JP2013142322A - Intra-pipe cooler - Google Patents

Intra-pipe cooler Download PDF

Info

Publication number
JP2013142322A
JP2013142322A JP2012002610A JP2012002610A JP2013142322A JP 2013142322 A JP2013142322 A JP 2013142322A JP 2012002610 A JP2012002610 A JP 2012002610A JP 2012002610 A JP2012002610 A JP 2012002610A JP 2013142322 A JP2013142322 A JP 2013142322A
Authority
JP
Japan
Prior art keywords
liquid chamber
heat transfer
pipe
liquid
transfer tube
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2012002610A
Other languages
Japanese (ja)
Other versions
JP5888991B2 (en
Inventor
Yoshihiro Maekawa
整洋 前川
Fuminobu Eto
文宣 江藤
Shigeo Takita
茂雄 滝田
Keiji Matsuda
啓志 松田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Ebara Corp
Original Assignee
Ebara Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Ebara Corp filed Critical Ebara Corp
Priority to JP2012002610A priority Critical patent/JP5888991B2/en
Publication of JP2013142322A publication Critical patent/JP2013142322A/en
Application granted granted Critical
Publication of JP5888991B2 publication Critical patent/JP5888991B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Heat-Exchange Devices With Radiators And Conduit Assemblies (AREA)

Abstract

PROBLEM TO BE SOLVED: To provide an intra-pipe cooler as a reformed body of an assembly of heat conduction tubes and liquid chamber of a conventional intra-pipe cooler, in which the pump lifted liquid flows into the region where the heat conduction tubes in a cooler casing are arranged, thereby efficiently cooling a high-temperature engine cooling liquid from an engine.SOLUTION: An assembly 20 of heat exchanger tubes and liquid chamber formed by connecting an inlet side liquid chamber 21 with an outlet side liquid chamber 22 through a plurality of heat conduction tubes 23 is installed in the casing in such an arrangement that the pump lifted liquid 4 flows in the region surrounded by the heat exchanger tubes from the inlet side liquid chamber 21 to the outlet side liquid chamber 22, and a high-temperature cooling liquid from the engine is introduced to the inlet side liquid chamber, and heat exchange takes place between the high-temperature cooling liquid and the pump lifted liquid 4 while the high-temperature cooling liquid flows to the outlet side liquid chamber through the heat conduction tubes 23. In this intra-pipe cooler, the inlet side liquid chamber 21 has a side plate where the heat conduction tubes 23 are connected, and the inner end (arcuate face 21a) of that surface of the side plate which faces the outlet side liquid chamber 22 across the flow of the pump lifted liquid 4 is shaped as such a curved surface that the pump lifted liquid 4 easily flows into the region where the heat conduction tubes 23 are arranged.

Description

本発明は、エンジン駆動のポンプにおいてエンジンを冷却した高温のエンジン冷却液(エンジン冷却水等)をポンプ吐出配管を流れるポンプ揚液(ポンプ揚水等)で冷却する管内クーラーに関するものである。   The present invention relates to an in-pipe cooler that cools a high-temperature engine coolant (such as engine coolant) that has cooled an engine in a pump driven by an engine, with pump fluid (such as pump water) flowing through a pump discharge pipe.

エンジン駆動のポンプにおいて、エンジンを冷却した高温のエンジン冷却液とポンプ吐出配管を流れるポンプ揚液の間で熱交換を行い高温のエンジン冷却液を冷却する装置を管内クーラーと称している。図1及び図2は、管内クーラーを説明するための図であり、図1はエンジン7からの高温のエンジン冷却液の冷却にポンプ揚液を用いる管内クーラーを使用するポンプ設備の概略構成を示す図、図2は管内クーラーの外観立体構成を示す図である。ポンプ2はエンジン7により駆動されるポンプであり、エンジン7からの回転力は減速機8を介してポンプ2の回転軸に伝達され、ポンプ2は駆動され液体(水等)1が吸引される。5は管内クーラーであり、エンジン7を冷却し、高温となったエンジン冷却液6は冷却液入口11から管内クーラー5内に流入し、後に詳述するように、複数本の伝熱管23を通って流れることにより、該伝熱管23が配置されている領域を通って流れるポンプ揚液4との間で熱交換が行われ、冷却されエンジン7に戻り循環する。   In an engine-driven pump, a device that cools the high-temperature engine coolant by exchanging heat between the high-temperature engine coolant that has cooled the engine and the pumped liquid flowing through the pump discharge pipe is called an in-pipe cooler. 1 and 2 are diagrams for explaining a pipe cooler, and FIG. 1 shows a schematic configuration of a pump facility that uses a pipe cooler that uses pumped liquid for cooling high-temperature engine coolant from the engine 7. FIG. 2 and FIG. 2 are views showing the external configuration of the in-pipe cooler. The pump 2 is a pump driven by the engine 7, and the rotational force from the engine 7 is transmitted to the rotary shaft of the pump 2 through the speed reducer 8, and the pump 2 is driven to suck the liquid (water etc.) 1. . Reference numeral 5 denotes an in-pipe cooler, which cools the engine 7 and the high-temperature engine coolant 6 flows into the in-pipe cooler 5 from the coolant inlet 11 and passes through a plurality of heat transfer tubes 23 as will be described in detail later. As a result, heat is exchanged with the pumped liquid 4 flowing through the region where the heat transfer tube 23 is disposed, cooled and returned to the engine 7 for circulation.

管内クーラー5はポンプ2の吐出口に接続されたポンプ配管(吐出配管)3が主管となって、ポンプ吐出口からのポンプ揚液4が冷却液として管内クーラー5内に送り込まれる。管内クーラー・ケーシング10にはエンジン7からの高温のエンジン冷却液6が流入する冷却液入口11と冷却されたエンジン冷却液が吐出される冷却液出口12が設けられ、後に詳述するように対向して配置された一対の小伝熱管・液室組立体部20−1の一方の入口側液室21の冷却液出口12と他方の小伝熱管・液室組立体部20−2の入口側液室21の冷却液入口11を連結する連結管13が設けられている。   The pipe cooler 5 has a pump pipe (discharge pipe) 3 connected to the discharge port of the pump 2 as a main pipe, and the pump liquid 4 from the pump discharge port is fed into the pipe cooler 5 as a coolant. The in-pipe cooler casing 10 is provided with a coolant inlet 11 through which the high-temperature engine coolant 6 from the engine 7 flows in and a coolant outlet 12 through which the cooled engine coolant is discharged. The cooling liquid outlet 12 of one inlet side liquid chamber 21 of the pair of small heat transfer tube / liquid chamber assembly portion 20-1 and the inlet side liquid chamber of the other small heat transfer tube / liquid chamber assembly portion 20-2. A connecting pipe 13 for connecting the coolant inlet 11 of 21 is provided.

図3は管内クーラー・ケーシング10内のエンジン冷却液6が通る伝熱管と液室を組立ててなる伝熱管・液室組立体20を示す図であり、図4は伝熱管・液室組立体20とポンプ配管3の組立体を示す図である。図3に示すように、伝熱管・液室組立体20は一対の小伝熱管・液室組立体部20−1、20−2から成っている。小伝熱管・液室組立体部20−1と小伝熱管・液室組立体部20−2のそれぞれは、円弧状の入口側液室21と円弧状の出口側液室22を備え、入口側液室21の一端は前記管内クーラー・ケーシング10の冷却液入口11に連通し、他端は管内クーラー・ケーシング10の冷却液出口12に接続されている。   FIG. 3 is a view showing a heat transfer tube / liquid chamber assembly 20 formed by assembling a heat transfer tube and a liquid chamber through which the engine coolant 6 in the pipe cooler / casing 10 passes. FIG. 4 shows a heat transfer tube / liquid chamber assembly 20. FIG. As shown in FIG. 3, the heat transfer tube / liquid chamber assembly 20 includes a pair of small heat transfer tube / liquid chamber assembly sections 20-1 and 20-2. Each of the small heat transfer tube / liquid chamber assembly portion 20-1 and the small heat transfer tube / liquid chamber assembly portion 20-2 includes an arc-shaped inlet-side liquid chamber 21 and an arc-shaped outlet-side liquid chamber 22, and includes an inlet-side liquid. One end of the chamber 21 communicates with the coolant inlet 11 of the pipe cooler casing 10, and the other end is connected to the coolant outlet 12 of the pipe cooler casing 10.

また、小伝熱管・液室組立体部20−1の入口側液室21と出口側液室22は複数本の伝熱管23で連通され、同様に小伝熱管・液室組立体部20−2の入口側液室21と出口側液室22も複数本の伝熱管23で連通されている。小伝熱管・液室組立体部20−1と小伝熱管・液室組立体部20−2は管内クーラー・ケーシング10内に複数本の伝熱管23で囲まれた領域をポンプ揚液4が流れるように対向して配置されている。高温のエンジン冷却液が流れる伝熱管23はポンプ揚液4の流れを阻害しないように主管であるポンプ配管3の外径より外側の領域に配置されている。一方の小伝熱管・液室組立体部20−1の入口側液室21の冷却液出口12と対向する小伝熱管・液室組立体部20−2の入口側液室21の冷却液入口11は、連結管13で連通され、両入口側液室21は連通している。   Further, the inlet side liquid chamber 21 and the outlet side liquid chamber 22 of the small heat transfer tube / liquid chamber assembly portion 20-1 are communicated with each other by a plurality of heat transfer tubes 23. Similarly, the small heat transfer tube / liquid chamber assembly portion 20-2 The inlet side liquid chamber 21 and the outlet side liquid chamber 22 are also connected by a plurality of heat transfer tubes 23. In the small heat transfer tube / liquid chamber assembly portion 20-1 and the small heat transfer tube / liquid chamber assembly portion 20-2, the pumped liquid 4 flows in the region surrounded by the plurality of heat transfer tubes 23 in the pipe cooler / casing 10. It is arranged to face. The heat transfer pipe 23 through which the high-temperature engine coolant flows is arranged in a region outside the outer diameter of the pump pipe 3 that is the main pipe so as not to hinder the flow of the pumped liquid 4. The coolant inlet 11 of the inlet side liquid chamber 21 of the small heat transfer tube / liquid chamber assembly portion 20-2 facing the coolant outlet 12 of the inlet side liquid chamber 21 of the one small heat transfer tube / liquid chamber assembly portion 20-1 is as follows. , And the both inlet side liquid chambers 21 communicate with each other through the connecting pipe 13.

小伝熱管・液室組立体部20−1の入口側液室21は、図5に示すように仕切部材24で複数の小液室25に区分され、各小液室25には複数本(図では2本又は4本)の伝熱管23の一端が連通している。図示は省略するが出口側液室22も同様に仕切部材24で複数の小液室25に区分され、各小液室25には前記一端が入口側液室21の小液室25に連通する伝熱管23の他端が連通している。小伝熱管・液室組立体部20−1の入口側液室21の一方端の小液室25内に冷却液入口11から流入した高温のエンジン冷却液6は伝熱管23を通って出口側液室22の該伝熱管23の他端が連通している小液室25に流入し、該小液室25に他端が連通している伝熱管23を通って該伝熱管23の一方端が連通している入口側液室21の小液室25に流入するというように、高温のエンジン冷却液6は入口側液室21及び出口側液室22の各小液室25で反転を繰り返し、伝熱管23を通して流れる間に、複数本の伝熱管23で囲まれた流路14を流れるポンプ揚液4との間で熱交換が行われエンジン冷却液6は冷却される。   The inlet side liquid chamber 21 of the small heat transfer tube / liquid chamber assembly section 20-1 is divided into a plurality of small liquid chambers 25 by a partition member 24 as shown in FIG. Then, one end of the two or four heat transfer tubes 23 communicates. Although not shown, the outlet side liquid chamber 22 is similarly divided into a plurality of small liquid chambers 25 by a partition member 24, and one end of each small liquid chamber 25 communicates with the small liquid chamber 25 of the inlet side liquid chamber 21. The other end of the heat transfer tube 23 communicates. The high-temperature engine coolant 6 flowing from the coolant inlet 11 into the small fluid chamber 25 at one end of the inlet side fluid chamber 21 of the small heat transfer tube / liquid chamber assembly section 20-1 passes through the heat transfer tube 23 and exits from the outlet side fluid chamber 21. The other end of the heat transfer tube 23 in the chamber 22 flows into the small liquid chamber 25 and the other end of the heat transfer tube 23 passes through the heat transfer tube 23 with the other end communicating with the small liquid chamber 25. The high temperature engine coolant 6 repeats reversal in each of the small liquid chambers 25 of the inlet side liquid chamber 21 and the outlet side liquid chamber 22 so as to flow into the small liquid chamber 25 of the inlet side liquid chamber 21 that is in communication, While flowing through the heat transfer tube 23, heat exchange is performed with the pumped liquid 4 flowing through the flow path 14 surrounded by the plurality of heat transfer tubes 23, and the engine coolant 6 is cooled.

上記小伝熱管・液室組立体部20−1で冷却されたエンジン冷却液6は入口側液室21の他端の小液室25に連通する冷却液出口12から、連結管13を通って該小伝熱管・液室組立体部20−1に対向して配置された小伝熱管・液室組立体部20−2の入口側液室21の一端の小液室25に流入し、上記と同じように、入口側液室21と出口側液室22を連通する伝熱管23を通って、各小液室25で反転を繰り返し、伝熱管23を通る間にポンプ2からのポンプ揚液4との間で熱交換が行われ冷却され、エンジン7に戻る。なお、図5において、中心部に「・」印を付した○はエンジン冷却液6が紙面裏から紙面表に向かって(即ち、エンジン冷却液6が出口側液室22から入口側液室21に向かって)流れる場合の伝熱管23を、中心部に「×」印を付した○はエンジン冷却液6が紙面表から紙面裏に向かって(即ち、エンジン冷却液6が入口側液室21から出口側液室22に向かって)流れる場合の伝熱管23をそれぞれ示す。   The engine coolant 6 cooled by the small heat transfer tube / liquid chamber assembly 20-1 passes through the connecting pipe 13 from the coolant outlet 12 communicating with the small liquid chamber 25 at the other end of the inlet side liquid chamber 21. It flows into the small liquid chamber 25 at one end of the inlet side liquid chamber 21 of the small heat transfer tube / liquid chamber assembly portion 20-2 disposed to face the small heat transfer tube / liquid chamber assembly portion 20-1, and is the same as described above. In addition, through the heat transfer pipes 23 communicating with the inlet side liquid chamber 21 and the outlet side liquid chamber 22, the reversal is repeated in each small liquid chamber 25, and while passing through the heat transfer pipes 23, Heat exchange is performed between the two and the engine 7 is cooled. In FIG. 5, a circle marked with “·” at the center indicates that the engine coolant 6 is directed from the back of the paper toward the front of the paper (that is, the engine coolant 6 is transferred from the outlet side liquid chamber 22 to the inlet side liquid chamber 21. In the case where the heat transfer tube 23 flows in the direction of “”, the mark “×” in the center indicates that the engine coolant 6 is directed from the front to the back of the page (that is, the engine coolant 6 is at the inlet side liquid chamber 21. The heat transfer tubes 23 in the case of flowing from (to the outlet side liquid chamber 22) are respectively shown.

実公平2−45669号公報Japanese Utility Model Publication 2-45669 実公平3−30586号公報No. 3-30586

上記構成の管内クーラー5において、冷却熱量を上げる方法として、従来管内クーラー5の伝熱管23の本数を増やすなど伝熱面積を増やすことが行われてきた。管内クーラー5の内部はポンプ配管3内を流れるポンプ揚液4の流路14となっており、このポンプ2からのポンプ揚液4が流れる流路14を改良して、冷却熱量を上げる(冷却効率を上げる)手法はあまり考慮されていなかった。本願発明者等は従来構成の管内クーラー5の流路14内のポンプ揚液4の流れを流れ解析により調べたとろ、管内クーラー・ケーシング10内の伝熱管23が配置されている領域に流入するポンプ揚液4の流入量は意外に少なく、エンジン7からの高温のエンジン冷却液6を効率的に冷却できないという構造上の問題があることを突き止めた。   In the pipe cooler 5 having the above-described configuration, as a method for increasing the amount of cooling heat, the heat transfer area has been increased by increasing the number of the heat transfer pipes 23 of the conventional pipe cooler 5. The inside of the pipe cooler 5 is a flow path 14 for pumping liquid 4 flowing in the pump pipe 3, and the flow path 14 in which the pumping liquid 4 from the pump 2 flows is improved to increase the amount of cooling heat (cooling). The method of increasing efficiency was not considered much. The inventors of the present application, when examining the flow of the pumped liquid 4 in the flow path 14 of the pipe cooler 5 of the conventional configuration by flow analysis, flows into the area where the heat transfer pipe 23 in the pipe cooler casing 10 is disposed. The inflow amount of the pumped liquid 4 was unexpectedly small, and it was found that there was a structural problem that the high-temperature engine coolant 6 from the engine 7 could not be efficiently cooled.

本発明は上述の点に鑑みてなされたもので、管内クーラーの伝熱管・液室組立体を改造し、ポンプ揚液が管内クーラー・ケーシング内の伝熱管が配置されている領域に流入し、エンジンからの高温のエンジン冷却液を効率的に冷却できる管内クーラーを提供することを目的とする。   The present invention has been made in view of the above-mentioned points, remodeling the heat transfer tube / liquid chamber assembly of the in-tube cooler, and pumping liquid flows into the region where the heat transfer tube in the in-tube cooler / casing is disposed, An object of the present invention is to provide an in-pipe cooler capable of efficiently cooling a high-temperature engine coolant from an engine.

上記の課題を解決するために、本発明は、エンジンで駆動されるポンプの吐き出すポンプ揚液が通るケーシング内に、入口側液室と出口側液室を複数本の伝熱管で接続してなる伝熱管・液室組立体を、前記ポンプ揚液が前記伝熱管に囲まれた領域を前記入口側液室側から前記出口側液室側に流れるように配置し、前記エンジンからの高温冷却液を前記入口側液室に導入し、前記出口側液室との間を前記伝熱管を通って前記高温冷却液が流れる間に該高温冷却液と前記ポンプ揚液の間で熱交換を行う管内クーラーにおいて、前記入口側液室の前記伝熱管が接続されている側板の前記ポンプ揚液の流れと交差する前記出口側液室に対向する面の内側端部をポンプ揚液が前記伝熱管配置領域に流入しやすい曲面としたことを特徴とする。   In order to solve the above problems, the present invention is formed by connecting an inlet side liquid chamber and an outlet side liquid chamber with a plurality of heat transfer tubes in a casing through which pumped liquid discharged from a pump driven by an engine passes. The heat transfer tube / liquid chamber assembly is arranged so that the pumped liquid flows in a region surrounded by the heat transfer tube from the inlet side liquid chamber side to the outlet side liquid chamber side, and the high temperature coolant from the engine In the pipe that exchanges heat between the high temperature cooling liquid and the pumping liquid while the high temperature cooling liquid flows between the outlet side liquid chamber and the outlet side liquid chamber through the heat transfer pipe. In the cooler, the pumped liquid is disposed at the inner end of the side of the side plate connected to the heat transfer pipe of the inlet side liquid chamber that faces the outlet liquid chamber that intersects the flow of the pumped liquid. It is characterized by a curved surface that easily flows into the region.

また、本発明は、上記管内クーラーにおいて、前記側板の内側端部曲面は円弧面であることを特徴とする。   Moreover, the present invention is characterized in that, in the pipe cooler, the inner end curved surface of the side plate is an arc surface.

また、本発明は、上記管内クーラーにおいて、前記伝熱管・液室組立体は円弧状の入口側液室と円弧状の出口側液室を複数本の伝熱管で接続してなる一対の小伝熱管・液室組立体部からなり、該一対の小伝熱管・液室組立体部は前記伝熱管がポンプ揚液の流れを阻害しない領域に位置するように前記ケーシング内に対向して配置されていることを特徴とする。   Further, according to the present invention, in the above-described cooler, the heat transfer tube / liquid chamber assembly includes a pair of small heat transfer tubes in which an arc-shaped inlet-side liquid chamber and an arc-shaped outlet-side liquid chamber are connected by a plurality of heat transfer tubes. It is composed of a liquid chamber assembly, and the pair of small heat transfer tubes and the liquid chamber assembly are arranged opposite to each other in the casing so that the heat transfer tubes are located in a region where the flow of pumping liquid is not hindered. It is characterized by that.

本発明は、入口側液室の伝熱管が接続されている側板のポンプ揚液の流れと交差する出口側液室に対向する面の内側端部をポンプ揚液が伝熱管配置領域に流入しやすい円弧面等の曲面としたことにより、この部分でのポンプ揚液流れの剥離を抑え、伝熱管の配置領域に流れるポンプ揚液の流量が多くなることから、伝熱管の冷却性能が向上し、エンジン冷却水の冷却効率が向上する。   According to the present invention, the pumped liquid flows into the heat transfer tube arrangement region at the inner end of the side of the side plate connected to the heat transfer tube of the inlet side liquid chamber that faces the flow of the pumped liquid that intersects the outlet side liquid chamber. The curved surface, such as an easy-to-use arc surface, suppresses separation of the pumped liquid flow at this part and increases the flow rate of the pumped liquid flowing in the heat transfer tube arrangement area, thereby improving the cooling performance of the heat transfer tube. The cooling efficiency of engine coolant is improved.

エンジン冷却液の冷却にポンプ揚液を用いる管内クーラーを使用するエンジン駆動のポンプを備えたポンプ設備の概略構成例を示す図である。It is a figure which shows the schematic structural example of the pump installation provided with the pump of an engine drive which uses the pipe | tube cooler which uses a pumping liquid for cooling of an engine coolant. 管内クーラーの外観立体構成例を示す図である。It is a figure which shows the external appearance three-dimensional structural example of a pipe | tube cooler. 管内クーラーの伝熱管・液室組立体の概略構成例を示す図である。It is a figure which shows the schematic structural example of the heat exchanger tube and liquid chamber assembly of a pipe | tube cooler. 伝熱管・液室組立体とポンプ配管の組立体の概略構成例を示す図である。It is a figure which shows the schematic structural example of the assembly of a heat exchanger tube and a liquid chamber assembly, and pump piping. 伝熱管・液室組立体の入口側液室の内部構成を示す図である。It is a figure which shows the internal structure of the inlet side liquid chamber of a heat exchanger tube and a liquid chamber assembly. 本発明に係る管内クーラーの伝熱管・液室組立体の概略構成例を示す図である。It is a figure which shows the example of schematic structure of the heat exchanger tube and liquid chamber assembly of the pipe | tube cooler which concerns on this invention. 本発明に係る管内クーラーの伝熱管・液室組立体の入口側液室のポンプ揚液の流入部を示す図である。It is a figure which shows the inflow part of the pumping liquid of the inlet side liquid chamber of the heat exchanger tube and liquid chamber assembly of the pipe | tube cooler which concerns on this invention. 従来の管内クーラーの伝熱管・液室組立体の入口側液室のポンプ揚液の流入部を示す図である。It is a figure which shows the inflow part of the pumping liquid of the inlet side liquid chamber of the heat exchanger tube and liquid chamber assembly of the conventional pipe cooler. 従来の管内クーラーと本発明に係る管内クーラーの流れ解析水平断面速度ベクトルを示す図である。It is a figure which shows the flow analysis horizontal cross-section speed vector of the conventional cooler in a pipe, and the cooler in a pipe which concerns on this invention. 従来の管内クーラーのポンプ揚液流れの垂直断面の流速ベクトルを示す図である。It is a figure which shows the flow-velocity vector of the vertical cross section of the pumping liquid flow of the conventional cooler in a pipe | tube. 本発明に係る管内クーラーのポンプ揚液流れの垂直断面の流速ベクトルを示す図である。It is a figure which shows the flow-velocity vector of the vertical cross section of the pump lifting liquid flow of the pipe | tube cooler which concerns on this invention. 従来の管内クーラーと本発明に係る管内クーラーの熱と流れの解析結果を示す図である。It is a figure which shows the analysis result of the heat and flow of the conventional cooler in a pipe | tube, and the cooler in a pipe | tube which concerns on this invention. 本発明に係る管内クーラーの渦防止手段の概略構成例を示す図である。It is a figure which shows the schematic structural example of the vortex prevention means of the cooler in a pipe | tube which concerns on this invention. 本発明に係る管内クーラーの渦防止手段の概略構成例を示す図である。It is a figure which shows the schematic structural example of the vortex prevention means of the cooler in a pipe | tube which concerns on this invention. 本発明に係る管内クーラーの渦防止手段の概略構成例を示す図である。It is a figure which shows the schematic structural example of the vortex prevention means of the cooler in a pipe | tube which concerns on this invention. 従来の管内クーラーのポンプ揚液流れの垂直断面の流速ベクトルを示す図である。It is a figure which shows the flow-velocity vector of the vertical cross section of the pumping liquid flow of the conventional cooler in a pipe | tube. 本発明に係る管内クーラーのポンプ揚液流れの垂直断面の流速ベクトルを示す図である。It is a figure which shows the flow-velocity vector of the vertical cross section of the pump lifting liquid flow of the pipe | tube cooler which concerns on this invention. 本発明に係る管内クーラーのポンプ揚液流れの垂直断面の流速ベクトルを示す図である。It is a figure which shows the flow-velocity vector of the vertical cross section of the pump lifting liquid flow of the pipe | tube cooler which concerns on this invention. 本発明に係る管内クーラーのポンプ揚液流れの垂直断面の流速ベクトルを示す図である。It is a figure which shows the flow-velocity vector of the vertical cross section of the pump lifting liquid flow of the pipe | tube cooler which concerns on this invention. 従来の管内クーラーの入口側液室内の伝熱管配置構成例を示す図である。It is a figure which shows the heat transfer pipe arrangement | positioning structural example in the inlet side liquid chamber of the conventional cooler in a pipe | tube. 本発明に係る管内クーラーの入口側液室内の伝熱管配置構成例を示す図である。It is a figure which shows the heat transfer pipe arrangement | positioning structural example in the inlet side liquid chamber of the pipe | tube cooler which concerns on this invention. 本発明に係る管内クーラーの入口側液室内の伝熱管配置構成例を示す図である。It is a figure which shows the heat transfer pipe arrangement | positioning structural example in the inlet side liquid chamber of the pipe | tube cooler which concerns on this invention.

以下、本発明の実施の形態について、詳細に説明する。本発明に係る管内クーラーの外観立体構成、管内クーラーの伝熱管・液室組立体の構成、伝熱管・液室組立体とポンプ配管の組立体の概略構成、伝熱管・液室組立体の小伝熱管・液室組立体部の液室と伝熱管の配置構成例は、図2、図3、図4、図5と略同じであるから、その詳細な説明は省略する。   Hereinafter, embodiments of the present invention will be described in detail. The external three-dimensional configuration of the pipe cooler according to the present invention, the configuration of the heat transfer tube / liquid chamber assembly of the pipe cooler, the schematic configuration of the heat transfer tube / liquid chamber assembly and the pump pipe assembly, and the small transfer of the heat transfer tube / liquid chamber assembly Since the arrangement configuration examples of the liquid chamber and the heat transfer tube of the heat tube / liquid chamber assembly are substantially the same as those in FIGS. 2, 3, 4, and 5, detailed descriptions thereof will be omitted.

本発明に係る管内クーラーが図2及び図3に示す従来の管内クーラーと異なる点は、図6及び図7に示すように、伝熱管・液室組立体20の入口側液室21の伝熱管23が接続されている側板のポンプ揚液4の下流側の面(出口側液室22に対向する面)の該ポンプ揚液4の流れと交差する内径側端部を半径Rの円弧面21aとした点である。   The in-tube cooler according to the present invention is different from the conventional in-tube cooler shown in FIGS. 2 and 3 in that the heat transfer tube of the inlet side liquid chamber 21 of the heat transfer tube / liquid chamber assembly 20 is shown in FIGS. An end surface on the inner diameter side of the surface of the side plate to which the pump pump liquid 4 is downstream (the surface facing the outlet-side liquid chamber 22) of the side plate to which the pump pump liquid 4 is connected intersects with the flow of the pumped liquid 4. This is the point.

図2及び図3に示す管内クーラーにおいて、ポンプ配管3から管内クーラー5の管内クーラー・ケーシング10内に流入したポンプ揚液4は入口側液室21(小伝熱管・液室組立体部20−1の円弧状の入口側液室21と小伝熱管・液室組立体部20−2の円弧状の入口側液室21で形成される)と出口側液室22(小伝熱管・液室組立体部20−1の円弧状の出口側液室22と小伝熱管・液室組立体部20−2の円弧状の出口側液室22で形成される)と該入口側液室21と出口側液室22を接続する複数本の伝熱管23で囲まれた空間を入口側液室21側から出口側液室22側へと流れる。そしてポンプ2の吐出口に接続されたポンプ配管3は曲管(図1では略90°屈曲した曲管)となっていることから、ポンプ配管3内を流れるポンプ揚液4は偏流となっている。この偏流を伴うポンプ揚液4が管内クーラー5内に流入した場合、偏流によって伝熱管23と伝熱管23の間隙を通って、かなりの流量のポンプ揚液4が管内クーラー・ケーシング10内の伝熱管23が配置されている領域に流入すると考えられていた。   In the in-pipe cooler shown in FIGS. 2 and 3, the pump liquid 4 flowing from the pump pipe 3 into the in-pipe cooler casing 10 of the in-pipe cooler 5 is supplied to the inlet side liquid chamber 21 (small heat transfer pipe / liquid chamber assembly portion 20-1. Arc-shaped inlet-side liquid chamber 21 and the arc-shaped inlet-side liquid chamber 21 of the small heat transfer tube / liquid chamber assembly portion 20-2) and the outlet-side liquid chamber 22 (small heat-transfer tube / liquid chamber assembly portion). 20-1 of the arc-shaped outlet side liquid chamber 22 and the arc-shaped outlet side liquid chamber 22 of the small heat transfer tube / liquid chamber assembly portion 20-2), the inlet side liquid chamber 21 and the outlet side liquid chamber. 22 flows from the inlet side liquid chamber 21 side to the outlet side liquid chamber 22 side through a space surrounded by a plurality of heat transfer tubes 23 connecting the two. Since the pump pipe 3 connected to the discharge port of the pump 2 is a curved pipe (bent pipe bent in FIG. 1 by approximately 90 °), the pump liquid 4 flowing in the pump pipe 3 is drifted. Yes. When the pumped liquid 4 accompanied by this drift flows into the in-tube cooler 5, a considerable flow rate of the pumped liquid 4 passes through the gap between the heat transfer pipe 23 and the heat transfer pipe 23 due to the unbalanced flow, and is transferred to the cooler casing 10 in the pipe. It was thought to flow into the region where the heat pipe 23 is arranged.

ところが、図8に示すように従来の伝熱管・液室組立体20の入口側液室21の伝熱管23が接続されている側板の出口側液室22(図示せず)と対向する面のポンプ揚液4の流れと交差する角部を直角としたままのものでは、予想外に少ない流量のポンプ揚液4しか伝熱管23の配置領域に流入しないことが後に示す流れ解析結果から判明した。その主な原因は管内クーラー・ケーシング10内に流入したポンプ揚液4が入口側液室21を通り過ぎるとき、入口側液室21の伝熱管23が接続されている側板の出口側液室22に対する面の内側端部でポンプ揚液4の流れに剥離が発生し、この剥離により、伝熱管23の配置領域にポンプ揚液4の流れが拡がらずに大部分が複数の伝熱管23で囲まれた領域内部を入口側液室21から出口側液室22へと矢印4bに示すように素通りすることにある。   However, as shown in FIG. 8, the surface of the side plate facing the outlet side liquid chamber 22 (not shown) of the side plate to which the heat transfer pipe 23 of the inlet side liquid chamber 21 of the conventional heat transfer tube / liquid chamber assembly 20 is connected. It turned out from the flow analysis result shown later that the pumped liquid 4 having a small flow rate unexpectedly flows into the arrangement region of the heat transfer tube 23 when the corner intersecting with the flow of the pumped liquid 4 is kept at a right angle. . The main cause is that when the pumped liquid 4 flowing into the in-pipe cooler casing 10 passes through the inlet-side liquid chamber 21, the side plate to which the heat transfer pipe 23 of the inlet-side liquid chamber 21 is connected is connected to the outlet-side liquid chamber 22. Separation occurs in the flow of the pumped liquid 4 at the inner end of the surface, and this separation does not spread the flow of the pumped liquid 4 in the arrangement region of the heat transfer tubes 23, and most of the flow is surrounded by the plurality of heat transfer tubes 23. The inside of the region is passed from the inlet side liquid chamber 21 to the outlet side liquid chamber 22 as indicated by an arrow 4b.

そこで本発明に係る管内クーラーでは、上記のように伝熱管・液室組立体20の入口側液室21の伝熱管23が接続されている側板のポンプ揚液4の流れと交差する出口側液室22に対向する面(ポンプ揚液下流側の面)の内側端部を図7(a)、(b)に示すように、半径Rの円弧面21aとしたのである。これにより、図7の矢印4aに示すように、ポンプ揚液4の流れが伝熱管23の配置領域に拡がり、管内クーラーの冷却熱量を上げることができる。なお、図7(a)、図8(a)はそれぞれ伝熱管・液室組立体20の伝熱管23が入口側液室21に接続されている部分の断面を、図7(b)、図8(b)はそれぞれこの伝熱管23が入口側液室21に接続されている部分の斜視図を示す。   Therefore, in the pipe cooler according to the present invention, the outlet side liquid intersecting with the flow of the pumping liquid 4 on the side plate to which the heat transfer pipe 23 of the inlet side liquid chamber 21 of the heat transfer pipe / liquid chamber assembly 20 is connected as described above. As shown in FIGS. 7A and 7B, the inner end of the surface facing the chamber 22 (the surface on the downstream side of pumping liquid) is an arc surface 21a having a radius R. Thereby, as shown by the arrow 4a of FIG. 7, the flow of the pumping liquid 4 spreads to the arrangement | positioning area | region of the heat exchanger tube 23, and it can raise the cooling calorie | heat amount of a pipe | tube cooler. 7 (a) and 8 (a) are cross-sectional views of the portion where the heat transfer tube 23 of the heat transfer tube / liquid chamber assembly 20 is connected to the inlet side liquid chamber 21, respectively. 8 (b) is a perspective view of a portion where the heat transfer tube 23 is connected to the inlet side liquid chamber 21.

図9は管内クーラーの伝熱管・液室組立体の流れ解析結果を示す水平断面速度ベクトル図である。図9(a)は入口側液室21の伝熱管23が接続されている側板の出口側液室22に対向する面のポンプ揚液4の流れと交差する角部を角(直角)のままとした(以下「入口側液室角部を角のまま」と記す)場合を、図9(b)は入口側液室21の伝熱管23が接続されている側板の出口側液室22に対向する面のポンプ揚液4の流れと交差する内側面端部を半径Rの円弧面21aに加工した(以下「入口側液室角部を円弧に加工」と記す)場合をそれぞれ示す。入口側液室角部を角のままとした場合は、図9(a)に示すように、入口側液室21の角端部で剥離が発生し、伝熱管23が設置されている領域に冷却水となるポンプ揚液4が流れ込めない状態となっている。これに対して、入口側液室角部を円弧に加工した場合は、図9(b)に示すように、なだらかではあるが入口側液室21の角部からポンプ揚液4が伝熱管23が設置されている領域に流れ込んでいる。   FIG. 9 is a horizontal cross-sectional velocity vector diagram showing a flow analysis result of the heat transfer tube / liquid chamber assembly of the in-pipe cooler. FIG. 9 (a) shows that the corner crossing the flow of the pumped liquid 4 on the surface of the side plate facing the outlet side liquid chamber 22 of the side plate to which the heat transfer tube 23 of the inlet side liquid chamber 21 is connected remains a corner (right angle). 9 (hereinafter referred to as “the corner of the inlet side liquid chamber is left as a corner”), FIG. 9B shows the state of the outlet side liquid chamber 22 of the side plate to which the heat transfer tube 23 of the inlet side liquid chamber 21 is connected. The case where the inner side surface end portion that intersects the flow of the pumped liquid 4 on the opposite surface is processed into a circular arc surface 21a having a radius R (hereinafter referred to as “processing the inlet side liquid chamber corner portion into a circular arc”) is shown. When the corner of the inlet side liquid chamber is left as a corner, as shown in FIG. 9A, peeling occurs at the corner end of the inlet side liquid chamber 21, and the heat transfer tube 23 is installed in the region. The pumped liquid 4 serving as cooling water is not allowed to flow. On the other hand, when the corner portion of the inlet side liquid chamber is processed into a circular arc, as shown in FIG. 9 (b), the pump liquid 4 is gently transferred from the corner portion of the inlet side liquid chamber 21 as shown in FIG. Is flowing into the area where is installed.

図10は、管内クーラーの伝熱管・液室組立体のポンプ揚液4の流れ方向の垂直断面の流速ベクトル図であり、図10(a)は入口側液室角部を角のままとした場合を、図10(b)は入口側液室角部を円弧に加工した場合をそれぞれ示す。入口側液室角部を角のままとした場合、図10(a)に示すように、伝熱管23が設置されている領域に中央部分のポンプ揚液4の主流F1から分離する流速ベクトルは見られない。これに対して入口側液室角部を円弧に加工した場合、図10(b)に示すように、伝熱管23が設置されている領域に中央部分のポンプ揚液4の主流F1から分離した流速ベクトルF2が存在し、高温のエンジン冷却液の冷却水となるポンプ揚液4が伝熱管23の配置領域に流れ込んでいる。   FIG. 10 is a flow velocity vector diagram of a vertical cross section in the flow direction of the pumped liquid 4 of the heat transfer tube / liquid chamber assembly of the pipe cooler, and FIG. FIG. 10B shows the case where the corner of the inlet side liquid chamber is processed into an arc. When the corner of the inlet side liquid chamber is left as a corner, as shown in FIG. 10 (a), the flow velocity vector separated from the main flow F1 of the pumped liquid 4 in the central portion in the region where the heat transfer tube 23 is installed is can not see. On the other hand, when the inlet side liquid chamber corner is machined into a circular arc, as shown in FIG. 10 (b), it is separated from the main flow F1 of the pumped liquid 4 at the center in the region where the heat transfer tube 23 is installed. There is a flow velocity vector F 2, and the pumped liquid 4 serving as cooling water for the high-temperature engine coolant flows into the arrangement region of the heat transfer tubes 23.

伝熱管23が配置されている領域に流れ込むポンプ揚液4の流量が増えるほど、伝熱管23の冷却性能は向上する。図7(b)に示す入口側液室21の伝熱管23が接続されている側板の出口側液室22に対向する面のポンプ揚液4の流れと交差する角部の円弧半径Rは、かなり小さくても伝熱管23が配置されている領域へポンプ揚液4が流れ込む流量を増大させる効果はあるが、円弧半径Rが大きいほど剥離を抑える効果は大きいことから、上記円弧にする効果は円弧半径Rの大きさに略比例する。他方、管内クーラーの伝熱管・液室組立体の構造上の制約から半径の大きさには限界がある。よって、管内クーラー5の主管となるポンプ配管3の径を700mmとした場合、円弧半径Rは5mm以上で、構造上とれる範囲で円弧半径Rを大きくすると良い。   The cooling performance of the heat transfer tube 23 improves as the flow rate of the pumped liquid 4 flowing into the region where the heat transfer tube 23 is disposed increases. The arc radius R of the corner intersecting the flow of the pumped liquid 4 on the surface facing the outlet side liquid chamber 22 of the side plate connected to the heat transfer tube 23 of the inlet side liquid chamber 21 shown in FIG. Even if it is quite small, there is an effect of increasing the flow rate of the pumped liquid 4 flowing into the region where the heat transfer tube 23 is disposed. However, the larger the arc radius R is, the greater the effect of suppressing the separation is. It is approximately proportional to the size of the arc radius R. On the other hand, the size of the radius is limited due to the structural limitations of the heat transfer tube / liquid chamber assembly of the in-tube cooler. Therefore, when the diameter of the pump pipe 3 serving as the main pipe of the in-pipe cooler 5 is 700 mm, the arc radius R is 5 mm or more, and the arc radius R is preferably increased within a structural range.

図5で説明したように、伝熱管23を2本一対として、エンジン7からの高温のエンジン冷却液6を入口側液室21に導入し、該一対の伝熱管23を通して反対側の出口側液室22に送り、該出口側液室22に到達してから、該出口側液室22でUターンして戻すことを繰り返すことにより、高温のエンジン冷却液6を冷却するようになっている。この一対を1パスとして、10パスから16パスまで、入口側液室を角のまま(断面略直角)とした場合と、入口側液室の角部を円弧半径R=25mmの円弧に加工した場合の熱と流れの解析結果を図11に示す。ここでポンプ配管3の径は700mmである。   As described with reference to FIG. 5, two heat transfer tubes 23 are used as a pair, hot engine coolant 6 from the engine 7 is introduced into the inlet side liquid chamber 21, and the opposite outlet side liquid is passed through the pair of heat transfer tubes 23. The high-temperature engine coolant 6 is cooled by repeating the U-turn in the outlet-side liquid chamber 22 after returning to the outlet-side liquid chamber 22 and returning to the outlet-side liquid chamber 22. With this pair as one pass, from the 10th pass to the 16th pass, when the inlet side liquid chamber is left in a corner (substantially perpendicular), the corner of the inlet side liquid chamber is processed into an arc with an arc radius R = 25 mm. FIG. 11 shows the analysis results of heat and flow in this case. Here, the diameter of the pump pipe 3 is 700 mm.

図11から、入口側液室の角部を円弧に加工、即ち入口側液室21の出口側液室22に対向する側板面のポンプ揚液4の流れと交差する角部を半径R=25mmの円弧に加工することにより、エンジン7からの高温のエンジン冷却液6の出口と入口の温度差は、12%〜16%向上していることが確認できた。12パスについては入口側液室21の上記内側端部を半径9.5mmの円弧にした場合も解析した。その結果の温度差は12.6℃で、冷却性能比率である(円弧に加工温度差)/(角のままの温度差)は(12.6)/(11.5)=1.10であったので、円弧半径Rが大きいほどその効果は大きいことを確認できた。   From FIG. 11, the corner of the inlet-side liquid chamber is processed into an arc, that is, the corner intersecting the flow of the pumped liquid 4 on the side plate surface of the inlet-side liquid chamber 21 facing the outlet-side liquid chamber 22 has a radius R = 25 mm. It was confirmed that the temperature difference between the outlet and the inlet of the hot engine coolant 6 from the engine 7 was improved by 12% to 16%. For 12 passes, the analysis was also performed when the inner end of the inlet-side liquid chamber 21 was formed into an arc having a radius of 9.5 mm. The resulting temperature difference is 12.6 ° C. and the cooling performance ratio (circular arc processing temperature difference) / (temperature difference with corners) is (12.6) / (11.5) = 1.10. Therefore, it was confirmed that the larger the arc radius R, the greater the effect.

上記のように、入口側液室角部を円弧に加工した場合、その半径に比例して伝熱管23を配置した領域へ拡がるポンプ揚液4の流量が増大する。この流量の増大により流速が大きくなり、伝熱管23の配置領域に渦が引き起こされる。この渦は必ずしも振動・騒音の原因となるとは限らないが、振動・騒音の原因となる恐れがある。また、渦の発生によりキャビテーションの発生による伝熱管の壊食を起こす危険もある。そこで伝熱管23の配置領域に発生する渦を抑える手段を設置する必要がある。   As described above, when the inlet side liquid chamber corner is machined into a circular arc, the flow rate of the pumped liquid 4 spreading to the region where the heat transfer tube 23 is arranged increases in proportion to the radius. This increase in flow rate increases the flow velocity, causing vortices in the region where the heat transfer tubes 23 are arranged. Although this vortex does not necessarily cause vibration and noise, it may cause vibration and noise. There is also a risk of erosion of the heat transfer tube due to cavitation due to the generation of vortices. Therefore, it is necessary to install means for suppressing vortices generated in the arrangement region of the heat transfer tubes 23.

図12は上記伝熱管23の配置領域に発生する渦を抑える渦防止手段の構成例を示す図であり、図12(a)は伝熱管・液室組立体20(小伝熱管・液室組立体部20−1)の下端部を示す斜視図、図12(b)は伝熱管・液室組立体20の下端部を上流側から見た図を示す。本渦防止手段は、伝熱管・液室組立体20の入口側液室21の下端部の管内クーラー・ケーシング10上の内側と外側に所定間隔Dを設けて2枚の渦防止板31a、31bを平行に配置している。渦防止板を2枚としたのは、渦防止板31bの1枚のみであると、裏側に渦が発生するので、この裏側に発生する渦を防止するため2枚としたのである。渦防止板31a、31bの長さは伝熱管23の全長と同じ長さ、即ち入口側液室21の下流端(ポンプ揚液4の流れの下流側端)から出口側液室22の上流端までの間隔と同じ長さである。2枚の渦防止板31a、31bの上に蓋をするように板を設置しても渦の抑制作用効果には変りはない。   FIG. 12 is a view showing a configuration example of vortex preventing means for suppressing vortices generated in the arrangement region of the heat transfer tube 23. FIG. 12 (a) shows a heat transfer tube / liquid chamber assembly 20 (small heat transfer tube / liquid chamber assembly). FIG. 12B is a perspective view of the lower end portion of the heat transfer tube / liquid chamber assembly 20 as viewed from the upstream side. This vortex prevention means provides two vortex prevention plates 31a and 31b with a predetermined distance D between the inner side and the outer side of the lower end portion of the inlet side liquid chamber 21 of the heat transfer tube / liquid chamber assembly 20 on the pipe cooler casing 10. Are arranged in parallel. The reason why two vortex prevention plates are used is that if only one of the vortex prevention plates 31b is used, vortices are generated on the back side, so that two vortex prevention plates are used to prevent the vortex generated on the back side. The length of the vortex prevention plates 31a and 31b is the same as the entire length of the heat transfer tube 23, that is, the downstream end of the inlet side liquid chamber 21 (the downstream end of the flow of the pumped liquid 4) to the upstream end of the outlet side liquid chamber 22. It is the same length as the interval. Even if a plate is installed so as to cover the two vortex prevention plates 31a and 31b, the effect of suppressing the vortex remains unchanged.

図12に示すように、外側の渦防止板31bは入口側液室21及び出口側液室22の底部の両端幅Aの間に設置することで渦防止の作用効果が得られている。渦防止板31a、31bの高さ寸法Hは、低すぎると渦防止の作用効果が無くなり、高すぎると二次流れを阻害することになる。また、内側の渦防止板31aと外側の渦防止板31bの間隔Dは外側の渦防止板31bの裏側に渦が発生しない程度の幅とする。ここで、管内クーラー5の主管となるポンプ配管3の径を700mmとして、上記渦防止板間隔D、渦防止板の高さH、D/Hは次のようにするとよい。
20.0mm≦D
0.5≦D/H≦1.5
As shown in FIG. 12, the outer vortex prevention plate 31 b is installed between the widths A at both ends of the inlet side liquid chamber 21 and the outlet side liquid chamber 22, thereby obtaining the effect of vortex prevention. If the height dimension H of the vortex preventing plates 31a and 31b is too low, the effect of preventing the vortex is lost, and if it is too high, the secondary flow is inhibited. The distance D between the inner vortex prevention plate 31a and the outer vortex prevention plate 31b is set to a width that does not cause vortices on the back side of the outer vortex prevention plate 31b. Here, the diameter of the pump pipe 3 serving as the main pipe of the in-pipe cooler 5 is set to 700 mm, and the vortex prevention plate interval D and the height H, D / H of the vortex prevention plate are preferably as follows.
20.0mm ≦ D
0.5 ≦ D / H ≦ 1.5

図13及び図14は上記伝熱管23の配置領域に発生する渦を抑える渦防止手段の他の構成例を示す図であり、図13(a)は伝熱管・液室組立体20(小伝熱管・液室組立体部20−1)の下端部を示す斜視図、図13(b)は伝熱管・液室組立体20の下端部を上流側から見た図、図14は伝熱管・液室組立体20を示す。本渦防止手段は、伝熱管・液室組立体20(小伝熱管・液室組立体部20−1)の入口側液室21の下端部と出口側液室22の下端部に亘ってブリッジ状の渦防止板33を設けた構成である。このように入口側液室21の下端部と出口側液室22の下端部に亘ってブリッジ状の渦防止板33を設けた場合も伝熱管23の配置領域に発生する渦を抑えることができる。   FIGS. 13 and 14 are diagrams showing another example of the structure of the vortex preventing means for suppressing the vortex generated in the arrangement region of the heat transfer tube 23. FIG. 13 (a) shows the heat transfer tube / liquid chamber assembly 20 (small heat transfer tube). A perspective view showing the lower end of the liquid chamber assembly 20-1), FIG. 13B is a view of the lower end of the heat transfer tube / liquid chamber assembly 20 from the upstream side, and FIG. 14 is a heat transfer tube / liquid. A chamber assembly 20 is shown. This vortex prevention means is bridge-shaped across the lower end portion of the inlet side liquid chamber 21 and the lower end portion of the outlet side liquid chamber 22 of the heat transfer tube / liquid chamber assembly 20 (small heat transfer tube / liquid chamber assembly portion 20-1). The vortex prevention plate 33 is provided. Thus, even when the bridge-shaped vortex preventing plate 33 is provided across the lower end of the inlet side liquid chamber 21 and the lower end of the outlet side liquid chamber 22, vortices generated in the arrangement region of the heat transfer tubes 23 can be suppressed. .

図14に示す構成の渦防止手段において、図13(b)のように、ブリッジ状の渦防止板33の幅寸法をL、入口側液室21の下端部(出口側液室22の下端部)の幅寸法をL0とした場合、L/L0 を次のように設定すると伝熱管23の配置領域に発生する渦を効果的に抑制することができる。
0.3≦L/L0≦1.0
In the vortex preventing means having the configuration shown in FIG. 14, the width of the bridge-shaped vortex preventing plate 33 is L, and the lower end portion of the inlet side liquid chamber 21 (the lower end portion of the outlet side liquid chamber 22) as shown in FIG. ) Is set to L0, the vortex generated in the arrangement region of the heat transfer tube 23 can be effectively suppressed by setting L / L0 as follows.
0.3 ≦ L / L0 ≦ 1.0

なお、図14では、ブリッジ状の渦防止板33を両端部を入口側液室21及び出口側液室22のそれぞれ対向面の内側端部で且つ角部の円弧終端から下方に取り付けているが、図示は省略するが入口側液室21及び出口側液室22の端部に亘って取り付けてもよい。   In FIG. 14, both ends of the bridge-shaped vortex preventing plate 33 are attached to the inner ends of the opposing surfaces of the inlet-side liquid chamber 21 and the outlet-side liquid chamber 22 and downward from the end of the arc at the corner. Although not shown in the drawings, it may be attached over the end portions of the inlet side liquid chamber 21 and the outlet side liquid chamber 22.

図15乃至図18は管内クーラー5のポンプ揚液4の流れ方向の垂直断面の解析結果を示す速度ベクトルを示す図で、図15は入口側液室角部を角のままとした場合で且つ渦防止手段を設けない場合を、図16は入口側液室角部を円弧に加工した場合で且つ渦防止手段を設けない場合を、図17は入口側液室角部を円弧に加工した場合で且つ渦防止手段として2枚の渦防止板31aと31bを設けた場合を、図18は入口側液室角部を円弧に加工した場合で且つ渦防止手段としてブリッジ状の渦防止板33を設けた場合をそれぞれ示す。   FIGS. 15 to 18 are diagrams showing velocity vectors showing the analysis results of the vertical cross section in the flow direction of the pumped liquid 4 of the in-pipe cooler 5, and FIG. 16 shows the case where the vortex prevention means is not provided, FIG. 16 shows the case where the inlet side liquid chamber corner is processed into an arc and the case where no vortex prevention means is provided, and FIG. 17 shows the case where the inlet side liquid chamber corner is processed into an arc. FIG. 18 shows a case where the inlet side liquid chamber corner is processed into an arc and a bridge-shaped vortex prevention plate 33 is used as the vortex prevention means. Each case is shown.

入口側液室角部を角のままとして渦防止手段を設けない場合は、図15に示すように、伝熱管23が設置されている領域に中央部分のポンプ揚液4の主流F1から分離する流速ベクトルは見られず、伝熱管23が設置されている領域にポンプ揚液4の流入量は少なく、伝熱管23の設置領域に渦も発生しない。   When the corner of the liquid chamber on the inlet side remains a corner and no vortex prevention means is provided, as shown in FIG. 15, separation is performed from the main flow F <b> 1 of the pumped liquid 4 at the center in the region where the heat transfer tube 23 is installed. The flow velocity vector is not observed, the amount of pumped liquid 4 is small in the region where the heat transfer tube 23 is installed, and no vortex is generated in the region where the heat transfer tube 23 is installed.

入口側液室角部を円弧に加工し、渦防止手段を設けない場合は、図16に示すように、伝熱管23が設置されている領域に中央部分のポンプ揚液4の主流F1から分離する流速ベクトルF2が見られ、伝熱管23が設置されている領域にポンプ揚液4が流入し、渦が発生している流速ベクトルF3が見られる。   When the inlet side liquid chamber corner is processed into a circular arc and no vortex prevention means is provided, as shown in FIG. 16, it is separated from the main flow F1 of the pumped liquid 4 at the center in the region where the heat transfer tube 23 is installed. The pumped liquid 4 flows into the region where the heat transfer tube 23 is installed, and the flow velocity vector F3 where the vortex is generated is seen.

入口側液室角部を円弧に加工し、渦防止手段として2枚の渦防止板31aと31bを平行に設けた場合は、図17に示すように、伝熱管23が設置されている領域に中央部分のポンプ揚液4の主流F1から分離する流速ベクトルF2が見られ、ポンプ揚液4が流入しているが、2枚の渦防止板31a、31bをポンプ揚液4の流れ方向に対して平行に設けていることから、渦の発生は見られない。   When the inlet side liquid chamber corner is machined into a circular arc and two vortex prevention plates 31a and 31b are provided in parallel as vortex prevention means, as shown in FIG. 17, in the region where the heat transfer tube 23 is installed. A flow velocity vector F2 separated from the main flow F1 of the pumped liquid 4 at the center is seen, and the pumped liquid 4 flows in, but the two vortex prevention plates 31a and 31b are moved in the flow direction of the pumped liquid 4. Therefore, the generation of vortices is not seen.

入口側液室角部を円弧に加工し、渦防止手段としてブリッジ状の渦防止板33を設けた場合は、図18に示すように、伝熱管23が設置されている領域に中央部分のポンプ揚液4の主流F1から分離する流速ベクトルF2が見られ、ポンプ揚液4が流入しているが、ブリッジ状の渦防止板33をポンプ揚液4の流れ方向に対して平行に設けていることから、渦の発生は見られない。   When the inlet side liquid chamber corner is machined into a circular arc and a bridge-shaped vortex prevention plate 33 is provided as a vortex prevention means, as shown in FIG. 18, the central portion of the pump is located in the region where the heat transfer tube 23 is installed. A flow velocity vector F2 separated from the main flow F1 of the pumped liquid 4 is seen, and the pump pumped liquid 4 flows in, but a bridge-shaped vortex prevention plate 33 is provided in parallel to the flow direction of the pumped pumped liquid 4. Therefore, the generation of vortex is not seen.

管内クーラー5の入口側液室21及び出口側液室22の内径は主管であるポンプ配管3の外径から決ってくるため、図19及び図20に示すように、伝熱管23の配置領域θareaを決定しているθtopとθbottomの大きさは、任意ではなく限定されている。従来の管内クーラー5の入口側液室21及び出口側液室22では底部角部を面取りしない角のままの場合、図19に示すように、伝熱管23の底側末端位置は、入口側液室21及び出口側液室22の外径上の角が管内クーラー・ケーシング10の内面に当接しない位置で止まることになる。この位置によりθareaは決まってくる。   Since the inner diameters of the inlet-side liquid chamber 21 and the outlet-side liquid chamber 22 of the in-pipe cooler 5 are determined from the outer diameter of the pump pipe 3 that is the main pipe, as shown in FIGS. 19 and 20, the arrangement region θarea of the heat transfer pipe 23 is arranged. The magnitudes of [theta] top and [theta] bottom that determine the value are not arbitrary and are limited. In the conventional inlet-side liquid chamber 21 and outlet-side liquid chamber 22 of the in-pipe cooler 5, when the corners of the bottom portion are not chamfered, as shown in FIG. The corners on the outer diameter of the chamber 21 and the outlet side liquid chamber 22 stop at a position where they do not contact the inner surface of the pipe cooler casing 10. Θarea is determined by this position.

そこで図20に示すように、入口側液室21及び出口側液室22の底部角部を面取りして面取部21b、22b(図示を省略)を設けることにより、θbottomを小さくすることができ、その分θareaを大きくすることができる。図20のΔθareaは、図19の入口側液室21及び出口側液室22では底部角部を角のままとした場合に対して、増加した分の円周方向域を示す。面取部21bが大きいほど、θareaを大きくすることができる。   Therefore, as shown in FIG. 20, the bottom corners of the inlet-side liquid chamber 21 and the outlet-side liquid chamber 22 are chamfered to provide chamfered portions 21b and 22b (not shown), so that θbottom can be reduced. Therefore, θarea can be increased accordingly. Δθarea in FIG. 20 indicates an increased circumferential region in the inlet-side liquid chamber 21 and the outlet-side liquid chamber 22 in FIG. The larger the chamfered portion 21b, the larger the θarea.

図21は更にΔθareaを大きくする場合の例を示す図である。ここでは入口側液室21及び出口側液室22の底部末端の外径側の伝熱管23をΔRだけ入口側液室21の中心方向(ポンプ配管3の中心方向)に移動することにより、面取部21bの面をΔZ(ΔZ=1〜2mm)だけ、底部末端の外径側の伝熱管23に近づけることができ、面取部21bの大きさを増大でき、一段とθareaを大きくすることができる。θareaが大きくなれば、図21に示す隣接する伝熱管23との空きスペースを広げることができ、上記のように伝熱管23のパス数が多くなると、伝熱管23と伝熱管23が近づきすぎて図19に示す、入口側液室21の外径上の角が管内クーラー・ケーシング10の内面に当接して製作できなかったことが製作できるようにすることもできる。   FIG. 21 is a diagram illustrating an example in which Δθarea is further increased. Here, by moving the heat transfer tube 23 on the outer diameter side at the bottom end of the inlet side liquid chamber 21 and the outlet side liquid chamber 22 by ΔR in the center direction of the inlet side liquid chamber 21 (center direction of the pump pipe 3), The surface of the chamfer 21b can be brought closer to the heat transfer tube 23 on the outer diameter side at the bottom end by ΔZ (ΔZ = 1 to 2 mm), the size of the chamfer 21b can be increased, and θarea can be further increased. it can. If θarea increases, the space between the adjacent heat transfer tubes 23 shown in FIG. 21 can be widened. If the number of passes of the heat transfer tubes 23 increases as described above, the heat transfer tubes 23 and the heat transfer tubes 23 become too close. It is possible to make it possible to manufacture that the corner on the outer diameter of the inlet side liquid chamber 21 shown in FIG.

以上、本発明の実施形態を説明したが、本発明は上記実施形態に限定されるものではなく、特許請求の範囲、及び明細書と図面に記載された技術的思想の範囲内において種々の変形が可能である。なお、直接明細書及び図面に記載がない何れの形状や構造であっても、本願発明の作用効果を奏する以上、本願発明の技術範囲である。   Although the embodiments of the present invention have been described above, the present invention is not limited to the above-described embodiments, and various modifications can be made within the scope of the technical idea described in the claims and the specification and drawings. Is possible. Note that any shape or structure not directly described in the specification and drawings is within the technical scope of the present invention as long as the effects of the present invention are achieved.

本発明は、入口側液室の伝熱管が接続されている側板のポンプ揚液の流れと交差する出口側液室に対向する面の内側端部をポンプ揚液が伝熱管配置領域に流入しやすい円弧面等の曲面としたことにより、この部分でのポンプ揚液流れの剥離を抑え、伝熱管の配置領域に流れるポンプ揚液の流量が多くなることから、伝熱管の冷却性能が向上し、エンジン冷却水の冷却効率が向上する管内クーラーとして利用することができる。   According to the present invention, the pumped liquid flows into the heat transfer tube arrangement region at the inner end of the side of the side plate connected to the heat transfer tube of the inlet side liquid chamber that faces the flow of the pumped liquid that intersects the outlet side liquid chamber. The curved surface, such as an easy-to-use arc surface, suppresses separation of the pumped liquid flow at this part and increases the flow rate of the pumped liquid flowing in the heat transfer tube arrangement area, thereby improving the cooling performance of the heat transfer tube. It can be used as an in-pipe cooler that improves the cooling efficiency of engine cooling water.

1 液体
2 ポンプ
3 ポンプ配管(吐出配管)
4 ポンプ揚液
5 管内クーラー
6 エンジン冷却液
7 エンジン
8 減速機
10 管内クーラー・ケーシング
11 冷却液入口
12 冷却液出口
13 連結管
20 伝熱管・液室組立体
20−1 小伝熱管・液室組立体部
20−2 小伝熱管・液室組立体部
21 入口側液室
22 出口側液室
23 伝熱管
24 仕切部材
25 小液室
31a 渦防止板
31b 渦防止板
33 渦防止板
1 Liquid 2 Pump 3 Pump piping (discharge piping)
4 Pumping liquid 5 Pipe cooler 6 Engine coolant 7 Engine 8 Reducer 10 Pipe cooler / casing 11 Coolant inlet 12 Coolant outlet 13 Connecting pipe 20 Heat transfer tube / liquid chamber assembly 20-1 Small heat transfer tube / liquid chamber assembly Portion 20-2 Small heat transfer tube / liquid chamber assembly portion 21 Inlet side liquid chamber 22 Outlet side liquid chamber 23 Heat transfer tube 24 Partition member 25 Small liquid chamber 31a Eddy prevention plate 31b Eddy prevention plate 33 Eddy prevention plate

Claims (3)

エンジンで駆動されるポンプの吐き出すポンプ揚液が通るケーシング内に、入口側液室と出口側液室を複数本の伝熱管で接続してなる伝熱管・液室組立体を、前記ポンプ揚液が前記伝熱管に囲まれた領域を前記入口側液室側から前記出口側液室側に流れるように配置し、前記エンジンからの高温冷却液を前記入口側液室に導入し、前記出口側液室との間を前記伝熱管を通って前記高温冷却液が流れる間に該高温冷却液と前記ポンプ揚液の間で熱交換を行う管内クーラーにおいて、
前記入口側液室の前記伝熱管が接続されている側板の前記ポンプ揚液の流れと交差する前記出口側液室に対向する面の内側端部をポンプ揚液が前記伝熱管配置領域に流入しやすい曲面としたことを特徴とする管内クーラー。
A heat transfer tube / liquid chamber assembly formed by connecting an inlet-side liquid chamber and an outlet-side liquid chamber with a plurality of heat transfer tubes in a casing through which pumped liquid discharged from a pump driven by an engine passes. Is disposed so that the region surrounded by the heat transfer tube flows from the inlet side liquid chamber side to the outlet side liquid chamber side, the high-temperature coolant from the engine is introduced into the inlet side liquid chamber, and the outlet side In an in-pipe cooler that performs heat exchange between the high-temperature cooling liquid and the pumping liquid while the high-temperature cooling liquid flows through the heat transfer pipe between the liquid chambers,
Pump pumped liquid flows into the heat transfer tube arrangement region at the inner end of the surface of the side plate connected to the heat transfer tube of the inlet side that faces the outlet liquid chamber intersecting the flow of the pumped liquid. In-pipe cooler characterized by a curved surface that is easy to handle.
請求項1に記載の管内クーラーにおいて、
前記側板の内側端部曲面は円弧面であることを特徴とする管内クーラー。
In the pipe | tube cooler of Claim 1,
An in-pipe cooler characterized in that an inner end curved surface of the side plate is an arc surface.
請求項1又は2に記載の管内クーラーにおいて、
前記伝熱管・液室組立体は円弧状の入口側液室と円弧状の出口側液室を複数本の伝熱管で接続してなる一対の小伝熱管・液室組立体部からなり、該一対の小伝熱管・液室組立体部は前記伝熱管がポンプ揚液の流れを阻害しない領域に位置するように前記ケーシング内に対向して配置されていることを特徴とする管内クーラー。
In the pipe | tube cooler of Claim 1 or 2,
The heat transfer tube / liquid chamber assembly includes a pair of small heat transfer tubes / liquid chamber assemblies formed by connecting an arc-shaped inlet-side liquid chamber and an arc-shaped outlet-side liquid chamber with a plurality of heat transfer tubes. The small heat transfer tube / liquid chamber assembly portion is disposed opposite to the casing so that the heat transfer tube is located in a region where the flow of pumped liquid is not hindered.
JP2012002610A 2012-01-10 2012-01-10 Pipe cooler Active JP5888991B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2012002610A JP5888991B2 (en) 2012-01-10 2012-01-10 Pipe cooler

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2012002610A JP5888991B2 (en) 2012-01-10 2012-01-10 Pipe cooler

Publications (2)

Publication Number Publication Date
JP2013142322A true JP2013142322A (en) 2013-07-22
JP5888991B2 JP5888991B2 (en) 2016-03-22

Family

ID=49039043

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2012002610A Active JP5888991B2 (en) 2012-01-10 2012-01-10 Pipe cooler

Country Status (1)

Country Link
JP (1) JP5888991B2 (en)

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS59167924U (en) * 1983-04-27 1984-11-10 株式会社荏原製作所 Cooler device inside piping
JPS62242790A (en) * 1986-04-14 1987-10-23 Kubota Ltd Inline type heat exchanger
JPH03290100A (en) * 1990-04-05 1991-12-19 Torishima Pump Mfg Co Ltd Installation structure of discharge pipe cooler unit
JPH10318050A (en) * 1997-05-14 1998-12-02 Usui Internatl Ind Co Ltd Egr gas cooling device

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS59167924U (en) * 1983-04-27 1984-11-10 株式会社荏原製作所 Cooler device inside piping
JPH0330586Y2 (en) * 1983-04-27 1991-06-27
JPS62242790A (en) * 1986-04-14 1987-10-23 Kubota Ltd Inline type heat exchanger
JPH03290100A (en) * 1990-04-05 1991-12-19 Torishima Pump Mfg Co Ltd Installation structure of discharge pipe cooler unit
JPH10318050A (en) * 1997-05-14 1998-12-02 Usui Internatl Ind Co Ltd Egr gas cooling device

Also Published As

Publication number Publication date
JP5888991B2 (en) 2016-03-22

Similar Documents

Publication Publication Date Title
JP7011079B2 (en) Heat exchange tube with outer fins and how to use it
JPWO2016190445A1 (en) Heat exchanger tank structure and manufacturing method thereof
KR20180060262A (en) Plate heat exchanger
WO2020017176A1 (en) Heat exchanger
JP2013142496A (en) In-pipe cooler
CN102954716A (en) Shell and tube heat exchanger
WO2014059893A1 (en) Heat exchanger
CN103411451B (en) Rectification type tube-shell type heat exchanger
JP5888991B2 (en) Pipe cooler
JP5896751B2 (en) Pipe cooler
WO2015055122A1 (en) Plated pipe-type heat exchanger
CN104981678B (en) Gas heat-exchanger, the especially gas heat-exchanger for the exhaust of engine
CN109059579A (en) A kind of staggered-parallel-type Laser Welding finned tube
CN207066199U (en) Shell-and-tube exchanger
JP2014029221A (en) Air conditioner
KR20160025419A (en) Heat Exchange Plate and Plate Type Heat Exchanger
JP5842598B2 (en) Heat exchanger
CN202350593U (en) Shell-and-tube heat exchanger
CN219474394U (en) Novel heat exchange plate applied to welded plate type heat exchanger
CN216205479U (en) Cast aluminum radiator based on similar oval water channel
CN212458024U (en) Heat exchanger is dredged to tortuous flow formula heat energy
JP2014005990A (en) Heat exchanger and heat pump water heater including the same
JP2019020057A (en) Metal plate for heat exchanger, and heat exchanger
RU2369817C1 (en) Turbulising unit for heat exchanging pipe
JP4884162B2 (en) Heat exchanger

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20141029

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20150812

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20150825

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20151020

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20160202

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20160216

R150 Certificate of patent or registration of utility model

Ref document number: 5888991

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250