JP2013144294A - Method for production of multilayer structure - Google Patents

Method for production of multilayer structure Download PDF

Info

Publication number
JP2013144294A
JP2013144294A JP2012273337A JP2012273337A JP2013144294A JP 2013144294 A JP2013144294 A JP 2013144294A JP 2012273337 A JP2012273337 A JP 2012273337A JP 2012273337 A JP2012273337 A JP 2012273337A JP 2013144294 A JP2013144294 A JP 2013144294A
Authority
JP
Japan
Prior art keywords
resin
multilayer structure
pva
polyvinyl alcohol
producing
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2012273337A
Other languages
Japanese (ja)
Other versions
JP6021625B2 (en
Inventor
Kaoru Inoue
馨 井上
Ikuhiro Asano
育洋 浅野
Tamahide Naito
珠英 内藤
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Synthetic Chemical Industry Co Ltd
Original Assignee
Nippon Synthetic Chemical Industry Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nippon Synthetic Chemical Industry Co Ltd filed Critical Nippon Synthetic Chemical Industry Co Ltd
Priority to JP2012273337A priority Critical patent/JP6021625B2/en
Publication of JP2013144294A publication Critical patent/JP2013144294A/en
Application granted granted Critical
Publication of JP6021625B2 publication Critical patent/JP6021625B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Landscapes

  • Application Of Or Painting With Fluid Materials (AREA)
  • Laminated Bodies (AREA)

Abstract

PROBLEM TO BE SOLVED: To provide a method for production of a multilayer structure having a favorable interlayer adhesiveness of a hydrophobic resin substrate with a PVA-based resin layer.SOLUTION: There is provided a method for production of a multilayer structure having a polyvinyl alcohol-based resin layer adjacent to a hydrophobic resin substrate. The method includes hydrophilizing the surface of the hydrophobic resin substrate to control a contact angle with water to be 60° or less, applying an aqueous coating liquid comprising as a main component, a polyvinyl alcohol-based resin having an average degree of polymerization of 200 to 400, and then drying.

Description

本発明は、疎水性樹脂基材に隣接してポリビニルアルコール系樹脂層を有する多層構造体の製造方法に関し、さらに詳しくは、疎水性樹脂基材とポリビニルアルコール系樹脂層との層間接着性に優れた多層構造体を得ることができる製造方法に関する。   The present invention relates to a method for producing a multilayer structure having a polyvinyl alcohol resin layer adjacent to a hydrophobic resin substrate, and more specifically, has excellent interlayer adhesion between a hydrophobic resin substrate and a polyvinyl alcohol resin layer. The present invention relates to a production method capable of obtaining a multilayer structure.

プラスチック製のフィルム、シート、あるいはボトル、カップなどの成形体に酸素ガスバリア性を付与する方法として、基材表面にポリビニルアルコール系樹脂(以下、PVA系樹脂と略記する。)の水溶液を塗布、乾燥し、ガスバリア性に優れるPVA系樹脂層を形成する技術が有用である。   As a method for imparting an oxygen gas barrier property to a molded body such as a plastic film, sheet, bottle, or cup, an aqueous solution of a polyvinyl alcohol resin (hereinafter abbreviated as PVA resin) is applied to the substrate surface and dried. And the technique which forms the PVA-type resin layer excellent in gas barrier property is useful.

しかしながら、親水性樹脂であるPVA系樹脂は疎水性材料に対する親和性に乏しいため、基材がポリエステル系樹脂やポリオレフィン系樹脂などの疎水性樹脂である場合、PVA系樹脂層との層間接着性を高めるため、両層の間にアンカーコート層を設ける方法が広く用いられている。
さらに、製造工程を複雑化させるアンカーコート層の形成の代わりに、PVA系樹脂を含有する塗工液中に水性アンカー剤を配合した塗工液が提案されている。(例えば、特許文献1参照。)
However, since the PVA resin, which is a hydrophilic resin, has poor affinity for hydrophobic materials, when the base material is a hydrophobic resin such as a polyester resin or a polyolefin resin, the interlayer adhesiveness with the PVA resin layer is reduced. In order to increase this, a method of providing an anchor coat layer between both layers is widely used.
Furthermore, instead of forming an anchor coat layer that complicates the manufacturing process, a coating liquid in which an aqueous anchor agent is blended in a coating liquid containing a PVA resin has been proposed. (For example, refer to Patent Document 1.)

特開2000−63610号公報JP 2000-63610 A

しかしながら、PVA系樹脂層のガスバリア性はPVA系樹脂の結晶性によるものであり、特に高度なガスバリア性が要求される場合には、PVA系樹脂中にその結晶性を乱す可能性がある添加剤を配合することは好ましくなく、特許文献1に記載の技術による水性アンカー剤の配合も、PVA系樹脂層のガスバリア性を低下させる傾向がある。   However, the gas barrier property of the PVA-based resin layer is due to the crystallinity of the PVA-based resin, and particularly when an advanced gas barrier property is required, an additive that may disturb the crystallinity in the PVA-based resin. It is not preferable to blend the aqueous anchoring agent by the technique described in Patent Document 1, and the gas barrier property of the PVA-based resin layer tends to be lowered.

すなわち本発明は、疎水性樹脂基材に隣接してPVA系樹脂層を有する積層構造体の製造方法であって、アンカーコート層、あるいは塗工液へのアンカー剤の配合を必要とせず、良好な層間接着性が得られる製造方法の提供を目的とするものである。   That is, the present invention is a method for producing a laminated structure having a PVA resin layer adjacent to a hydrophobic resin substrate, and does not require the anchor coating layer or the blending of the anchor agent into the coating liquid. An object of the present invention is to provide a production method capable of obtaining a good interlayer adhesion.

本発明は、上記事情に鑑み、鋭意検討した結果、疎水性樹脂基材の表面を親水化処理して水との接触角を60度以下にした後、平均重合度が200〜400のPVA系樹脂を主体成分とする水性塗工液を塗工、乾燥することを特徴とする多層構造体の製造方法によって本発明の目的が達成されることを見出し、本発明を完成した。   In the present invention, as a result of intensive studies in view of the above circumstances, the surface of the hydrophobic resin substrate is hydrophilized so that the contact angle with water is 60 degrees or less, and then the PVA system has an average degree of polymerization of 200 to 400. The inventors have found that the object of the present invention can be achieved by a method for producing a multilayer structure characterized by coating and drying an aqueous coating liquid containing a resin as a main component, and completed the present invention.

PVA系樹脂は、通常、酢酸ビニルをラジカル重合して得られるポリ酢酸ビニルをケン化して製造されるが、その分子鎖末端の多くは、重合反応時に成長末端が反応溶媒であるメタノールに連鎖移動してエステル構造が生成し、これがケン化されたメチロール基である。本発明では、かかるPVA系樹脂として重合度が比較的小さい、すなわち、末端メチロール基の数が多いものを用いるものである。
一方、疎水性樹脂基材の表面は親水化処理によって酸化され、多数のカルボキシル基が生成する。
本発明の効果であるPVA系樹脂層と疎水性樹脂基材との良好な接着性は、かかるPVA系樹脂末端のメチロール基と親水化処理された基材表面のカルボキシル基の反応によるものと推測される。
PVA resin is usually produced by saponifying polyvinyl acetate obtained by radical polymerization of vinyl acetate, but most of its molecular chain ends are chain-transferred to methanol, which is the reaction solvent during the polymerization reaction. Thus, an ester structure is formed, which is a saponified methylol group. In the present invention, a PVA resin having a relatively low degree of polymerization, that is, a resin having a large number of terminal methylol groups is used.
On the other hand, the surface of the hydrophobic resin substrate is oxidized by the hydrophilization treatment, and a large number of carboxyl groups are generated.
The good adhesiveness between the PVA resin layer and the hydrophobic resin substrate, which is the effect of the present invention, is presumed to be due to the reaction between the methylol group at the end of the PVA resin and the carboxyl group on the hydrophilic treated substrate surface. Is done.

なお、PVA系樹脂の塗工液を基材に塗工してガスバリア層とする場合には、かかる層の機械強度や耐久性の点から、高重合度のPVA系樹脂を用いるのが通常の考え方である。ところが、本発明ではこれとはまったく逆の、低重合度であるPVA系樹脂を用いることによって、意外にも良好な効果が得られたものである。   In addition, when applying the coating liquid of PVA-type resin to a base material and making it a gas barrier layer, it is normal to use PVA-type resin of high polymerization degree from the point of the mechanical strength and durability of this layer. It is a way of thinking. However, in the present invention, a surprisingly good effect is obtained by using a PVA resin having a low polymerization degree, which is the opposite of this.

本発明の多層構造体の製造方法は、アンカーコート層、あるいは塗工液へのアンカー剤などの配合を必要とせず、疎水性樹脂基材とPVA系樹脂層との良好な層間接着性が得られることから、工程短縮が可能であるとともに、各種包装材料に好適な多層構造体を容易に得ることが可能である   The method for producing a multilayer structure according to the present invention does not require an anchor coat layer or a compounding agent such as an anchor agent in a coating solution, and provides good interlayer adhesion between the hydrophobic resin substrate and the PVA resin layer. Therefore, the process can be shortened and a multilayer structure suitable for various packaging materials can be easily obtained.

以下に記載する構成要件の説明は、本発明の実施態様の一例(代表例)であり、これらの内容に特定されるものではない。
以下、本発明について詳細に説明する。
The description of the constituent requirements described below is an example (representative example) of an embodiment of the present invention, and is not limited to these contents.
Hereinafter, the present invention will be described in detail.

本発明の多層構造体の製造方法は、疎水性樹脂フィルムの表面を親水化処理して水との接触角を60度以下にした後、平均重合度が200〜400のポリビニルアルコール系樹脂を主体成分とする水性塗工液を塗工、乾燥することを特徴とするものである。
以下、各順に説明する。
The method for producing a multilayer structure of the present invention mainly comprises a polyvinyl alcohol resin having an average polymerization degree of 200 to 400 after hydrophilizing the surface of the hydrophobic resin film to make the contact angle with water 60 ° or less. A water-based coating liquid as a component is applied and dried.
Hereinafter, each will be described in order.

〔疎水性樹脂基材〕
まず、本発明で用いられる疎水性樹脂基材について説明する。
本発明の疎水性樹脂基材に用いられる疎水性樹脂としては、疎水性の合成樹脂であれば特に制限はないが、通常、23℃、50%RHの雰囲気下で測定された水の接触角が60度を超えるものが用いられ、特に70〜100度のものが好ましく用いられる。かかる水の接触角が大きすぎるものは、後述する表面の親水化処理を行ったとしても水との接触角を60度以下にすることが困難になる傾向があり、逆に小さすぎるものは、疎水性が不足するために水分のバリア性が不十分となる傾向がある。
[Hydrophobic resin substrate]
First, the hydrophobic resin substrate used in the present invention will be described.
The hydrophobic resin used in the hydrophobic resin base material of the present invention is not particularly limited as long as it is a hydrophobic synthetic resin, but usually the contact angle of water measured in an atmosphere of 23 ° C. and 50% RH. In which the angle exceeds 60 degrees is used, and those having an angle of 70 to 100 degrees are particularly preferred. Such a contact angle of water that is too large tends to make it difficult to reduce the contact angle with water to 60 degrees or less even when the surface hydrophilization treatment described below is performed. Since the hydrophobicity is insufficient, the moisture barrier property tends to be insufficient.

このような疎水性樹脂としては、公知の熱可塑性樹脂や熱硬化性樹脂を挙げることができるが、薄層としたときの柔軟性、および熱溶融成形が可能な点から、熱可塑性樹脂が好適に用いられる。
その具体例としては、低密度ポリエチレン、超低密度ポリエチレン、高密度ポリエチレン、ポリプロピレン、エチレン−プロピレン共重合体、エチレン−ブテン共重合体、エチレン−酢酸ビニル共重合体、エチレン−メチルメタクリレート共重合体、アイオノマー樹脂等のポリオレフィン系樹脂;ポリエチレンテレフタレート、ポリブチレンテレフタレート、ポリエチレンナフタレート等の芳香族ポリエステル系樹脂;ポリ乳酸、ポリブチレンサクシネート、ポリブチレンサクシネートアジペート等の脂肪族ポリエステル系樹脂;ナイロン−6、ナイロン6,6、メタキシリレンジアミン−アジピン酸縮重合物等のポリアミド系樹脂;ポリメタクリレート、ポリメチルメタクリレート等のアクリル系樹脂;ポリスチレン、スチレン−アクリロニトリル等のスチレン系樹脂;トリ酢酸セルロース、ジ酢酸セルロースなどのセルロース系樹脂;ポリ塩化ビニル、ポリ塩化ビニリデン、ポリフッ化ビニリデン等のハロゲン含有樹脂;ポリカーボネート樹脂、ポリサルホン樹脂、ポリエーテルサルホン樹脂、ポリエーテルエーテルケトン樹脂、ポリフェニレンオキシド樹脂、液晶ポリマー等のエンジニアリングプラスチック;等を挙げることができる。
Examples of such a hydrophobic resin include known thermoplastic resins and thermosetting resins, but thermoplastic resins are preferred from the viewpoints of flexibility when formed into a thin layer and capable of hot melt molding. Used for.
Specific examples thereof include low-density polyethylene, ultra-low-density polyethylene, high-density polyethylene, polypropylene, ethylene-propylene copolymer, ethylene-butene copolymer, ethylene-vinyl acetate copolymer, ethylene-methyl methacrylate copolymer. Polyolefin resins such as ionomer resins; aromatic polyester resins such as polyethylene terephthalate, polybutylene terephthalate, and polyethylene naphthalate; aliphatic polyester resins such as polylactic acid, polybutylene succinate, and polybutylene succinate adipate; nylon 6, polyamide 6,6, polyamide resin such as metaxylylenediamine-adipic acid condensation polymer; acrylic resin such as polymethacrylate, polymethyl methacrylate; polystyrene, styrene-acrylo Styrenic resins such as tolyl; cellulose resins such as cellulose triacetate and cellulose diacetate; halogen-containing resins such as polyvinyl chloride, polyvinylidene chloride, and polyvinylidene fluoride; polycarbonate resins, polysulfone resins, polyethersulfone resins, poly And engineering plastics such as ether ether ketone resin, polyphenylene oxide resin, and liquid crystal polymer.

中でも、機械強度、透明性、水蒸気バリア性、およびコストの点から、ポリエステル系樹脂やポリオレフィン系樹脂が好ましく用いられ、特にポリエチレンテレフタレート、あるいはポリエチレンやポリプロピレンなどが好適に用いられる。特に、疎水性樹脂としてポリエステル系樹脂を用いた場合に、本発明の効果が著しく発揮される。   Among these, polyester resins and polyolefin resins are preferably used from the viewpoint of mechanical strength, transparency, water vapor barrier properties, and cost, and polyethylene terephthalate, polyethylene, polypropylene, and the like are particularly preferably used. In particular, when a polyester resin is used as the hydrophobic resin, the effects of the present invention are remarkably exhibited.

かかる疎水性樹脂基材の厚さは、その使用目的に応じて、適宜好適なものを選択して用いればよいが、通常は5〜500μmであり、特に10〜100μmの範囲であるものが好適に用いられる。かかる厚さが厚すぎると多層構造体とした際の柔軟性が不足する傾向にあり、薄すぎると機械強度が不十分となる場合がある。   The thickness of the hydrophobic resin substrate may be appropriately selected and used depending on the purpose of use, but is usually 5 to 500 μm, and particularly preferably 10 to 100 μm. Used for. If the thickness is too thick, the flexibility of the multilayer structure tends to be insufficient, and if it is too thin, the mechanical strength may be insufficient.

本発明の製造法は、かかる疎水性樹脂基材の表面を親水化処理し、水との接触角を60度以下にしたものを用いることを特徴とするものである。
かかる親水化処理によって基材表面の水の接触角は低下し、かかる低下率としては、通常10%以上、特に15〜80%、殊に20〜60%の範囲が好ましく用いられる。
なお、かかる低下率は、式:{(処理前の接触角−処理後の接触角)}/処理前の接触角}×100、により求めることができる。
The production method of the present invention is characterized in that the surface of such a hydrophobic resin substrate is subjected to a hydrophilic treatment and the contact angle with water is set to 60 degrees or less.
Such a hydrophilization treatment reduces the water contact angle on the surface of the substrate, and the reduction rate is preferably 10% or more, particularly 15 to 80%, particularly 20 to 60%.
The rate of decrease can be obtained by the formula: {(contact angle before treatment−contact angle after treatment)} / contact angle before treatment} × 100.

疎水性樹脂基材の表面を親水化処理した後の、23℃、50%RH下での水の接触角は60度以下であり、特に20〜55度のものが好適に用いられる。   After hydrophilizing the surface of the hydrophobic resin substrate, the contact angle of water at 23 ° C. and 50% RH is 60 ° or less, and particularly preferably 20 to 55 °.

疎水性樹脂基材の表面を親水化する方法としては、公知の方法を用いることができるが、具体的にはコロナ処理、プラズマ処理、およびグロー放電処理などの放電処理、紫外線処理および電子線処理などの電離放射線処理、火炎処理、オゾン処理などを挙げることができる。これらの処理は、単独で用いてもよいし、複数のものを組み合わせて用いてもよい。
本発明では、特に本発明の効果が効率的に得られることから、コロナ処理が好ましく
用いられる。
かかるコロナ処理の条件は、対象とする基材によって適宜調整する必要があるが、通常は20〜200W・min/mであり、特に30〜100W・min/m、殊に40〜60W・min/mの範囲が好ましく用いられる。かかる条件が強すぎると、基材の各種機械強度が低下したり、透明性が損なわれる場合があり、弱すぎると本発明の効果が十分に得られない場合がある。
As a method for hydrophilizing the surface of the hydrophobic resin substrate, known methods can be used. Specifically, discharge treatment such as corona treatment, plasma treatment and glow discharge treatment, ultraviolet treatment and electron beam treatment. And ionizing radiation treatment, flame treatment, ozone treatment and the like. These treatments may be used alone or in combination of a plurality of them.
In the present invention, corona treatment is preferably used because the effects of the present invention can be obtained particularly efficiently.
The corona treatment conditions need to be appropriately adjusted depending on the target substrate, but are usually 20 to 200 W · min / m 2 , particularly 30 to 100 W · min / m 2 , particularly 40 to 60 W ·. A range of min / m 2 is preferably used. If the conditions are too strong, various mechanical strengths of the substrate may be lowered or the transparency may be impaired. If the conditions are too weak, the effects of the present invention may not be sufficiently obtained.

〔PVA系樹脂〕
次に、本発明で用いられるPVA系樹脂について説明する。
PVA系樹脂は、ビニルエステル系単量体を共重合して得られるポリビニルエステル系樹脂をケン化して得られる、ビニルアルコール構造単位を主体とする樹脂であり、ケン化度相当のビニルアルコール構造単位とビニルエステル構造単位から構成される。
上記ビニルエステル系モノマーとしては、ギ酸ビニル、酢酸ビニル、プロピオン酸ビニル、バレリン酸ビニル、酪酸ビニル、イソ酪酸ビニル、ピバリン酸ビニル、カプリン酸ビニル、ラウリン酸ビニル、ステアリン酸ビニル、安息香酸ビニル、バーサチック酸ビニル等が挙げられるが、経済的に酢酸ビニルが好ましく用いられる。
[PVA resin]
Next, the PVA resin used in the present invention will be described.
The PVA resin is a resin mainly composed of a vinyl alcohol structural unit obtained by saponifying a polyvinyl ester resin obtained by copolymerizing a vinyl ester monomer, and a vinyl alcohol structural unit corresponding to the degree of saponification. And vinyl ester structural units.
Examples of the vinyl ester monomers include vinyl formate, vinyl acetate, vinyl propionate, vinyl valelate, vinyl butyrate, vinyl isobutyrate, vinyl pivalate, vinyl caprate, vinyl laurate, vinyl stearate, vinyl benzoate, versatic. Although vinyl acid acid etc. are mentioned, vinyl acetate is preferably used economically.

本発明で用いられるPVA系樹脂の平均重合度(JIS K6726に準拠して測定)は、200〜400のものであり、特に250〜380、殊に300〜350のものが好ましく用いられる。
かかる平均重合度が大きすぎると基材フィルムとの接着強度が不足する傾向があり、小さすぎると、PVA系樹脂層の強度が不足する傾向がある。
The average degree of polymerization (measured in accordance with JIS K6726) of the PVA resin used in the present invention is 200 to 400, particularly 250 to 380, and particularly preferably 300 to 350.
If the average degree of polymerization is too large, the adhesive strength with the substrate film tends to be insufficient, and if it is too small, the strength of the PVA-based resin layer tends to be insufficient.

また、本発明で用いられるPVA系樹脂のケン化度(JIS K6726に準拠して測定)は、通常、80〜100モル%であり、特に90〜99.9モル%、殊に98〜99.9モル%のものが好適に用いられる。
かかるケン化度が低すぎると、水溶性が低下するため、良好な水性塗工液を得ることが困難になる。また、本発明の水性塗工液による塗膜に、高度な酸素ガスバリア性を要求する場合には、ケン化度が99モル%以上のものを用いることが好ましい。
The degree of saponification (measured according to JIS K6726) of the PVA resin used in the present invention is usually 80 to 100 mol%, particularly 90 to 99.9 mol%, particularly 98 to 99.99. A 9 mol% thing is used suitably.
If the degree of saponification is too low, water solubility is lowered, and it becomes difficult to obtain a good aqueous coating solution. Moreover, when a high oxygen gas barrier property is requested | required for the coating film by the aqueous | water-based coating liquid of this invention, it is preferable to use a saponification degree 99 mol% or more.

また、本発明では、PVA系樹脂として、ポリビニルエステル系樹脂の製造時に各種単量体を共重合させ、これをケン化して得られたものや、未変性PVAに後変性によって各種官能基を導入した各種変性PVA系樹脂を用いることができる。   In the present invention, as the PVA resin, various monomers are copolymerized at the time of production of the polyvinyl ester resin and saponified, or various functional groups are introduced into the unmodified PVA by post-modification. Various modified PVA-based resins can be used.

ビニルエステル系モノマーとの共重合に用いられる単量体としては、エチレンやプロピレン、イソブチレン、α−オクテン、α−ドデセン、α−オクタデセン等のオレフィン類、3−ブテン−1−オール、4−ペンテン−1−オール、5−ヘキセン−1−オール、3,4−ジヒドロキシ−1−ブテン等のヒドロキシ基含有α−オレフィン類およびそのアシル化物などの誘導体、アクリル酸、メタクリル酸、クロトン酸、マレイン酸、無水マレイン酸、イタコン酸等の不飽和酸類、その塩、モノエステル、あるいはジアルキルエステル、アクリロニトリル、メタアクリロニトリル等のニトリル類、ジアセトンアクリルアミド、アクリルアミド、メタクリルアミド等のアミド類、エチレンスルホン酸、アリルスルホン酸、メタアリルスルホン酸等のオレフィンスルホン酸類あるいはその塩、アルキルビニルエーテル類、ジメチルアリルビニルケトン、N−ビニルピロリドン、塩化ビニル、ビニルエチレンカーボネート、2,2−ジアルキル−4−ビニル−1,3−ジオキソラン、グリセリンモノアリルエーテル、3,4−ジアセトキシ−1−ブテン、等のビニル化合物、酢酸イソプロペニル、1−メトキシビニルアセテート等の置換酢酸ビニル類、塩化ビニリデン、1,4−ジアセトキシ−2−ブテン、ビニレンカーボネート、等が挙げられる。   Monomers used for copolymerization with vinyl ester monomers include olefins such as ethylene, propylene, isobutylene, α-octene, α-dodecene, α-octadecene, 3-buten-1-ol, 4-pentene. Derivatives such as hydroxy group-containing α-olefins such as -1-ol, 5-hexen-1-ol, and 3,4-dihydroxy-1-butene and acylated products thereof, acrylic acid, methacrylic acid, crotonic acid, maleic acid , Unsaturated acids such as maleic anhydride and itaconic acid, its salts, monoesters or nitriles such as dialkyl esters, acrylonitrile and methacrylonitrile, amides such as diacetone acrylamide, acrylamide and methacrylamide, ethylene sulfonic acid, allyl Such as sulfonic acid, methallylsulfonic acid, etc. Refin sulfonic acids or salts thereof, alkyl vinyl ethers, dimethylallyl vinyl ketone, N-vinyl pyrrolidone, vinyl chloride, vinyl ethylene carbonate, 2,2-dialkyl-4-vinyl-1,3-dioxolane, glycerin monoallyl ether, 3 Vinyl compounds such as 1,4-diacetoxy-1-butene, substituted vinyl acetates such as isopropenyl acetate and 1-methoxyvinyl acetate, vinylidene chloride, 1,4-diacetoxy-2-butene, and vinylene carbonate. .

また、後反応によって官能基が導入されたPVA系樹脂としては、ジケテンとの反応によるアセトアセチル基を有するもの、エチレンオキサイドとの反応によるポリアルキレンオキサイド基を有するもの、エポキシ化合物等との反応によるヒドロキシアルキル基が有するもの、あるいは各種官能基を有するアルデヒド化合物をPVAと反応させて得られたものなどを挙げることができる。
かかる変性PVA系樹脂中の変性種、すなわち共重合体中の各種単量体に由来する構成単位、あるいは後反応によって導入された官能基の含有量は、変性種によって特性が大きくことなるため一概には言えないが、通常、1〜20モル%であり、特に2〜10モル%の範囲が好ましく用いられる。
In addition, PVA resins having a functional group introduced by a post-reaction include those having an acetoacetyl group by reaction with diketene, those having a polyalkylene oxide group by reaction with ethylene oxide, reaction with an epoxy compound, etc. Examples thereof include those having a hydroxyalkyl group or those obtained by reacting an aldehyde compound having various functional groups with PVA.
The content of the modified species in the modified PVA resin, that is, the constituent units derived from various monomers in the copolymer, or the functional group introduced by the post-reaction is largely different depending on the modified species. Although it cannot say, it is 1-20 mol% normally, and especially the range of 2-10 mol% is used preferably.

これらの各種変性PVA系樹脂の中でも、本発明においては、下記一般式(1)で示される側鎖に1,2−ジオール構造を有する構造単位を有するPVA系樹脂が、水性塗布液の安定性に優れる点、および透明性に優れる塗膜が得られる点で好ましく用いられる。
なお、一般式(1)におけるR、R、及びRはそれぞれ独立して水素原子または有機基を示し、Xは単結合または結合鎖を示し、R、R、及びRはそれぞれ独立して水素原子または有機基を示すものである。
Among these various modified PVA resins, in the present invention, the PVA resin having a structural unit having a 1,2-diol structure in the side chain represented by the following general formula (1) is a stable aqueous coating solution. It is preferably used in that it is excellent in the properties and a coating film excellent in transparency can be obtained.
In the general formula (1), R 1 , R 2 , and R 3 each independently represent a hydrogen atom or an organic group, X represents a single bond or a bonded chain, and R 4 , R 5 , and R 6 represent Each independently represents a hydrogen atom or an organic group.

Figure 2013144294
Figure 2013144294

中でも、一般式(1)で表わされる1,2−ジオール構造単位中のR〜R、及びR〜Rがすべて水素原子であり、Xが単結合である、下記一般式(1’)で表わされる構造単位を有するPVA系樹脂が最も好ましい。

Figure 2013144294
Among them, R 1 to R 3 and R 4 to R 6 in the 1,2-diol structural unit represented by the general formula (1) are all hydrogen atoms, and X is a single bond. A PVA resin having a structural unit represented by ') is most preferred.
Figure 2013144294

なお、かかる一般式(1)で表わされる構造単位中のR〜R、及びR〜Rは、樹脂特性を大幅に損なわない程度の量であれば有機基であってもよく、その有機基としては、例えばメチル基、エチル基、n−プロピル基、イソプロピル基、n−ブチル基、イソブチル基、tert−ブチル基等の炭素数1〜4のアルキル基が挙げられ、かかる有機基は、必要に応じて、ハロゲン基、水酸基、エステル基、カルボン酸基、スルホン酸基等の官能基を有していてもよい。 In addition, R 1 to R 3 and R 4 to R 6 in the structural unit represented by the general formula (1) may be an organic group as long as the resin characteristics are not significantly impaired. Examples of the organic group include an alkyl group having 1 to 4 carbon atoms such as a methyl group, an ethyl group, an n-propyl group, an isopropyl group, an n-butyl group, an isobutyl group, and a tert-butyl group. May have a functional group such as a halogen group, a hydroxyl group, an ester group, a carboxylic acid group, or a sulfonic acid group, if necessary.

また、一般式(1)で表わされる1,2−ジオール構造単位中のXは熱安定性の点や高温下や酸性条件下での安定性の点で単結合であるものが最も好ましいが、本発明の効果を阻害しない範囲であれば結合鎖であってもよく、かかる結合鎖としては、アルキレン、アルケニレン、アルキニレン、フェニレン、ナフチレン等の炭化水素(これらの炭化水素はフッ素、塩素、臭素等のハロゲン等で置換されていても良い)の他、−O−、−(CHO)−、−(OCH−、−(CHO)CH−、−CO−、−COCO−、−CO(CHCO−、−CO(C)CO−、−S−、−CS−、−SO−、−SO−、−NR−、−CONR−、−NRCO−、−CSNR−、−NRCS−、−NRNR−、−HPO−、−Si(OR)−、−OSi(OR)−、−OSi(OR)O−、−Ti(OR)−、−OTi(OR)−、−OTi(OR)O−、−Al(OR)−、−OAl(OR)−、−OAl(OR)O−、等(Rは各々独立して任意の置換基であり、水素原子、アルキル基が好ましく、またmは1〜5の整数)が挙げられる。中でも製造時あるいは使用時の安定性の点で炭素数6以下のアルキレン基、特にメチレン基、あるいは−CHOCH−が好ましい。 Further, X in the 1,2-diol structural unit represented by the general formula (1) is most preferably a single bond in terms of thermal stability and stability under high temperature or acidic conditions. A bonded chain may be used as long as it does not inhibit the effects of the present invention. Examples of such a bonded chain include hydrocarbons such as alkylene, alkenylene, alkynylene, phenylene, and naphthylene (these hydrocarbons include fluorine, chlorine, bromine, and the like). other, -O of may be substituted by a halogen) -, - (CH 2 O ) m -, - (OCH 2) m -, - (CH 2 O) m CH 2 -, - CO-, -COCO -, - CO (CH 2 ) m CO -, - CO (C 6 H 4) CO -, - S -, - CS -, - SO -, - SO 2 -, - NR -, - CONR-, -NRCO-, -CSNR-, -NRCS-, -NRNR-, HPO 4 -, - Si (OR ) 2 -, - OSi (OR) 2 -, - OSi (OR) 2 O -, - Ti (OR) 2 -, - OTi (OR) 2 -, - OTi (OR) 2 O—, —Al (OR) —, —OAl (OR) —, —OAl (OR) O—, etc. (R is each independently an arbitrary substituent, preferably a hydrogen atom or an alkyl group, m is an integer of 1 to 5). Among them, an alkylene group having 6 or less carbon atoms, particularly a methylene group or —CH 2 OCH 2 — is preferable from the viewpoint of stability during production or use.

かかる側鎖に1,2−ジオール構造を有するPVA系樹脂の製造法としては、特に限定されないが、(i)ビニルエステル系モノマーと下記一般式(2)で示される化合物との共重合体をケン化する方法や、(ii)ビニルエステル系モノマーと下記一般式(3)で示される化合物との共重合体をケン化及び脱炭酸する方法や、(iii)ビニルエステル系モノマーと下記一般式(4)で示される化合物との共重合体をケン化及び脱ケタール化する方法が好ましく用いられる。   The method for producing the PVA resin having a 1,2-diol structure in the side chain is not particularly limited, but (i) a copolymer of a vinyl ester monomer and a compound represented by the following general formula (2) is used. A method of saponification, (ii) a method of saponifying and decarboxylating a copolymer of a vinyl ester monomer and a compound represented by the following general formula (3), or (iii) a vinyl ester monomer and the following general formula A method of saponifying and deketalizing a copolymer with the compound represented by (4) is preferably used.

Figure 2013144294
Figure 2013144294

Figure 2013144294
Figure 2013144294

Figure 2013144294
Figure 2013144294

上記一般式(2)、(3)、(4)中のR、R、R、X、R、R、Rは、いずれも一般式(1)の場合と同様である。また、R及びRはそれぞれ独立して水素原子またはR−CO−(式中、Rはアルキル基である)である。R10及びR11はそれぞれ独立して水素原子またはアルキル基である。 In the general formulas (2), (3) and (4), R 1 , R 2 , R 3 , X, R 4 , R 5 and R 6 are all the same as in the case of the general formula (1). . R 7 and R 8 are each independently a hydrogen atom or R 9 —CO— (wherein R 9 is an alkyl group). R 10 and R 11 are each independently a hydrogen atom or an alkyl group.

(i)、(ii)、及び(iii)の方法については、例えば、特開2006−95825に説明されている方法を用いることができる。
中でも、共重合反応性および工業的な取扱い性に優れるという点から、(i)の方法において、一般式(2)で表わされる化合物として3,4−ジアシロキシ−1−ブテンを用いることが好ましく、特に3,4−ジアセトキシ−1−ブテンが好ましく用いられる。
As the methods (i), (ii), and (iii), for example, the method described in JP-A-2006-95825 can be used.
Among these, from the viewpoint of excellent copolymerization reactivity and industrial handling, it is preferable to use 3,4-diacyloxy-1-butene as the compound represented by the general formula (2) in the method (i). In particular, 3,4-diacetoxy-1-butene is preferably used.

かかる側鎖に1,2−ジオール構造を有するPVA系樹脂に含まれる1,2−ジオール構造単位の含有量は、通常、1〜20モル%であり、さらに2〜10モル%、特に3〜8モル%のものが好ましく用いられる。かかる含有量が低すぎると、側鎖1,2−ジオール構造の効果が得られにくく、逆に高すぎると、高湿度でのガスバリア性の低下が著しくなる傾向がある。   The content of the 1,2-diol structural unit contained in the PVA resin having a 1,2-diol structure in the side chain is usually 1 to 20 mol%, further 2 to 10 mol%, particularly 3 to 8 mol% is preferably used. If the content is too low, it is difficult to obtain the effect of the side chain 1,2-diol structure. On the other hand, if the content is too high, the gas barrier property at high humidity tends to deteriorate significantly.

なお、PVA系樹脂中の1,2−ジオール構造単位の含有率は、PVA系樹脂を完全にケン化したもののH−NMRスペクトル(溶媒:DMSO−d6、内部標準:テトラメチルシラン)から求めることができ、具体的には1,2−ジオール単位中の水酸基プロトン、メチンプロトン、およびメチレンプロトン、主鎖のメチレンプロトン、主鎖に連結する水酸基のプロトンなどに由来するピーク面積から算出すればよい。 The content of the 1,2-diol structural unit in the PVA resin is determined from a 1 H-NMR spectrum (solvent: DMSO-d6, internal standard: tetramethylsilane) of a completely saponified PVA resin. Specifically, if calculated from the peak area derived from the hydroxyl proton, methine proton, and methylene proton in the 1,2-diol unit, the methylene proton in the main chain, the proton in the hydroxyl group linked to the main chain, etc. Good.

また、本発明で用いられるPVA系樹脂は、一種類であっても、二種類以上の混合物であってもよく、その場合は、上述の未変性PVAどうし、未変性PVAと一般式(1)で示される構造単位を有するPVA系樹脂、ケン化度、重合度、変性度などが異なる一般式(1)で示される構造単位を有するPVA系樹脂どうし、未変性PVA、あるいは一般式(1)で示される構造単位を有するPVA系樹脂と他の変性PVA系樹脂、などの組み合わせを用いることができる。   Further, the PVA resin used in the present invention may be one kind or a mixture of two or more kinds. In that case, the above-mentioned unmodified PVA, unmodified PVA and general formula (1) PVA resin having a structural unit represented by formula (1), PVA resins having a structural unit represented by general formula (1) having different saponification degree, polymerization degree, modification degree, etc., unmodified PVA, or general formula (1) A combination of a PVA-based resin having a structural unit represented by the above and another modified PVA-based resin can be used.

〔水性塗工液〕
本発明で用いられる水性塗工液は、上述のPVA系樹脂を主体成分とするものである。
かかる水性塗工液中のPVA系樹脂の濃度は、通常、0.1〜30重量%であり、特に1〜20重量%、殊に5〜15重量%の範囲のものが好ましく用いられる。
かかる濃度が高すぎると、基材に塗工した際に生じた気泡が抜けにくくなったり、塗工時の作業性が低下したり、均一な塗工層を得ることが難しくなる傾向がある。逆に、水性塗工液の濃度が低すぎると、乾燥に長時間を要したり、所望の厚さの塗工層を得ることが困難になり、複数回の塗工を余儀なくされる場合がある。
[Water-based coating solution]
The aqueous coating liquid used in the present invention contains the above-mentioned PVA resin as a main component.
The concentration of the PVA-based resin in the aqueous coating solution is usually 0.1 to 30% by weight, preferably 1 to 20% by weight, particularly 5 to 15% by weight.
If the concentration is too high, bubbles generated when coating on the substrate are difficult to escape, workability during coating is reduced, and it is difficult to obtain a uniform coating layer. Conversely, if the concentration of the aqueous coating solution is too low, it may take a long time to dry or it may be difficult to obtain a coating layer with a desired thickness, which may necessitate multiple coatings. is there.

また、本発明の水性塗工液には、本発明の効果を損なわない範囲内で、消泡剤、界面活性剤、紫外線吸収剤、酸化防止剤、着色剤、蛍光染料、防腐剤、防黴剤などの、従来公知の添加剤や、ガスバリア性をさらに向上させるための層状無機化合物などを配合してもよい。また、基材への濡れ性改善や、乾燥速度調節などの目的で水以外の有機溶剤類を含んでいてもよく、具体的には水との混和性を有する炭素数が1〜4のアルコール類、ケトン類を挙げることができる。   In addition, the aqueous coating liquid of the present invention includes an antifoaming agent, a surfactant, an ultraviolet absorber, an antioxidant, a colorant, a fluorescent dye, an antiseptic, and an antifungal material within a range not impairing the effects of the present invention. A conventionally known additive such as an agent or a layered inorganic compound for further improving gas barrier properties may be blended. Further, it may contain an organic solvent other than water for the purpose of improving the wettability to the substrate or adjusting the drying speed, and specifically, an alcohol having 1 to 4 carbon atoms that is miscible with water. And ketones.

〔PVA系樹脂層〕
かくして得られた水性塗工液を、上述の疎水性樹脂基材の表面に塗工、乾燥することによってPVA系樹脂層が形成される。
[PVA resin layer]
A PVA-based resin layer is formed by coating the aqueous coating solution thus obtained on the surface of the above-described hydrophobic resin substrate and drying.

疎水性樹脂基材に水性塗工液を塗工する方法としては、ダイレクトグラビア法、リバースグラビア法などのグラビア法;2本ロールビートコート法、ボトムフィード3本ロール法等のロールコーティング法、ドクターナイフ法、ダイコート法、ディップコート法、バーコート法;など、公知の塗工法を用いることができる。   Examples of methods for applying an aqueous coating solution to a hydrophobic resin substrate include gravure methods such as direct gravure method and reverse gravure method; roll coating methods such as two roll beat coating method and bottom feed three roll method, doctor Known coating methods such as a knife method, a die coating method, a dip coating method, and a bar coating method can be used.

かかる塗工後、乾燥することによって水分やその他の揮発分が除かれる。
乾燥温度としては、通常は50〜200℃の範囲が用いられるが、本発明においては、PVA系樹脂の末端メチロール基と、基材表面のカルボキシル基との反応を促進させる観点から、特に80℃以上、殊に100℃以上の条件が好ましく用いられる。
また、乾燥時間については、乾燥温度やPVA系樹脂層の厚さにより、揮発分が所定量以下になるように適宜調節されるものであるが、通常は0.1〜120分であり、特に0.5〜60分の範囲で行われる。
After such coating, the moisture and other volatile components are removed by drying.
As the drying temperature, a range of 50 to 200 ° C. is usually used. In the present invention, particularly from the viewpoint of promoting the reaction between the terminal methylol group of the PVA resin and the carboxyl group on the substrate surface, 80 ° C. In particular, conditions of 100 ° C. or higher are preferably used.
The drying time is appropriately adjusted depending on the drying temperature and the thickness of the PVA-based resin layer so that the volatile content is a predetermined amount or less, and is usually 0.1 to 120 minutes. It is performed in the range of 0.5 to 60 minutes.

かくして得られたPVA系樹脂層の厚さは、通常0.1〜20μmであり、特に0.2〜15μm、殊に0.5〜10μmの範囲が好ましく用いられる。かかる厚さが薄すぎると充分なガスバリア性が得られなくなる場合があり、一方、厚すぎると基材の柔軟性が損なわれる傾向がある。   The thickness of the PVA-based resin layer thus obtained is usually 0.1 to 20 μm, particularly preferably 0.2 to 15 μm, especially 0.5 to 10 μm. If the thickness is too thin, sufficient gas barrier properties may not be obtained. On the other hand, if the thickness is too thick, the flexibility of the substrate tends to be impaired.

本発明の製造方法によって得られた多層構造体は、さらに他の熱可塑性樹脂を積層し、多層構造体とすることも可能であり、その際の層構成としては、熱可塑性樹脂基材層をa(a1、a2、・・・)、PVA系樹脂層をb(b1、b2、・・・)とするとき、a/bの二層構造のみならず、b/a/b、a/b/a、a1/a2/b、a/b1/b2、b2/b1/a/b1/b2、b1/b2/a/b3/b4、a1/b1/a2/b2等任意の組み合わせが可能である。
さらに、本発明で得られた多層構造体におけるPVA系樹脂層の上、あるいはPVA系樹脂層上に積層した熱可塑性樹脂層の表面に、金属や無機成分による蒸着層を設けることも好ましい実施態様である。
The multilayer structure obtained by the production method of the present invention can be further laminated with other thermoplastic resins to form a multilayer structure. As the layer structure at that time, a thermoplastic resin substrate layer is used. When a (a1, a2,...) and PVA resin layer are b (b1, b2,...), not only a two-layer structure of a / b, but also b / a / b, a / b / A, a1 / a2 / b, a / b1 / b2, b2 / b1 / a / b1 / b2, b1 / b2 / a / b3 / b4, a1 / b1 / a2 / b2, etc. are possible. .
Furthermore, it is also preferable to provide a vapor deposition layer made of a metal or an inorganic component on the surface of the thermoplastic resin layer laminated on the PVA resin layer or the PVA resin layer in the multilayer structure obtained in the present invention. It is.

以下に、本発明を実施例を挙げて説明するが、本発明はその要旨を超えない限り、実施例の記載に限定されるものではない。
尚、例中、「部」、「%」とあるのは、断りのない限り重量基準を意味する。
Hereinafter, the present invention will be described with reference to examples. However, the present invention is not limited to the description of the examples unless it exceeds the gist.
In the examples, “parts” and “%” mean weight basis unless otherwise specified.

製造例1
〔PVA系樹脂(A1)の製造〕
還流冷却器、滴下漏斗、攪拌機を備えた反応容器に、酢酸ビニル68.5部(初期仕込率40%)、メタノール20.5部、3,4−ジアセトキシ−1−ブテン11.0部(初期仕込率40%)を仕込み、アゾビスイソブチロニトリルを0.255モル%(対仕込み酢酸ビニル)投入し、攪拌しながら窒素気流下で温度を上昇させ、重合を開始した。反応中に酢酸ビニルと3,4−ジアセトキシ−1−ブテンを10時間等速滴下の条件で仕込み、酢酸ビニルの重合率が92%となった時点で、m−ジニトロベンゼンを添加して重合を終了し、続いて、メタノール蒸気を吹き込む方法により未反応の酢酸ビニルモノマーを系外に除去し共重合体のメタノール溶液とした。
Production Example 1
[Production of PVA resin (A1)]
In a reaction vessel equipped with a reflux condenser, a dropping funnel, and a stirrer, 68.5 parts of vinyl acetate (initial charge rate 40%), 20.5 parts of methanol, 11.0 parts of 3,4-diacetoxy-1-butene (initial stage) A charge rate of 40%) was charged, 0.255 mol% of azobisisobutyronitrile (vs. vinyl acetate charged) was added, and the temperature was raised in a nitrogen stream while stirring to initiate polymerization. During the reaction, vinyl acetate and 3,4-diacetoxy-1-butene were charged at constant speed for 10 hours, and when the polymerization rate of vinyl acetate reached 92%, m-dinitrobenzene was added for polymerization. Then, unreacted vinyl acetate monomer was removed out of the system by a method of blowing methanol vapor to obtain a methanol solution of the copolymer.

ついで、上記メタノール溶液をさらにメタノールで希釈し、濃度50%に調整してニーダーに仕込み、溶液温度を35℃に保ちながら、水酸化ナトリウムを2%メタノール溶液として、共重合体中の酢酸ビニル構造単位および3,4−ジアセトキシ−1−ブテン構造単位の合計量1モルに対して12.0ミリモルとなる割合で加えてケン化を行った。ケン化が進行するとともにケン化物が析出し、粒子状となった時点で濾別し、メタノールでよく洗浄して熱風乾燥機中で乾燥し、目的とするPVA系樹脂(A1)を作製した。   Next, the methanol solution was further diluted with methanol, adjusted to a concentration of 50%, charged into a kneader, and sodium hydroxide was used as a 2% methanol solution while maintaining the solution temperature at 35 ° C. The vinyl acetate structure in the copolymer Saponification was carried out by adding 12.0 mmol with respect to 1 mol of the total amount of the unit and 3,4-diacetoxy-1-butene structural unit. As saponification progressed, when saponified substances were precipitated and formed into particles, they were separated by filtration, washed well with methanol, and dried in a hot air drier to prepare the intended PVA resin (A1).

得られたPVA系樹脂(A1)のケン化度は、残存酢酸ビニルおよび3,4−ジアセトキシ−1−ブテンの加水分解に要するアルカリ消費量にて分析したところ、99モル%であった。また、平均重合度は、JIS K 6726に準じて分析を行ったところ、350であった。また、一般式(1)で表される1,2−ジオール構造単位の含有量は、1H−NMR(300MHzプロトンNMR、d6−DMSO溶液、内部標準物質;テトラメチルシラン、50℃)にて測定した積分値より算出したところ、8モル%であった。   The saponification degree of the obtained PVA-based resin (A1) was 99 mol% when analyzed by the alkali consumption required for hydrolysis of residual vinyl acetate and 3,4-diacetoxy-1-butene. The average degree of polymerization was 350 when analyzed according to JIS K 6726. The content of the 1,2-diol structural unit represented by the general formula (1) is measured by 1H-NMR (300 MHz proton NMR, d6-DMSO solution, internal standard substance: tetramethylsilane, 50 ° C.). The calculated value was 8 mol%.

製造例2
〔PVA系樹脂(A2)の製造〕
還流冷却器、滴下漏斗、攪拌機を備えた反応容器に、酢酸ビニル68.5部(初期仕込率10%)、メタノール27.4部、3,4−ジアセトキシ−1−ブテン4.1部(初期仕込率10%)を仕込み、アゾビスイソブチロニトリルを0.204モル%(対仕込み酢酸ビニル)投入し、攪拌しながら窒素気流下で温度を上昇させ、重合を開始した。反応中に酢酸ビニルと3,4−ジアセトキシ−1−ブテンを10時間等速滴下の条件で仕込み、酢酸ビニルの重合率が95%となった時点で、m−ジニトロベンゼンを添加して重合を終了し、続いて、メタノール蒸気を吹き込む方法により未反応の酢酸ビニルモノマーを系外に除去し共重合体のメタノール溶液とした。
Production Example 2
[Production of PVA resin (A2)]
In a reaction vessel equipped with a reflux condenser, a dropping funnel and a stirrer, 68.5 parts of vinyl acetate (initial charge rate 10%), 27.4 parts of methanol, 4.1 parts of 3,4-diacetoxy-1-butene (initial stage) (Feed rate 10%) was charged, 0.204 mol% of azobisisobutyronitrile (vs. vinyl acetate charged) was added, and the temperature was raised under a nitrogen stream while stirring to initiate polymerization. During the reaction, vinyl acetate and 3,4-diacetoxy-1-butene were charged under the conditions of constant rate dropping for 10 hours, and when the polymerization rate of vinyl acetate reached 95%, m-dinitrobenzene was added to conduct polymerization. Then, unreacted vinyl acetate monomer was removed out of the system by a method of blowing methanol vapor to obtain a methanol solution of the copolymer.

ついで、上記メタノール溶液をさらにメタノールで希釈し、濃度55%に調整してニーダーに仕込み、溶液温度を35℃に保ちながら、水酸化ナトリウムを2%メタノール溶液として、共重合体中の酢酸ビニル構造単位および3,4−ジアセトキシ−1−ブテン構造単位の合計量1モルに対して12.0ミリモルとなる割合で加えてケン化を行った。ケン化が進行するとともにケン化物が析出し、粒子状となった時点で濾別し、メタノールでよく洗浄して熱風乾燥機中で乾燥し、目的とするPVA系樹脂(A2)を作製した。   Next, the methanol solution was further diluted with methanol, adjusted to a concentration of 55%, charged into a kneader, and sodium hydroxide was used as a 2% methanol solution while keeping the solution temperature at 35 ° C. Saponification was carried out by adding 12.0 mmol with respect to 1 mol of the total amount of the unit and 3,4-diacetoxy-1-butene structural unit. As saponification progressed, when saponified substances were precipitated and formed into particles, they were separated by filtration, washed well with methanol, and dried in a hot air dryer to prepare the intended PVA resin (A2).

得られたPVA系樹脂(A2)のケン化度は、残存酢酸ビニルおよび3,4−ジアセトキシ−1−ブテンの加水分解に要するアルカリ消費量にて分析したところ、99モル%であった。また、平均重合度は、JIS K 6726に準じて分析を行ったところ、350であった。また、一般式(1)で表される1,2−ジオール構造単位の含有量は、1H−NMR(300MHzプロトンNMR、d6−DMSO溶液、内部標準物質;テトラメチルシラン、50℃)にて測定した積分値より算出したところ、3モル%であった。   The saponification degree of the obtained PVA-based resin (A2) was 99 mol% when analyzed by the alkali consumption required for hydrolysis of residual vinyl acetate and 3,4-diacetoxy-1-butene. The average degree of polymerization was 350 when analyzed according to JIS K 6726. The content of the 1,2-diol structural unit represented by the general formula (1) is measured by 1H-NMR (300 MHz proton NMR, d6-DMSO solution, internal standard substance: tetramethylsilane, 50 ° C.). The calculated value was 3 mol%.

製造例3
〔PVA系樹脂(A3)の製造〕
還流冷却器、滴下漏斗、攪拌機を備えた反応容器に、酢酸ビニル68.5部(初期仕込率50%)、メタノール20.5部、3,4−ジアセトキシ−1−ブテン11.0部(初期仕込率50%)を仕込み、アゾビスイソブチロニトリルを0.175モル%(対仕込み酢酸ビニル)投入し、攪拌しながら窒素気流下で温度を上昇させ、重合を開始した。反応中に酢酸ビニルと3,4−ジアセトキシ−1−ブテンを8時間等速滴下の条件で仕込み、酢酸ビニルの重合率が90%となった時点で、m−ジニトロベンゼンを添加して重合を終了し、続いて、メタノール蒸気を吹き込む方法により未反応の酢酸ビニルモノマーを系外に除去し共重合体のメタノール溶液とした。
Production Example 3
[Production of PVA resin (A3)]
In a reaction vessel equipped with a reflux condenser, a dropping funnel and a stirrer, 68.5 parts of vinyl acetate (initial charge rate 50%), 20.5 parts of methanol, 11.0 parts of 3,4-diacetoxy-1-butene (initial stage) The feed rate was 50%), 0.175 mol% of azobisisobutyronitrile (vs. vinyl acetate charged) was added, and the temperature was raised under a nitrogen stream while stirring to initiate polymerization. During the reaction, vinyl acetate and 3,4-diacetoxy-1-butene were charged under the condition of constant rate dropping for 8 hours, and when the polymerization rate of vinyl acetate reached 90%, m-dinitrobenzene was added to conduct polymerization. Then, unreacted vinyl acetate monomer was removed out of the system by a method of blowing methanol vapor to obtain a methanol solution of the copolymer.

ついで、上記メタノール溶液をさらにメタノールで希釈し、濃度50%に調整してニーダーに仕込み、溶液温度を35℃に保ちながら、水酸化ナトリウムを2%メタノール溶液として、共重合体中の酢酸ビニル構造単位および3,4−ジアセトキシ−1−ブテン構造単位の合計量1モルに対して12ミリモルとなる割合で加えてケン化を行った。ケン化が進行するとともにケン化物が析出し、粒子状となった時点で濾別し、メタノールでよく洗浄して熱風乾燥機中で乾燥し、目的とするPVA系樹脂(A3)を作製した。   Next, the methanol solution was further diluted with methanol, adjusted to a concentration of 50%, charged into a kneader, and sodium hydroxide was used as a 2% methanol solution while maintaining the solution temperature at 35 ° C. The vinyl acetate structure in the copolymer Saponification was carried out by adding a ratio of 12 mmol to 1 mol of the total amount of the unit and 3,4-diacetoxy-1-butene structural unit. As saponification progressed, when saponified substances were precipitated and formed into particles, they were separated by filtration, washed well with methanol, and dried in a hot air dryer to prepare the intended PVA resin (A3).

得られたPVA系樹脂(A3)のケン化度は、残存酢酸ビニルおよび3,4−ジアセトキシ−1−ブテンの加水分解に要するアルカリ消費量にて分析したところ、99モル%であった。また、平均重合度は、JIS K 6726に準じて分析を行ったところ、450であった。また、一般式(1)で表される1,2−ジオール構造単位の含有量は、1H−NMR(300MHzプロトンNMR、d6−DMSO溶液、内部標準物質;テトラメチルシラン、50℃)にて測定した積分値より算出したところ、8モル%であった。   The saponification degree of the obtained PVA-based resin (A3) was 99 mol% when analyzed by the alkali consumption required for hydrolysis of residual vinyl acetate and 3,4-diacetoxy-1-butene. The average degree of polymerization was 450 when analyzed according to JIS K 6726. The content of the 1,2-diol structural unit represented by the general formula (1) is measured by 1H-NMR (300 MHz proton NMR, d6-DMSO solution, internal standard substance: tetramethylsilane, 50 ° C.). The calculated value was 8 mol%.

実施例1
〔基材の親水化処理〕
PETフィルム(フタムラ化学社製「太閤ポリエステルフィルム」、厚さ38μm、水との接触角74度(23℃、50%RH))の表面にコロナ処理(40W・min/m)による親水化処理を施した。
親水化処理後の水との接触角は57度(23℃、50%RH)であった。
Example 1
[Hydrophilic treatment of substrate]
Hydrophilization treatment by corona treatment (40 W · min / m 2 ) on the surface of a PET film (“Taiko polyester film” manufactured by Phutamura Chemical Co., Ltd., thickness 38 μm, contact angle with water 74 degrees (23 ° C., 50% RH)) Was given.
The contact angle with water after the hydrophilic treatment was 57 degrees (23 ° C., 50% RH).

〔多層構造体の製造〕
製造例1で得られたPVA系樹脂(A1)の10%水溶液を、親水化処理を施したPETフィルム表面に、バーコーターを用い、乾燥後の厚さが3μmとなるように塗工し、100℃に設定した熱風乾燥機内で10分間乾燥し、多層構造体を得た。
[Manufacture of multilayer structures]
A 10% aqueous solution of the PVA-based resin (A1) obtained in Production Example 1 was coated on the surface of a PET film subjected to a hydrophilic treatment using a bar coater so that the thickness after drying was 3 μm. It dried for 10 minutes within the hot air dryer set to 100 degreeC, and obtained the multilayer structure.

<接着性評価>
セロハンテープ(積水社製「No.252」、幅15mm)を6cmの長さに切り取り、ガスバリア層に貼り付け、かかるテープを端から1cmはがし、その部分をもってフィルム面に対し約90°の角度で勢いよく引き剥がした。この操作を10回繰り返した後の状態を目視観察し、下記の基準にて接着性を評価した。結果を表1に示す。
○:全くガスバリア層が剥離しなかった。
△:ガスバリア層が剥離した回数が1〜2回。
×:ガスバリア層が剥離した回数が3回以上。
<Adhesion evaluation>
Cut the cellophane tape (Sekisui "No. 252", width 15 mm) to a length of 6 cm, attach it to the gas barrier layer, peel off the tape 1 cm from the end, and peel this part at an angle of about 90 ° to the film surface. It peeled off vigorously. The state after repeating this operation 10 times was visually observed, and the adhesion was evaluated according to the following criteria. The results are shown in Table 1.
○: The gas barrier layer did not peel at all.
(Triangle | delta): The frequency | count that the gas barrier layer peeled 1-2 times.
X: The number of times the gas barrier layer was peeled off was 3 times or more.

実施例2
実施例1において、PVA系樹脂(A1)に代えて製造例2で得られたPVA系樹脂(A2)を用いた以外は実施例1と同様に多層構造体を作製し、同様に評価した。結果を表1に示す。
Example 2
In Example 1, a multilayer structure was prepared in the same manner as in Example 1 except that the PVA resin (A2) obtained in Production Example 2 was used instead of the PVA resin (A1), and evaluation was performed in the same manner. The results are shown in Table 1.

実施例3
実施例1において、PVA系樹脂(A1)に代えて未変性PVA(重合度350、ケン化度99モル%)を用いた以外は実施例1と同様に多層構造体を作製し、同様に評価した。結果を表1に示す。
Example 3
In Example 1, a multilayer structure was prepared in the same manner as in Example 1 except that unmodified PVA (polymerization degree 350, saponification degree 99 mol%) was used in place of the PVA resin (A1), and evaluation was performed in the same manner. did. The results are shown in Table 1.

実施例4
実施例3において、水性塗工液を塗工した後の乾燥温度を120℃とした以外は実施例3と同様に多層構造体を作製し、同様に評価した。結果を表1に示す。
Example 4
In Example 3, a multilayer structure was prepared and evaluated in the same manner as in Example 3 except that the drying temperature after applying the aqueous coating solution was 120 ° C. The results are shown in Table 1.

比較例1
実施例1において、基材としてコロナ処理による親水化処理を施さないPETフィルムフタムラ化学社製「太閤ポリエステルフィルム」、厚さ38μm、水との接触角74度(23℃、50%RH))を用いた以外は実施例1と同様に多層構造体を作製し、同様に評価した。結果を表1に示す。
Comparative Example 1
In Example 1, as a base material, a PET film not subjected to a hydrophilization treatment by corona treatment “Taiji polyester film” manufactured by Phutamura Chemical Co., Ltd., a thickness of 38 μm, a contact angle with water of 74 degrees (23 ° C., 50% RH)) A multilayer structure was produced in the same manner as in Example 1 except that it was used, and evaluated in the same manner. The results are shown in Table 1.

比較例2
実施例1において、PVA系樹脂(A1)に代えて製造例3で得られたPVA系樹脂(A3)を用いた以外は実施例1と同様に多層構造体を作製し、同様に評価した。結果を表1に示す。
Comparative Example 2
In Example 1, a multilayer structure was prepared in the same manner as in Example 1 except that the PVA resin (A3) obtained in Production Example 3 was used instead of the PVA resin (A1), and evaluation was performed in the same manner. The results are shown in Table 1.

[表1]

Figure 2013144294
※1,2−ジオール構造単位含有量 [Table 1]
Figure 2013144294
* 1,2-diol structural unit content

疎水性樹脂基材の表面に親水化処理を施し、水の接触角を60度以下とした後、重合度が200〜400であるPVA系樹脂を主体成分とする水性塗工液を塗工、乾燥して得られた実施例の多層構造体は、親水化処理を施さなかった比較例1、重合度が高いPVA系樹脂を用いた比較例2と比較して、機材とPVA系樹脂層の層間接着性に優れたものであった。   Hydrophilic treatment is performed on the surface of the hydrophobic resin base material, and after the water contact angle is set to 60 degrees or less, an aqueous coating liquid containing a PVA resin having a polymerization degree of 200 to 400 as a main component is applied, The multilayer structure of the example obtained by drying was compared with Comparative Example 1 in which the hydrophilic treatment was not performed and Comparative Example 2 in which the PVA resin having a high degree of polymerization was used. It was excellent in interlayer adhesion.

本発明の多層構造体の製造方法は、アンカーコート層、あるいは塗工液へのアンカー剤などの配合を必要とせず、疎水性樹脂基材とPVA系樹脂層との良好な層間接着性が得られることから、工程短縮が可能であるとともに、各種包装材料に好適な多層構造体を容易に得ることが可能であり、産業上、極めて有用である。   The method for producing a multilayer structure according to the present invention does not require an anchor coat layer or a compounding agent such as an anchor agent in a coating solution, and provides good interlayer adhesion between the hydrophobic resin substrate and the PVA resin layer. Therefore, the process can be shortened and a multilayer structure suitable for various packaging materials can be easily obtained, which is extremely useful industrially.

Claims (5)

疎水性樹脂基材に隣接してポリビニルアルコール系樹脂層を有する多層構造体の製造方法であって、疎水性樹脂基材の表面を親水化処理して水との接触角を60度以下にした後、平均重合度が200〜400のポリビニルアルコール系樹脂を主体成分とする水性塗工液を塗工、乾燥することを特徴とする多層構造体の製造方法。 A method for producing a multilayer structure having a polyvinyl alcohol resin layer adjacent to a hydrophobic resin substrate, wherein the surface of the hydrophobic resin substrate is hydrophilized so that the contact angle with water is 60 degrees or less. Then, the manufacturing method of the multilayer structure characterized by apply | coating and drying the aqueous | water-based coating liquid which has a polyvinyl alcohol resin with an average degree of polymerization of 200-400 as a main component. 疎水性樹脂がポリエステル系樹脂である請求項1記載の多層構造体の製造方法。 The method for producing a multilayer structure according to claim 1, wherein the hydrophobic resin is a polyester resin. 疎水性樹脂基材表面の親水化処理がコロナ処理である請求項1または2記載の多層構造体の製造方法。 The method for producing a multilayer structure according to claim 1 or 2, wherein the hydrophilization treatment of the surface of the hydrophobic resin substrate is a corona treatment. ポリビニルアルコール系樹脂が、下記一般式(1)で表される1,2−ジオール構造単位を有するポリビニルアルコール系樹脂である請求項1〜3いずれか記載の多層構造体の製造方法。
Figure 2013144294
[式中、R、R及びRはそれぞれ独立して水素原子または有機基を示し、Xは単結合または結合鎖を示し、R、R、及びRはそれぞれ独立して水素原子または有機基を示す。]
The method for producing a multilayer structure according to any one of claims 1 to 3, wherein the polyvinyl alcohol-based resin is a polyvinyl alcohol-based resin having a 1,2-diol structural unit represented by the following general formula (1).
Figure 2013144294
[Wherein R 1 , R 2 and R 3 each independently represents a hydrogen atom or an organic group, X represents a single bond or a bond chain, and R 4 , R 5 and R 6 each independently represent hydrogen. Indicates an atom or an organic group. ]
ポリビニルアルコール系樹脂を主体成分とする水性塗工液を塗工した後の乾燥温度が100℃以上である請求項1〜4いずれか記載の多層構造体の製造方法。

The method for producing a multilayer structure according to any one of claims 1 to 4, wherein a drying temperature after applying an aqueous coating liquid containing a polyvinyl alcohol-based resin as a main component is 100 ° C or higher.

JP2012273337A 2011-12-16 2012-12-14 Method for producing multilayer structure Active JP6021625B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2012273337A JP6021625B2 (en) 2011-12-16 2012-12-14 Method for producing multilayer structure

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
JP2011276212 2011-12-16
JP2011276212 2011-12-16
JP2012273337A JP6021625B2 (en) 2011-12-16 2012-12-14 Method for producing multilayer structure

Publications (2)

Publication Number Publication Date
JP2013144294A true JP2013144294A (en) 2013-07-25
JP6021625B2 JP6021625B2 (en) 2016-11-09

Family

ID=49040427

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2012273337A Active JP6021625B2 (en) 2011-12-16 2012-12-14 Method for producing multilayer structure

Country Status (1)

Country Link
JP (1) JP6021625B2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2020195896A1 (en) * 2019-03-28 2020-10-01 東洋紡株式会社 Gas-barrier laminated film

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2000046797A (en) * 1998-07-29 2000-02-18 Kawamura Inst Of Chem Res Liquid feed device and its manufacture
WO2001077211A1 (en) * 2000-04-11 2001-10-18 Toray Industries, Inc. Layered film and packaging material
JP2005289054A (en) * 2004-03-11 2005-10-20 Canon Inc Substrate, electric conductive substrate, finely structured substrate, organic electric field effective transistor and manufacturing method for them
JP2007012787A (en) * 2005-06-29 2007-01-18 Mitsubishi Chemicals Corp Pattern forming method, electronic member, and optical member
JP2007183240A (en) * 2005-12-06 2007-07-19 Hitachi High-Technologies Corp Autoanalyzer-use reaction cell, method for manufacturing same, autoanalyzer employing same, and analyzing method
JP2009221372A (en) * 2008-03-17 2009-10-01 Nippon Synthetic Chem Ind Co Ltd:The Coating-film forming agent and coating film

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2000046797A (en) * 1998-07-29 2000-02-18 Kawamura Inst Of Chem Res Liquid feed device and its manufacture
WO2001077211A1 (en) * 2000-04-11 2001-10-18 Toray Industries, Inc. Layered film and packaging material
JP2005289054A (en) * 2004-03-11 2005-10-20 Canon Inc Substrate, electric conductive substrate, finely structured substrate, organic electric field effective transistor and manufacturing method for them
JP2007012787A (en) * 2005-06-29 2007-01-18 Mitsubishi Chemicals Corp Pattern forming method, electronic member, and optical member
JP2007183240A (en) * 2005-12-06 2007-07-19 Hitachi High-Technologies Corp Autoanalyzer-use reaction cell, method for manufacturing same, autoanalyzer employing same, and analyzing method
JP2009221372A (en) * 2008-03-17 2009-10-01 Nippon Synthetic Chem Ind Co Ltd:The Coating-film forming agent and coating film

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2020195896A1 (en) * 2019-03-28 2020-10-01 東洋紡株式会社 Gas-barrier laminated film

Also Published As

Publication number Publication date
JP6021625B2 (en) 2016-11-09

Similar Documents

Publication Publication Date Title
JP6000044B2 (en) Water-based coating liquid and coating film
TWI406763B (en) Air barrier film, gas barrier layered body and manufacturing method thereof
EP2781351B1 (en) Biodegradable laminate
JP5219343B2 (en) Film production method
JP2012188661A (en) Water-based coating fluid, multilayered structure obtained using the same, and method of manufacturing the same
JP2007161795A (en) Resin composition, aqueous coating liquid using the same, and multilayered structural body
JP7025605B1 (en) Multilayer film and multi-layer structure using it
EP2937386A1 (en) Resin composition and molded article of same
JP2008045078A (en) Adhesive for glass and glass laminate using the same
JP4828278B2 (en) Production method of polyvinyl acetal
JP2013144791A (en) Aqueous coating liquid, and multi-layered structure
JP6021625B2 (en) Method for producing multilayer structure
JP6733059B1 (en) Ethylene-vinyl alcohol copolymer and method for producing the same
JP6418924B2 (en) Coating film and coating film forming agent
TWI641644B (en) High-adhesive resin composition, formed body formed therefrom, and laminated body
JP6973084B2 (en) Ethylene-vinyl alcohol copolymer pellets, resin compositions and multilayer structures
JP2002240207A (en) Gas barrier film
JP4302260B2 (en) Gas barrier film
WO2021210555A1 (en) Modified vinyl-alcohol-based polymer
JP6915403B2 (en) Aqueous coating liquid, coating liquid for ink receiving layer and multilayer structure
JP2013209491A (en) Aqueous coating liquid, gas barrier coating layer and multilayer structure obtained by using the aqueous coating liquid
JP6227376B2 (en) Manufacturing method of polyvinyl alcohol resin film
JP4463902B2 (en) Method for producing gas barrier film
JP6972717B2 (en) A novel ethylene-vinyl alcohol-based copolymer and a film containing it, a multilayer structure, and a method for producing the same.
JP6753333B2 (en) Method for manufacturing crosslinked structure and inkjet recording medium

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20151118

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20160526

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20160531

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20161004

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20161004

R150 Certificate of patent or registration of utility model

Ref document number: 6021625

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313111

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350