JP2013145221A - Steel material having low risk of hic crack and central segregation part evaluation method thereof - Google Patents

Steel material having low risk of hic crack and central segregation part evaluation method thereof Download PDF

Info

Publication number
JP2013145221A
JP2013145221A JP2012223034A JP2012223034A JP2013145221A JP 2013145221 A JP2013145221 A JP 2013145221A JP 2012223034 A JP2012223034 A JP 2012223034A JP 2012223034 A JP2012223034 A JP 2012223034A JP 2013145221 A JP2013145221 A JP 2013145221A
Authority
JP
Japan
Prior art keywords
segregation
less
value
concentration
hic
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2012223034A
Other languages
Japanese (ja)
Other versions
JP6044247B2 (en
Inventor
Jiro Nakamichi
治郎 仲道
Kimihiro Nishimura
公宏 西村
Mitsuhiro Okatsu
光浩 岡津
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
JFE Steel Corp
Original Assignee
JFE Steel Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by JFE Steel Corp filed Critical JFE Steel Corp
Priority to JP2012223034A priority Critical patent/JP6044247B2/en
Publication of JP2013145221A publication Critical patent/JP2013145221A/en
Application granted granted Critical
Publication of JP6044247B2 publication Critical patent/JP6044247B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Investigating And Analyzing Materials By Characteristic Methods (AREA)

Abstract

PROBLEM TO BE SOLVED: To provide a method for evaluating and determining the HIC crack sensitivity of a slab and a steel plate by measuring an Mn concentration distribution and taking the influence of content and a segregation degree into consideration.SOLUTION: A method evaluates anti-hydrogen crack sensitivity of a steel plate by using all Q values measured and calculated in each basic measurement area defined by the following expression (1) composed of the element content of a steel material and an Mn segregation degree of a central segregation part. Q=Cf+Cf/6+(Cf+Cf+Cf)/5+(Cf+Cf)/15+Cf/4+2Cf....expression (1). In this case, f represents an Mn segregation degree in a segregation part, and a value defined by (C/C), Crepresents Mn concentration obtained by measuring an Mn concentration distribution of the central segregation part with a cross section of the steel material in a width direction, Crepresents average concentration of Mn concentration, N of frepresents an exponentiation, and Crepresents the content (mass%) of an element i, respectively.

Description

本発明は、高強度耐サワーラインパイプ用のHIC割れ危険度が低い鋼材及びその中心偏析部評価法に関する。   The present invention relates to a steel material with a low risk of HIC cracking for a high-strength sour line pipe and a method for evaluating the center segregation portion thereof.

一般に、鋼の連続鋳造鋳片(以後、単に「鋳片」または「スラブ」ともいう場合がある。)やそれらを素材とする厚鋼板(単に「厚板」または「鋼板」ともいう。)の製造分野においては、連続鋳造時に形成される鋳片中心部の偏析が、製品品質に大きく影響することが知られている。特に、ラインパイプで使われる鋼材では、中心部の偏析(単に「中心偏析」ともいう。)により水素誘起割れ(Hydrogen Induced Cracking:HIC)が発生するため、このような中心偏析を軽減するために、数多くの技術開発が行われてきている。   In general, continuous cast slabs of steel (hereinafter sometimes simply referred to as “slabs” or “slabs”) and thick steel plates (also simply referred to as “thick plates” or “steel plates”) made of them are used. In the manufacturing field, it is known that segregation at the center of a slab formed during continuous casting greatly affects product quality. In particular, in steel materials used in line pipes, hydrogen induced cracking (HIC) occurs due to segregation at the center (also simply referred to as “center segregation”), so in order to reduce such center segregation. Numerous technological developments have been made.

一方、中心偏析を評価する方法については、幾つかの方法が知られており、例えば、鋳片や厚鋼板を厚さ方向に順次スライスしていき、そのスライスして採取した切粉の成分を分析し、厚さ方向の濃度分布を得る方法(スライス法)、鋳片の縦断面からマクロプリントを採取して中心偏析領域を特定し、この中心偏析領域上の多数の分析点から、ドリルで切粉サンプルを採取し、この切粉を分析する方法(ドリル法)、鋳片の切断面を研磨して、偏析部をピクリン酸等の腐食液により腐食させてからインク等を染み込ませた後、一旦、表面のインクを拭き取り、腐食部に残ったインクをセロハン紙等に写し取り、偏析の発生状況を可視化する方法(マクロ腐食法)、また、上記腐食後に写し取ったプリントを中心偏析部の最大偏析粒径等を測定する方法(Hプリント法)等がある。   On the other hand, several methods are known for evaluating center segregation. For example, a slab or a thick steel plate is sequentially sliced in the thickness direction, and the components of the chips collected by slicing are obtained. Analyzing and obtaining the concentration distribution in the thickness direction (slicing method), taking a macro print from the longitudinal section of the slab to identify the center segregation region, and drilling from a number of analysis points on this center segregation region After collecting a chip sample, analyzing this chip (drill method), polishing the cut surface of the slab, corroding the segregated portion with a corrosive liquid such as picric acid, and then soaking the ink First, wipe off the ink on the surface, copy the ink remaining in the corroded area onto cellophane paper, etc., and visualize the occurrence of segregation (macro corrosion method). Measure maximum segregation particle size A method (H printing method) or the like that.

一般に、鋳片の中心偏析は、C断面、即ち、鋳造方向に垂直な断面全体についてみると、厚さ方向および幅方向で決して均一とはいえない。そのため、鋳片や厚鋼板の偏析を調べるためにはC断面の広領域に亘って評価する必要がある。   In general, the center segregation of a slab is never uniform in the thickness direction and the width direction when viewed from the C cross section, that is, the entire cross section perpendicular to the casting direction. Therefore, in order to investigate the segregation of a slab or a thick steel plate, it is necessary to evaluate over a wide area of the C cross section.

この点から上記方法を検討すると、スライス法は、試料調整・分析に時間がかかり、結果が出るまでに長時間を要するため、鋳片や厚鋼板等の中心偏析評価をC断面全体に亘って行うことは困難である。また、この方法では、スライスした切粉を分析するため、厚さ方向の平均としての分析値しか得られない。   Examining the above method from this point, the slicing method takes time to prepare and analyze the sample, and it takes a long time to obtain the result. Therefore, the central segregation evaluation of slabs, thick steel plates, etc. is performed over the entire C section. It is difficult to do. Moreover, in this method, since the sliced chips are analyzed, only an analysis value as an average in the thickness direction can be obtained.

そのため、従来は、一部領域の評価にのみ用いられる程度であった。また、ドリル法は、スライス法に比較して、迅速性は優れるが、切粉の採取領域がスライス法に比較し、さらに狭くなるため、全体的な評価ができないという問題があった。一方、マクロ腐食法は、迅速性の点からは、上記2つの方法と比較すると優位である。しかし、マクロ腐食法は、目視による判定となるため、非定量的な評価となるという問題がある。   For this reason, the conventional technique has been used only for evaluating a partial area. In addition, the drill method is faster than the slicing method, but there is a problem that the whole area cannot be evaluated because the chip collection region is further narrower than the slicing method. On the other hand, the macro corrosion method is superior to the above two methods in terms of rapidity. However, the macro-corrosion method has a problem of non-quantitative evaluation because it is determined visually.

また、Hプリント法は、定量的ではあるが、評価に熟練を要し、時間がかかり、コストが高いという問題がある。   In addition, the H printing method is quantitative, but requires skill for evaluation, takes time, and has a high cost.

上記以外の中心偏析を評価する方法としては、特許文献1に、中心偏析部の硬さを測定し、その硬さの平均値、最大値および最大値と最小値の差のいずれか1以上の値を用いて、中心偏析を評価する簡便な方法が提案されている。   As a method for evaluating the center segregation other than the above, Patent Document 1 measures the hardness of the center segregation part, and the average value of the hardness, the maximum value, and the difference between the maximum value and the minimum value are any one or more. A simple method for evaluating the center segregation using the values has been proposed.

また、特許文献2では、EPMA(電子プローブマイクロアナライザー、Electron Probe MicroAnalyzer)等の分析手法を用いて、中心部の添加元素の濃度の面積率を測定する手法が提案されている。   Patent Document 2 proposes a technique for measuring the area ratio of the concentration of the additive element at the center using an analysis technique such as EPMA (Electron Probe Micro Analyzer).

さらに、Mnの偏析スポットについては、特許文献3〜5に、Pの濃度やNbの濃度を限定する方法が提案されている。   Further, for Mn segregation spots, Patent Documents 3 to 5 propose methods for limiting the concentration of P and the concentration of Nb.

特開平09−178733号公報JP 09-178733 A 特開2009−236842号公報JP 2009-236842 A 特開平6−271974号公報JP-A-6-271974 特開2002−363689号公報JP 2002-36389 A 特開2010−209461号公報JP 2010-209461 A

しかしながら、特許文献1の方法は、腐食によって中心偏析部の領域を特定し、その中心偏析部の硬さを測定して評価しているため、腐食作業が必要であることや、鋳片全幅を評価する場合には、偏析部のすべての硬さを測定する必要があること等から、多大な時間を要し、迅速性に劣る。さらに、硬さは、鋳片の成分組成や組織等と関連があるため、それらが異なる場合には、直接評価することができない。そのため、様々な種類の鋳片の中心偏析を評価するには、測定条件を細かく分けて決めておかなければならないという問題があった。   However, the method of Patent Document 1 specifies the region of the center segregation part by corrosion, and measures and evaluates the hardness of the center segregation part. When evaluating, since it is necessary to measure all the hardness of a segregation part, much time is required and it is inferior to quickness. Furthermore, since hardness is related to the component composition, structure, etc. of the slab, it cannot be directly evaluated if they are different. Therefore, in order to evaluate the center segregation of various types of slabs, there is a problem that the measurement conditions must be determined in detail.

また、特許文献2の手法では、連続鋳造鋳片や厚板等の中心偏析を、定量的かつ高精度で、しかも広い領域を迅速に評価することができるが、HIC割れ発生との相関が明瞭ではないため、割れ発生率と偏析度について、過大もしくは過小評価する可能性がある。また、対象元素の濃度分布は明らかになるが、添加量の違いや偏析強度の違いについては評価することが困難である。   Further, in the method of Patent Document 2, the center segregation of continuous cast slabs, thick plates, etc. can be quantitatively and accurately evaluated, and a wide area can be quickly evaluated, but the correlation with the occurrence of HIC cracks is clear. Therefore, there is a possibility of overestimating or underestimating the crack occurrence rate and the degree of segregation. Moreover, although the concentration distribution of the target element becomes clear, it is difficult to evaluate the difference in the addition amount and the difference in segregation strength.

特許文献3および4については、Mn偏析スポットの形態については規定しているが、その偏析スポットの判別手法、分析手法についての詳細は不明瞭な状況である。   In Patent Documents 3 and 4, although the form of the Mn segregation spot is defined, the details of the segregation spot discrimination method and analysis method are unclear.

特許文献5については、EPMAを用いた偏析スポットの形態を評価しているが、分析手法として低倍率濃度分析を実施し濃化位置を特定後に、濃化部を高倍率で分析を実施するため、その評価手法が煩雑である。また、偏析度について規定を実施しているが、偏析部に影響をおよぼす、Mo、Cu、Ni、P等の他の添加元素の影響が考慮されていない問題もある。また、NbやTiの添加量と偏析度の影響が考慮されていないため、例えば、特許文献5では、「Nbの添加量が0.001から0.10%でNbの偏析度を4.0以下と規定」しているが、請求範囲内の0.01%添加時に偏析度が4.1と特許請求範囲外となった場合には、偏析部には0.04%濃化していることになり、これは請求項の好適なNb成分範囲に含まれるため、偏析度と添加量の関係が不明瞭である。   Regarding Patent Document 5, the form of segregation spots using EPMA is evaluated. However, in order to perform the analysis of the concentrated portion at a high magnification after performing the low-magnification concentration analysis and specifying the concentration position as an analysis method. The evaluation method is complicated. Further, although the degree of segregation is defined, there is a problem that the influence of other additive elements such as Mo, Cu, Ni, and P that affect the segregation part is not taken into consideration. Further, since the influence of the addition amount of Nb and Ti and the degree of segregation are not considered, for example, in Patent Document 5, “Nb addition amount is 0.001 to 0.10% and Nb segregation degree is 4.0. However, if the segregation degree is out of the claim with 4.1% addition within the claimed range of 0.01%, the segregated portion is concentrated 0.04%. Since this is included in the preferred Nb component range of the claims, the relationship between the degree of segregation and the amount added is unclear.

そこで、本発明では、特定元素であるMnの濃度分布を測定し、その元素の偏析度を用いて、元素の含有量と偏析度の影響を考慮して、スラブ又は鋼板のそれぞれのHIC割れ危険度又は感受性を評価判定する方法について提案し、また、この評価法を用いてHIC割れ感受性の良好な高強度耐サワーラインパイプ用鋼板について提案する。ここで、本発明では、元素Mの偏析度とは、鋼板の平均の元素Mの含有量(質量%)に対する鋼板の偏析部の元素Mの含有量(質量%)の比(=偏析部の元素Mの含有量;質量%/平均の元素Mの含有量;質量%)と定義する。   Therefore, in the present invention, the concentration distribution of Mn, which is a specific element, is measured, and the segregation degree of the element is used to consider the influence of the element content and the degree of segregation. A method for evaluating and judging degree or sensitivity is proposed, and a steel plate for high-strength sour line pipes with good HIC cracking sensitivity is proposed using this evaluation method. Here, in the present invention, the segregation degree of the element M is the ratio of the content (mass%) of the element M in the segregation part of the steel sheet to the average content (mass%) of the element M (= segregation part). Element M content; mass% / average element M content; mass%).

発明者らは、鋼板中心部の合金元素濃度マッピングを行い、各元素の偏析の程度について調査を行い、次にその偏析の程度とHIC(単に「クラック」または「HIC割れ」ともいう場合もある。)との相関性について調査を実施した。ここで、合金元素濃度マッピングとは例えばEPMA等により測定領域を全面に亘って濃度分布を測定し平面的な濃度情報を得ることをいう。   The inventors map the alloy element concentration at the center of the steel sheet, investigate the degree of segregation of each element, and then sometimes refer to the degree of segregation and HIC (simply “crack” or “HIC crack”). )) Was investigated. Here, the alloy element concentration mapping refers to obtaining planar concentration information by measuring the concentration distribution over the entire measurement region by, for example, EPMA.

具体的には、EPMAを用いて偏析部のC、Mn等の偏析元素の相関について調査を実施した。その結果、各元素の偏析度には一定の関係があり、偏析度と添加量の関数として表すことが可能である事が判明した。元素の分布情報は、添加元素の一種類の分布を測定する事で得られるため、原理的にはどの元素でも測定対象とすることが可能であるが、分析精度と分析時間とを考慮するとある程度の添加量と偏析形態が明確な元素であるMnを基準として用いることが有効であるとの知見を得た。   Specifically, an investigation was performed on the correlation of segregation elements such as C and Mn in the segregation part using EPMA. As a result, it has been found that the segregation degree of each element has a certain relationship and can be expressed as a function of the segregation degree and the addition amount. Element distribution information can be obtained by measuring the distribution of one type of additive element. In principle, any element can be measured. However, considering the analysis accuracy and analysis time, it is possible to some extent. It was found that it is effective to use Mn, which is an element with a clear addition amount and segregation form, as a reference.

そこで、Mn添加量が、質量%で、0.8から1.5%の成分範囲を有する種々の高強度耐サワーラインパイプ用鋼板のHIC試験後の試料を用いて、HIC割れが発生した領域と割れが発生しない領域について、詳細な調査を実施した。その結果、鋼板の状態で、幅方向(圧延方向と垂直方向)に1.0mm以上の長さをもつMn濃化スポットが存在し、その箇所にHIC割れが発生していることがわかった。また、このような大きさのMn濃化スポットの部分でも割れが発生していない場合も観察されるために、1.0mm以上のサイズのMn濃化スポットについてその内部の添加元素の濃化程度について評価をさらに、検討したところ、後述の式(1)で示されるQ値の大きさや単位長さ当りのMn濃化スポット数によりHIC割れの発生率が変動する事がわかった。ここで、Mn濃化スポットとはMnが偏析して周囲よりも濃度が高くなった領域をいう。また、HIC割れの発生率とは後述するNACE試験を実施した材料を超音波スキャンで測定した割れ面積率(CAR;Crack Area Ratio)により定義される。NACE TM0284に従ってA規格液で、96時間浸漬させHIC試験を実施した。HIC試験片は、板中央位置から作製した。試験後に、各サンプルの割れ面積率(CAR%)を求めた。   Therefore, the area where HIC cracking occurred using samples after various HIC tests of various high-strength sour line pipe steel sheets having an Mn addition amount of 0.8 to 1.5% by mass%. A detailed survey was conducted on areas where cracks do not occur. As a result, it was found that in the state of the steel sheet, there was a Mn concentration spot having a length of 1.0 mm or more in the width direction (direction perpendicular to the rolling direction), and an HIC crack occurred at that location. In addition, since no cracks are observed even in the portion of the Mn concentration spot having such a size, the concentration of the additive element in the Mn concentration spot having a size of 1.0 mm or more is concentrated. When the evaluation was further examined, it was found that the occurrence rate of HIC cracking fluctuates depending on the magnitude of the Q value represented by the following formula (1) and the number of Mn-concentrated spots per unit length. Here, the Mn concentration spot refers to a region where Mn segregates and the concentration is higher than the surroundings. The occurrence rate of HIC cracks is defined by a crack area ratio (CAR) obtained by measuring a material subjected to the NACE test described later by ultrasonic scanning. According to NACE TM0284, the HIC test was carried out by immersing in a standard A solution for 96 hours. The HIC test piece was produced from the center position of the plate. After the test, the crack area ratio (CAR%) of each sample was determined.

また、スラブでMnマッピングの分析を行った結果、Q値が1.0以上の、幅1.0mm以上を持つスポットの数の違いにより、圧延後のHIC割れの発生に強い相関があることを突き止めた。このように圧延後のHIC割れ部の形態調査と圧延前のスラブで圧延前の形状を算出したスポットの数との相関を調査することで、スラブのHIC特性の危険度(鋼板の場合の、HIC特性の感受性に相当する意味)を評価できることを見出した。   In addition, as a result of Mn mapping analysis using a slab, the difference in the number of spots having a Q value of 1.0 or more and a width of 1.0 mm or more has a strong correlation with the occurrence of HIC cracks after rolling. I found it. Thus, by investigating the correlation between the form investigation of the HIC cracked part after rolling and the number of spots calculated with the shape before rolling in the slab before rolling, the risk of HIC characteristics of the slab (in the case of a steel plate, It was found that the meaning (corresponding to the sensitivity of the HIC characteristics) can be evaluated.

また、HIC特性を評価するうえで、スポット形態に加えて、HIC割れの起点となる粗大なNbCの晶出物の形成について、スラブの偏析度と添加濃度について関係があることを見出し、その関係をP値として定義可能であることを見出した。   Further, in evaluating the HIC characteristics, in addition to the spot form, the formation of coarse NbC crystallized material that becomes the starting point of HIC cracking has been found to have a relationship with the segregation degree of slab and the addition concentration, and the relationship Has been found to be defined as a P value.

以上の様にHIC割れが発生するMn濃化スポットの大きさとその場所でのMnの偏析度および添加元素濃度を考慮して、Q値と、Mn濃化スポットの大きさ分布およびHIC割れの発生率および割れ断面率について調査した結果、スラブでは1mm×1mm、厚鋼板では高さ(板厚方向)0.1mm×幅1mmの基本測定領域(割れの判断のための基本単位を意味する。以下同様とする。)で対象領域内のQ値の分布を決定し、領域内のQ値が1.0以上の値をもつ基本測定領域が多いほどHIC特性の感受性が上昇することがわかった。また、このとき、P値を求めることで、偏析スポット部でのHIC割れの要因となる粗大NbC形成の危険度を評価し、そのHIC感受性を評価できることがわかった。   Considering the size of the Mn-concentrated spot where HIC cracking occurs as described above, the segregation degree of Mn at that location, and the concentration of added elements, the Q value, the size distribution of the Mn-concentrated spot, and the occurrence of HIC cracking As a result of investigating the rate and the crack cross-sectional ratio, the basic measurement region (basic unit for judgment of cracks is 1 mm × 1 mm for slabs and 0.1 mm × 1 mm in width (thickness direction) for thick steel plates. In the same manner, the distribution of the Q value in the target region is determined, and it has been found that the sensitivity of the HIC characteristic increases as the number of basic measurement regions having a Q value in the region of 1.0 or more increases. Further, at this time, it was found that by obtaining the P value, the risk of formation of coarse NbC that causes HIC cracking in the segregation spot portion can be evaluated, and its HIC sensitivity can be evaluated.

特に、スラブ幅100mmでのQ値のマッピングから、基本測定領域毎に測定した全てのQ値の中で、1.3未満で、1.0以上の範囲のQ値が前記断面で幅100mm当り5個以下である場合であって、残部のQ値がQ<1.0であり、P値が0.35以下である
とき、HICの割れ面積率(CAR)が、1.5%以下となることがわかった。ここで、HICの割れ面積率(CAR)とはNACE TM0284−96規格により定義され、本発明では、1.5%以下となる場合をHIC特性が良好であると判断する。
In particular, from the mapping of the Q value at the slab width of 100 mm, among all the Q values measured for each basic measurement region, the Q value in the range of less than 1.3 and 1.0 or more per 100 mm width in the cross section. In the case of 5 or less, when the remaining Q value is Q <1.0 and the P value is 0.35 or less, the crack area ratio (CAR) of the HIC is 1.5% or less. I found out that Here, the HIC cracking area ratio (CAR) is defined by the NACE TM0284-96 standard, and in the present invention, when the ratio is 1.5% or less, it is determined that the HIC characteristics are good.

ここで、分析領域の測定手法について述べる。後述する厚み幅を決定し、その厚み幅で100mm幅方向について測定する。具体的には、厚み幅20mmについて、幅方向100mmについて分析を実施した。分析は、EPMAで径100μmの電子ビームを用いて、100μmステップについて分析を実施し、200×1000点でマッピング像を作製した。次に、測定領域を1mm×1mm範囲で区分し、その中の分析点(10×10、100点)の平均値を計算でQ値を求め、幅100mm×厚み幅20mmの測定領域について、1mm×1mm範囲でのマッピング像を作製した。   Here, a measurement technique for the analysis region will be described. The thickness width described later is determined, and the thickness width is measured in the 100 mm width direction. Specifically, an analysis was performed with respect to a thickness width of 20 mm and a width direction of 100 mm. In the analysis, an electron beam having a diameter of 100 μm was used in EPMA, and the analysis was performed with respect to a step of 100 μm, and a mapping image was created at 200 × 1000 points. Next, the measurement region is divided into a range of 1 mm × 1 mm, an average value of analysis points (10 × 10, 100 points) is calculated to obtain a Q value, and a measurement region of width 100 mm × thickness width 20 mm is 1 mm. A mapping image in the × 1 mm range was produced.

Q値は、材料に含有される化学組成やその含有量にも影響を受け、式(1)の前半部分の第1項から4項までの部分は濃化部の炭素当量に相当する、という意義がある。また、式(1)の第5項および6項の部分のNbおよびPに関する項は、中心偏析に対する影響の大きなNbおよびPの濃化度によって規定され、偏析部とそれ以外の部分の硬さの違いおよびNbC等の粗大析出物の影響によりQ値に影響を及ぼし、HICの割れ面積率(CAR)と相関が生じると考えられる。特に、P値は、NbC起因の割れと直接的に対応し、この値が高いと粗大NbCが原因で割れが発生する危険度を評価している。   The Q value is also affected by the chemical composition contained in the material and its content, and the first to fourth parts of the first half of the formula (1) correspond to the carbon equivalent of the concentrated part. it makes sense. In addition, the terms relating to Nb and P in the fifth and sixth terms of the formula (1) are defined by the degree of concentration of Nb and P that have a large influence on the center segregation, and the hardness of the segregated portion and the other portions. It is considered that the Q value is influenced by the difference in the above and coarse precipitates such as NbC, and a correlation with the crack area ratio (CAR) of the HIC occurs. In particular, the P value directly corresponds to a crack caused by NbC, and when this value is high, the risk of cracking due to coarse NbC is evaluated.

本発明では対象材料について例えばMn元素のみのマッピングを実施することで偏析部の他の添加元素の影響を含むQ値の値を決定でき、HIC割れ感受性を評価することが可能であるために分析の作業も効率化が図れる。また、成分を変更した場合にも、その偏析度をもとに材料間の比較も可能である。上記では、Mn分析を元にした評価方法について述べたが、他の元素の偏析度を用いた場合には式中の偏析度の指数を変化させることで同様に評価可能である。   In the present invention, for example, by mapping only the Mn element for the target material, it is possible to determine the Q value including the influence of other added elements of the segregation part, and it is possible to evaluate the HIC cracking susceptibility. The efficiency of this work can also be improved. Even when the components are changed, the materials can be compared based on the degree of segregation. In the above, the evaluation method based on the Mn analysis has been described. However, when the segregation degree of other elements is used, the evaluation can be similarly performed by changing the segregation degree index in the formula.

すなわち、本発明は、連続鋳造鋳片および厚鋼板の中心偏析部に対して、少なくともある1種類の偏析元素の濃度マッピング分析を行い、Q値が閾値以上である濃度スポットの大きさと数を評価し、HIC割れの危険度を予測し、鋼板を製造する中心偏析評価方法を用いて製造を行った引張強度が550MPa以上の高強度の耐サワーラインパイプ用鋼板である。   That is, the present invention performs concentration mapping analysis of at least one segregating element on the central segregation part of continuous cast slabs and thick steel plates, and evaluates the size and number of concentration spots having a Q value equal to or greater than a threshold value. Further, the steel sheet for a sour line pipe having a high strength having a tensile strength of 550 MPa or more manufactured by using a central segregation evaluation method for predicting the risk of HIC cracking and manufacturing the steel sheet.

[1]鋼材の元素含有量と中心偏析部のMn偏析度とからなる下記式(1)で定義されるQ値を基本測定領域毎に測定計算し、これら全てのQ値を用いて鋼材の耐水素割れ感受性を評価する方法。
Q=C5.4+CMn/6+(CCr0.3+CMo1.3+C0.6)/5+
(CCu2.8+CNi1.3)/15+CNb/4+2C5.4・・・・式(1)
ここで、fは偏析部でのMn偏析度で、(CMn /CMn)で定義される値であり、CMn は中心偏析部のMn濃度分布を鋼材の断面を幅方向に測定して得られるMn濃度、CMnはMn濃度の平均の濃度であり、fのNはべき乗を、Cはそれぞれ元素iの含有量(質量%)で、iは元素C、Mn、Cr、Mo、V、Cu、Ni、Nb、Pを表し、含有しない場合はC=0とする。
[1] The Q value defined by the following formula (1) consisting of the element content of the steel material and the Mn segregation degree of the central segregation part is measured and calculated for each basic measurement region, and all these Q values are used to calculate the steel material. A method for evaluating the resistance to hydrogen cracking.
Q = C C f 5.4 + C Mn f 1/6 + (C Cr f 0.3 + C Mo f 1.3 + C V f 0.6) / 5 +
(C Cu f 2.8 + C Ni f 1.3) / 15 + C Nb f 5/4 + 2C P f 5.4 ···· formula (1)
Here, f is the degree of Mn segregation at the segregation part, and is a value defined by (C Mn C / C Mn ). C Mn C is the Mn concentration distribution at the center segregation part measured in the width direction of the cross section of the steel material. Mn concentration obtained by, C Mn is the average concentration of the Mn concentration, the N is a power of f N, at a content of C i, respectively the element i (wt%), i is the element C, Mn, Cr , Mo, V, Cu, Ni, Nb, and P, and when not contained, C i = 0.

[2]前記鋼材の化学組成が、質量%で、C:0.03〜0.07%、Si:0.01〜0.5%、Mn:0.8〜1.5%、Al:0.07%以下、S:0.001以下、P:0.010以下、Ti:0.005〜0.02%、Nb:0.005〜0.07%、Ca:0.0005〜0.005%、N:0.008%以下、O:0.005%以下を含有し、さらに、Cu:0.5%以下、Ni:1%以下、Cr:0.5%以下、Mo:0.5%以下、V:0.1%以下の中から選ばれる1種以上を含有し、残部Fe及び不可避的不純物からなることを特徴とする前記[1]に記載の鋼材の耐水素割れ感受性を評価する方法。   [2] The chemical composition of the steel material is mass%, C: 0.03 to 0.07%, Si: 0.01 to 0.5%, Mn: 0.8 to 1.5%, Al: 0. 0.07% or less, S: 0.001 or less, P: 0.010 or less, Ti: 0.005 to 0.02%, Nb: 0.005 to 0.07%, Ca: 0.0005 to 0.005 %, N: 0.008% or less, O: 0.005% or less, Cu: 0.5% or less, Ni: 1% or less, Cr: 0.5% or less, Mo: 0.5 % Or less, V: containing one or more selected from 0.1% or less, and comprising the balance Fe and inevitable impurities, the hydrogen cracking susceptibility of the steel material according to [1] is evaluated. how to.

[3]連続鋳造鋳片の鋳込み方向と垂直方向の断面の中心偏析部の1mm×1mmの前記基本測定領域毎に測定した全てのQ値の中で、1.0≦Q<1.3であるQ値の数が前記断面で幅100mm当り5個以下(0を含む)であり、残部のQ値はQ<1.0である前記[2]に記載の化学組成を含有する連続鋳造鋳片を鋼素材とすることを特徴とする耐水素割れ感受性が良好な高強度耐サワーラインパイプ用鋼板。   [3] Among all the Q values measured for each of the basic measurement areas of 1 mm × 1 mm of the central segregation portion in the cross section perpendicular to the casting direction of the continuous cast slab, 1.0 ≦ Q <1.3 The number of certain Q values is 5 or less (including 0) per 100 mm width in the cross section, and the remaining Q value is Q <1.0. Steel sheet for high strength sour line pipes with good resistance to hydrogen cracking, characterized in that the piece is made of steel.

[4]鋼板の圧延方向と垂直方向の断面であって、該鋼板の圧延方向と垂直方向の断面の中心偏析部の厚さ方向0.1mm×垂直方向1mmの前記基本測定領域毎の全てのQ値の中で、1.0≦Q<1.3であるQ値の数が前記断面で幅100mm当り5個以下(0を含む)であり残部のQ値がQ<1.0であること
を特徴とする前記[2]に記載の化学組成を含有する耐水素割れ感受性が良好な高強度耐サワーラインパイプ用鋼板。
[4] All the cross sections in the direction perpendicular to the rolling direction of the steel sheet, the thickness of the central segregation portion of the cross section perpendicular to the rolling direction of the steel sheet being 0.1 mm in the thickness direction and 1 mm in the vertical direction. Among the Q values, the number of Q values satisfying 1.0 ≦ Q <1.3 is 5 or less (including 0) per 100 mm width in the cross section, and the remaining Q value is Q <1.0. A high-strength sour line pipe steel plate having a good resistance to hydrogen cracking, which contains the chemical composition according to [2] above.

[5]鋼材のC、Nb元素の含有量と中心偏析部のMn偏析度とからなる下記式(2)で定義されるP値が0.35以下であることを特徴とする前記[4]記載の耐水素割れ感受性が良好な高強度耐サワーラインパイプ用鋼板。
P=C5.4 × CNb ・・・・式(2)
ここで、fは偏析部でのMn偏析度で、(CMn /CMn)で定義される値であり、CMn は中心偏析部のMn濃度分布を鋼材の断面を幅方向に測定して得られるMn濃度、CMnはMn濃度の平均の濃度であり、fのNはべき乗を表す。また、C 、CNb はそれぞれC、Nb元素の含有量(質量%)を表す。
[5] The above-mentioned [4], wherein the P value defined by the following formula (2) consisting of the C and Nb element contents of the steel material and the Mn segregation degree of the central segregation part is 0.35 or less. Steel sheet for high strength sour line pipes with good resistance to hydrogen cracking as described.
P = C C f 5.4 × C Nb f 5 ... Formula (2)
Here, f is the degree of Mn segregation at the segregation part, and is a value defined by (C Mn C / C Mn ). C Mn C is the Mn concentration distribution at the center segregation part measured in the width direction of the cross section of the steel material. Mn concentration obtained by, C Mn is the average concentration of the Mn concentration, the N of f N represents exponentiation. C C and C Nb represent the contents (mass%) of C and Nb elements, respectively.

本発明によれば、連続鋳造鋳片や厚鋼板の中心部の偏析を、定量的かつ高精度で、しかも広い領域を迅速に測定した材料の評価をもとに、鋼材のHIC割れの感受性を評価することで、高強度耐サワーラインパイプ用鋼板を製造することが可能となる。   According to the present invention, the segregation of the central part of a continuous cast slab or a thick steel plate is quantitatively and highly accurate, and based on the evaluation of a material that has been quickly measured over a wide area, the sensitivity of the HIC cracking of the steel material is improved. It becomes possible to manufacture the steel plate for high strength sour line pipes by evaluating.

スラブ断面のEPMA分析の領域EPMA analysis area of slab section

以下に本発明を実施するための形態について説明する。まず、本発明の構成要件の限定理由について説明する。   The form for implementing this invention is demonstrated below. First, the reasons for limiting the constituent requirements of the present invention will be described.

本発明は、以下の式で計算されるQ値を用いてHIC割れの危険度又は感受性を判定する。   The present invention determines the risk or sensitivity of HIC cracking using the Q value calculated by the following equation.

Q=C5.4+CMn/6+(CCr0.3+CMo1.3+C0.6)/5+
(CCu2.8+CNi1.3)/15+CNb/4+2C5.4・・・・式(1)
ここで、fは偏析部でのMn偏析度で、(CMn /CMn)で定義される値であり、CMn は中心偏析部のMn濃度分布を鋼材の断面を幅方向に測定して得られるMn濃度、CMnはMn濃度の平均の濃度であり、fのNはべき乗を、Cはそれぞれ元素iの含有量(質量%)で、iは元素C、Mn、Cr、Mo、V、Cu、Ni、Nb、Pを表し、含有しない場合はC=0とする。
Q = C C f 5.4 + C Mn f 1/6 + (C Cr f 0.3 + C Mo f 1.3 + C V f 0.6) / 5 +
(C Cu f 2.8 + C Ni f 1.3) / 15 + C Nb f 5/4 + 2C P f 5.4 ···· formula (1)
Here, f is the degree of Mn segregation at the segregation part, and is a value defined by (C Mn C / C Mn ). C Mn C is the Mn concentration distribution at the center segregation part measured in the width direction of the cross section of the steel material. Mn concentration obtained by, C Mn is the average concentration of the Mn concentration, the N is a power of f N, at a content of C i, respectively the element i (wt%), i is the element C, Mn, Cr , Mo, V, Cu, Ni, Nb, and P, and when not contained, C i = 0.

各元素の定量分析については、通常の成分分析方法、この場合は、発光分光分析(QV法)で実施すればよい。   About the quantitative analysis of each element, what is necessary is just to implement by the usual component-analysis method, and in this case, emission spectroscopic analysis (QV method).

この式の中にあるCについては、材料の添加元素量について通常の方法で決定すればよく、そのためにMn偏析度であるfを決定すれば、Q値は決定される。ここで、fは特定の基本測定領域(スラブでは、1mm×1mm、鋼板では、厚さ0.1mm×幅1mmである。)で測定したMnの偏析度であり、このMnの偏析度fの決定方法について以下に記載する。 For C i in this equation, the amount of element added in the material may be determined by a normal method. For this reason, if f which is the degree of segregation of Mn is determined, the Q value is determined. Here, f is the segregation degree of Mn measured in a specific basic measurement region (1 mm × 1 mm for a slab, and 0.1 mm thickness × 1 mm width for a steel plate). The determination method is described below.

偏析度fの決定方法
本発明ではこの値を用いて鋼材(本明細書では、「鋳片」と「鋼板」を含む概念で使用する)のQ値が決定されるために、偏析度fの決定は重要である。元素の分布は、添加元素の一種類の分布を測定する事で可能であるため、原理的にどの元素での分布でも測定可能であるが、分析精度と分析時間を考慮するとある程度の添加量と偏析形態が明確なC、Mn、Nb、P等で実施することが望ましい。このなかで、短時間分析での精度を考慮すると、通常含有量が、質量%で、1%程度と含有量の比較的多いMn元素の分布を測定することが好適である。また、偏析度ではNb、P、C等が母材と比べて大きくなるので、S/N比を優先するとこれら元素が好適である。分析機器の精度は、近年向上しているために、具体的な手法については改善変更されることが予想されるが、原理的に空間分解能が厚鋼板分析時には0.1mm、スラブ分析時には1mm程度で、組成の定量精度として、Mnであれば0.05%、他の偏析元素では0.005%以内であることが好ましい。
Method for Determining Segregation Degree f In the present invention, this value is used to determine the Q value of a steel material (used in the concept including “slab” and “steel plate” in this specification). The decision is important. The element distribution can be measured by measuring the distribution of one kind of additive element. In principle, the distribution of any element can be measured. It is desirable to carry out with C, Mn, Nb, P, etc. with a clear segregation form. Among these, considering the accuracy in short-time analysis, it is preferable to measure the distribution of Mn element having a relatively high content of about 1% with a normal content of mass%. Moreover, since Nb, P, C, etc. are larger in the segregation degree than the base material, these elements are suitable when priority is given to the S / N ratio. Since the accuracy of analytical instruments has been improved in recent years, it is expected that specific methods will be improved and changed, but in principle the spatial resolution is about 0.1 mm for thick steel plate analysis and about 1 mm for slab analysis. Thus, the composition accuracy is preferably 0.05% for Mn and 0.005% or less for other segregating elements.

以下に、Mnを基準とした分析手法について説明する。   Hereinafter, an analysis method based on Mn will be described.

Mnの中心偏析部の濃度マッピング分析は、電子プローブマイクロアナライザー(EPMA)、および走査電子顕微鏡(SEM)に付属のエネルギー分散型X線分光装置(EDS)や波長分散型X線分光装置(WDS)、走査型発光分光分析、レーザーICP、蛍光X線分析のいずれかを用いて行うことができる。ここでは、EPMAについての一実施態様を示す。   Concentration mapping analysis of the central segregation part of Mn is performed with an electron dispersive X-ray spectrometer (EDS) and a wavelength dispersive X-ray spectrometer (WDS) attached to an electron probe microanalyzer (EPMA) and a scanning electron microscope (SEM). , Scanning emission spectroscopic analysis, laser ICP, or fluorescent X-ray analysis. Here, one embodiment for EPMA is shown.

偏析度fの分析は、スラブもしくは鋼板のC断面(スラブの場合、鋳造方向に垂直な断面をいい、鋼板の場合、圧延方向に垂直な断面を、それぞれいう。)中央偏析部で実施する。このとき板幅方向については、偏析スポットはランダムに存在しているために少なくとも100mm以上の幅で分析することが好ましい。また、厚み方向では、分析領域内に偏析部を含む必要があるため調整する必要がある。具体的には、偏析部を特定するために事前にエッチング等でマクロな偏析部の厚み幅を確認したのちに、偏析部を含む領域を分析することで実施可能であり、また、偏析部がスラブの厚みのどの位置に集まる傾向があるかを事前に把握しておけば、その領域を分析する事で測定が可能である。ここで、板厚み幅とは、スラブおよび鋼板の場合の、厚さ方向の長さをいう。   The segregation degree f is analyzed at the central segregation part of the slab or the C section of the steel sheet (in the case of a slab, the section perpendicular to the casting direction, and in the case of the steel sheet, the section perpendicular to the rolling direction). At this time, in the plate width direction, since segregation spots exist at random, it is preferable to analyze with a width of at least 100 mm. Moreover, in the thickness direction, since it is necessary to include a segregation part in the analysis region, it is necessary to adjust. Specifically, in order to identify the segregation part, it is possible to carry out by analyzing the region including the segregation part after confirming the thickness width of the macro segregation part by etching or the like in advance. If the position of the slab thickness tends to be gathered in advance, it can be measured by analyzing the area. Here, the plate thickness width means the length in the thickness direction in the case of slabs and steel plates.

この板厚み幅については、偏析スポットの分散形態と関連し、スラブの中央偏析部の偏析スポットは、±2mm程度の板厚み幅で広がっている場合には、スラブでは中央部を中心に±5mm以上の厚み幅の領域で実施することが好ましい。また、この場合、鋼板については中央部を中心に±0.5mm以上の厚み幅の領域で実施することが好ましい。   Regarding the plate thickness width, it is related to the dispersion form of the segregation spot. When the segregation spot at the center segregation portion of the slab spreads with a plate thickness width of about ± 2 mm, the center portion of the slab is ± 5 mm. It is preferable to implement in the region of the above thickness width. In this case, it is preferable to carry out the steel sheet in a region having a thickness width of ± 0.5 mm or more around the central portion.

また、偏析スポットが板厚み幅方向に広い材料や幅が不明な材料では、スラブでは中央部を中心に±20mm程度、鋼板では中央部を中心に±1.0mm以上の板厚み幅で評価することが好ましい。ただし、測定の作業の事前に装置や条件による偏析スポットの広がりを把握することで、分析厚み幅を適正にし、分析時間の短縮が可能である。   For materials with a wide segregation spot in the plate thickness width direction or a material whose width is unknown, the slab is evaluated with a plate thickness width of about ± 20 mm centered on the center portion and a steel plate with a plate thickness width of ± 1.0 mm or more centered on the center portion. It is preferable. However, by grasping the spread of the segregation spot depending on the apparatus and conditions in advance of the measurement work, the analysis thickness width can be made appropriate and the analysis time can be shortened.

Mn の測定
偏析部のMn濃度であるCMn は、スラブであれば1mm×1mm、鋼板であれば厚さ0.1mm×幅1mmの基本測定領域での中心偏析部のMn濃度を取得できれば得られる。EPMAを用いた分析は、スラブでは、0.1mm径のビームサイズを用いて、0.1mm×0.1mmの微小領域で測定を行い1mm×1mmの領域の10点×10点のデータ情報を全て集積し、濃度の平均値を用いて1mm×1mmの基本測定領域で再マッピング像を集積し構築すればよい。
C Mn C is Mn concentration measurements segregation of C Mn C is, 1mm × 1mm long slab, the Mn concentration of the center segregation area of the basic measurement region having a thickness of 0.1 mm × width 1mm if steel If you can get it. In the analysis using EPMA, in the slab, measurement is performed in a small area of 0.1 mm × 0.1 mm using a beam size of 0.1 mm diameter, and data information of 10 points × 10 points in a 1 mm × 1 mm area is obtained. All may be collected and remapped images may be accumulated and constructed in a basic measurement area of 1 mm × 1 mm using the average value of density.

また、これ以下の大きさの微小領域でマッピングを行い、1mm×1mmの基本測定領域で再分布の計算を実施してもよい。または、1mm×1mmの面積をラスタースキャンにより測定して定量値を評価し、同様の分析を幅方向および厚さ方向に実施してその値を用いて濃度マッピングを実施すればよい。   Alternatively, mapping may be performed in a small area having a size smaller than this, and redistribution may be calculated in a basic measurement area of 1 mm × 1 mm. Alternatively, an area of 1 mm × 1 mm may be measured by a raster scan to evaluate a quantitative value, a similar analysis may be performed in the width direction and the thickness direction, and concentration mapping may be performed using the values.

鋼板の場合も同様に0.1mm×0.1mmの微小領域の測定単位でマッピングを行い、厚み方向1点×幅方向10点の平均値の再マッピング等を実施して、0.1mm×1mmの基本測定領域での濃度分布の再構築を実施すればよい。   Similarly, in the case of a steel plate, mapping is performed in a measurement unit of a small area of 0.1 mm × 0.1 mm, and remapping of an average value of 1 point in the thickness direction × 10 points in the width direction is performed, and 0.1 mm × 1 mm The concentration distribution in the basic measurement region may be reconstructed.

この様にして得られたCMn の値を含有量CMnで割る事で、偏析部の各場所についてスラブでは1mm×1mm、鋼板では0.1mm×1mmの基本測定領域のMnの偏析度fについてのC断面での分布を取得することができる。この様にして決定したfを用いてQ値のC断面でのマッピング像を取得することができる。fのNはべき乗であるが、固有の元素毎にNの数値は異なり、この数値は重回帰分析法により求めた。 By dividing the value of C Mn C thus obtained by the content C Mn , the segregation degree of Mn in the basic measurement region of 1 mm × 1 mm for the slab and 0.1 mm × 1 mm for the steel plate at each location of the segregation part. It is possible to obtain the distribution in the C cross section for f. A mapping image of the Q value on the C cross section can be acquired using f determined in this manner. f N of N is a power, but the value of N is different for each unique element, and this value was determined by multiple regression analysis.

基本測定領域毎に測定した全てのQ値の中で、1.0≦Q<1.3であるQ値の数が前記断面で幅100mm当り5個以下(0を含む)であり、残部のQ値はQ<1.0である。
Q値が1.0未満の領域では、HIC割れはほとんど発生せず、1.0以上になるとHIC割れの起点となる可能性が高くなる。従って、全ての基本測定領域毎に測定した全てのQ値が1.0を超えない場合はHIC割れはほとんど発生しない。したがって、Q値が1.0未満であることが好ましい。
Among all the Q values measured for each basic measurement region, the number of Q values satisfying 1.0 ≦ Q <1.3 is 5 or less (including 0) per 100 mm width in the cross section, and the remaining The Q value is Q <1.0.
In the region where the Q value is less than 1.0, almost no HIC cracks are generated, and when the Q value is 1.0 or more, there is a high possibility of starting the HIC cracks. Therefore, when all the Q values measured for all the basic measurement regions do not exceed 1.0, almost no HIC cracking occurs. Accordingly, the Q value is preferably less than 1.0.

しかし、基本測定領域毎に測定した全てのQ値が1.0以上でも1.3未満である場合、C断面での幅100mm当り5個以下であり、残部のQ値がQ<1.0であれば、その領域の偏析部HICの割れ面積率(CAR)は1.5%以下となり、良好なHIC特性を得ることができることがわかった。5個以下には0を含むがこれは、Q値が1.0≦Q<1.3の範囲に存在しない場合を意味し、この場合は全てのQ値がQ<1.0であることを意味する。   However, when all the Q values measured for each basic measurement region are 1.0 or more and less than 1.3, the number is less than 5 per 100 mm width in the C cross section, and the remaining Q value is Q <1.0. Then, the crack area ratio (CAR) of the segregated portion HIC in that region was 1.5% or less, and it was found that good HIC characteristics can be obtained. 5 or less includes 0, but this means that the Q value does not exist in the range of 1.0 ≦ Q <1.3. In this case, all the Q values are Q <1.0. Means.

一方、Q値が1.0より大きい基本測定領域の数が5個を超えるとHIC割れが増加し、耐HIC特性が劣化する。また、Q値が1.3以上の基本測定領域が存在すると、CARが1.5%を超え、HIC特性は劣化する。また、P値については、NbとC量の偏析部での濃度積に相当する値になる。この値が、0.35以下であれば、HIC割れの要因となる粗大なNbCの形成が抑制され、HIC特性が向上する。従って、Q値により偏析部全体の濃度により硬さの調整を行い、P値によって、偏析部のNbCの形成を制御することで、HIC特性の向上を実施することが出来る。   On the other hand, when the number of basic measurement regions having a Q value larger than 1.0 exceeds 5, HIC cracking increases and the HIC resistance is deteriorated. Further, if a basic measurement region having a Q value of 1.3 or more exists, the CAR exceeds 1.5% and the HIC characteristics deteriorate. Further, the P value is a value corresponding to the concentration product at the segregated portion of the Nb and C amounts. If this value is 0.35 or less, the formation of coarse NbC that causes HIC cracking is suppressed, and the HIC characteristics are improved. Therefore, the HIC characteristics can be improved by adjusting the hardness according to the concentration of the entire segregation part by the Q value and controlling the formation of NbC in the segregation part by the P value.

Q値の調整及び制御は、偏析度の低下および合金成分の添加量の適正化で実施可能である。このため同一成分材でも鋳造条件(例:冷却速度)やスラブ凝固時の圧下条件を変化させた場合に偏析度が向上し、Q値が低下してHIC特性が向上する。また、同一の鋳造条件の場合には、後述する化学組成の適正な含有量の範囲内において、さらに低減させることで低下させることが可能であり、特に影響の大きいMn、PやNb添加量を適正含有量の範囲内で低減させることでQ値を低減することができる。   Adjustment and control of the Q value can be performed by reducing the segregation degree and optimizing the amount of alloy components added. For this reason, even if the same component material is used, the segregation degree is improved and the Q value is lowered and the HIC characteristics are improved when the casting conditions (e.g., cooling rate) and the rolling conditions during slab solidification are changed. Moreover, in the case of the same casting conditions, it can be reduced by further reducing within the range of the appropriate content of the chemical composition to be described later. Q value can be reduced by reducing within the range of appropriate content.

また、f値が増加するに従ってQ値が増加するために、Q値を低減させるためにはMnの偏析度は2.0以下とすることが望ましい。この評価で、同一のスラブ、板でも場所による偏析度の違いによりQ値に差が生じるために、HIC特性の劣る部分を除いて、パイプを製造することにより耐HIC特性に優れるラインパイプを製造することも可能になる。   Further, since the Q value increases as the f value increases, the segregation degree of Mn is desirably 2.0 or less in order to reduce the Q value. In this evaluation, even in the same slab and plate, the difference in segregation degree depending on the location causes a difference in the Q value. Therefore, except for the inferior part of the HIC characteristic, a pipe with excellent HIC resistance is manufactured by manufacturing the pipe. It is also possible to do.

本発明の評価方法により評価された鋼素材を用いて圧延・冷却などを実施して鋼板を製造したり、又は本発明の評価方法により評価された鋼板を使用する事で、耐サワー性能に優れた高強度ラインパイプの製造が可能となる。   The steel material evaluated by the evaluation method of the present invention is used to produce a steel sheet by rolling and cooling, or by using the steel sheet evaluated by the evaluation method of the present invention, sour resistance performance is excellent. High strength line pipes can be manufactured.

以下にその高強度鋼板の化学成分について説明する。以下の説明において%で示す単位は全て質量%である。また、鋼板について説明するが、鋼素材の場合も同様である。   The chemical components of the high-strength steel plate will be described below. In the following description, all units represented by% are mass%. Moreover, although a steel plate is demonstrated, it is the same also in the case of a steel raw material.

C:0.03〜0.07%
Cは鋼板の強度の向上に寄与する元素であるが、0.03%未満では十分な強度が確保できず、0.07%を超えると靭性を劣化させるため、C含有量は、0.03〜0.07%とした。
C: 0.03-0.07%
C is an element that contributes to improving the strength of the steel sheet. However, if it is less than 0.03%, sufficient strength cannot be secured, and if it exceeds 0.07%, the toughness is deteriorated. Therefore, the C content is 0.03%. -0.07%.

Si:0.01〜0.5%
Siは脱酸のため添加するが、0.01%未満では脱酸効果が十分でなく、0.5%を超えると靭性や溶接性を劣化させるため、Si含有量を0.01〜0.5%に規定する。好ましくは、Si:0.04〜0.4%である。
Si: 0.01 to 0.5%
Si is added for deoxidation, but if it is less than 0.01%, the deoxidation effect is not sufficient, and if it exceeds 0.5%, the toughness and weldability are deteriorated, so the Si content is 0.01 to 0.00. Specify 5%. Preferably, Si: 0.04 to 0.4%.

Mn:0.8〜1.5%
Mnは強度、靭性のため添加するが、0.8%未満ではその効果が十分でなく、1.5%を超えると中心偏析が著しく、Q値が増加するために、Mn含有量を0.8〜1.5%に規定する。
Mn: 0.8 to 1.5%
Mn is added for strength and toughness. However, if it is less than 0.8%, its effect is not sufficient, and if it exceeds 1.5%, the center segregation is remarkable and the Q value increases. It is specified to 8 to 1.5%.

Al:0.07%以下
Alは脱酸剤として添加されるが、0.07%を超えると鋼の清浄度が低下し、HIC割れの起点となる介在物の形成が増加するため、Al含有量は0.07%以下に規定する。好ましくは、0.01〜0.05%とする。
Al: 0.07% or less Al is added as a deoxidizer. However, if it exceeds 0.07%, the cleanliness of the steel decreases and the formation of inclusions that become the starting point of HIC cracking increases, so Al is contained. The amount is specified to be 0.07% or less. Preferably, it is 0.01 to 0.05%.

P:0.010%以下
本発明でP、Sは不可避的不純物であり、その量の上限を規定する。Pは、式(1)で示される様にQ値の増加に非常に影響を与え、HIC割れ感受性が悪化するため、P量は0.010%以下とする。好ましくは、P量は0.005%以下である。
P: 0.010% or less In the present invention, P and S are inevitable impurities, and the upper limit of the amount thereof is specified. P greatly affects the increase of the Q value as shown by the formula (1), and the HIC cracking susceptibility deteriorates. Therefore, the amount of P is set to 0.010% or less. Preferably, the amount of P is 0.005% or less.

S:0.001%以下
Sは、含有量が多いとMnSの生成量が著しく増加し、HIC割れ感受性が悪化するため、S量は0.001%以下とする。
S: 0.001% or less If the content of S is large, the amount of MnS produced increases remarkably and the HIC cracking susceptibility deteriorates, so the S amount is 0.001% or less.

Ti:0.005〜0.02%
TiはTiNを形成しそのピニング効果により、スラブ加熱時のオーステナイト粗大化を抑制し、母材靭性を向上させる重要な元素である。その効果は、0.005%以上の添加で発現する。しかし、0.02%を超えると、粗大なTi系析出物が生成し、これがHIC割れの起点になり、HIC割れ感受性が劣化するため、Ti量は0.005〜0.02%の範囲とする。好ましくは、Ti量は0.009〜0.015%の範囲とする。
Ti: 0.005-0.02%
Ti is an important element that forms TiN and suppresses austenite coarsening during slab heating and improves the toughness of the base metal due to its pinning effect. The effect is manifested when 0.005% or more is added. However, if it exceeds 0.02%, a coarse Ti-based precipitate is generated, which becomes the starting point of HIC cracking, and the HIC cracking susceptibility deteriorates, so the Ti amount is in the range of 0.005 to 0.02%. To do. Preferably, the Ti amount is in the range of 0.009 to 0.015%.

Nb:0.005〜0.07%
Nbは組織の微細粒化により靭性を向上させるとともに、析出物を形成し、強度上昇に寄与する。しかし、0.005%未満では効果がなく、0.07%を超えると、粗大なNb系析出物が形成され、HIC割れの起点となり、HIC割れ感受性が劣化するため、Nb含有量は0.005〜0.07%に規定する。また、Nbは、Q値増加への寄与が大きい事から、Nb含有量は0.05%以下であることが好ましい。
Nb: 0.005 to 0.07%
Nb improves toughness by refining the structure, forms precipitates, and contributes to an increase in strength. However, if it is less than 0.005%, there is no effect, and if it exceeds 0.07%, a coarse Nb-based precipitate is formed, which becomes the starting point of HIC cracking, and the HIC cracking susceptibility deteriorates. It is specified to be 005 to 0.07%. Nb has a large contribution to increasing the Q value, so the Nb content is preferably 0.05% or less.

Ca:0.0005〜0.005%
Caは硫化物系介在物の形態を制御して耐HIC割れ感受性が向上する。0.0005%以上でその効果が現れ、0.005%を超えると効果が飽和し、逆に清浄度を低下させてHICの起点となる介在物を形成するため、Ca量は0.0005〜0.005%の範囲とする。
Ca: 0.0005 to 0.005%
Ca controls the form of sulfide inclusions to improve the resistance to HIC cracking. The effect appears at 0.0005% or more, and when it exceeds 0.005%, the effect is saturated, and conversely, the cleanliness is lowered to form inclusions as the starting point of HIC. The range is 0.005%.

N:0.008%以下
Nは不可避的不純物として扱うが、N量が0.008%を超えると、HIC割れの起点となる粗大なTi−Nb系の析出物が形成するため、N量は0.008%以下とする。
N: 0.008% or less N is treated as an inevitable impurity, but if the N content exceeds 0.008%, coarse Ti—Nb-based precipitates that form the starting point of HIC cracking are formed. 0.008% or less.

O:0.005%以下
本発明でOは不可避的不純物であり、その量の上限を規定する。Oは粗大で耐HICに悪影響を与える介在物の生成を抑制するため、O量は0.005%以下とする。
O: 0.005% or less In the present invention, O is an unavoidable impurity and defines the upper limit of the amount thereof. Since O is coarse and suppresses the formation of inclusions that adversely affect HIC resistance, the amount of O is set to 0.005% or less.

以上の他に、鋼板の強度・靱性をさらに改善を促す目的で、以下に示すCu、Ni、Cr、Mo、Vの1種以上を添加する。   In addition to the above, one or more of Cu, Ni, Cr, Mo, and V shown below are added for the purpose of further improving the strength and toughness of the steel sheet.

Cu:0.5%以下
Cuは、鋼の焼入性向上に寄与するが、0.5%を超えて添加を行うと、鋼板靱性の劣化が生じるため、Cuを添加する場合は、Cu量は0.5%以下とする。
Cu: 0.5% or less Cu contributes to the improvement of hardenability of steel, but if added over 0.5%, the toughness of the steel sheet is deteriorated. Is 0.5% or less.

Ni:1%以下
Niは、鋼の焼入性向上に寄与し、特に、多量に添加しても靱性劣化を生じないため、強靱化に有効であることから、添加することが可能である。しかし、Niは高価な元素であるため、Niを添加する場合は、Ni量は1%以下とする。
Ni: 1% or less Ni contributes to improving the hardenability of the steel. In particular, Ni does not cause deterioration in toughness even if added in a large amount, so it can be added because it is effective for toughening. However, since Ni is an expensive element, when adding Ni, the amount of Ni is made 1% or less.

Cr:0.5%以下
Crは、Mnと同様に低Cでも十分な強度を得るために有効な元素であるので添加してもよい。その効果を得るためには、0.1%以上添加することが好ましいが、過剰に添加すると溶接性が劣化するため、添加する場合は、Cr量は0.5%以下とする。
Mo:0.5%以下
Moは、焼入性を向上させる元素であり、MA生成やベイナイト相を強化することで強度上昇に寄与する元素であるので任意的に添加することが可能である。しかし、0.5%を超えて添加すると、溶接熱影響部靭性の劣化を招くことから、添加する場合には、Mo量は0.5%以下とする。0.3%以下とすることが好ましい。
Cr: 0.5% or less Since Cr is an effective element for obtaining sufficient strength even at low C as in Mn, it may be added. In order to acquire the effect, it is preferable to add 0.1% or more, but if added excessively, weldability deteriorates, so when added, the Cr content is 0.5% or less.
Mo: 0.5% or less Mo is an element that improves hardenability, and is an element that contributes to an increase in strength by strengthening the MA generation and the bainite phase, and can be arbitrarily added. However, if added over 0.5%, the weld heat-affected zone toughness is deteriorated. Therefore, when added, the Mo content is set to 0.5% or less. It is preferable to make it 0.3% or less.

V:0.1%以下
Vは、焼入性を高め、強度上昇に寄与する元素であるので任意的に添加してもよい。その効果を得るためには、0.005%以上添加することが好ましいが、0.1%を超えて添加すると溶接熱影響部の靭性が劣化するため、添加する場合は、V量は0.1%以下とする。
V: 0.1% or less V is an element that enhances hardenability and contributes to an increase in strength, and may be optionally added. In order to obtain the effect, it is preferable to add 0.005% or more, but if added over 0.1%, the toughness of the weld heat affected zone deteriorates. 1% or less.

本発明の鋼板における上記成分以外の残部は、Feおよび不可避的不純物である。ただし、本発明の作用効果を害さない範囲であれば、上記以外の元素の含有を拒むものではない。たとえば、強度、靱性改善の観点から、Mg:0.02%以下、REM(希土類金属):0.02%以下、B:0.003%以下、から選ばれる1種以上を含むことができる。   The remainder other than the said component in the steel plate of this invention is Fe and an unavoidable impurity. However, the content of elements other than those described above is not rejected as long as the effects of the present invention are not impaired. For example, from the viewpoint of improving strength and toughness, one or more selected from Mg: 0.02% or less, REM (rare earth metal): 0.02% or less, and B: 0.003% or less can be included.

以上の組成を含有する鋼素材又は鋼板を用いることが望ましい。   It is desirable to use a steel material or steel plate containing the above composition.

表1に示す成分組成の連続鋳造法で作製したスラブ(鋼種1〜15)をサンプルとした。   Slabs (steel types 1 to 15) produced by a continuous casting method having the composition shown in Table 1 were used as samples.

Figure 2013145221
Figure 2013145221

スラブの一部は、同一成分での偏析度を変化させるために、鋼種1〜13の鋳造速度を1.40m/分とし、鋼種14および15を2.00m/分と増加して実施した。これらスラブを用いて、中心部のMn偏析について、EPMAにて評価した。評価は、スラブから解析用の試料を切り出し、研摩により試料調整を実施し、スラブ中心部厚さ10mmの範囲をスラブ幅中心部(W/2)部を中心に±100mmの幅方向に領域についてマッピングを実施した。EPMA分析の領域を図1に示す。   In order to change the segregation degree of the same component, a part of the slab was formed by increasing the casting speed of steel types 1 to 13 to 1.40 m / min and increasing the steel types 14 and 15 to 2.00 m / min. Using these slabs, Mn segregation at the center was evaluated by EPMA. In the evaluation, a sample for analysis is cut out from the slab, the sample is adjusted by polishing, and the range of the slab center part thickness of 10 mm is measured in the width direction of ± 100 mm with the slab width center part (W / 2) as the center. Mapping was performed. The area of EPMA analysis is shown in FIG.

また、一部材料については、中心部と端部との中間位置(W/4)部の位置についても、分析を行い(W/2)部と(W/4)部での偏析度の比較を行った。マッピングは、加速電圧25kVで、0.10mm径の電子プローブを用いて行い、Mn濃度のマッピングを測定した。得られたMn濃度分布は、0.1mm×0.1mmのサイズでの分布のため、分析点を10×10点で平均化し、1×1mmでの分析点として再構築し、Mnの偏析度を求めた(分析領域が、10×100mmの場合の再構築後の分析点は1000点)。   In addition, for some materials, the intermediate position (W / 4) part between the center part and the end part is also analyzed, and the segregation degrees in the (W / 2) part and (W / 4) part are compared. Went. Mapping was performed using an electron probe having a diameter of 0.10 mm at an acceleration voltage of 25 kV, and mapping of Mn concentration was measured. Since the obtained Mn concentration distribution is a distribution with a size of 0.1 mm × 0.1 mm, the analysis points are averaged at 10 × 10 points, reconstructed as analysis points at 1 × 1 mm, and the segregation degree of Mn (The analysis point after reconstruction when the analysis area is 10 × 100 mm is 1000 points).

Mnの分析量域でのMn偏析度の最大値を表2に示す。ここで、最大偏析度は、分析領域内(20×200mm)の基本測定領域(1×1mm)でのMn濃度の最大値を最大Mn濃度とし、最大Mn濃度を添加Mn量で割った値として定義した。この最大偏析度の値と各元素の添加量を用いて、式(1)に代入して、計算した値をQ値の最大値とした。   Table 2 shows the maximum value of the degree of segregation of Mn in the Mn analytical amount range. Here, the maximum segregation degree is a value obtained by dividing the maximum value of Mn concentration in the basic measurement region (1 × 1 mm) in the analysis region (20 × 200 mm) as the maximum Mn concentration and dividing the maximum Mn concentration by the amount of added Mn. Defined. Using this maximum segregation value and the amount of each element added, the value calculated was substituted into Equation (1), and the calculated value was taken as the maximum Q value.

Figure 2013145221
Figure 2013145221

今回の実験では、同一材料でも(W/2)部の方が(W/4)部よりも偏析度の最大値が小さく、良好な偏析度である傾向であった。得られた偏析度および各スラブの成分分析値を用いて、分析領域内でのQ値の分布を計算し、Q値の分散形態を調査した。   In this experiment, even in the same material, the maximum value of the segregation degree was smaller in the (W / 2) part than in the (W / 4) part, and the segregation degree tended to be good. Using the obtained segregation degree and the component analysis value of each slab, the distribution of the Q value in the analysis region was calculated, and the dispersion form of the Q value was investigated.

その後、スラブを加熱、制御圧延、急速冷却、再加熱により厚さ30mmの厚鋼板を製造した。全てのスラブは同一条件で圧延を実施した。スラブ加熱は、1100℃で行い、熱間圧延は1050℃から850℃の間で行った。その後、800℃から急速水冷却を行った。この時、冷却停止温度は450℃で実施した。また、引き続き誘導加熱により600℃に加熱した後、空冷で製造した。本発明において、製造条件における温度はいずれも鋼板平均温度とする。鋼板平均温度は、板厚、表面温度および冷却条件等から、シミュレーション計算等により求められる。例えば、差分法を用い、板厚方向の温度分布を計算することにより、鋼板の平均温度が求められる。こうして得られた厚鋼板の強度は、540MPa〜680MPaの範囲であった。   Thereafter, a 30 mm thick steel plate was manufactured by heating, controlled rolling, rapid cooling, and reheating of the slab. All slabs were rolled under the same conditions. Slab heating was performed at 1100 ° C., and hot rolling was performed between 1050 ° C. and 850 ° C. Then, rapid water cooling was performed from 800 ° C. At this time, the cooling stop temperature was 450 ° C. Moreover, after heating to 600 degreeC by induction heating, it manufactured by air cooling. In the present invention, the temperatures in the production conditions are all steel plate average temperatures. The average steel plate temperature is obtained by simulation calculation or the like from the plate thickness, surface temperature, cooling conditions and the like. For example, the average temperature of a steel plate is calculated | required by calculating the temperature distribution of a plate | board thickness direction using the difference method. The strength of the thick steel plate thus obtained was in the range of 540 MPa to 680 MPa.

以上のようにして製造した鋼板を用いたHIC試験を実施した。HIC試験は、NACE TM0284に従ってA規格液で、96時間浸漬させHIC試験を実施した。試験後に、各サンプルの割れ面積率(CAR%)を測定した。各板の対象位置(W/4部、一部材料についてはW/2部)から3つずつサンプルを作製し、平均のCARを測定した。   The HIC test using the steel plate manufactured as described above was performed. The HIC test was carried out by immersing in standard A solution for 96 hours according to NACE TM0284. After the test, the crack area ratio (CAR%) of each sample was measured. Three samples were prepared from the target position (W / 4 part, W / 2 part for some materials) of each plate, and the average CAR was measured.

結果を表2にまとめる。Q値の最大値が、1.0以下であるサンプルではHIC割れが発生せず良好なHIC特性であった(サンプル1、2、4、6、12)。ここで、表2ではハイフン(−)は0の意味で使用している。また、Q値の最大値が1.3以下で、1.0から1.3以下のものが幅100mm当り5個以下の物は、HICの割れ面積率(CAR)が1.5%未満であり、良好なHIC特性を示した(サンプル−3、5、7、8、9、10、11、14)。また、Q値の最大値が1.3以下であるが、1.0−1.3以上のスポット数が5個を超えるものについては、HICの割れ面積率(CAR)が1.5%以上となり耐HIC特性が劣化している(サンプル13、15)また、成分や偏析度が悪くQ値の最大値が1.3を超える物は、いずれもHIC特性が劣化していた(サンプル−16、17、18、19、20)。   The results are summarized in Table 2. Samples having a maximum Q value of 1.0 or less exhibited good HIC characteristics with no HIC cracking (samples 1, 2, 4, 6, 12). Here, in Table 2, a hyphen (-) is used to mean 0. In addition, when the maximum Q value is 1.3 or less and 1.0 to 1.3 or less is 5 or less per 100 mm width, the HIC cracking area ratio (CAR) is less than 1.5%. Yes, showing good HIC characteristics (Samples-3, 5, 7, 8, 9, 10, 11, 14). Moreover, although the maximum value of Q value is 1.3 or less, when the number of spots of 1.0-1.3 or more exceeds 5, the HIC cracking area ratio (CAR) is 1.5% or more. The HIC characteristics are deteriorated (Samples 13 and 15). In addition, the components and the degree of segregation are poor and the maximum Q value exceeds 1.3. , 17, 18, 19, 20).

P値は、サンプル18については大きくなっており、このためNbCクラスターが形成されHIC割れが発生した。
本試験法によって同一材料での場所による違いおよび偏析度の違いによる耐HIC特性に違いを評価することが可能であることが確認された。また、この様にして得られた鋼板については、同様にEPMA分析実施してQ値の測定を実施した結果、スラブの評価と同様の結果が得られており、本分析は鋼板でも評価可能である事がわかった。
The P value was larger for sample 18, and therefore NbC clusters were formed and HIC cracking occurred.
It was confirmed that this test method was able to evaluate differences in HIC resistance due to differences in location and segregation in the same material. Moreover, about the steel plate obtained in this way, as a result of carrying out EPMA analysis similarly and measuring Q value, the result similar to evaluation of a slab was obtained, and this analysis can be evaluated also with a steel plate. I knew that there was.

次に、表3に示す成分組成の連続鋳造法で作製したスラブ(鋼種16〜20)をサンプルとした。   Next, the slab (steel types 16-20) produced by the continuous casting method of the component composition shown in Table 3 was used as a sample.

Figure 2013145221
Figure 2013145221

スラブは、鋳造速度1.1m/分で実施した。一部は、同一成分での偏析度を変化させるために、鋳造速度を1.8mm/分および2.0m/分で行い、また、最終凝固部での圧下量を半分にして実施した(鋼種−18、20)。これらスラブを用いて、中心部のMn偏析について、EPMAにて評価した。評価は、スラブから解析用の試料を切り出し、研摩により試料調整を実施し、スラブ中心部厚さ10mmの範囲をスラブ幅1/4部(W/4)部を中心に±100mmの幅方向に領域についてマッピングを実施した。マッピングは、加速電圧25kVで、0.10mm径の電子プローブを用いて行い、Mn濃度のマッピングを測定した。得られたMn濃度分布は、0.1mm×0.1mmのサイズでの分布のため、分析点を10×10点で平均化し、1×1mmでの分析点として再構築し、Mnの偏析度を求めた(分析領域が、10×100mmの場合の再構築後の分析点は1000点)。Mnの分析量域でのMn偏析度の最大値を表4に示す。   The slab was carried out at a casting speed of 1.1 m / min. In order to change the segregation degree of the same component, partly, the casting speed was 1.8 mm / min and 2.0 m / min, and the reduction amount in the final solidification part was halved (steel type) -18, 20). Using these slabs, Mn segregation at the center was evaluated by EPMA. The evaluation is performed by cutting out a sample for analysis from the slab, adjusting the sample by polishing, and adjusting the thickness of the slab center part to 10 mm in the width direction of ± 100 mm around the slab width 1/4 part (W / 4) part. Mapping was performed for the region. Mapping was performed using an electron probe having a diameter of 0.10 mm at an acceleration voltage of 25 kV, and mapping of Mn concentration was measured. Since the obtained Mn concentration distribution is a distribution with a size of 0.1 mm × 0.1 mm, the analysis points are averaged at 10 × 10 points, reconstructed as analysis points at 1 × 1 mm, and the segregation degree of Mn (The analysis point after reconstruction when the analysis area is 10 × 100 mm is 1000 points). Table 4 shows the maximum value of the degree of segregation of Mn in the analysis amount region of Mn.

ここで、最大偏析度は、分析領域内(20×200mm)の基本測定領域(1×1mm)でのMn濃度の最大値を最大Mn濃度とし、最大Mn濃度を添加Mn量で割った値として定義した。この最大偏析度の値と各元素の添加量を用いて、式(1)および(2)に代入して、計算した値をQ値およびP値の最大値とした。   Here, the maximum segregation degree is a value obtained by dividing the maximum value of Mn concentration in the basic measurement region (1 × 1 mm) in the analysis region (20 × 200 mm) as the maximum Mn concentration and dividing the maximum Mn concentration by the amount of added Mn. Defined. Using this maximum segregation value and the amount of each element added, the values calculated were substituted into equations (1) and (2), and the calculated values were taken as the maximum values of the Q value and the P value.

Figure 2013145221
Figure 2013145221

その後、スラブを加熱、制御圧延、急速冷却、再加熱により厚さ32mmの厚鋼板を製造した。全てのスラブは同一条件で圧延を実施した(サンプル21〜25)。スラブ加熱は、1100℃で行い、熱間圧延は1050℃から850℃の間で行った。その後、800℃から急速水冷却を行った。この時、冷却停止温度は480℃で実施した。また、一部材料は引き続き誘導加熱により600℃に加熱した後、空冷で製造した。強度は、560MPa〜660MPaの範囲であった。これら温度は、鋼板表面温度を指標として用いた。   Thereafter, a thick steel plate having a thickness of 32 mm was manufactured by heating, controlled rolling, rapid cooling, and reheating of the slab. All slabs were rolled under the same conditions (Samples 21 to 25). Slab heating was performed at 1100 ° C., and hot rolling was performed between 1050 ° C. and 850 ° C. Then, rapid water cooling was performed from 800 ° C. At this time, the cooling stop temperature was 480 ° C. In addition, some materials were subsequently heated to 600 ° C. by induction heating and then manufactured by air cooling. The strength ranged from 560 MPa to 660 MPa. These temperatures used the steel plate surface temperature as an index.

以上のようにして製造した鋼板を用いたHIC試験を実施した。HIC試験は、NACE TM0284に従ってA規格液で、96時間浸漬させHIC試験を実施した。試験後に、各サンプルの割れ面積率(CAR%)を測定した。各板の対象位置から3つずつサンプルを作製し、平均のCARを測定した。   The HIC test using the steel plate manufactured as described above was performed. The HIC test was carried out by immersing in standard A solution for 96 hours according to NACE TM0284. After the test, the crack area ratio (CAR%) of each sample was measured. Three samples were prepared from the target position of each plate, and the average CAR was measured.

結果を表4にまとめる。Q値の最大値が、1.3以下であり、また、1.0−1.3以上のスポット数が5個以下のサンプルで、P値を満足するものは、HIC割れが1.5%以下であり、良好なHIC特性であった(サンプル21、22、23)。偏析度が悪くQ値が、1.0−1.3以上のスポット数が5個を超え、またP値が0.40を超えるものについては、HIC特性が劣化していた(サンプル−24、25)。特に、P値の最大値が0.4を超えるものは、NbCの形成により割れが発生し、耐HIC特性が劣化している(サンプル24)。   The results are summarized in Table 4. A sample having a maximum Q value of 1.3 or less and a number of spots of 1.0 to 1.3 or more and 5 or less and satisfying the P value has a HIC crack of 1.5%. The following were good HIC characteristics (Samples 21, 22, and 23). The segregation degree was poor, and the Q value of 1.0-1.3 or more of the number of spots exceeded 5 and the P value exceeded 0.40, the HIC characteristics were deteriorated (Sample-24, 25). In particular, when the maximum P value exceeds 0.4, cracking occurs due to the formation of NbC, and the HIC resistance is deteriorated (Sample 24).

本試験法によって同一材料での場所による違いおよび偏析度の違いによる耐HIC特性に違いを評価することが可能であることが確認された。また、この様にして得られた鋼板については、同様にEPMA分析実施してQ値、P値の測定を実施した結果、スラブの評価と同様の結果が得られており、本分析は鋼板でも評価可能である事がわかった。   It was confirmed that this test method was able to evaluate differences in HIC resistance due to differences in location and segregation in the same material. Moreover, about the steel plate obtained in this way, as a result of carrying out EPMA analysis similarly and measuring Q value and P value, the result similar to evaluation of a slab was obtained, and this analysis is also in steel plate. It turns out that it can be evaluated.

Claims (5)

鋼材の元素含有量と中心偏析部のMn偏析度とからなる下記式(1)で定義されるQ値を基本測定領域毎に測定し計算し、これら全てのQ値を用いて鋼材の耐水素割れ感受性を評価する方法。
Q=C5.4+CMn/6+(CCr0.3+CMo1.3+C0.6)/5+
(CCu2.8+CNi1.3)/15+CNb/4+2C5.4・・・・式(1)
ここで、fは偏析部でのMn偏析度で、(CMn /CMn)で定義される値であり、CMn は中心偏析部のMn濃度分布を鋼材の断面を幅方向に測定して得られるMn濃度、CMnはMn濃度の平均の濃度であり、fのNはべき乗を、Cはそれぞれ元素iの含有量(質量%)で、iは元素C、Mn、Cr、Mo、V、Cu、Ni、Nb、Pを表し、含有しない場合はC=0とする。
The Q value defined by the following formula (1) consisting of the element content of the steel material and the Mn segregation degree of the central segregation part is measured and calculated for each basic measurement region, and the hydrogen resistance of the steel material is calculated using all these Q values. A method to evaluate cracking susceptibility.
Q = C C f 5.4 + C Mn f 1/6 + (C Cr f 0.3 + C Mo f 1.3 + C V f 0.6) / 5 +
(C Cu f 2.8 + C Ni f 1.3) / 15 + C Nb f 5/4 + 2C P f 5.4 ···· formula (1)
Here, f is the degree of Mn segregation at the segregation part, and is a value defined by (C Mn C / C Mn ). C Mn C is the Mn concentration distribution at the center segregation part measured in the width direction of the cross section of the steel material. Mn concentration obtained by, C Mn is the average concentration of the Mn concentration, the N is a power of f N, at a content of C i, respectively the element i (wt%), i is the element C, Mn, Cr , Mo, V, Cu, Ni, Nb, and P, and when not contained, C i = 0.
前記鋼材の化学組成が、質量%で、C:0.03〜0.07%、Si:0.01〜0.5%、Mn:0.8〜1.5%、Al:0.07%以下、S:0.001以下、P:0.010以下、Ti:0.005〜0.02%、Nb:0.005〜0.07%、Ca:0.0005〜0.005%、N:0.008%以下、O:0.005%以下を含有し、さらに、Cu:0.5%以下、Ni:1%以下、Cr:0.5%以下、Mo:0.5%以下、V:0.1%以下の中から選ばれる1種以上を含有し、残部Fe及び不可避的不純物からなることを特徴とする請求項1に記載の鋼材の耐水素割れ感受性を評価する方法。   The chemical composition of the steel material is mass%, C: 0.03-0.07%, Si: 0.01-0.5%, Mn: 0.8-1.5%, Al: 0.07% Hereinafter, S: 0.001 or less, P: 0.010 or less, Ti: 0.005 to 0.02%, Nb: 0.005 to 0.07%, Ca: 0.0005 to 0.005%, N : 0.008% or less, O: 0.005% or less, Cu: 0.5% or less, Ni: 1% or less, Cr: 0.5% or less, Mo: 0.5% or less, The method for evaluating the hydrogen cracking susceptibility of a steel material according to claim 1, comprising at least one selected from V: 0.1% or less and comprising the balance Fe and inevitable impurities. 連続鋳造鋳片の鋳込み方向と垂直方向の断面の中心偏析部の1mm×1mmの前記基本測定領域毎に測定した全てのQ値の中で、1.0≦Q<1.3であるQ値の数が前記断面で幅100mm当り5個以下(0を含む)であり、残部のQ値はQ<1.0である請求項2に記載の化学組成を含有する連続鋳造鋳片を鋼素材とすることを特徴とする耐水素割れ感受性が良好な高強度耐サワーラインパイプ用鋼板。   Among all the Q values measured for each of the basic measurement areas of 1 mm × 1 mm of the central segregation portion in the cross section perpendicular to the casting direction of the continuous cast slab, the Q value satisfying 1.0 ≦ Q <1.3 3 is 5 or less (including 0) per 100 mm width in the cross section, and the remaining Q value is Q <1.0. A steel sheet for high-strength sour line pipes with good resistance to hydrogen cracking. 鋼板の圧延方向と垂直方向の断面であって、該鋼板の圧延方向と垂直方向の断面の中心偏析部の厚さ方向0.1mm×垂直方向1mmの前記基本測定領域毎の全てのQ値の中で、1.0≦Q<1.3であるQ値の数が前記断面で幅100mm当り5個以下(0を含む)であり残部のQ値がQ<1.0であることを特徴とする請求項2に記載の化学組成を含有する耐水素割れ感受性が良好な高強度耐サワーラインパイプ用鋼板。   A cross section perpendicular to the rolling direction of the steel sheet, and all Q values for each of the basic measurement areas of 0.1 mm in the thickness direction of the central segregation portion of the cross section perpendicular to the rolling direction of the steel sheet and 1 mm in the vertical direction. The number of Q values satisfying 1.0 ≦ Q <1.3 is 5 or less (including 0) per 100 mm width in the cross section, and the remaining Q value is Q <1.0. A steel plate for a high-strength sour line pipe having good chemical resistance to hydrogen cracking and containing the chemical composition according to claim 2. 鋼材のC、Nb元素の含有量と中心偏析部のMn偏析度とからなる下記式(2)で定義されるP値が0.35以下であることを特徴とする請求項4記載の耐水素割れ感受性が良好な高強度耐サワーラインパイプ用鋼板。
P=C5.4 × CNb ・・・・式(2)
ここで、fは偏析部でのMn偏析度で、(CMn /CMn)で定義される値であり、CMn は中心偏析部のMn濃度分布を鋼材の断面を幅方向に測定して得られるMn濃度、CMnはMn濃度の平均の濃度であり、fのNはべき乗を表す。また、C 、CNb はそれぞれC、Nb元素の含有量(質量%)を表す。
5. The hydrogen resistance according to claim 4, wherein the P value defined by the following formula (2) consisting of the C and Nb element contents of the steel material and the Mn segregation degree of the central segregation part is 0.35 or less. High strength steel plate for sour line pipes with good crack sensitivity.
P = C C f 5.4 × C Nb f 5 ... Formula (2)
Here, f is the degree of Mn segregation at the segregation part, and is a value defined by (C Mn C / C Mn ). C Mn C is the Mn concentration distribution at the center segregation part measured in the width direction of the cross section of the steel material. Mn concentration obtained by, C Mn is the average concentration of the Mn concentration, the N of f N represents exponentiation. C C and C Nb represent the contents (mass%) of C and Nb elements, respectively.
JP2012223034A 2011-12-13 2012-10-05 Method for evaluating the resistance to hydrogen cracking of steel materials and steel sheets for high strength sour line pipes with good resistance to hydrogen cracking Active JP6044247B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2012223034A JP6044247B2 (en) 2011-12-13 2012-10-05 Method for evaluating the resistance to hydrogen cracking of steel materials and steel sheets for high strength sour line pipes with good resistance to hydrogen cracking

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
JP2011272122 2011-12-13
JP2011272122 2011-12-13
JP2012223034A JP6044247B2 (en) 2011-12-13 2012-10-05 Method for evaluating the resistance to hydrogen cracking of steel materials and steel sheets for high strength sour line pipes with good resistance to hydrogen cracking

Publications (2)

Publication Number Publication Date
JP2013145221A true JP2013145221A (en) 2013-07-25
JP6044247B2 JP6044247B2 (en) 2016-12-14

Family

ID=49041069

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2012223034A Active JP6044247B2 (en) 2011-12-13 2012-10-05 Method for evaluating the resistance to hydrogen cracking of steel materials and steel sheets for high strength sour line pipes with good resistance to hydrogen cracking

Country Status (1)

Country Link
JP (1) JP6044247B2 (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR101715517B1 (en) * 2015-10-21 2017-03-13 현대제철 주식회사 Method of evaluating centerline segregation of strand
WO2019077725A1 (en) * 2017-10-19 2019-04-25 Jfeスチール株式会社 High-strength steel sheet for sour-resistant line pipe, and high-strength steel pipe using same
CN112098393A (en) * 2020-09-14 2020-12-18 中国工程物理研究院机械制造工艺研究所 Method for measuring multiple elements of HR-1 direct-reading spectrum of hydrogen-resistant steel pipe

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2001158936A (en) * 1999-12-01 2001-06-12 Sumitomo Metal Ind Ltd Thin steel sheet excellent in hydrogen induced cracking resistance and producing method therefor
JP2009133005A (en) * 2007-11-07 2009-06-18 Jfe Steel Corp Steel plate for line pipe and steel pipe
JP2010209461A (en) * 2009-02-12 2010-09-24 Nippon Steel Corp High-strength steel sheet and high-strength steel pipe having excellent hydrogen-induced cracking resistance for use in line pipe
US20120121453A1 (en) * 2009-03-12 2012-05-17 Sumitomo Metal Industries, Ltd. Hic-resistant thick steel plate and uoe steel pipe

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2001158936A (en) * 1999-12-01 2001-06-12 Sumitomo Metal Ind Ltd Thin steel sheet excellent in hydrogen induced cracking resistance and producing method therefor
JP2009133005A (en) * 2007-11-07 2009-06-18 Jfe Steel Corp Steel plate for line pipe and steel pipe
JP2010209461A (en) * 2009-02-12 2010-09-24 Nippon Steel Corp High-strength steel sheet and high-strength steel pipe having excellent hydrogen-induced cracking resistance for use in line pipe
US20120121453A1 (en) * 2009-03-12 2012-05-17 Sumitomo Metal Industries, Ltd. Hic-resistant thick steel plate and uoe steel pipe

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR101715517B1 (en) * 2015-10-21 2017-03-13 현대제철 주식회사 Method of evaluating centerline segregation of strand
WO2019077725A1 (en) * 2017-10-19 2019-04-25 Jfeスチール株式会社 High-strength steel sheet for sour-resistant line pipe, and high-strength steel pipe using same
JPWO2019077725A1 (en) * 2017-10-19 2019-11-14 Jfeスチール株式会社 High strength steel plate for sour line pipe and high strength steel pipe using the same
EP3674433A4 (en) * 2017-10-19 2020-07-29 JFE Steel Corporation High-strength steel sheet for sour-resistant line pipe, and high-strength steel pipe using same
CN112098393A (en) * 2020-09-14 2020-12-18 中国工程物理研究院机械制造工艺研究所 Method for measuring multiple elements of HR-1 direct-reading spectrum of hydrogen-resistant steel pipe

Also Published As

Publication number Publication date
JP6044247B2 (en) 2016-12-14

Similar Documents

Publication Publication Date Title
JP5853661B2 (en) Steel sheet for high-strength sour line pipe, its material and manufacturing method of steel sheet for high-strength sour line pipe
JP5320791B2 (en) Center segregation evaluation method
JP2014077642A (en) Estimation method of hic sensitivity of steel material and manufacturing method of high strength thick steel plate for line pipe superior in anti hic performance using the same
JP6019117B2 (en) High strength hot-rolled steel sheet and manufacturing method thereof
JP3960341B2 (en) Thermal processing control type 590 MPa class H-section steel and manufacturing method thereof
JP5974962B2 (en) Method for producing aluminum-killed steel with Ca added with excellent HIC resistance and Ca addition treatment method for molten steel
JP5087980B2 (en) High-strength hot-rolled steel sheet excellent in punching workability and manufacturing method thereof
KR100983148B1 (en) Steel material having excellent haz toughness and manufacturing method of the same
JP5910195B2 (en) Method for evaluating HIC resistance of steel material and method for producing high strength thick steel plate for line pipe using the same
RU2532791C1 (en) Highly strong steel sheet, possessing high resistance to destruction and hic
KR101737255B1 (en) Thick steel plate and production method for thick steel plate
EP3859027B1 (en) High strength steel plate for sour-resistant line pipe and method for manufacturing same, and high strength steel pipe using high strength steel plate for sour-resistant line pipe
EP3604584A1 (en) High-strength steel plate for sour resistant line pipe, method for manufacturing same, and high-strength steel pipe using high-strength steel plate for sour resistant line pipe
JP4220871B2 (en) High-tensile steel plate and manufacturing method thereof
EP3633057B1 (en) Steel plate and method of producing same
JP6044247B2 (en) Method for evaluating the resistance to hydrogen cracking of steel materials and steel sheets for high strength sour line pipes with good resistance to hydrogen cracking
KR20190137955A (en) Steel plate having excellent hydrogen-induced cracking resistance and steel pipe for line pipe
JP4879808B2 (en) High-strength hot-rolled steel sheet excellent in punching workability and manufacturing method thereof
JP2013217901A (en) Method for evaluating hic sensitivity of steel material and method for manufacturing thick steel plate excellent in hic resistance
JP5234952B2 (en) Low yield ratio steel material excellent in toughness of weld heat affected zone, and method for producing the same
JP6032166B2 (en) Method for estimating hydrogen-resistant cracking characteristics of calcium-added steel
JP6094540B2 (en) Method for evaluating steel materials with excellent hydrogen-induced cracking resistance
JP2013250113A (en) Determination method for hic resistance performance of steel material
Kadoi et al. Ductility-dip cracking susceptibility in dissimilar weld metals of alloy 690 filler metal and low alloy steel
JP2017082261A (en) Alloy sheet with quantitatively evaluated segregation

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20150825

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20160527

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20160607

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20160729

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20161018

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20161031

R150 Certificate of patent or registration of utility model

Ref document number: 6044247

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250