JP2013140716A - Shield flat cable - Google Patents

Shield flat cable Download PDF

Info

Publication number
JP2013140716A
JP2013140716A JP2012000399A JP2012000399A JP2013140716A JP 2013140716 A JP2013140716 A JP 2013140716A JP 2012000399 A JP2012000399 A JP 2012000399A JP 2012000399 A JP2012000399 A JP 2012000399A JP 2013140716 A JP2013140716 A JP 2013140716A
Authority
JP
Japan
Prior art keywords
layer
dielectric constant
base material
relative dielectric
insulating film
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2012000399A
Other languages
Japanese (ja)
Other versions
JP2013140716A5 (en
JP5621789B2 (en
Inventor
Keiichiro Fukuda
啓一郎 福田
Shigeaki Katsumata
茂彰 勝又
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sumitomo Electric Industries Ltd
Original Assignee
Sumitomo Electric Industries Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sumitomo Electric Industries Ltd filed Critical Sumitomo Electric Industries Ltd
Priority to JP2012000399A priority Critical patent/JP5621789B2/en
Priority to CN201210556573.3A priority patent/CN103198889B/en
Publication of JP2013140716A publication Critical patent/JP2013140716A/en
Publication of JP2013140716A5 publication Critical patent/JP2013140716A5/ja
Application granted granted Critical
Publication of JP5621789B2 publication Critical patent/JP5621789B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Abstract

PROBLEM TO BE SOLVED: To provide a shield flat cable for use in the LVDS system, in which the far-end crosstalk is -24 dB or less within a frequency range up to 6 GHz for a distance exceeding 0.4 m.SOLUTION: In the shield flat cable, four or more flat type conductors are arranged on one plane, and insulated by bonding an insulation film from the top and bottom of an array surface, an intervening layer is provided on the outside of the insulation film, and a shield layer is provided on the outside of the intervening layer. The differential mode impedance is adjusted in the range of 75-110 Ω excepting the terminal processing part, and following relations are satisfied εa<εb and 0.86≤εe/ε1, where ε1 is the effective dielectric constant of the insulation film, εa is the dielectric constant of an adhesive layer, εb is the dielectric constant of a base material layer, when the insulation film consists of two layers, i.e., an adhesive layer adhering to the conductor and a base material, and εe is the effective dielectric constant of a nonmetal layer from the flat type conductor to a shield layer.

Description

本発明は、複数の平角導体を並列して絶縁樹脂フィルムを貼り合わせ、その外にシールドフィルムを貼ったシールドフラットケーブルに関する。   The present invention relates to a shielded flat cable in which a plurality of rectangular conductors are arranged in parallel, an insulating resin film is bonded together, and a shield film is bonded to the outside.

低電圧差動伝送(LVDS)に用いられるシールドフラットケーブルが特許文献1に開示されている。このシールドフラットケーブルでは、平角導体に貼り合わせる絶縁樹脂フィルムが接着剤層と絶縁層とからできている。絶縁層にはポリエステル樹脂、ポリフェニレンサルファイド樹脂、ポリイミド樹脂等が使用されること、および接着剤層にはポリエスエル系樹脂やポリオレフィン系樹脂に難燃剤を添加したものが使用されることが開示されている。   Patent Document 1 discloses a shielded flat cable used for low voltage differential transmission (LVDS). In this shielded flat cable, an insulating resin film to be bonded to a flat conductor is made of an adhesive layer and an insulating layer. It is disclosed that polyester resin, polyphenylene sulfide resin, polyimide resin or the like is used for the insulating layer, and that a flame retardant added to the polyester resin or polyolefin resin is used for the adhesive layer. .

特開2009−146694号公報JP 2009-146694 A

ケーブルの長さが長くなり、かつ伝送される信号が高ビットレートとなるほど遠端クロストークが無視できなくなる。チャンネル間クロストークの連鎖によるノイズを補償する実用的な手段はなく、クロストークの増加は深刻な問題になり得る。
一方、フラットパネルディスプレイなどを含む機器の大型化に伴ってその機器に使用されるケーブルはより長いものが要求されてきている。そして、高画質化に伴って伝送容量はより大きくなり、より高速度の伝送が要求されてきている。
本発明は、LVDS方式に代表される差動伝送方式の高速信号伝達配線に使用されるシールドフラットケーブルであって、0.4mを超える距離で6GHzまでの周波数範囲で遠端クロストークが−24dB以下となるシールドフラットケーブルを提供することを課題とする。
The far end crosstalk cannot be ignored as the cable length increases and the transmitted signal has a higher bit rate. There is no practical means to compensate for noise due to inter-channel crosstalk chains, and the increase in crosstalk can be a serious problem.
On the other hand, with the increase in size of devices including flat panel displays, longer cables have been required. As the image quality becomes higher, the transmission capacity becomes larger and higher speed transmission is required.
The present invention is a shielded flat cable used for high-speed signal transmission wiring of a differential transmission system typified by the LVDS system, and has a far-end crosstalk of −24 dB in a frequency range up to 6 GHz at a distance exceeding 0.4 m. It aims at providing the shield flat cable used as the following.

本発明のシールドフラットケーブルは、平角導体を四本以上一平面上に配列して、その配列面の上下から絶縁フィルムを貼り合わせて平角導体を絶縁し、前記絶縁フィルムの外に介在層を設け、前記介在層の外にシールド層を設けたシールドフラットケーブルであって、端末処理部を除く部分の差動モードインピーダンスが75〜110Ωの範囲に調整され、前記絶縁フィルムの実効比誘電率をε1とし、前記絶縁フィルムが、導体に接着する接着層と基材層の二層からなり、前記接着層の比誘電率をεa、前記基材層の比誘電率をεbとし、前記平角導体からシールド層までの非金属層の実効比誘電率をεeとしたときに、εa<εbかつ0.86≦εe/ε1であることを特徴とする。   In the shielded flat cable of the present invention, four or more rectangular conductors are arranged on one plane, an insulating film is bonded from above and below the arrangement surface to insulate the rectangular conductor, and an intervening layer is provided outside the insulating film. A shielded flat cable having a shield layer outside the intervening layer, wherein the differential mode impedance of the portion excluding the terminal processing portion is adjusted to a range of 75 to 110Ω, and the effective relative dielectric constant of the insulating film is ε1 The insulating film is composed of two layers, an adhesive layer that adheres to a conductor and a base material layer, where the relative dielectric constant of the adhesive layer is εa, the relative dielectric constant of the base material layer is εb, and shielding from the rectangular conductor Εa <εb and 0.86 ≦ εe / ε1 when the effective relative dielectric constant of the non-metal layer up to the layer is εe.

本発明のフラットケーブルは上記の構成により、450mmの距離で6GHzまでの周波数範囲で遠端クロストークが−24dB以下である。   The flat cable of the present invention has a far-end crosstalk of −24 dB or less in the frequency range up to 6 GHz at a distance of 450 mm due to the above configuration.

本発明のフラットケーブルを示す斜視図である。It is a perspective view which shows the flat cable of this invention. 本発明のフラットケーブルの長さ方向に垂直な断面図である。It is sectional drawing perpendicular | vertical to the length direction of the flat cable of this invention. 別の態様の本発明のフラットケーブルの長さ方向に垂直な断面図である。It is sectional drawing perpendicular | vertical to the length direction of the flat cable of this invention of another aspect. 別の態様の本発明のフラットケーブルの長さ方向に垂直な断面図である。It is sectional drawing perpendicular | vertical to the length direction of the flat cable of this invention of another aspect. 本発明のフラットケーブルの要部の長さ方向に垂直な断面図である。It is sectional drawing perpendicular | vertical to the length direction of the principal part of the flat cable of this invention. 本発明のフラットケーブルの要部の長さ方向に垂直な断面図である。It is sectional drawing perpendicular | vertical to the length direction of the principal part of the flat cable of this invention. 本発明の実施例および比較例を示す表である。It is a table | surface which shows the Example and comparative example of this invention. 本発明の実施例および比較例を示す表である。It is a table | surface which shows the Example and comparative example of this invention.

本発明のシールドフラットケーブル1は、図1に示すように平角導体2を複数本一平面上に並列し、並列面の上下から絶縁フィルム3を貼り合わせて各導体2を絶縁したものである。本発明のフラットケーブルは、二チャンネル以上の差動伝送に使用されるものであるので信号線は四本以上必要である。すなわち平角導体は四本以上必要である。図では平角導体2を四本としているが、四本以上であれば何本でも構わない。平角導体は信号線以外にグランド線に使用されるものがあってもよい。
本発明のシールドフラットケーブル1は、上下の絶縁フィルム3の外に誘電率調整のための介在層7が貼り付けられる。介在層7は絶縁フィルムに接着するための接着層8と屈折率調整のために作用する基材層9からなる。基材層9は樹脂等からなる誘電体層であり、低誘電率のものが好ましい。
As shown in FIG. 1, the shielded flat cable 1 of the present invention has a plurality of flat conductors 2 arranged in parallel on one plane, and an insulating film 3 is bonded from above and below the parallel surface to insulate each conductor 2. Since the flat cable of the present invention is used for differential transmission of two or more channels, four or more signal lines are required. That is, four or more flat conductors are necessary. In the figure, four rectangular conductors 2 are used, but any number may be used as long as there are four or more. Some flat rectangular conductors may be used for ground lines in addition to signal lines.
In the shielded flat cable 1 of the present invention, an intervening layer 7 for adjusting the dielectric constant is attached to the upper and lower insulating films 3. The intervening layer 7 comprises an adhesive layer 8 for adhering to the insulating film and a base material layer 9 acting for adjusting the refractive index. The base material layer 9 is a dielectric layer made of resin or the like, and preferably has a low dielectric constant.

本発明のシールドフラットケーブル1は、介在層7の外にシールドフィルム4が巻かれるかまたは貼り付けられてシールド層が形成されたものである。シールドフィルム4は図2に示すように介在層7の周囲を包むように巻かれてもよい。図3に示すように介在層7にシールドフィルム4がそれぞれ貼り付けられてもよい。この場合、シールドフィルム4は2枚であり、それらのシールドフィルム4は一体とはなっていない。図4に示すようにフラットケーブルの一方の面(図4では下側)のみに貼られてもよい。この場合、介在層7も当該一方の面のみにあり、その外(図4では下側)にシールドフィルム4が貼られる。シールドフラットケーブル1は片面のみがシールドされていることになる。
シールドフィルム4は従来から使用されているもの、例えば銅箔やアルミ箔の一面に接着剤層が形成され、他面に樹脂フィルムなどが貼られたものを使用できる。
The shield flat cable 1 of the present invention is one in which a shield film 4 is wound or affixed outside an intervening layer 7 to form a shield layer. The shield film 4 may be wound so as to wrap around the intervening layer 7 as shown in FIG. As shown in FIG. 3, the shield film 4 may be attached to the intervening layer 7. In this case, there are two shield films 4, and the shield films 4 are not integrated. As shown in FIG. 4, it may be affixed only on one side (the lower side in FIG. 4) of the flat cable. In this case, the intervening layer 7 is also only on the one surface, and the shield film 4 is pasted outside (lower side in FIG. 4). Only one side of the shielded flat cable 1 is shielded.
As the shield film 4, those conventionally used, for example, one in which an adhesive layer is formed on one surface of a copper foil or an aluminum foil and a resin film or the like is pasted on the other surface can be used.

このフラットケーブルの特性インピーダンスが75Ω以上110Ω以下のいずれかの値となるように平角導体2の厚さまたは幅、平角導体2の間隔、絶縁フィルム3および介在層7の誘電率を調整する。   The thickness or width of the flat conductor 2, the interval between the flat conductors 2, the dielectric constant of the insulating film 3 and the intervening layer 7 are adjusted so that the characteristic impedance of the flat cable is any value between 75Ω and 110Ω.

本発明の絶縁フィルム3は接着層5と基材層6とからなる。図1〜図4では接着層5、基材層6とも一層のみ示すが、それぞれ複数の層から形成されてもよい。
接着層5は、熱可塑性の樹脂であり、百数十℃の熱を加えることで平角導体2または相手方の絶縁フィルム3と接着することのできる材料からなる。接着層5には例えばポリエステル系接着剤を使用することができる。
絶縁フィルム3を接着するために百数十℃の熱を加えたときも基材層6は軟化したり接着性を示すことなく、フィルムの形状を維持する。基材層6にはポリエチレンテレフタレートなどのポリエステルを使用することができる。
接着層5と基材層6とは機能が違うので別の樹脂となる。
The insulating film 3 of the present invention includes an adhesive layer 5 and a base material layer 6. Although only one layer of the adhesive layer 5 and the base material layer 6 is shown in FIGS. 1 to 4, each may be formed of a plurality of layers.
The adhesive layer 5 is a thermoplastic resin, and is made of a material that can be bonded to the flat conductor 2 or the counterpart insulating film 3 by applying heat of several hundreds of degrees Celsius. For example, a polyester-based adhesive can be used for the adhesive layer 5.
Even when heat of a few tens of degrees Celsius is applied to bond the insulating film 3, the base material layer 6 maintains the shape of the film without softening or showing adhesiveness. Polyester such as polyethylene terephthalate can be used for the base material layer 6.
Since the adhesive layer 5 and the base material layer 6 have different functions, they are different resins.

本発明の介在層7は接着層8と基材層9とからなる。図1〜図4では接着層8、基材層9とも一層のみ示すが、それぞれ複数の層から形成されてもよい。
接着層8は、熱可塑性の樹脂であり、百数十℃の熱を加えることで絶縁フィルム3と基材層9とを接着することのできる材料からなる。接着層8には例えばポリエステル系接着剤を使用することができる。接着層8は接着層5とは違う材質であってよい。
基材層9はインピーダンスを調整するための低誘電率の誘電体である。基材層9にはポリオレフィン系樹脂フィルムやポリエチレンテレフタレートなどのポリエステルフィルムを使用することができる。発泡させた樹脂フィルムも使用可能である。
The intervening layer 7 of the present invention comprises an adhesive layer 8 and a base material layer 9. Although only one layer of the adhesive layer 8 and the base material layer 9 is shown in FIGS. 1 to 4, each may be formed of a plurality of layers.
The adhesive layer 8 is a thermoplastic resin and is made of a material that can adhere the insulating film 3 and the base material layer 9 by applying heat of several hundreds of degrees Celsius. For example, a polyester-based adhesive can be used for the adhesive layer 8. The adhesive layer 8 may be made of a material different from that of the adhesive layer 5.
The base material layer 9 is a dielectric having a low dielectric constant for adjusting impedance. Polyester film such as polyolefin resin film or polyethylene terephthalate can be used for the base material layer 9. A foamed resin film can also be used.

電気信号が伝搬する差動伝送路では正の電位である導体から負の電位である導体に電気力線が出ていると捉えることができる。導体の電位は経時的に+−が交番するが、ある瞬間の様子を図5に示す。ただし、電気力線は説明のために必要なもののみ示す。
平角導体12は二本で一対となっている。平角導体12aはこの瞬間正の電位を有し、12bは負の電位を有する。正の電位を有する平角導体12aから出た電気力線10aは隣接する負の電位を有する平角導体12bおよび平角導体12aに隣接するグランド線11に入る。平角導体12bには隣接するグランド線13からの電気力線10cも入る。ケーブルの外に向かう電気力線10bは絶縁フィルム3、介在層7を順に透過するが、両層の屈折率が異なるのでその界面で屈折する。
In a differential transmission path through which an electric signal propagates, it can be understood that electric lines of force are emitted from a conductor having a positive potential to a conductor having a negative potential. As for the electric potential of the conductor, + − alternates with time, and FIG. 5 shows a state at a certain moment. However, the electric lines of force are only shown for explanation.
Two flat conductors 12 form a pair. The rectangular conductor 12a has a positive potential at this moment, and 12b has a negative potential. The electric lines of force 10a from the flat conductor 12a having a positive potential enter the adjacent flat conductor 12b having a negative potential and the ground line 11 adjacent to the flat conductor 12a. The electric field lines 10c from the adjacent ground line 13 also enter the flat conductor 12b. The electric lines of force 10b going out of the cable pass through the insulating film 3 and the intervening layer 7 in order, but are refracted at the interface because the refractive indexes of the two layers are different.

この電気力線10bの屈折はスネルの法則で説明できる。屈折率は誘電率と透磁率の積の平方根に置き換えることができる。ここで、絶縁フィルム3と介在層7はいずれもプラスチック素材であってそれらの透磁率は等しいと仮定することができるので、屈折率は誘電率の平方根の比で決定される。電気力線10bの絶縁フィルム3から介在層7への入射角をθ1、屈折角をθ2、絶縁フィルム3の比誘電率をε1、介在層7の比誘電率をε2とするとε1×sinθ1=ε2×sinθ2となる。比誘電率は真空の誘電率を1とした場合の値とする。ε1>ε2の場合は、電気力線は図5に電気力線10b2で示すようにθ1<θ2となるように屈折する。ε1<ε2の場合は、逆に電気力線10b1で示すようにθ1>θ2となるように屈折する。   The refraction of the electric lines of force 10b can be explained by Snell's law. The refractive index can be replaced by the square root of the product of dielectric constant and permeability. Here, since both the insulating film 3 and the intervening layer 7 are plastic materials and their magnetic permeability can be assumed to be equal, the refractive index is determined by the ratio of the square root of the dielectric constant. Assuming that the incident angle of the lines of electric force 10b from the insulating film 3 to the intervening layer 7 is θ1, the refraction angle is θ2, the relative dielectric constant of the insulating film 3 is ε1, and the relative dielectric constant of the intervening layer 7 is ε2, ε1 × sin θ1 = ε2. Xsin θ2. The relative dielectric constant is a value when the vacuum dielectric constant is 1. In the case of ε1> ε2, the electric lines of force are refracted so that θ1 <θ2 as shown by electric lines of force 10b2 in FIG. In the case of ε1 <ε2, the light is refracted so that θ1> θ2 as shown by the electric force line 10b1.

絶縁フィルム3の中でも接着層5と基材層6の界面で屈折し、介在層7の中でも接着層8と基材層9との界面で屈折する。図6に示すように、電気力線10bの接着層5から基材層6への入射角をθa、屈折角をθbとし、接着層5の比誘電率をεa、基材層6の比誘電率をεbとするとεa×sinθa=εb×sinθbとなる。εa>εbの場合は、電気力線は図6に電気力線10b2で示すようにθa<θbとなるように屈折する。εa<εbの場合は、逆に電気力線10b1で示すようにθa>θbとなるように屈折する。   The insulating film 3 is refracted at the interface between the adhesive layer 5 and the base material layer 6, and the intermediate layer 7 is refracted at the interface between the adhesive layer 8 and the base material layer 9. As shown in FIG. 6, the incident angle of the electric force lines 10b from the adhesive layer 5 to the base material layer 6 is θa, the refraction angle is θb, the relative dielectric constant of the adhesive layer 5 is εa, and the relative dielectric constant of the base material layer 6 If the rate is εb, then εa × sin θa = εb × sin θb. In the case of εa> εb, the electric lines of force are refracted so that θa <θb as shown by electric lines of force 10b2 in FIG. In the case of εa <εb, the light is refracted so that θa> θb as shown by the electric lines of force 10b1.

絶縁フィルムと介在層を合わせた絶縁フィルムの実効比誘電率をεとすると、εはε1とε2との加重平均である。図2などの断面で絶縁フィルムの断面積をS1、介在層の断面積をS2とするとε=(ε1S1+ε2S2)/(S1+S2)である。
平角導体からシールド層までの非金属層の実効比誘電率は図5の場合では絶縁フィルム3と介在層7とを合わせた比誘電率となる。絶縁フィルム3の比誘電率を介在層7の比誘電率よりも小さくすることにより、両者を合わせた比誘電率(言い換えると平角導体からシールド層までの非金属層の実効比誘電率)は絶縁フィルム3の比誘電率よりも大きくなる。
When the effective relative dielectric constant of the insulating film including the insulating film and the intervening layer is ε, ε is a weighted average of ε1 and ε2. In the cross section of FIG. 2 etc., if the cross sectional area of the insulating film is S1, and the cross sectional area of the intervening layer is S2, ε = (ε1S1 + ε2S2) / (S1 + S2)
In the case of FIG. 5, the effective relative dielectric constant of the nonmetallic layer from the flat conductor to the shield layer is the combined dielectric constant of the insulating film 3 and the intervening layer 7. By making the relative dielectric constant of the insulating film 3 smaller than the relative dielectric constant of the intervening layer 7, the combined relative dielectric constant (in other words, the effective relative dielectric constant of the nonmetallic layer from the flat conductor to the shield layer) is insulated. The relative dielectric constant of the film 3 becomes larger.

本発明のシールドフラットケーブルは、絶縁フィルム3の中で接着層5と基材層6の比誘電率が異なり、絶縁フィルム3と介在層7の誘電率も異なる。本発明では接着層5の誘電率(εa)を基材層6誘電率(εb)よりも小さくする。そして、平角導体からシールド層までの非金属層の実効比誘電率の絶縁フィルム3の比誘電率に対する比を一定値以上とする。具体的には、実効比誘電率の絶縁フィルム3の比誘電率に対する比を0.86以上とする。これらにより、平角導体2から出る電気力線をその平角導体2の近くに閉じ込めることができ、450mmの距離で一チャンネル当たりの信号の占有周波数帯幅が6GHzに達する高周波伝送をした場合でも遠端クロストークを小さくすることができる。
介在層7の比誘電率が絶縁フィルム3の比誘電率よりも大きくてもよい。ただし、介在層の比誘電率が大きくなりすぎるとインピーダンス調整のために介在層が厚くなってしまう。シールドフラットケーブルの厚さを実用に適したものとするには、介在層の比誘電率の値に上限がある。この点で、平角導体からシールド層までの非金属層の実効比誘電率の絶縁フィルム3の比誘電率に対する比を1.1以下とするのが好ましい。
In the shielded flat cable of the present invention, the dielectric constants of the adhesive layer 5 and the base material layer 6 in the insulating film 3 are different, and the dielectric constants of the insulating film 3 and the intervening layer 7 are also different. In the present invention, the dielectric constant (εa) of the adhesive layer 5 is made smaller than the dielectric constant (εb) of the base material layer 6. And the ratio with respect to the dielectric constant of the insulating film 3 of the effective dielectric constant of the nonmetallic layer from a flat conductor to a shield layer shall be more than a fixed value. Specifically, the ratio of the effective relative dielectric constant to the relative dielectric constant of the insulating film 3 is set to 0.86 or more. As a result, the electric field lines coming out of the flat conductor 2 can be confined in the vicinity of the flat conductor 2, and even when high-frequency transmission is performed in which the occupied frequency bandwidth of a signal per channel reaches 6 GHz at a distance of 450 mm. Crosstalk can be reduced.
The relative dielectric constant of the intervening layer 7 may be larger than the relative dielectric constant of the insulating film 3. However, if the relative dielectric constant of the intervening layer becomes too large, the intervening layer becomes thick for impedance adjustment. In order to make the thickness of the shield flat cable suitable for practical use, there is an upper limit in the value of the relative dielectric constant of the intervening layer. In this respect, it is preferable that the ratio of the effective relative dielectric constant of the nonmetallic layer from the flat conductor to the shield layer to the relative dielectric constant of the insulating film 3 is 1.1 or less.

(実施例)
実施例1〜4および比較例1〜3は、図3に示すように絶縁フィルム3の両方に、インピーダンス調整のための誘電体層(介在層)7とその外(平角導体2と逆側)にシールドフィルム4を貼ったシールドフラットケーブル1を製造した。介在層7は接着層8を基材層9の一面に付けて一体としたものであり、接着層8を絶縁フィルム3に貼り付けた。
本実施例では接着層が二つあるので絶縁フィルム3の接着層5を絶縁接着層5、介在層9を絶縁フィルム3に接着する接着層8を介在接着層8と呼び分ける。基材層も、絶縁フィルムの基材層6を絶縁基材層6、介在層の基材層9を介在基材層9と呼び分ける。
いずれの例でも、グランド線をG、信号線をSで表して、それらの配置をGSSGSSG・・・と配置した。隣り合う二本の信号線が一対となって一チャンネルとなる。各チャンネルの間にはグランド線がある。
(Example)
In Examples 1 to 4 and Comparative Examples 1 to 3, as shown in FIG. 3, the dielectric layer (intervening layer) 7 for impedance adjustment and the outside (on the opposite side to the flat conductor 2) are provided on both of the insulating films 3. A shielded flat cable 1 having a shield film 4 attached thereto was manufactured. The intervening layer 7 is formed by attaching the adhesive layer 8 to one surface of the base material layer 9, and the adhesive layer 8 is attached to the insulating film 3.
In this embodiment, since there are two adhesive layers, the adhesive layer 5 of the insulating film 3 is called the insulating adhesive layer 5, and the adhesive layer 8 that bonds the intervening layer 9 to the insulating film 3 is called the intervening adhesive layer 8. As for the base material layer, the base material layer 6 of the insulating film is called the insulating base material layer 6, and the base material layer 9 of the intervening layer is called the intervening base material layer 9.
In any example, the ground line is represented by G, the signal line is represented by S, and the arrangement thereof is arranged as GSSGSSG. Two adjacent signal lines are paired to form one channel. There is a ground line between each channel.

各例の絶縁接着層5の比誘電率εaと介在基材層6の比誘電率εbとの大小関係は図7に示す通りとした。絶縁フィルム3の比誘電率ε1、絶縁フィルム3と介在層7とを合わせた比誘電率εeおよびそれらの比も図7に示す。
これらのシールドフラットケーブルの隣合うチャンネル間の遠端クロストーク(最大値)と差動モードインピーダンスも図7に示す。6GHzでの遠端クロストーク最大値が−24dB以下(主信号対比で6.25%の漏話量)のものを合格、−26dB(主信号対比で5%の漏話量)以下のものを優良とした。
The magnitude relationship between the relative dielectric constant εa of the insulating adhesive layer 5 and the relative dielectric constant εb of the intervening base material layer 6 was as shown in FIG. The relative dielectric constant ε1 of the insulating film 3, the relative dielectric constant εe of the insulating film 3 and the intervening layer 7 and their ratio are also shown in FIG.
FIG. 7 also shows the far-end crosstalk (maximum value) and differential mode impedance between adjacent channels of these shielded flat cables. The far-end crosstalk maximum value at 6 GHz is −24 dB or less (6.25% crosstalk amount compared to the main signal), and the one below −26 dB (5% crosstalk amount compared to the main signal) is excellent. did.

各層の誘電率はその層を積み重ねて0.5mm以上の厚さとしてインピーダンスマテリアルアナライザを使用して測定した。比誘電率は真空の誘電率に対する比である。
絶縁接着層の比誘電率をεa、基材層の比誘電率をεb、絶縁接着層と基材層とからなる絶縁フィルムの比誘電率をε1とすると、ε1<εbである場合、εa<εbとなる。
The dielectric constant of each layer was measured using an impedance material analyzer as a thickness of 0.5 mm or more by stacking the layers. The relative dielectric constant is a ratio to the dielectric constant of vacuum.
When the relative dielectric constant of the insulating adhesive layer is εa, the relative dielectric constant of the base material layer is εb, and the relative dielectric constant of the insulating film composed of the insulating adhesive layer and the base material layer is ε1, if ε1 <εb, then εa < εb.

実施例1〜4に示したように、絶縁接着層の比誘電率εa<基材層の比誘電率εbであって、平角導体からシールド層までの非金属層の実効比誘電率εeと絶縁フィルムの比誘電率ε1との比がεe/ε1≧0.86であれば、450mmの距離、6GHzで遠端クロストークが合格となる。これらの実施例では、平角導体2から出る電気力線がその平角導体2の近くに閉じ込められることが遠端クロストークが小さい原因と考えられる。
比較例1は従来の構成のシールドフラットケーブルである。この例では、距離450mmの6GHzにおける遠端クロストークが不合格である。この例では、平角導体2に近い層から遠い層にかけて順に比誘電率が小さくなっている(εa>εb>ε2の大小関係である)。平角導体2から出る電気力線は各層の界面で屈折して平角導体2から水平方向に遠ざかる。さらに、比誘電率の大きな層(平角導体2に近い層)から比誘電率の小さな層(平角導体2から遠い層)に向かって電気力線が出るときに一部の電気力線は全反射する。これらが遠端クロストークが良くない原因と考えられる。
比較例2は介在層7の比誘電率を比較例1よりも大きくした例である。これによりεe/ε1が0.9を超えているが、距離450mm、6GHzの遠端クロストークがなお不合格である。
比較例3は、εa<εbであるが、εe/ε1が0.86未満であり、450mm、6GHzの遠端クロストークが不合格である例である。
実施例2、実施例4は実施例1よりも介在層の比誘電率が高くなるように介在層の材料を選定した例である。εe/ε1が0.93以上1以下とした例である。これらの例では距離450mm、6GHzの遠端クロストークが優良(主信号対比で5%の漏話)となっている。
As shown in Examples 1 to 4, the relative dielectric constant εa of the insulating adhesive layer <the relative dielectric constant εb of the base material layer, and the insulation with the effective relative dielectric constant εe of the nonmetallic layer from the flat conductor to the shield layer If the ratio of the relative dielectric constant ε1 of the film is εe / ε1 ≧ 0.86, the far-end crosstalk is acceptable at a distance of 450 mm and 6 GHz. In these embodiments, it is considered that the far-end crosstalk is small because the electric field lines coming out of the flat conductor 2 are confined in the vicinity of the flat conductor 2.
Comparative Example 1 is a shielded flat cable having a conventional configuration. In this example, far-end crosstalk at a distance of 450 mm at 6 GHz is unacceptable. In this example, the relative permittivity decreases in order from the layer closer to the flat conductor 2 to the layer farther away (the relationship of εa>εb> ε2). The electric field lines coming out of the flat conductor 2 are refracted at the interface of each layer and move away from the flat conductor 2 in the horizontal direction. Further, when electric lines of force are emitted from a layer having a high relative dielectric constant (a layer close to the flat conductor 2) to a layer having a low relative dielectric constant (a layer far from the flat conductor 2), some electric lines of force are totally reflected. To do. These are thought to be the cause of the poor far-end crosstalk.
Comparative Example 2 is an example in which the relative dielectric constant of the intervening layer 7 is larger than that of Comparative Example 1. As a result, εe / ε1 exceeds 0.9, but far-end crosstalk at a distance of 450 mm and 6 GHz is still unacceptable.
Comparative Example 3 is an example in which εa <εb, εe / ε1 is less than 0.86, and the far-end crosstalk of 450 mm and 6 GHz is unacceptable.
Example 2 and Example 4 are examples in which the material of the intervening layer is selected so that the relative dielectric constant of the intervening layer is higher than that of Example 1. In this example, εe / ε1 is 0.93 or more and 1 or less. In these examples, the far-end crosstalk at a distance of 450 mm and 6 GHz is excellent (5% crosstalk relative to the main signal).

実施例5〜6および比較例4〜5は、図4に示すように介在層7が絶縁フィルム3の片面にだけあり、片面だけをシールドした例である。信号線Sとグランド線Gの配置は実施例1〜4および比較例1〜3と同様である。
各例の絶縁接着層5の比誘電率εaと基材層6の比誘電率εbとの大小関係は図8に示す通りとした。絶縁フィルム3の比誘電率ε1、絶縁フィルム3と介在層7とを合わせた比誘電率εeおよびそれらの比も図8に示す。
これらのシールドフラットケーブルの隣合うチャンネル間の遠端クロストークを測定した。各例について測定された遠端クロストーク(最大値)と差動モードインピーダンスも図8に示す。6GHzでの遠端クロストーク最大値が−24dB以下(主信号対比で6.25%の漏話量)のものを合格、−26dB(主信号対比で5%の漏話量)以下のものを優良とした。
Examples 5-6 and Comparative Examples 4-5 are examples in which the intervening layer 7 is only on one side of the insulating film 3 as shown in FIG. 4 and only one side is shielded. The arrangement of the signal line S and the ground line G is the same as in Examples 1-4 and Comparative Examples 1-3.
The magnitude relationship between the relative dielectric constant εa of the insulating adhesive layer 5 and the relative dielectric constant εb of the base material layer 6 in each example is as shown in FIG. The relative dielectric constant ε1 of the insulating film 3, the relative dielectric constant εe of the insulating film 3 and the intervening layer 7 and their ratio are also shown in FIG.
The far-end crosstalk between adjacent channels of these shielded flat cables was measured. The far-end crosstalk (maximum value) and differential mode impedance measured for each example are also shown in FIG. The far-end crosstalk maximum value at 6 GHz is −24 dB or less (6.25% crosstalk amount compared to the main signal), and the one below −26 dB (5% crosstalk amount compared to the main signal) is excellent. did.

実施例5、実施例6は、εa<εbであって、かつεe/ε1≧0.86であるので450mmの距離で6GHz遠端クロストークが合格となっている。これらの実施例では、εe/ε1≧0.93でもあるので450mmの距離で遠端クロストークが優良となっている。これらの実施例では、平角導体2から出る電気力線がその平角導体2の近くに閉じ込められることが遠端クロストークが小さい原因と考えられる。
比較例4は従来の構成のシールドフラットケーブルである。この例では、εa>εbであり、εe/ε1が0.86に満たない。そして、距離450mmの6GHzにおける遠端クロストークが不合格である。
比較例5は、εa<εbであるが、εe/ε1が0.86未満であり、450mm、6GHzの遠端クロストークが不合格である。
In Examples 5 and 6, since εa <εb and εe / ε1 ≧ 0.86, 6 GHz far-end crosstalk is acceptable at a distance of 450 mm. In these embodiments, since εe / ε1 ≧ 0.93, the far-end crosstalk is excellent at a distance of 450 mm. In these embodiments, it is considered that the far-end crosstalk is small because the electric field lines coming out of the flat conductor 2 are confined in the vicinity of the flat conductor 2.
Comparative Example 4 is a shielded flat cable having a conventional configuration. In this example, εa> εb, and εe / ε1 is less than 0.86. The far-end crosstalk at 6 GHz with a distance of 450 mm is unacceptable.
In Comparative Example 5, εa <εb, but εe / ε1 is less than 0.86, and the far-end crosstalk of 450 mm and 6 GHz is unacceptable.

1 シールドフラットケーブル
2 平角導体
3 絶縁フィルム
4 シールドフィルム
5 接着層(絶縁接着層)
6 基材層(絶縁基材層)
7 介在層
8 接着層(介在接着層)
9 基材層(介在基材層)
10 電気力線
DESCRIPTION OF SYMBOLS 1 Shield flat cable 2 Flat conductor 3 Insulating film 4 Shield film 5 Adhesive layer (insulating adhesive layer)
6 Base material layer (insulating base material layer)
7 Intervening layer 8 Adhesive layer (intervening adhesive layer)
9 Base material layer (intervening base material layer)
10 Electric field lines

Claims (1)

平角導体を四本以上一平面上に配列して、その配列面の上下から絶縁フィルムを貼り合わせて平角導体を絶縁し、前記絶縁フィルムの外に介在層を設け、前記介在層の外にシールド層を設けたシールドフラットケーブルであって、
端末処理部を除く部分の差動モードインピーダンスが75〜110Ωの範囲に調整され、
前記絶縁フィルムの実効比誘電率をε1とし、
前記絶縁フィルムが、導体に接着する接着層と基材層の二層からなり、前記接着層の比誘電率をεa、前記基材層の比誘電率をεbとし、
前記平角導体からシールド層までの非金属層の実効比誘電率をεeとしたときに、
εa<εbかつ0.86≦εe/ε1であることを特徴とするフラットケーブル。
Arrange four or more rectangular conductors on one plane, and insulate the rectangular conductors by attaching insulating films from the upper and lower sides of the arrangement surface, provide an intervening layer outside the insulating film, and shield outside the intervening layer A shielded flat cable with layers,
The differential mode impedance of the portion excluding the terminal processing unit is adjusted to a range of 75 to 110Ω,
The effective relative dielectric constant of the insulating film is ε1,
The insulating film is composed of two layers, an adhesive layer that adheres to a conductor and a base material layer, the dielectric constant of the adhesive layer is εa, the relative dielectric constant of the base material layer is εb,
When the effective relative dielectric constant of the nonmetal layer from the flat conductor to the shield layer is εe,
A flat cable, wherein εa <εb and 0.86 ≦ εe / ε1.
JP2012000399A 2012-01-05 2012-01-05 Shielded flat cable Active JP5621789B2 (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
JP2012000399A JP5621789B2 (en) 2012-01-05 2012-01-05 Shielded flat cable
CN201210556573.3A CN103198889B (en) 2012-01-05 2012-12-19 shielded flat cable

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2012000399A JP5621789B2 (en) 2012-01-05 2012-01-05 Shielded flat cable

Publications (3)

Publication Number Publication Date
JP2013140716A true JP2013140716A (en) 2013-07-18
JP2013140716A5 JP2013140716A5 (en) 2013-09-26
JP5621789B2 JP5621789B2 (en) 2014-11-12

Family

ID=48721360

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2012000399A Active JP5621789B2 (en) 2012-01-05 2012-01-05 Shielded flat cable

Country Status (2)

Country Link
JP (1) JP5621789B2 (en)
CN (1) CN103198889B (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2020013696A (en) * 2018-07-18 2020-01-23 東京特殊電線株式会社 Flat cable with single-sided shield layer
US20200273603A1 (en) * 2019-07-31 2020-08-27 Luxshare-Ict Co., Ltd. Flexible flat cable, manufacturing method thereof and signal transmission device
JP7471051B2 (en) 2018-07-18 2024-04-19 株式会社Totoku Single-sided shielded flat cable

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
TW201719684A (en) * 2015-11-18 2017-06-01 Portwell Inc Flexible flat cable structure capable of reducing crosstalk capable of effectively suppressing ringing noises and improving signal transmission quality
US20190224951A1 (en) * 2016-09-01 2019-07-25 Riken Technos Corporation Resin composition and laminate using same
CN209729555U (en) * 2018-06-01 2019-12-03 凡甲电子(苏州)有限公司 Flat data transmission cable
TWI696197B (en) * 2018-11-21 2020-06-11 貿聯國際股份有限公司 High frequency flexible flat cable

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008198592A (en) * 2007-01-18 2008-08-28 Sumitomo Electric Ind Ltd Flexible flat cable
JP2008277254A (en) * 2007-03-30 2008-11-13 Sony Chemical & Information Device Corp Flat cable
JP2009146694A (en) * 2007-12-13 2009-07-02 Sumitomo Electric Ind Ltd Shield flat cable
WO2011043129A1 (en) * 2009-10-06 2011-04-14 住友電気工業株式会社 Flame-retardant resin sheet and flat cable using same

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP3982210B2 (en) * 2001-07-11 2007-09-26 日立電線株式会社 Flexible flat cable
JP2007207629A (en) * 2006-02-02 2007-08-16 Sumitomo Electric Ind Ltd Flexible flat cable
KR101327725B1 (en) * 2006-07-19 2013-11-11 스미토모덴키고교가부시키가이샤 Flexible flat cable
JP5141071B2 (en) * 2007-03-29 2013-02-13 住友電気工業株式会社 Insulation tape for flexible flat cable and its manufacturing method

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008198592A (en) * 2007-01-18 2008-08-28 Sumitomo Electric Ind Ltd Flexible flat cable
JP2008277254A (en) * 2007-03-30 2008-11-13 Sony Chemical & Information Device Corp Flat cable
JP2009146694A (en) * 2007-12-13 2009-07-02 Sumitomo Electric Ind Ltd Shield flat cable
WO2011043129A1 (en) * 2009-10-06 2011-04-14 住友電気工業株式会社 Flame-retardant resin sheet and flat cable using same

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
旭化成アミダス株式会社「プラスチックス」編集部, プラスチック・データブック, vol. 初板第1刷, JPN7014001238, 1 December 1999 (1999-12-01), JP, pages 180 - 185, ISSN: 0002796624 *

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2020013696A (en) * 2018-07-18 2020-01-23 東京特殊電線株式会社 Flat cable with single-sided shield layer
JP7471051B2 (en) 2018-07-18 2024-04-19 株式会社Totoku Single-sided shielded flat cable
US20200273603A1 (en) * 2019-07-31 2020-08-27 Luxshare-Ict Co., Ltd. Flexible flat cable, manufacturing method thereof and signal transmission device
US11710582B2 (en) * 2019-07-31 2023-07-25 Luxshare-Ict Co., Ltd. Flexible flat cable, manufacturing method thereof and signal transmission device

Also Published As

Publication number Publication date
CN103198889B (en) 2016-06-29
CN103198889A (en) 2013-07-10
JP5621789B2 (en) 2014-11-12

Similar Documents

Publication Publication Date Title
JP5621789B2 (en) Shielded flat cable
US20180096755A1 (en) Parallel pair cable
JP2018137235A (en) Shielded electrical cable
US20160079646A1 (en) Signal transmission flat cable
WO2010104203A1 (en) High-speed differential cable
US10772203B2 (en) Flat data transmission cable
ITMI960180A1 (en) MULTIPLE DIFFERENTIAL COUPLE CABLE
JP2010097882A (en) Extruded flat cable for differential transmission
JP2009032685A (en) High-speed differential transmission cable
CN107205308B (en) Printed circuit board, optical module and transmitting device
US20200185124A1 (en) High-speed flat cable having better bending/folding memory and manufacturing method thereof
US10553333B2 (en) I-shaped filler
US10665363B2 (en) Low dielectric content twin-axial cable constructions
JP2013051387A (en) Electronic circuit board
JP5626174B2 (en) Shielded flat cable
JP2010092805A (en) Extruded flat cable for differential transmission
JP5534628B1 (en) Flat cable for signal transmission
KR101280590B1 (en) Flexible Flat Cable For Low Voltage Differential Signaling
US11710582B2 (en) Flexible flat cable, manufacturing method thereof and signal transmission device
CN113838602A (en) Cable structure
JP2014216109A (en) Flat cable for signal transmission
CN212647947U (en) Data transmission cable
TWI826947B (en) Flexible flat cable
US11756704B2 (en) Data transmission cable
CN210429363U (en) Automobile horn wire

Legal Events

Date Code Title Description
A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20130731

A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20131024

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20140310

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20140422

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20140616

RD04 Notification of resignation of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7424

Effective date: 20140710

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20140826

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20140908

R150 Certificate of patent or registration of utility model

Ref document number: 5621789

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250