properties. The recovered scrap was a component of the Nd magnet alone, and the CR obtained was 0.64.
出発原料の市中回収屑の磁気特性測定とICP成分分析(n=3)を行い、以下の特性と分析値を得た(表1-1、表1-2)。この回収屑のO量、C量の分析値は、おのおの4.3wt%、0.8wt%であった。また平均結晶粒径はn=5測定により、6.2μmであった。この合金粉末をアセトン中でボールミル粉砕行い、プレス成型粉末を得た。平均粒度は75μmである。得られた粉末は550℃x24hrでTiゲッター材を入れた高真空中で熱処理後、この成型粉末にエポキシバインダーを4.5t%添加して混錬してコンパウンドを得、磁場中で4.0Ton/cm2で圧縮成型した後、さらに300MPaの圧力で10分間CIP処理する。得られた異方性ボンド磁気特性と回収した磁石の磁気特性(n=5)測定した平均磁気特性と共に以下示す。本回収屑はNd磁石単独の成分であり得られたCRは0.64であった。 <Example 1>
Measurement of the magnetic properties and ICP component analysis (n = 3) of the municipal waste recovered as the starting material gave the following properties and analysis values (Table 1-1, Table 1-2). The analytical values of the amount of O and C of the recovered waste were 4.3 wt% and 0.8 wt%, respectively. The average crystal grain size was 6.2 μm as measured by n = 5. This alloy powder was ball milled in acetone to obtain a press-molded powder. The average particle size is 75 μm. The obtained powder was heat-treated in a high vacuum containing a Ti getter material at 550 ° C. × 24 hours, and then kneaded by adding 4.5 t% of an epoxy binder to this molded powder to obtain a compound. After compression molding at / cm 2 , CIP treatment is further performed at a pressure of 300 MPa for 10 minutes. The obtained anisotropic bond magnetic properties and the magnetic properties (n = 5) of the collected magnets are shown below together with the measured average magnetic properties. The recovered scrap was a component of the Nd magnet alone, and the CR obtained was 0.64.
<実施例2>
出発原料の市中回収屑の磁気特性測定とICP成分分析(n=3)を行い、以下の特性と分析値を得た(表2-1、表2-2)。この回収屑のO量、C量の分析値は、おのおの4.8wt%、0.9wt%であった。また平均結晶粒径はn=5測定により、8.2μmであった。この合金粉末をアセトン中でボールミル粉砕行い、プレス成型粉末を得た。平均粒度は51μmである。得られた粉末は550℃x24hrでTiゲッター材を入れた高真空中で熱処理後、この成型粉末にエポキシバインダーを4.5%添加して混錬してコンパウンドを得、4.0Ton/cm2で磁場中圧縮成型した後、さらに300MPaの圧力で10分間CIP処理する。 <Example 2>
Measurement of the magnetic properties and ICP component analysis (n = 3) of the municipal waste recovered from the starting material gave the following properties and analysis values (Tables 2-1 and 2-2). The analytical values of the O amount and the C amount of the recovered waste were 4.8 wt% and 0.9 wt%, respectively. The average crystal grain size was 8.2 μm as measured by n = 5. This alloy powder was ball milled in acetone to obtain a press-molded powder. The average particle size is 51 μm. The obtained powder was heat treated in a high vacuum containing a Ti getter material at 550 ° C. × 24 hr, and then kneaded by adding 4.5% of an epoxy binder to the molded powder to obtain a compound of 4.0 Ton / cm 2. Then, CIP treatment is performed at a pressure of 300 MPa for 10 minutes.
出発原料の市中回収屑の磁気特性測定とICP成分分析(n=3)を行い、以下の特性と分析値を得た(表2-1、表2-2)。この回収屑のO量、C量の分析値は、おのおの4.8wt%、0.9wt%であった。また平均結晶粒径はn=5測定により、8.2μmであった。この合金粉末をアセトン中でボールミル粉砕行い、プレス成型粉末を得た。平均粒度は51μmである。得られた粉末は550℃x24hrでTiゲッター材を入れた高真空中で熱処理後、この成型粉末にエポキシバインダーを4.5%添加して混錬してコンパウンドを得、4.0Ton/cm2で磁場中圧縮成型した後、さらに300MPaの圧力で10分間CIP処理する。 <Example 2>
Measurement of the magnetic properties and ICP component analysis (n = 3) of the municipal waste recovered from the starting material gave the following properties and analysis values (Tables 2-1 and 2-2). The analytical values of the O amount and the C amount of the recovered waste were 4.8 wt% and 0.9 wt%, respectively. The average crystal grain size was 8.2 μm as measured by n = 5. This alloy powder was ball milled in acetone to obtain a press-molded powder. The average particle size is 51 μm. The obtained powder was heat treated in a high vacuum containing a Ti getter material at 550 ° C. × 24 hr, and then kneaded by adding 4.5% of an epoxy binder to the molded powder to obtain a compound of 4.0 Ton / cm 2. Then, CIP treatment is performed at a pressure of 300 MPa for 10 minutes.
本回収屑はNd磁石とSmを一部含有する成分であり得られたCRは0.69であった。
The recovered waste was a component containing a part of Nd magnet and Sm, and CR obtained was 0.69.
<実施例3>
出発原料の市中回収屑の磁気特性測定とICP成分分析(n=3)を行い、以下の特性と分析値を得た(表3-1、表3-2)。この回収屑のO量、C量の分析値は、おのおの3.5wt%、2.4wt%であった。また平均結晶粒径はn=5測定により、9.5μmであった。この合金粉末をアセトン中でボールミル粉砕行い、プレス成型粉末を得た。平均粒度は85μmである。得られた粉末は550℃x24hrでTiゲッター材を入れた高真空中で熱処理後、この成型粉末にナイロン12バインダーを6.5wt%添加して混錬してコンパウンドを得、磁場中で射出成型した。得られた異方性ボンド磁気特性の回収した磁石の磁気特性から導出したCRは0.47であった。 <Example 3>
Measurement of the magnetic properties and ICP component analysis (n = 3) of the municipal waste recovered from the starting material gave the following properties and analytical values (Tables 3-1 and 3-2). The analytical values of the O amount and C amount of the recovered waste were 3.5 wt% and 2.4 wt%, respectively. The average crystal grain size was 9.5 μm by n = 5 measurement. This alloy powder was ball milled in acetone to obtain a press-molded powder. The average particle size is 85 μm. The obtained powder was heat-treated in a high vacuum containing a Ti getter material at 550 ° C. × 24 hr, and then kneaded by adding 6.5 wt% of nylon 12 binder to this molded powder to obtain a compound, and injection molding in a magnetic field did. The CR derived from the magnetic properties of the recovered magnet of the obtained anisotropic bond magnetic properties was 0.47.
出発原料の市中回収屑の磁気特性測定とICP成分分析(n=3)を行い、以下の特性と分析値を得た(表3-1、表3-2)。この回収屑のO量、C量の分析値は、おのおの3.5wt%、2.4wt%であった。また平均結晶粒径はn=5測定により、9.5μmであった。この合金粉末をアセトン中でボールミル粉砕行い、プレス成型粉末を得た。平均粒度は85μmである。得られた粉末は550℃x24hrでTiゲッター材を入れた高真空中で熱処理後、この成型粉末にナイロン12バインダーを6.5wt%添加して混錬してコンパウンドを得、磁場中で射出成型した。得られた異方性ボンド磁気特性の回収した磁石の磁気特性から導出したCRは0.47であった。 <Example 3>
Measurement of the magnetic properties and ICP component analysis (n = 3) of the municipal waste recovered from the starting material gave the following properties and analytical values (Tables 3-1 and 3-2). The analytical values of the O amount and C amount of the recovered waste were 3.5 wt% and 2.4 wt%, respectively. The average crystal grain size was 9.5 μm by n = 5 measurement. This alloy powder was ball milled in acetone to obtain a press-molded powder. The average particle size is 85 μm. The obtained powder was heat-treated in a high vacuum containing a Ti getter material at 550 ° C. × 24 hr, and then kneaded by adding 6.5 wt% of nylon 12 binder to this molded powder to obtain a compound, and injection molding in a magnetic field did. The CR derived from the magnetic properties of the recovered magnet of the obtained anisotropic bond magnetic properties was 0.47.
本回収屑はNd磁石とSmを一部含有する成分であるが、SmCo磁石の含有量は実施例2よりも多く、得られたCRは0.47であった。
This recovered waste is a component containing a part of Nd magnet and Sm, but the content of SmCo magnet is larger than that in Example 2, and the obtained CR was 0.47.
<実施例4>
出発原料の市中回収屑の磁気特性測定とICP成分分析(n=3)を行い、以下の特性と分析値を得た(表4-1、表4-2)。この回収屑のO量、C量の分析値は、おのおの6.9wt%、3.2wt%であった。なお用いた市中屑はほとんど全量Niメッキ品の回収屑である。また平均結晶粒径はn=5測定により、7.0μmであった。この合金粉末をまずジョークラッシャで粗粉砕した後、アセトン中でボールミル微粉砕行い、プレス成型粉末を得た。平均粒度は63μmである。得られた粉末は550℃x24hrでTiゲッター材を入れた高真空中で熱処理後、この成型粉末にエポキシバインダーを4.5t%添加して混錬してコンパウンドを得、3.5Ton/cm2で磁場中圧縮射出成型した後、さらに300MPaの圧力で10分間CIP処理する。 <Example 4>
Measurement of the magnetic properties and ICP component analysis (n = 3) of the municipal waste recovered from the starting material gave the following properties and analysis values (Tables 4-1 and 4-2). The analytical values of the amount of O and the amount of C of the collected waste were 6.9 wt% and 3.2 wt%, respectively. The municipal waste used was almost entirely recovered from Ni-plated products. The average crystal grain size was 7.0 μm as measured by n = 5. This alloy powder was first roughly pulverized with a jaw crusher and then finely pulverized in acetone to obtain a press-molded powder. The average particle size is 63 μm. The obtained powder was heat-treated in a high vacuum containing a Ti getter material at 550 ° C. × 24 hr, and then kneaded by adding 4.5 t% of an epoxy binder to this molded powder to obtain a compound, 3.5 Ton / cm 2 Then, CIP treatment is performed at a pressure of 300 MPa for 10 minutes.
出発原料の市中回収屑の磁気特性測定とICP成分分析(n=3)を行い、以下の特性と分析値を得た(表4-1、表4-2)。この回収屑のO量、C量の分析値は、おのおの6.9wt%、3.2wt%であった。なお用いた市中屑はほとんど全量Niメッキ品の回収屑である。また平均結晶粒径はn=5測定により、7.0μmであった。この合金粉末をまずジョークラッシャで粗粉砕した後、アセトン中でボールミル微粉砕行い、プレス成型粉末を得た。平均粒度は63μmである。得られた粉末は550℃x24hrでTiゲッター材を入れた高真空中で熱処理後、この成型粉末にエポキシバインダーを4.5t%添加して混錬してコンパウンドを得、3.5Ton/cm2で磁場中圧縮射出成型した後、さらに300MPaの圧力で10分間CIP処理する。 <Example 4>
Measurement of the magnetic properties and ICP component analysis (n = 3) of the municipal waste recovered from the starting material gave the following properties and analysis values (Tables 4-1 and 4-2). The analytical values of the amount of O and the amount of C of the collected waste were 6.9 wt% and 3.2 wt%, respectively. The municipal waste used was almost entirely recovered from Ni-plated products. The average crystal grain size was 7.0 μm as measured by n = 5. This alloy powder was first roughly pulverized with a jaw crusher and then finely pulverized in acetone to obtain a press-molded powder. The average particle size is 63 μm. The obtained powder was heat-treated in a high vacuum containing a Ti getter material at 550 ° C. × 24 hr, and then kneaded by adding 4.5 t% of an epoxy binder to this molded powder to obtain a compound, 3.5 Ton / cm 2 Then, CIP treatment is performed at a pressure of 300 MPa for 10 minutes.
またエアタッピング効果を検証する為、磁場成型時に圧搾空気を用いたエアタッピングを行って、成型前のグリーン密度を高めた後に成型しさらに圧縮成型後後、さらに300MPaの圧力で10分間CIP処理して異方性ボンド磁石を作成した。
In order to verify the effect of air tapping, air tapping using compressed air is performed at the time of magnetic field molding, the green density before molding is increased and then molded, and after further compression molding, CIP treatment is performed for 10 minutes at a pressure of 300 MPa. An anisotropic bonded magnet was prepared.
本回収屑は全量Nd磁石屑の成分であった。
The collected waste was a component of the total amount of Nd magnet waste.
得られた異方性ボンド磁気特性のCRは0.61,エアタッピングするとCRは0.68と向上することがわかった。エアタッピング有り無しにかかわらず、Niメッキ回収屑も良好な磁気特性が得られることを確認した。
It was found that CR of the obtained anisotropic bond magnetic property was 0.61, and CR improved to 0.68 when air tapping was performed. It was confirmed that good magnetic properties were obtained for the Ni-plated recovered scrap regardless of the presence or absence of air tapping.
<実施例5>
出発原料の市中回収屑の磁気特性測定とICP成分分析(n=3)を行い、以下の特性と分析値を得た(表5-1、表5-2)。この回収屑のO量、C量の分析値は、おのおの5.8wt%、1.8wt%であった。また平均結晶粒径はn=5測定により、8.7μmであった。この合金粉末をアセトン中でボールミル粉砕行い、プレス成型粉末を得た。平均粒度は95ミクロンである。得られた粉末は550℃x24hrでTiゲッター材を入れた高真空中で熱処理後、この成型粉末にPPSバインダーを6.5t%添加して混錬してコンパウンドを得、磁場中で射出成型した。成型後にエポキシスプレーコーティングを施して信頼性も確認した。 <Example 5>
Measurement of the magnetic properties and ICP component analysis (n = 3) of the municipal waste recovered from the market as starting materials gave the following properties and analysis values (Tables 5-1 and 5-2). The analytical values of the O amount and C amount of the recovered waste were 5.8 wt% and 1.8 wt%, respectively. The average crystal grain size was 8.7 μm as measured by n = 5. This alloy powder was ball milled in acetone to obtain a press-molded powder. The average particle size is 95 microns. The obtained powder was heat-treated in a high vacuum containing a Ti getter material at 550 ° C. × 24 hr, then kneaded by adding 6.5 t% of PPS binder to this molded powder, and obtained by injection molding in a magnetic field. . Reliability was also confirmed by applying an epoxy spray coating after molding.
出発原料の市中回収屑の磁気特性測定とICP成分分析(n=3)を行い、以下の特性と分析値を得た(表5-1、表5-2)。この回収屑のO量、C量の分析値は、おのおの5.8wt%、1.8wt%であった。また平均結晶粒径はn=5測定により、8.7μmであった。この合金粉末をアセトン中でボールミル粉砕行い、プレス成型粉末を得た。平均粒度は95ミクロンである。得られた粉末は550℃x24hrでTiゲッター材を入れた高真空中で熱処理後、この成型粉末にPPSバインダーを6.5t%添加して混錬してコンパウンドを得、磁場中で射出成型した。成型後にエポキシスプレーコーティングを施して信頼性も確認した。 <Example 5>
Measurement of the magnetic properties and ICP component analysis (n = 3) of the municipal waste recovered from the market as starting materials gave the following properties and analysis values (Tables 5-1 and 5-2). The analytical values of the O amount and C amount of the recovered waste were 5.8 wt% and 1.8 wt%, respectively. The average crystal grain size was 8.7 μm as measured by n = 5. This alloy powder was ball milled in acetone to obtain a press-molded powder. The average particle size is 95 microns. The obtained powder was heat-treated in a high vacuum containing a Ti getter material at 550 ° C. × 24 hr, then kneaded by adding 6.5 t% of PPS binder to this molded powder, and obtained by injection molding in a magnetic field. . Reliability was also confirmed by applying an epoxy spray coating after molding.
本回収屑はNd磁石とSm等を一部含有する成分であり得られたCRは0.49であった。
The recovered waste was a component containing a part of Nd magnet and Sm, and CR obtained was 0.49.
また本発明の磁石の耐食性、信頼性を市販のSmFeN異方性ボンド磁石と共に評価した(表5-3)。比較例の市販SmFeN異方性ボンド磁石は入手後、本発明磁石と同一エポキシスプレーコーティング条件で処理した。耐食性を80℃x90%RHの条件で試験したところ、市販のSmFeN赤点錆発生磁石は300時間で既に微小赤点錆発生、一方本発明磁石は600時間まで錆発生は起こらず、現状市販異方性ボンド磁石よりも極めて優れた長期耐食性、長期安定性を有することがわかった。これは用いた原料が微細でかつ均一な組織を有する焼結磁石のため、結晶粒界等からの腐食とその内部進行が非常に起こりにくい為と推定している。
Further, the corrosion resistance and reliability of the magnet of the present invention were evaluated together with a commercially available SmFeN anisotropic bonded magnet (Table 5-3). After obtaining the commercially available SmFeN anisotropic bonded magnet of the comparative example, it was processed under the same epoxy spray coating conditions as the magnet of the present invention. When the corrosion resistance was tested under the conditions of 80 ° C. × 90% RH, the commercially available SmFeN red spot rust-generating magnet already generated minute red spot rust in 300 hours, while the magnet of the present invention did not generate rust until 600 hours. It has been found that it has long-term corrosion resistance and long-term stability that are significantly better than isotropic bonded magnets. This is presumed to be because the raw material used is a sintered magnet having a fine and uniform structure, so that corrosion from the crystal grain boundaries and the internal progress thereof are very unlikely to occur.
<実施例6>
出発原料の市中回収屑の磁気特性測定とICP成分分析(n=3)を行い、以下の特性と分析値を得た(表6-1、表6-2)。この回収屑のO量、C量の分析値は、おのおの4.1wt%、2.6wt%であった。Nd磁石の一部は大部分Al(アルミニウム)表面処理の回収屑であった。また平均結晶粒径はn=5測定により、6.3μmであった。この合金粉末をアセトン中でボールミル粉砕行い、粉砕時サンプリングにより、プレス成型粉末を得た。各々平均粒度は14,59μmである。(Cp=0.24)これら得られた粉末は550℃x24hrでTiゲッター材を入れた高真空中で熱処理後、この2種の粉末をKp=2.0で配合し混合、さらにこの成型粉末にエポキシバインダーを4.5wt%添加して混錬してコンパウンドを得、4.0Ton/cm2で磁場中圧縮成型、その後さらに300MPaの圧力で10分間CIP処理する。得られた異方性ボンド磁気特性のCRは0.43であり、回収屑はAl表面処理したNd磁石、一部SmCo磁石であったが、良好な異方性ボンド磁石の磁気特性が得られている。 <Example 6>
Measurement of the magnetic properties and ICP component analysis (n = 3) of the municipal waste recovered as the starting material gave the following properties and analytical values (Tables 6-1 and 6-2). The analytical values of the amount of O and the amount of C of the collected waste were 4.1 wt% and 2.6 wt%, respectively. Some of the Nd magnets were mostly recovered scrap from Al (aluminum) surface treatment. The average crystal grain size was 6.3 μm as measured by n = 5. This alloy powder was ball milled in acetone, and a press-molded powder was obtained by sampling during grinding. Each average particle size is 14,59 μm. (Cp = 0.24) These obtained powders were heat-treated in a high vacuum containing a Ti getter material at 550 ° C. × 24 hr, and these two powders were blended and mixed at Kp = 2.0. An epoxy binder is added in an amount of 4.5 wt% and kneaded to obtain a compound, which is compression-molded in a magnetic field at 4.0 Ton / cm 2 , and then CIP-treated at a pressure of 300 MPa for 10 minutes. The CR of the obtained anisotropic bonded magnetic property was 0.43, and the recovered scrap was an Al surface-treated Nd magnet and partly SmCo magnet, but good anisotropic bonded magnet magnetic properties were obtained. ing.
出発原料の市中回収屑の磁気特性測定とICP成分分析(n=3)を行い、以下の特性と分析値を得た(表6-1、表6-2)。この回収屑のO量、C量の分析値は、おのおの4.1wt%、2.6wt%であった。Nd磁石の一部は大部分Al(アルミニウム)表面処理の回収屑であった。また平均結晶粒径はn=5測定により、6.3μmであった。この合金粉末をアセトン中でボールミル粉砕行い、粉砕時サンプリングにより、プレス成型粉末を得た。各々平均粒度は14,59μmである。(Cp=0.24)これら得られた粉末は550℃x24hrでTiゲッター材を入れた高真空中で熱処理後、この2種の粉末をKp=2.0で配合し混合、さらにこの成型粉末にエポキシバインダーを4.5wt%添加して混錬してコンパウンドを得、4.0Ton/cm2で磁場中圧縮成型、その後さらに300MPaの圧力で10分間CIP処理する。得られた異方性ボンド磁気特性のCRは0.43であり、回収屑はAl表面処理したNd磁石、一部SmCo磁石であったが、良好な異方性ボンド磁石の磁気特性が得られている。 <Example 6>
Measurement of the magnetic properties and ICP component analysis (n = 3) of the municipal waste recovered as the starting material gave the following properties and analytical values (Tables 6-1 and 6-2). The analytical values of the amount of O and the amount of C of the collected waste were 4.1 wt% and 2.6 wt%, respectively. Some of the Nd magnets were mostly recovered scrap from Al (aluminum) surface treatment. The average crystal grain size was 6.3 μm as measured by n = 5. This alloy powder was ball milled in acetone, and a press-molded powder was obtained by sampling during grinding. Each average particle size is 14,59 μm. (Cp = 0.24) These obtained powders were heat-treated in a high vacuum containing a Ti getter material at 550 ° C. × 24 hr, and these two powders were blended and mixed at Kp = 2.0. An epoxy binder is added in an amount of 4.5 wt% and kneaded to obtain a compound, which is compression-molded in a magnetic field at 4.0 Ton / cm 2 , and then CIP-treated at a pressure of 300 MPa for 10 minutes. The CR of the obtained anisotropic bonded magnetic property was 0.43, and the recovered scrap was an Al surface-treated Nd magnet and partly SmCo magnet, but good anisotropic bonded magnet magnetic properties were obtained. ing.
得られた異方性ボンド磁石の熱減磁特性を比較の為市販の等方性ボンド磁石、異方性ボンド磁石と比較評価した(表6-3)。熱減磁評価条件はPc=2,保持温度が140℃もしくは180℃で1,000hrである。本表にあるように、本発明磁石は140℃で1.8%、180℃においても3.6%という極めて低い熱減磁量を達成していることがわかる。一方、比較例の市販の等方性、異方性いずれの磁石においても熱減磁量が140℃、180℃いずれの温度においても極めて大きく、本発明磁石が優れた耐熱使用温度を具備していることがわかる。この理由は、用いた回収焼結磁石屑が成分分析結果からわかるようにDyやTb等の多い高耐熱性を有する磁石成分であることに大きく起因していると推測する。
In order to compare the thermal demagnetization characteristics of the obtained anisotropic bonded magnet, it was compared with a commercially available isotropic bonded magnet and anisotropic bonded magnet (Table 6-3). The thermal demagnetization evaluation condition is Pc = 2, 1,000 hours at a holding temperature of 140 ° C. or 180 ° C. As shown in this table, it can be seen that the magnet of the present invention achieves a very low thermal demagnetization amount of 1.8% at 140 ° C. and 3.6% at 180 ° C. On the other hand, in the commercially available isotropic and anisotropic magnets of the comparative examples, the amount of thermal demagnetization is extremely large at any temperature of 140 ° C. and 180 ° C., and the magnet of the present invention has an excellent heat resistant use temperature. I understand that. This reason is presumed to be largely attributable to the fact that the recovered sintered magnet scrap used is a magnet component having high heat resistance such as Dy and Tb as can be seen from the component analysis results.
<実施例7>
出発原料の市中回収屑の磁気特性測定とICP成分分析(n=3)を行い、以下の特性と分析値を得た(表7-1、表7-2)。この回収屑のO量、C量の分析値は、おのおの3.7wt%、2.1wt%であった。また平均結晶粒径はn=5測定により、7.2μmであった。この合金粉末をアセトン中でボールミル粉砕行い、プレス成型粉末を得た。平均粒度は58μmである。得られた粉末は550℃x24hrでTiゲッター材を入れた高真空中で熱処理後、この成型粉末にエポキシバインダーを4.5wt%添加して混錬してコンパウンドを得、さらに無機溶媒と混合して磁場中で4.0Ton/cm2で湿式圧縮成型した後、さらに300MPaの圧力で10分間CIP処理する。得られた異方性ボンド磁気特性のCRは0.62であった。 <Example 7>
Measurements of magnetic properties and ICP component analysis (n = 3) of the municipal waste recovered from the starting materials were performed, and the following properties and analysis values were obtained (Tables 7-1 and 7-2). The analytical values of the O amount and C amount of the recovered waste were 3.7 wt% and 2.1 wt%, respectively. The average crystal grain size was 7.2 μm as measured by n = 5. This alloy powder was ball milled in acetone to obtain a press-molded powder. The average particle size is 58 μm. The obtained powder was heat-treated in a high vacuum containing a Ti getter material at 550 ° C. × 24 hr, and then kneaded by adding 4.5 wt% of an epoxy binder to this molded powder to obtain a compound, which was further mixed with an inorganic solvent. Then, after wet compression molding at 4.0 Ton / cm 2 in a magnetic field, CIP treatment is further performed at a pressure of 300 MPa for 10 minutes. The CR of the obtained anisotropic bond magnetic property was 0.62.
出発原料の市中回収屑の磁気特性測定とICP成分分析(n=3)を行い、以下の特性と分析値を得た(表7-1、表7-2)。この回収屑のO量、C量の分析値は、おのおの3.7wt%、2.1wt%であった。また平均結晶粒径はn=5測定により、7.2μmであった。この合金粉末をアセトン中でボールミル粉砕行い、プレス成型粉末を得た。平均粒度は58μmである。得られた粉末は550℃x24hrでTiゲッター材を入れた高真空中で熱処理後、この成型粉末にエポキシバインダーを4.5wt%添加して混錬してコンパウンドを得、さらに無機溶媒と混合して磁場中で4.0Ton/cm2で湿式圧縮成型した後、さらに300MPaの圧力で10分間CIP処理する。得られた異方性ボンド磁気特性のCRは0.62であった。 <Example 7>
Measurements of magnetic properties and ICP component analysis (n = 3) of the municipal waste recovered from the starting materials were performed, and the following properties and analysis values were obtained (Tables 7-1 and 7-2). The analytical values of the O amount and C amount of the recovered waste were 3.7 wt% and 2.1 wt%, respectively. The average crystal grain size was 7.2 μm as measured by n = 5. This alloy powder was ball milled in acetone to obtain a press-molded powder. The average particle size is 58 μm. The obtained powder was heat-treated in a high vacuum containing a Ti getter material at 550 ° C. × 24 hr, and then kneaded by adding 4.5 wt% of an epoxy binder to this molded powder to obtain a compound, which was further mixed with an inorganic solvent. Then, after wet compression molding at 4.0 Ton / cm 2 in a magnetic field, CIP treatment is further performed at a pressure of 300 MPa for 10 minutes. The CR of the obtained anisotropic bond magnetic property was 0.62.
得られた異方性ボンド磁石の熱減磁特性を比較の為市販の等方性ボンド磁石、異方性ボンド磁石と比較評価した(表7-3)。熱減磁評価条件はPc=2,保持温度が140℃もしくは180℃で1,000hrである。本表にあるように、本発明磁石は140℃で2.3%、180℃においても4.2%という極めて低い熱減磁量を達成していることがわかる。一方、比較例の異方性SmFeNボンド磁石は熱減磁量が140℃、180℃いずれの温度でも極めて大きく、本発明磁石が優れた耐熱使用温度を具備していることがわかる。この理由は、用いた回収焼結磁石屑が成分分析からわかるようにDyやTb等の多い高耐熱性を有する焼結磁石であることに大きく起因していると推測する。
In order to compare the thermal demagnetization characteristics of the obtained anisotropic bonded magnet, it was compared with a commercially available isotropic bonded magnet and anisotropic bonded magnet (Table 7-3). The thermal demagnetization evaluation condition is Pc = 2, 1,000 hours at a holding temperature of 140 ° C. or 180 ° C. As shown in this table, it can be seen that the magnet of the present invention achieves a very low thermal demagnetization amount of 2.3% at 140 ° C. and 4.2% at 180 ° C. On the other hand, the anisotropic SmFeN bonded magnet of the comparative example has an extremely large amount of thermal demagnetization at both 140 ° C. and 180 ° C., indicating that the magnet of the present invention has an excellent heat resistant use temperature. This reason is presumed to be largely attributable to the fact that the recovered sintered magnet scrap used is a sintered magnet having a high heat resistance with a large amount of Dy, Tb, etc. as can be seen from the component analysis.
<実施例7-2>
実施例7の出発原料市中回収屑により得られた平均粒度58μmの粉末をTiゲッター材と共に高真空中で(a)400℃x48hr,(b)600℃x12hrの各々の条件で熱処理後、この成型粉末にエポキシバインダーを4.5wt%添加して混錬してコンパウンドを得、さらに無機溶媒と混合して磁場中で4.0Ton/cm2で湿式圧縮成型した後、さらに300MPaの圧力で10分間CIP処理する。得られた異方性ボンド磁気特性の各々のCRは(a)0.57,(b)0.55であった。実施例7-2(a)、(b)の磁気特性を表7-4に示す。 <Example 7-2>
After heat-treating the powder having an average particle size of 58 μm obtained from the municipal waste recovered in Example 7 together with the Ti getter material in a high vacuum under the conditions of (a) 400 ° C. × 48 hr, (b) 600 ° C. × 12 hr, After adding 4.5 wt% of an epoxy binder to the molded powder and kneading, a compound is obtained, and further mixed with an inorganic solvent and wet compression molded at 4.0 Ton / cm 2 in a magnetic field, and further 10 at a pressure of 300 MPa. CIP for minutes. The CR of each of the obtained anisotropic bond magnetic properties was (a) 0.57 and (b) 0.55. Table 7-4 shows the magnetic characteristics of Example 7-2 (a) and (b).
実施例7の出発原料市中回収屑により得られた平均粒度58μmの粉末をTiゲッター材と共に高真空中で(a)400℃x48hr,(b)600℃x12hrの各々の条件で熱処理後、この成型粉末にエポキシバインダーを4.5wt%添加して混錬してコンパウンドを得、さらに無機溶媒と混合して磁場中で4.0Ton/cm2で湿式圧縮成型した後、さらに300MPaの圧力で10分間CIP処理する。得られた異方性ボンド磁気特性の各々のCRは(a)0.57,(b)0.55であった。実施例7-2(a)、(b)の磁気特性を表7-4に示す。 <Example 7-2>
After heat-treating the powder having an average particle size of 58 μm obtained from the municipal waste recovered in Example 7 together with the Ti getter material in a high vacuum under the conditions of (a) 400 ° C. × 48 hr, (b) 600 ° C. × 12 hr, After adding 4.5 wt% of an epoxy binder to the molded powder and kneading, a compound is obtained, and further mixed with an inorganic solvent and wet compression molded at 4.0 Ton / cm 2 in a magnetic field, and further 10 at a pressure of 300 MPa. CIP for minutes. The CR of each of the obtained anisotropic bond magnetic properties was (a) 0.57 and (b) 0.55. Table 7-4 shows the magnetic characteristics of Example 7-2 (a) and (b).
<実施例8>
出発原料の市中回収屑の磁気特性測定とICP成分分析(n=3)を行い、以下の特性と分析値を得た(表8-1、表8-2)。この回収屑のO量、C量の分析値は、おのおの6.5wt%、3.9wt%であった。また平均結晶粒径はn=5測定により、8.2μmであった。この合金粉末をアセトン中でボールミル粉砕行い、プレス成型粉末を得た。平均粒度は84μmである。得られた粉末は400℃x48hrでCaゲッター材を入れた高真空中で熱処理後、この成型粉末にエポキシバインダーを3.8wt%添加して混錬してコンパウンドを得、磁場中で5.0Ton/cm2で圧縮成型した後、さらに300MPaの圧力で10分間CIP処理する。得られた異方性ボンド磁気特性と回収した磁石の磁気特性(n=5)測定した平均磁気特性と共に以下示す。得られた異方性ボンド磁石のCRは0.43であった。 <Example 8>
Measurement of the magnetic properties and ICP component analysis (n = 3) of the municipal waste recovered as the starting material gave the following properties and analysis values (Tables 8-1 and 8-2). The analytical values of the amount of O and C of the recovered waste were 6.5 wt% and 3.9 wt%, respectively. The average crystal grain size was 8.2 μm as measured by n = 5. This alloy powder was ball milled in acetone to obtain a press-molded powder. The average particle size is 84 μm. The obtained powder was heat treated in a high vacuum containing Ca getter material at 400 ° C. × 48 hr, and then 3.8 wt% of an epoxy binder was added to the molded powder and kneaded to obtain a compound, and 5.0 Ton in a magnetic field. After compression molding at / cm 2 , CIP treatment is further performed at a pressure of 300 MPa for 10 minutes. The obtained anisotropic bond magnetic properties and the magnetic properties (n = 5) of the collected magnets are shown below together with the measured average magnetic properties. The obtained anisotropic bonded magnet had a CR of 0.43.
出発原料の市中回収屑の磁気特性測定とICP成分分析(n=3)を行い、以下の特性と分析値を得た(表8-1、表8-2)。この回収屑のO量、C量の分析値は、おのおの6.5wt%、3.9wt%であった。また平均結晶粒径はn=5測定により、8.2μmであった。この合金粉末をアセトン中でボールミル粉砕行い、プレス成型粉末を得た。平均粒度は84μmである。得られた粉末は400℃x48hrでCaゲッター材を入れた高真空中で熱処理後、この成型粉末にエポキシバインダーを3.8wt%添加して混錬してコンパウンドを得、磁場中で5.0Ton/cm2で圧縮成型した後、さらに300MPaの圧力で10分間CIP処理する。得られた異方性ボンド磁気特性と回収した磁石の磁気特性(n=5)測定した平均磁気特性と共に以下示す。得られた異方性ボンド磁石のCRは0.43であった。 <Example 8>
Measurement of the magnetic properties and ICP component analysis (n = 3) of the municipal waste recovered as the starting material gave the following properties and analysis values (Tables 8-1 and 8-2). The analytical values of the amount of O and C of the recovered waste were 6.5 wt% and 3.9 wt%, respectively. The average crystal grain size was 8.2 μm as measured by n = 5. This alloy powder was ball milled in acetone to obtain a press-molded powder. The average particle size is 84 μm. The obtained powder was heat treated in a high vacuum containing Ca getter material at 400 ° C. × 48 hr, and then 3.8 wt% of an epoxy binder was added to the molded powder and kneaded to obtain a compound, and 5.0 Ton in a magnetic field. After compression molding at / cm 2 , CIP treatment is further performed at a pressure of 300 MPa for 10 minutes. The obtained anisotropic bond magnetic properties and the magnetic properties (n = 5) of the collected magnets are shown below together with the measured average magnetic properties. The obtained anisotropic bonded magnet had a CR of 0.43.
<考察>
以上より、本発明に係る異方性希土類ボンド磁石並びに本発明に係る製造方法で得られた異方性希土類ボンド磁石は、特定の成分組成を有し、30~200μmの粒子平均粒径、かつ1~15μmの平均結晶粒径を有すること、及び96~270kJ/m3という高い磁石特性(最大エネルギー積)を有することが明らかとなった。 <Discussion>
From the above, the anisotropic rare earth bonded magnet according to the present invention and the anisotropic rare earth bonded magnet obtained by the production method according to the present invention have a specific component composition, an average particle diameter of 30 to 200 μm, and It has been found that it has an average crystal grain size of 1 to 15 μm and high magnet properties (maximum energy product) of 96 to 270 kJ / m 3 .
以上より、本発明に係る異方性希土類ボンド磁石並びに本発明に係る製造方法で得られた異方性希土類ボンド磁石は、特定の成分組成を有し、30~200μmの粒子平均粒径、かつ1~15μmの平均結晶粒径を有すること、及び96~270kJ/m3という高い磁石特性(最大エネルギー積)を有することが明らかとなった。 <Discussion>
From the above, the anisotropic rare earth bonded magnet according to the present invention and the anisotropic rare earth bonded magnet obtained by the production method according to the present invention have a specific component composition, an average particle diameter of 30 to 200 μm, and It has been found that it has an average crystal grain size of 1 to 15 μm and high magnet properties (maximum energy product) of 96 to 270 kJ / m 3 .
このように本発明に係る異方性希土類ボンド磁石は従来の磁石に比べて優れた磁石特性を有すること、また、本発明の製造方法によれば、回収屑を用いてもこのような優れた磁石が得られることがわかった。
As described above, the anisotropic rare earth bonded magnet according to the present invention has excellent magnetic properties as compared with conventional magnets, and according to the manufacturing method of the present invention, such an excellent performance can be obtained even when recovered waste is used. It was found that a magnet was obtained.
希土類ボンド磁石の市場は、JABM(日本ボンド磁性材料協会)によれば、2008年統計では国内市場が約100億、全世界での市場は約500億と推定されている。また市場の伸び率は年間約11%、今後も需要拡大が予測されている。
According to JABM (Japan Bond Magnetic Materials Association), the market for rare earth bonded magnets is estimated to be about 10 billion in the domestic market and about 50 billion worldwide. The market growth rate is about 11% per year, and demand is expected to continue expanding.
現在の市販の希土類ボンド磁石は大部分が等方性ボンド磁石である。異方性ボンド磁石は現在までその市場性、磁石材料性能、量産コスト等理由で大量に普及可能な材料が無いのが現状であり、異方性希土類ボンド磁石の希土類ボンド磁石の全市場に対する現在の市場占有率は数%と非常に低い。
Most of the rare earth bonded magnets on the market today are isotropic bonded magnets. There are currently no materials that can be used in large quantities for anisotropic bonded magnets due to marketability, magnet material performance, mass production cost, etc. Has a very low market share of several percent.
本発明の磁石材料が入手可能となれば、まず等方性から本発明の異方性ボンド磁石への転換が急速に進むであろう。即ち等方性から異方性への転換により、電子部品の小型、軽量、省資源、省エネルギー、高効率化が可能となる。
If the magnet material of the present invention becomes available, the conversion from isotropic to the anisotropic bonded magnet of the present invention will proceed rapidly. In other words, by switching from isotropic to anisotropic, electronic components can be reduced in size, weight, resources, energy, and efficiency.
また従来等方性ボンド磁石では実現不可能であった新規な用途、分野への適用も可能となる。
Also, it can be applied to new applications and fields that could not be realized with conventional isotropic bonded magnets.
Claims (7)
- 希土類異方性焼結磁石から製造した異方性希土類ボンド磁石であって、
鉄(Fe)以外の成分として、少なくともネオジム(Nd)を13~35wt%、ホウ素(B)を0.3~1.3wt%、サマリウム(Sm)を0~30wt%、コバルト(Co)を0~15wt%、ニッケル(Ni)を0~5.5wt%、アルミニウム(Al)を0~5.5wt%を含み、かつ、ニッケル(Ni)とアルミニウム(Al)を合わせて0.3wt%以上を含み、残部を鉄(Fe)とし、最大エネルギー積(BH)maxが96から270kJ/m3の磁気特性を有すること、並びに
粉砕した前記原料の粒子平均粒径が30~200μm(ミクロン)、かつ各粒子を形成する主相の平均結晶粒径が1~15μm(ミクロン)の組織構造を有することを特徴とする、異方性希土類ボンド磁石。 An anisotropic rare earth bonded magnet manufactured from a rare earth anisotropic sintered magnet,
As components other than iron (Fe), at least 13 to 35 wt% of neodymium (Nd), 0.3 to 1.3 wt% of boron (B), 0 to 30 wt% of samarium (Sm), and 0 of cobalt (Co) -15 wt%, nickel (Ni) 0-5.5 wt%, aluminum (Al) 0-5.5 wt%, and nickel (Ni) and aluminum (Al) combined, 0.3 wt% or more And the balance is iron (Fe), the maximum energy product (BH) max has a magnetic property of 96 to 270 kJ / m 3 , and the average particle size of the pulverized raw material is 30 to 200 μm (microns), and An anisotropic rare earth bonded magnet, characterized in that the main phase forming each particle has a structure having an average crystal grain size of 1 to 15 μm (microns). - 希土類異方性燒結磁石を原料として異方性希土類ボンド磁石の製造方法であって、前記希土類異方性燒結磁石を不活性雰囲気下で機械的に粉砕する工程と、前記粉砕した材料を高真空または不活性雰囲気下で400から600℃の温度で保持時間12時間以上のひずみ取焼鈍処理する工程と、前記ひずみ取焼鈍処理した材料とバインダーを混錬し、磁場成型する工程とからなることを特徴とする、異方性希土類ボンド磁石の製造方法。 A method for producing an anisotropic rare earth bonded magnet using a rare earth anisotropic sintered magnet as a raw material, wherein the rare earth anisotropic sintered magnet is mechanically pulverized in an inert atmosphere, and the pulverized material is subjected to high vacuum. Alternatively, the method comprises a step of strain relief annealing at a temperature of 400 to 600 ° C. in an inert atmosphere and a holding time of 12 hours or more, and a step of kneading the strain relief annealed material and a binder to form a magnetic field. A method for producing an anisotropic rare earth bonded magnet, which is characterized.
- 前記希土類異方性燒結磁石が回収屑である、請求項2に記載の異方性希土類ボンド磁石の製造方法。 The method for producing an anisotropic rare earth bonded magnet according to claim 2, wherein the rare earth anisotropic sintered magnet is recovered scrap.
- 前記希土類異方性燒結磁石がネオジム焼結磁石回収屑、又はネオジム焼結磁石回収屑とサマリウムコバルト焼結磁石回収屑との混合物であることを特徴とする請求項3に記載の異方性希土類ボンド磁石の製造方法。 The anisotropic rare earth according to claim 3, wherein the rare earth anisotropic sintered magnet is neodymium sintered magnet recovered scrap or a mixture of neodymium sintered magnet recovered scrap and samarium cobalt sintered magnet recovered scrap. A method of manufacturing a bonded magnet.
- 前記希土類異方性燒結磁石回収屑が混合屑である場合、粉砕工程に供する前に、あらかじめ回収屑をサンプリングし、回収磁石素材の成分分析を行い、ネオジウムおよびネオジウムとサマリウムの組成を確認する工程を含む、請求項3に記載の異方性希土類ボンド磁石の製造方法。 When the rare earth anisotropic sintered magnet recovery scrap is a mixed scrap, before subjecting to the pulverization step, sampling the recovered scrap in advance, performing component analysis of the recovered magnet material, and confirming the composition of neodymium and neodymium and samarium The manufacturing method of the anisotropic rare earth bond magnet of Claim 3 containing this.
- 前記磁場成型が圧縮成型工程を含み、該圧縮成型工程において、湿式成型方法を用いることを特徴とする請求項2に記載の異方性希土類ボンド磁石の製造方法。 The method for producing an anisotropic rare earth bonded magnet according to claim 2, wherein the magnetic field molding includes a compression molding step, and a wet molding method is used in the compression molding step.
- 前記圧縮成型工程において、圧縮成型後にCIP工程を加える2段プレス成型を行うことを特徴とする請求項6に記載の異方性希土類ボンド磁石の製造方法。
The method for producing an anisotropic rare earth bonded magnet according to claim 6, wherein in the compression molding step, two-stage press molding is performed in which a CIP step is added after the compression molding.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2012527533A JPWO2012017574A1 (en) | 2010-08-04 | 2011-03-29 | Anisotropic rare earth bonded magnet and manufacturing method thereof |
Applications Claiming Priority (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2010-175039 | 2010-08-04 | ||
JP2010175039A JP2013145769A (en) | 2010-08-04 | 2010-08-04 | Anisotropic rare earth bond magnet and method for manufacturing the same |
Publications (1)
Publication Number | Publication Date |
---|---|
WO2012017574A1 true WO2012017574A1 (en) | 2012-02-09 |
Family
ID=45559100
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
PCT/JP2011/001857 WO2012017574A1 (en) | 2010-08-04 | 2011-03-29 | Anisotropic rare earth bonded magnet and production method therefor |
Country Status (2)
Country | Link |
---|---|
JP (2) | JP2013145769A (en) |
WO (1) | WO2012017574A1 (en) |
Cited By (10)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2013225533A (en) * | 2012-03-19 | 2013-10-31 | Hitachi Metals Ltd | Method of manufacturing r-t-b-based sintered magnet |
KR20150030075A (en) * | 2013-09-11 | 2015-03-19 | 엘지전자 주식회사 | Recycled neodymium-based sintered magnets having high coercivity and residual magnetic flux density and method of preparing the same |
US9044834B2 (en) | 2013-06-17 | 2015-06-02 | Urban Mining Technology Company | Magnet recycling to create Nd—Fe—B magnets with improved or restored magnetic performance |
CN104846255A (en) * | 2015-05-21 | 2015-08-19 | 唐海峰 | Preparation method of yttrium iron based permanent magnet materials |
WO2015173342A1 (en) | 2014-05-16 | 2015-11-19 | Ablynx Nv | Methods for detecting and/or measuring anti-drug antibodies, in particular treatment-emergent anti-drug antibodies |
US9336932B1 (en) | 2014-08-15 | 2016-05-10 | Urban Mining Company | Grain boundary engineering |
EP3248986A2 (en) | 2014-05-16 | 2017-11-29 | Ablynx NV | Immunoglobulin variable domains |
WO2018178307A1 (en) | 2017-03-31 | 2018-10-04 | Ablynx N.V. | Improved immunogenicity assays |
CN114628102A (en) * | 2022-03-26 | 2022-06-14 | 浙江鑫磁谷材料科技股份有限公司 | Melt rapid quenching neodymium iron boron microcrystalline thin sheet and preparation method thereof |
US12119170B2 (en) | 2018-06-18 | 2024-10-15 | Abb Schweiz Ag | Method for producing a magnetic powder |
Families Citing this family (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN104851543A (en) * | 2015-05-21 | 2015-08-19 | 唐海峰 | Preparing method of anticorrosion samarium cobalt-based permanent magnet material |
CN109396444B (en) * | 2018-11-05 | 2021-08-31 | 湖南航天磁电有限责任公司 | Method for processing leftover bits and pieces of sintered samarium cobalt permanent magnet |
Citations (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS5816002A (en) * | 1981-07-21 | 1983-01-29 | Namiki Precision Jewel Co Ltd | Production of resin bound permament magnet |
JP2002367820A (en) * | 2001-06-12 | 2002-12-20 | Japan Science & Technology Corp | Rare-earth bonded magnet recycling waste magnet material |
JP2006274344A (en) * | 2005-03-29 | 2006-10-12 | Tdk Corp | Production method of r-t-b system sintered magnet |
JP2009231391A (en) * | 2008-03-19 | 2009-10-08 | Hitachi Metals Ltd | R-t-b based sintered magnet |
-
2010
- 2010-08-04 JP JP2010175039A patent/JP2013145769A/en active Pending
-
2011
- 2011-03-29 WO PCT/JP2011/001857 patent/WO2012017574A1/en active Application Filing
- 2011-03-29 JP JP2012527533A patent/JPWO2012017574A1/en active Pending
Patent Citations (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS5816002A (en) * | 1981-07-21 | 1983-01-29 | Namiki Precision Jewel Co Ltd | Production of resin bound permament magnet |
JP2002367820A (en) * | 2001-06-12 | 2002-12-20 | Japan Science & Technology Corp | Rare-earth bonded magnet recycling waste magnet material |
JP2006274344A (en) * | 2005-03-29 | 2006-10-12 | Tdk Corp | Production method of r-t-b system sintered magnet |
JP2009231391A (en) * | 2008-03-19 | 2009-10-08 | Hitachi Metals Ltd | R-t-b based sintered magnet |
Cited By (19)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2013225533A (en) * | 2012-03-19 | 2013-10-31 | Hitachi Metals Ltd | Method of manufacturing r-t-b-based sintered magnet |
US9144865B2 (en) | 2013-06-17 | 2015-09-29 | Urban Mining Technology Company | Mixing apparatus for magnet recycling |
US9044834B2 (en) | 2013-06-17 | 2015-06-02 | Urban Mining Technology Company | Magnet recycling to create Nd—Fe—B magnets with improved or restored magnetic performance |
US9067284B2 (en) | 2013-06-17 | 2015-06-30 | Urban Mining Technology Company, Llc | Magnet recycling to create Nd—Fe—B magnets with improved or restored magnetic performance |
US9095940B2 (en) | 2013-06-17 | 2015-08-04 | Miha Zakotnik | Harvesting apparatus for magnet recycling |
KR102070869B1 (en) * | 2013-09-11 | 2020-01-29 | 엘지전자 주식회사 | Recycled neodymium-based sintered magnets having high coercivity and residual magnetic flux density and method of preparing the same |
KR20150030075A (en) * | 2013-09-11 | 2015-03-19 | 엘지전자 주식회사 | Recycled neodymium-based sintered magnets having high coercivity and residual magnetic flux density and method of preparing the same |
EP3248986A2 (en) | 2014-05-16 | 2017-11-29 | Ablynx NV | Immunoglobulin variable domains |
WO2015173342A1 (en) | 2014-05-16 | 2015-11-19 | Ablynx Nv | Methods for detecting and/or measuring anti-drug antibodies, in particular treatment-emergent anti-drug antibodies |
EP3693386A1 (en) | 2014-05-16 | 2020-08-12 | Ablynx NV | Immunoglobulin variable domains |
EP3702369A1 (en) | 2014-05-16 | 2020-09-02 | Ablynx NV | Immunoglobulin variable domains |
EP3982124A1 (en) | 2014-05-16 | 2022-04-13 | Ablynx NV | Methods for detecting and/or measuring anti-drug antibodies, in particular treatment-emergent anti-drug antibodies |
US9336932B1 (en) | 2014-08-15 | 2016-05-10 | Urban Mining Company | Grain boundary engineering |
US10395823B2 (en) | 2014-08-15 | 2019-08-27 | Urban Mining Company | Grain boundary engineering |
US11270841B2 (en) | 2014-08-15 | 2022-03-08 | Urban Mining Company | Grain boundary engineering |
CN104846255A (en) * | 2015-05-21 | 2015-08-19 | 唐海峰 | Preparation method of yttrium iron based permanent magnet materials |
WO2018178307A1 (en) | 2017-03-31 | 2018-10-04 | Ablynx N.V. | Improved immunogenicity assays |
US12119170B2 (en) | 2018-06-18 | 2024-10-15 | Abb Schweiz Ag | Method for producing a magnetic powder |
CN114628102A (en) * | 2022-03-26 | 2022-06-14 | 浙江鑫磁谷材料科技股份有限公司 | Melt rapid quenching neodymium iron boron microcrystalline thin sheet and preparation method thereof |
Also Published As
Publication number | Publication date |
---|---|
JPWO2012017574A1 (en) | 2013-09-19 |
JP2013145769A (en) | 2013-07-25 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
WO2012017574A1 (en) | Anisotropic rare earth bonded magnet and production method therefor | |
JP6201446B2 (en) | Sintered magnet | |
CN102959648B (en) | R-T-B based rare earth element permanent magnet, motor, automobile, generator, wind power generation plant | |
US10563276B2 (en) | High-performance NdFeB permanent magnet comprising nitride phase and production method thereof | |
CN102956336B (en) | A kind of method preparing the sintered Nd-Fe-B permanent magnetic material of compound interpolation gadolinium, holmium and yttrium | |
EP3355319B1 (en) | Corrosion-resistant sintered neodymium-iron-boron magnet rich in lanthanum and cerium, and manufacturing method | |
CN102534358B (en) | Manufacturing method of high-coercivity R-Fe-B sintered permanent magnet material | |
JP2009170541A (en) | PROCESS FOR PRODUCTION OF NdFeB SINTERED MAGNET AND NdFeB SINTERED MAGNET | |
CN102365142A (en) | Alloy material for r-t-b-type rare-earth permanent magnet, process for production of r-t-b-type rare-earth permanent magnet, and motor | |
CN101630557A (en) | Gadolinium-containing sintered rare earth permanent magnet alloy and preparation method thereof | |
TWI569291B (en) | Neodymium rare earth permanent magnet and its manufacturing method | |
WO2021135143A1 (en) | R-t-b-based sintered magnet and preparation method therefor | |
JP2022543487A (en) | High Cu high Al neodymium iron boron magnet and its manufacturing method | |
JP2017157834A (en) | R-t-b based permanent magnet | |
CN111261352B (en) | Method for producing R-T-B permanent magnet | |
CN103153504B (en) | Alloy material for R-T-B system rare earth permanent magnet, method for producing R-T-B system rare earth permanent magnet, and motor | |
CN111261353B (en) | R-T-B based permanent magnet | |
CN101246772B (en) | Method for manufacturing corrosion-resistant Nd-Fe-B permanent-magnetic material | |
CN101719405A (en) | Double-phase composite material of low energy consumption corrosion resistant aluminum alloy and neodymium iron boron type rare earth permanent magnet material | |
CN103080355B (en) | The manufacture method of R-T-B based rare earth element permanent magnet alloy material, R-T-B based rare earth element permanent magnet and electric motor | |
JP2024519243A (en) | Neodymium iron boron magnet material, its manufacturing method and applications | |
JP2017183317A (en) | R-t-b-based sintered magnet | |
CN111863369B (en) | Magnetic binder and preparation method thereof, and preparation method of composite permanent magnet material | |
CN1862717A (en) | Ultra-high coercive force sintered Nd-Fe-B magnetic material and preparing process thereof | |
JP2005116991A (en) | Composite rare earth anisotropic bond magnet, compound for composite rare earth anisotropic bond magnet, and method for manufacturing them |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
121 | Ep: the epo has been informed by wipo that ep was designated in this application |
Ref document number: 11814214 Country of ref document: EP Kind code of ref document: A1 |
|
WWE | Wipo information: entry into national phase |
Ref document number: 2012527533 Country of ref document: JP |
|
NENP | Non-entry into the national phase |
Ref country code: DE |
|
122 | Ep: pct application non-entry in european phase |
Ref document number: 11814214 Country of ref document: EP Kind code of ref document: A1 |