JP2013136813A - High toughness steel for high heat input welding and method for producing the same - Google Patents

High toughness steel for high heat input welding and method for producing the same Download PDF

Info

Publication number
JP2013136813A
JP2013136813A JP2011288156A JP2011288156A JP2013136813A JP 2013136813 A JP2013136813 A JP 2013136813A JP 2011288156 A JP2011288156 A JP 2011288156A JP 2011288156 A JP2011288156 A JP 2011288156A JP 2013136813 A JP2013136813 A JP 2013136813A
Authority
JP
Japan
Prior art keywords
steel
less
toughness
heat input
input welding
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2011288156A
Other languages
Japanese (ja)
Inventor
Koichi Nakajima
孝一 中島
Tomoyuki Yokota
智之 横田
Kimihiro Nishimura
公宏 西村
Kazukuni Hase
和邦 長谷
Shinji Mitao
眞司 三田尾
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
JFE Steel Corp
Original Assignee
JFE Steel Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by JFE Steel Corp filed Critical JFE Steel Corp
Priority to JP2011288156A priority Critical patent/JP2013136813A/en
Publication of JP2013136813A publication Critical patent/JP2013136813A/en
Pending legal-status Critical Current

Links

Landscapes

  • Heat Treatment Of Steel (AREA)

Abstract

PROBLEM TO BE SOLVED: To provide high toughness steel for high heat input welding having high HAZ strength and toughness and tensile strength of 590 N/mmor more and a method for producing the same.SOLUTION: The steel includes in basic composition 0.001-0.015% of C, 0.01-0.80% of Si, 1.0-2.0% of Mn, 0.020% or less of P, 0.0050% or less of S, 0.005-0.10% of Al, 0.30-1.5% of Mo, 0.0003-0.0050% of B, 0.010-0.050% of Ti, 0.0060-0.0100% of N, and 0.01% or less of Nb, with the balance comprising Fe and unavoidable impurities; and satisfies (Ti+0.5×Nb)/N≤3.40, and 1.0×10pieces/mmof TiN and (Ti, Nb)N precipitates with a particle size of 0.01-0.10 μm exist in the steel when heated to a temperature region of 1,400°C to (the melting point-10°C). In the production method, rolling with cumulative rolling reduction in a γ unrecrystallized region of 50% or more etc. is performed.

Description

本発明は、船舶、海洋構造物、低温貯蔵タンク、ラインパイプおよび土木・建築の分野の溶接構造物等に用いて好適な、入熱量が300kJ/cm以上の大入熱溶接を施した際の溶接熱影響部の低温靭性および強度特性に優れ、かつ引張強さが590MPa以上の高強度を有する高靭性大入熱溶接用鋼およびその製造方法に関する。   The present invention is suitable for use in ships, marine structures, low-temperature storage tanks, line pipes and welded structures in the field of civil engineering and construction, etc. The present invention relates to a steel for high toughness large heat input welding having excellent low temperature toughness and strength characteristics of a weld heat affected zone and high strength with a tensile strength of 590 MPa or more and a method for producing the same.

造船、建築、土木等の分野で使用される鋼材は、これらの構造物の大型化に伴い、製造容易性や良好な使用性能(加工性や溶接性)を備えることを前提に高強度厚肉化され、最近では、造船用鋼として板厚50mmのYP460N/mm級鋼が開発実機化されている。このような鋼材には、エレクトロガス溶接など溶接入熱300kJ/cm以上での大入熱溶接施工が施されることが多く、溶接熱影響部の靭性確保が課題とされている。 Steel materials used in the fields of shipbuilding, construction, civil engineering, etc., as these structures increase in size, high-strength, thick-walled materials are assumed to be easy to manufacture and have good usage performance (workability and weldability) Recently, YP460N / mm grade 2 steel with a plate thickness of 50 mm has been developed and used as a steel for shipbuilding. Such steel materials are often subjected to high heat input welding with a heat input of 300 kJ / cm or more, such as electrogas welding, and ensuring the toughness of the weld heat affected zone is a problem.

大入熱溶接による熱影響部の靭性低下に対し、従来から、多くの対策が提案され、例えば、鋼中のTiNの微細分散により熱影響部におけるオーステナイト粒の粗大化を抑制して溶接部靭性を向上させる技術はすでに実用化されている。
特許文献1には、鋼中のTiN系介在物中にNbを含有させて、大入熱溶接時には同介在物中からNbを固溶させて溶接熱影響部におけるオーステナイト粒の粗大化を抑制し、小入熱溶接時には同介在物中にNbをとどめてベイナイト化を抑制することでHAZ靭性を向上させる技術が記載されている。
また、特許文献2には、溶接熱影響部においてTi酸化物がフェライト核として優れることを知見して、鋼中にTi酸化物を均一分散させた大入熱溶接用鋼が記載されている。
Many countermeasures have been proposed in the past for reducing the toughness of the heat-affected zone due to high heat input welding. For example, the toughness of the weld zone is suppressed by suppressing the austenite grain coarsening in the heat-affected zone by fine dispersion of TiN in the steel. The technology to improve this has already been put into practical use.
In Patent Document 1, Nb is contained in TiN-based inclusions in steel, and at the time of high heat input welding, Nb is dissolved from the inclusions to suppress austenite grain coarsening in the heat affected zone. In addition, a technique for improving HAZ toughness by suppressing Nb in the inclusions and suppressing bainite during small heat input welding is described.
Patent Document 2 describes a steel for high heat input welding in which Ti oxide is found to be excellent as a ferrite nucleus in a weld heat affected zone, and Ti oxide is uniformly dispersed in the steel.

一方で、溶接用高張力鋼材では、溶接により溶接熱影響部の軟化が生じ、溶接継手としての強度低下が問題となる。大入熱溶接の場合は、溶接入熱の増大によりフェライト変態を生じやすくするため、強度低下が顕著となってしまう。このような問題に対して、上記した従来技術では、HAZ靭性の低下防止には効果が認められるものの、HAZ強度の低下(軟化)防止には効果が認められなかった。これは、HAZ組織をフェライト主体の組織とすることで、HAZ靭性の確保が可能である反面、HAZ軟化を助長させてしまうためである。
このことから、特許文献3では、HAZ組織を強度の高いベイナイトに制御する技術が用いられている。しかしながら、特許文献3では、HAZ靭性の向上手法として極低炭素ベイナイト化に主眼が置かれており、当該技術をさらに高HAZ靭性が要求される低温仕様鋼に適用することはできないといった問題があった。
On the other hand, in the high-tensile steel material for welding, the weld heat-affected zone is softened by welding, which causes a problem of strength reduction as a welded joint. In the case of high heat input welding, the ferrite transformation is likely to occur due to an increase in welding heat input, so that the strength reduction becomes significant. With respect to such a problem, the above-described conventional technique is effective for preventing the reduction of the HAZ toughness, but is not effective for preventing the reduction (softening) of the HAZ strength. This is because HAZ toughness can be ensured by making the HAZ structure a ferrite-based structure, but it facilitates HAZ softening.
For this reason, in Patent Document 3, a technique for controlling the HAZ structure to high strength bainite is used. However, Patent Document 3 focuses on ultra-low carbon bainite as a method for improving HAZ toughness, and there is a problem that the technology cannot be applied to low-temperature specification steels that require higher HAZ toughness. It was.

特開2004−218010号公報JP 2004-2181010 A 特開昭57−51243号公報JP 57-51243 A 特開2000−345282号公報JP 2000-345282 A

本発明は、入熱量300kJ/cm以上の大入熱溶接を施した際、高HAZ強度および高HAZ靭性が得られ、かつ引張強さが590N/mm以上である高靭性大入熱溶接用鋼およびその製造方法を提供することを目的とする。 The present invention is for high toughness high heat input welding in which high HAZ strength and high HAZ toughness are obtained when high heat input welding with a heat input of 300 kJ / cm or more is performed and tensile strength is 590 N / mm 2 or more. It aims at providing steel and its manufacturing method.

本発明者らは、引張強さが590N/mm以上の高強度鋼に関して、母材靭性の改善および入熱量300kJ/cm以上の大入熱溶接を施したときの溶接熱影響部の強度特性と低温靭性を向上すべく鋭意検討を行い、以下の知見を得た。
1.大入熱HAZ靭性を改善するには、特許文献3に記載されているように、HAZ組織をベイナイトとすることが有効である。さらに、Cを0.015%以下までより低減することによって、靭性を阻害する島状マルテンサイト(MA)の生成がほとんど認められなくなり、HAZ靭性が向上する。
2.さらに、溶接熱影響部にTiNおよび(Ti,Nb)N析出物が存在すると、オーステナイト粒のピンニングに有効で、その効果は、これら析出物の粒子径が0.01〜0.10μmで、鋼中に1.0×10個以上/1mmが存在した場合、最も有効である。上記分散状態は成分組成を(Ti+0.5×Nb)/N≦3.40(各元素は含有量、質量%)を満足するように調整することで可能である。
3.大入熱溶接を施した際のHAZ軟化が、ベイナイトの回復・再結晶現象に起因し、Moを0.30%以上添加することで回復・再結晶を抑制してHAZ強度が向上する。
4.大入熱溶接熱影響部特性に優れ、かつ引張強さが590N/mm以上の鋼の母材靭性を改善するには、鋼成分のPとSをP:0.020%以下およびS:0.0050%以下とすることが有効である。また、上記の鋼素材を、950℃〜1250℃に加熱後、オーステナイト未再結晶域での累積圧下率:50%以上、圧延終了温度:650〜800℃の条件で熱間圧延を施し、その後1.0℃/s以上の冷却速度で580℃以下まで冷却することによっても母材靭性を向上することができる。
The present inventors have investigated the strength characteristics of the heat-affected zone when a high strength steel having a tensile strength of 590 N / mm 2 or more is subjected to improvement of base metal toughness and large heat input welding with a heat input of 300 kJ / cm or more. In order to improve the low-temperature toughness, we conducted intensive studies and obtained the following knowledge.
1. In order to improve the high heat input HAZ toughness, as described in Patent Document 3, it is effective to use the HAZ structure as bainite. Furthermore, when C is further reduced to 0.015% or less, formation of island martensite (MA) that inhibits toughness is hardly recognized, and HAZ toughness is improved.
2. Furthermore, the presence of TiN and (Ti, Nb) N precipitates in the weld heat affected zone is effective for pinning austenite grains. The effect is that the particle diameter of these precipitates is 0.01 to 0.10 μm, It is most effective when 1.0 × 10 5 or more / 1 mm 2 exists. The dispersion state can be achieved by adjusting the component composition so as to satisfy (Ti + 0.5 × Nb) /N≦3.40 (each element is content and mass%).
3. The HAZ softening at the time of high heat input welding is caused by the bainite recovery / recrystallization phenomenon, and the addition of Mo in an amount of 0.30% or more suppresses recovery / recrystallization and improves the HAZ strength.
4). In order to improve the base metal toughness of the steel having a high heat input weld heat-affected zone property and a tensile strength of 590 N / mm 2 or more, P and S of steel components are P: 0.020% or less and S: It is effective to set it to 0.0050% or less. Moreover, after heating said steel raw material to 950 to 1250 degreeC, it hot-rolls on the conditions of the cumulative reduction rate in an austenite non-recrystallized region: 50% or more, rolling completion temperature: 650-800 degreeC, and then The base material toughness can also be improved by cooling to 580 ° C. or lower at a cooling rate of 1.0 ° C./s or higher.

本発明は、上記知見をもとに、さらに検討をくわえてなされたものであり、その要旨は以下の[1]〜[4]のとおりである。
[1] 質量%で、C:0.001〜0.015%、Si:0.01〜0.80%、Mn:1.0〜2.0%、P:0.020%以下、S:0.0050%以下、Al:0.005〜0.10%、Mo:0.30〜1.5%、B:0.0003〜0.0050%、Ti:0.010〜0.050%、N:0.0060〜0.0100%、Nb:0.01%以下を含み、残部Feおよび不可避的不純物からなり、かつ(Ti+0.5×Nb)/N≦3.40(各元素は含有量、質量%)の条件を満足する成分組成を有し、(融点−10℃)以下、1400℃以上の温度域に加熱された際、鋼中に粒子径が0.01〜0.10μmの、TiNおよび(Ti,Nb)N析出物が1.0×10個/mm以上存在することを特徴とする高靭性大入熱溶接用鋼。
[2] さらに、質量%でCu:0.10〜0.60%、Ni:0.10〜1.0%、Cr:0.10〜0.80%、V:0.02〜0.10%、W:0.05〜0.50%のうちから選んだ1種または2種以上を含有する[1]に記載の高靭性大入熱溶接用鋼。
[3] さらに、質量%でCa:0.0005〜0.0050%、Mg:0.0005〜0.0050%、Zr:0.001〜0.02%、REM:0.001〜0.02%のうちから選んだ1種または2種以上を含有する[1]または[2]に記載の高靭性大入熱溶接用鋼。
[4] [1]〜[3]のいずれかに記載の成分組成を有する鋼素材を950〜1250℃に加熱後、オーステナイト未再結晶域での累積圧下率:50%以上、圧延終了温度:650〜800℃の条件で熱間圧延を施し、その後1.0℃/s以上の冷却速度で580℃以下まで冷却することを特徴とする[1]〜[3]のいずれかに記載の高靭性大入熱溶接用鋼の製造方法。
The present invention has been made with further studies based on the above findings, and the gist thereof is as follows [1] to [4].
[1] By mass%, C: 0.001 to 0.015%, Si: 0.01 to 0.80%, Mn: 1.0 to 2.0%, P: 0.020% or less, S: 0.0050% or less, Al: 0.005 to 0.10%, Mo: 0.30 to 1.5%, B: 0.0003 to 0.0050%, Ti: 0.010 to 0.050%, N: 0.0060 to 0.0100%, Nb: 0.01% or less, balance Fe and inevitable impurities, and (Ti + 0.5 × Nb) /N≦3.40 (each element has a content , Mass%), and has a component composition satisfying the following conditions: (melting point−10 ° C.) or less, when heated to a temperature range of 1400 ° C. TiN and (Ti, Nb) high toughness high heat input soluble to N precipitates are characterized by the presence 1.0 × 10 5 cells / mm 2 or more Use steel.
[2] Further, Cu: 0.10 to 0.60%, Ni: 0.10 to 1.0%, Cr: 0.10 to 0.80%, V: 0.02 to 0.10 by mass% %, W: Steel for high toughness high heat input welding according to [1], containing one or more selected from 0.05 to 0.50%.
[3] Further, by mass%, Ca: 0.0005 to 0.0050%, Mg: 0.0005 to 0.0050%, Zr: 0.001 to 0.02%, REM: 0.001 to 0.02 The steel having high toughness and high heat input welding according to [1] or [2], containing one or more selected from%.
[4] After heating the steel material having the component composition according to any one of [1] to [3] to 950 to 1250 ° C., the cumulative rolling reduction in the austenite non-recrystallized region: 50% or more, rolling end temperature: High rolling according to any one of [1] to [3], wherein hot rolling is performed under a condition of 650 to 800 ° C., and then cooled to 580 ° C. or less at a cooling rate of 1.0 ° C./s or more. A method for producing steel for toughness high heat input welding.

本発明によれば、サブマージアーク溶接、エレクトロガス溶接、エレクトロスラグ溶接などの入熱量が300kJ/cm以上の大入熱溶接で優れた溶接熱影響部の強度・靱性バランスを安定的に確保し、引張強さが590N/mm以上である鋼が得られ、産業上極めて有用である。 According to the present invention, the strength and toughness balance of the weld heat-affected zone excellent in large heat input welding with a heat input of 300 kJ / cm or more such as submerged arc welding, electrogas welding, electroslag welding, etc. can be stably secured. Steel with a tensile strength of 590 N / mm 2 or more is obtained, which is extremely useful industrially.

以下、本発明を詳細に説明する。
はじめに、本発明の鋼の成分組成について説明する。組成についての「%」は、断らない限り、「質量%」とする。
・C:0.001〜0.015%
母材およびHAZ組織を島状マルテンサイトのほとんど認められないベイナイト組織とするためには、C含有量を0.015%以下に抑制する必要がある。また、大量生産工程においては、Cを0.001%未満まで低減することは生産性の著しい低下を招くので、Cは0.001〜0.015%の範囲に限定した。
Hereinafter, the present invention will be described in detail.
First, the component composition of the steel of the present invention will be described. Unless otherwise specified, “%” for the composition is “% by mass”.
・ C: 0.001 to 0.015%
In order to make the base material and the HAZ structure a bainite structure in which island-like martensite is hardly observed, it is necessary to suppress the C content to 0.015% or less. Further, in the mass production process, reducing C to less than 0.001% causes a significant decrease in productivity, so C is limited to a range of 0.001 to 0.015%.

・Si:0.01〜0.80%
Siは固溶強化によって鋼の強度を上昇させる元素であり、590MPa以上の引張強さを確保するために、0.01%以上を添加する。しかしながら、0.80%以上を超えて含有させると、溶接性を損ない、また母材およびHAZ靱性が低下するなどの悪影響が生じるため、Siは0.01〜0.80%の範囲に限定した。
・ Si: 0.01-0.80%
Si is an element that increases the strength of the steel by solid solution strengthening, and 0.01% or more is added in order to ensure a tensile strength of 590 MPa or more. However, if the content exceeds 0.80%, the weldability is impaired, and adverse effects such as deterioration of the base metal and HAZ toughness occur. Therefore, Si is limited to the range of 0.01 to 0.80%. .

・Mn:1.0〜2.0%
Mnは極低炭素域での鋼のフェライト変態を抑制し、鋼材の組織をベイナイト化することで強度を増大させる効果を有している。溶接入熱が300kJ/cm以上の大入熱溶接時においても、HAZのフェライト変態を抑制し、ベイナイト単一組織とするためには、1.0%以上のMn含有を必要とする。一方、2.0%を超えて含有すると、母材およびHAZ靭性が低下するため、Mnは1.0〜2.0%の範囲に限定した。
Mn: 1.0-2.0%
Mn has the effect of suppressing the ferrite transformation of steel in the extremely low carbon region and increasing the strength by baiting the structure of the steel material. Even at the time of high heat input welding with a heat input of 300 kJ / cm or higher, in order to suppress the ferrite transformation of HAZ and obtain a bainite single structure, it is necessary to contain 1.0% or more of Mn. On the other hand, if the content exceeds 2.0%, the base material and the HAZ toughness decrease, so Mn is limited to a range of 1.0 to 2.0%.

・P:0.020%以下
・S:0.0050%以下
PとSは、極低炭素化とともに本発明の重要な元素である。これらの不純物元素は、不可避的に混入する元素で、0.020%を超えてのP含有および0.0050%を超えてのS含有は母材の靭性を著しく低下させる。Pは、Feの結晶粒界に偏析してFe原子間の結合力を弱め、Feの低温域での脆性破壊を助長する。Sは、Pと同様の粒界偏析、ならびに硫化物の生成が母材の靭性を低下させる。以上のことから、P:0.020%以下、S:0.0050%以下の範囲に限定した。
P: 0.020% or less S: 0.0050% or less P and S are important elements of the present invention as well as extremely low carbon. These impurity elements are inevitably mixed elements, and P content exceeding 0.020% and S content exceeding 0.0050% significantly reduce the toughness of the base material. P segregates at the grain boundaries of Fe, weakens the bonding force between Fe atoms, and promotes brittle fracture of Fe in a low temperature region. S has the same grain boundary segregation as P, and the formation of sulfides reduces the toughness of the base material. From the above, it was limited to the range of P: 0.020% or less and S: 0.0050% or less.

・Al:0.005〜0.10%
Alは、溶鋼の脱酸剤として作用する元素であり、十分な脱酸効果を得るためには0.005%以上の添加を必要とする。しかしながら、0.10%を超えると鋼の清浄度が低下し、母材およびHAZ靭性が低下するため、Alは0.005〜0.10%の範囲に限定した。
-Al: 0.005-0.10%
Al is an element that acts as a deoxidizer for molten steel, and 0.005% or more is required to obtain a sufficient deoxidation effect. However, if it exceeds 0.10%, the cleanliness of the steel is lowered, and the base metal and the HAZ toughness are lowered. Therefore, Al is limited to the range of 0.005 to 0.10%.

・Mo:0.30〜1.5%
Moの添加は、極低炭素化とともに本発明の重要な元素である。Moは、組織のベイナイト化あるいはマルテンサイト化を促進する元素であり、Nbを低減させながら母材およびHAZ組織をベイナイト化あるいはマルテンサイト化するに当たって必須の元素である。このような効果を発現させるためには、少なくとも0.30%のMoを添加する必要があるが、1.5%を超えると効果が飽和する。さらに、Moは、大入熱溶接の際のベイナイトあるいはマルテンサイトの回復・再結晶を抑制する効果を有しており、HAZ軟化を抑制してHAZ強度を向上するのに有効に作用する。この効果についても、0.30%以上のMo添加が必要である。以上のことから、Moは0.30〜1.5%の範囲に限定した。
Mo: 0.30 to 1.5%
The addition of Mo is an important element of the present invention as well as extremely low carbon. Mo is an element that promotes bainite or martensite of the structure, and is an essential element for bainite or martensite of the base material and the HAZ structure while reducing Nb. In order to express such an effect, it is necessary to add at least 0.30% of Mo, but when it exceeds 1.5%, the effect is saturated. Further, Mo has an effect of suppressing recovery / recrystallization of bainite or martensite during high heat input welding, and effectively acts to improve HAZ strength by suppressing HAZ softening. Also for this effect, addition of 0.30% or more of Mo is necessary. From the above, Mo was limited to the range of 0.30 to 1.5%.

・B:0.0003〜0.0050%
Bは、フェライト変態を抑制し、組織をベイナイト化する作用を有する。この効果は、B含有量が0.0003%以上で発現するが、0.0050%を超えると効果が飽和し、冷却中のBNの析出によって逆にフェライト変態を促進する場合があるので、Bは0.0003〜0.0050%の範囲に限定した。
・ B: 0.0003 to 0.0050%
B has the effect of suppressing ferrite transformation and baiting the structure. This effect is manifested when the B content is 0.0003% or more. However, when the content exceeds 0.0050%, the effect is saturated, and the ferrite transformation may be accelerated by precipitation of BN during cooling. Is limited to the range of 0.0003 to 0.0050%.

・Ti:0.010〜0.050%
Tiは、鋼中に微細なTiNや(Ti,Nb)N析出物として分散し、大入熱溶接時のHAZのオーステナイト粒成長をピンニング効果によって抑制し、靭性を向上させる作用を有する。また、鋼中のNをTiNとして固定することにより、前述のBの作用を促進する効果がある。このような効果を得るためには、0.010%以上のTi添加を必要とするが、0.050%を超えるとTiNの粗大化により靭性が低下する。このため、Tiは0.010〜0.050%の範囲に限定した。
・ Ti: 0.010 to 0.050%
Ti is dispersed as fine TiN and (Ti, Nb) N precipitates in the steel, and has the effect of suppressing the austenite grain growth of HAZ during high heat input welding by the pinning effect and improving toughness. Moreover, there exists an effect which accelerates | stimulates the effect | action of B mentioned above by fixing N in steel as TiN. In order to obtain such an effect, 0.010% or more of Ti should be added. However, if it exceeds 0.050%, the toughness decreases due to the coarsening of TiN. For this reason, Ti was limited to a range of 0.010 to 0.050%.

・N:0.0060〜0.0100%
Nは、TiNや(Ti,Nb)N析出物を析出してオーステナイト粒の粗大化を抑制する。そのような効果を得るため、0.0060%以上含有させるが、一方、0.0100%を超えて含有すると、溶接熱サイクルによってTiNや(Ti,Nb)N析出物が溶解する温度領域で固溶N量が増加して靭性が低下するようになるので、0.0060〜0.0100%の範囲に限定した。
・ N: 0.0060-0.0100%
N precipitates TiN or (Ti, Nb) N precipitates and suppresses coarsening of austenite grains. In order to obtain such an effect, it is contained in an amount of 0.0060% or more. On the other hand, if it exceeds 0.0100%, it is solidified in a temperature region where TiN and (Ti, Nb) N precipitates are dissolved by the welding heat cycle. Since the amount of dissolved N increases and the toughness decreases, it is limited to the range of 0.0060 to 0.0100%.

・Nb:0.01%以下
Nbは、Mnと同様に、極低炭素域での鋼材の組織をベイナイト単一組織とする作用を有する。しかし、Nb含有量が多いと、大入熱溶接時の冷却過程でNb(C,N)が析出し、靭性低下を生じる。このため、Nbは0.01%以下に極力低減する。
-Nb: 0.01% or less Nb has the effect | action which makes the structure | tissue of the steel material in an ultra-low-carbon area | region the single structure of bainite like Mn. However, if the Nb content is high, Nb (C, N) precipitates during the cooling process during high heat input welding, resulting in a decrease in toughness. For this reason, Nb is reduced to 0.01% or less as much as possible.

・(Ti+0.5×Nb)/N≦3.40(ここでの各元素は含有量、質量%)
本パラメータは、TiNおよび(Ti,Nb)N析出物の粒子径と分布状態を規定するもので、オーステナイト粒のピンニングに有効となるように、本発明では3.40以下に規定する。(Ti+0.5×Nb)/Nが3.40を超えると、これら析出物によるオーステナイト粒のピンニング効果が低下し、靭性に悪影響を及ぼすため、3.40以下とする。
・ (Ti + 0.5 × Nb) /N≦3.40 (each element here is content, mass%)
This parameter defines the particle size and distribution state of TiN and (Ti, Nb) N precipitates. In the present invention, this parameter is defined to be 3.40 or less so as to be effective for pinning austenite grains. When (Ti + 0.5 × Nb) / N exceeds 3.40, the pinning effect of the austenite grains due to these precipitates is lowered and adversely affects the toughness, so that it is 3.40 or less.

・Cu:0.10〜0.60%、Ni:0.10〜1.0%、Cr:0.10〜0.8
0%、V:0.02〜0.10%、W:0.05〜0.50%のうちから選んだ1種
または2種以上
Cu、Ni、Cr、V、Wはいずれも、主に固溶強化によって鋼の強度を上昇させる有用元素であり、必要に応じて添加する。しかしながら、含有量がそれぞれ下限に満たないとその添加効果が乏しく、一方上限を超えると溶接性が低下し、また合金添加コストが増加してしまうので、それぞれ上記の範囲で含有させることが好ましい。
Cu: 0.10 to 0.60%, Ni: 0.10 to 1.0%, Cr: 0.10 to 0.8
1% or more selected from 0%, V: 0.02-0.10%, W: 0.05-0.50% Cu, Ni, Cr, V, W are all mainly It is a useful element that increases the strength of steel by solid solution strengthening, and is added as necessary. However, if the content is less than the lower limit, the effect of addition is poor. On the other hand, if the content exceeds the upper limit, the weldability is reduced and the alloy addition cost is increased.

・Ca:0.0005〜0.0050%、Mg:0.0005〜0.0050%、Zr
:0.001〜0.02%、REM:0.001〜0.02%のうちから選んだ1種
または2種以上
Ca、Mg、Zr、REMはいずれも、酸化物、硫化物を形成して鋼中に分散し、ピンニング効果によって大入熱溶接HAZのオーステナイト粒径を微細化する効果があり、必要に応じて添加する。しかしながら、含有量がそれぞれ下限に満たないとその添加効果が乏しく、一方上限を超えると粗大な酸化物、硫化物が増加し、かえって靭性を低下させてしまうので、それぞれ上記の範囲で含有させることが好ましい。
Ca: 0.0005 to 0.0050%, Mg: 0.0005 to 0.0050%, Zr
: One or more selected from 0.001 to 0.02%, REM: 0.001 to 0.02% Ca, Mg, Zr, and REM all form oxides and sulfides. It is dispersed in steel and has the effect of refining the austenite grain size of the high heat input weld HAZ by the pinning effect, and is added as necessary. However, if the content is less than the lower limit, the effect of addition is poor. On the other hand, if the content exceeds the upper limit, coarse oxides and sulfides increase, and instead the toughness is lowered. Is preferred.

次に、本発明の鋼のミクロ組織について説明する。
・1400℃以上の温度域に再加熱した際のミクロ組織を、粒子径0.01〜0.10
μmのTiNおよび(Ti,Nb)N析出物が鋼中に1.0×10個/1mm以上
本発明では、上記成分組成の鋼を、(融点−10℃)以下、1400℃以上の温度域に加熱した際のミクロ組織を、粒子径0.01〜0.10μmの、TiNおよび(Ti,Nb)N析出物が、鋼中に1.0×10個/1mm以上存在するミクロ組織とする。TiNおよび(Ti,Nb)N析出物の粒子径が0.01μm未満では、上記熱サイクルを受けると固溶し、一方、0.10μmを超えると分散状態が粗く、粒子相互の間隔が広くなり過ぎるために、有効なピンニング効果を発揮できず、粗大なオーステナイト粒となるため0.01〜0.10μmの範囲とする。そして、この範囲内の粒子径であっても1.0×10個/1mmに満たない場合は有効なピンニング効果が得られないため、TiNおよび(Ti,Nb)N析出物を含有する析出物は鋼中に均一に1.0×10個/1mm以上を分散させる。
Next, the microstructure of the steel of the present invention will be described.
-The microstructure when reheated to a temperature range of 1400 ° C or higher has a particle size of 0.01 to 0.10
In the present invention, the steel having the above component composition is (melting point−10 ° C.) or less, and 1400 ° C. or more, and μm TiN and (Ti, Nb) N precipitates are 1.0 × 10 5 pieces / 1 mm 2 or more in the steel. the microstructure when heated to a temperature range, the particle diameter 0.01~0.10Myuemu, TiN and (Ti, Nb) N precipitates is present 1.0 × 10 5 cells / 1 mm 2 or more in the steel A microstructure is assumed. When the particle diameter of the TiN and (Ti, Nb) N precipitates is less than 0.01 μm, it undergoes solid solution when subjected to the above heat cycle, whereas when it exceeds 0.10 μm, the dispersion state is coarse and the distance between the particles becomes wide. Therefore, the effective pinning effect cannot be exhibited and coarse austenite grains are formed, so that the range is 0.01 to 0.10 μm. And even if it is a particle diameter within this range, if it is less than 1.0 × 10 5 particles / 1 mm 2 , an effective pinning effect cannot be obtained, so TiN and (Ti, Nb) N precipitates are contained. Precipitates are uniformly dispersed in the steel at 1.0 × 10 5 pieces / 1 mm 2 or more.

次に本発明の製造条件の限定理由について説明する。
なお、鋼素材は、上記の好適成分組成に調整した溶鋼を、転炉等の通常公知の方法で溶解したのち、連続鋳造等の通常公知の方法で鋳造して製造すれば良い。
Next, the reasons for limiting the production conditions of the present invention will be described.
In addition, what is necessary is just to manufacture a steel raw material by casting the molten steel adjusted to said suitable component composition by a conventionally well-known method, such as continuous casting, after melt | dissolving by a normally well-known method, such as a converter.

・鋼素材の加熱温度:950℃〜1250℃
圧延前の組織を均一な整粒オーステナイト組織にするためには、鋼素材は950℃以上の温度に加熱する必要があるが、加熱温度が1250℃を超えると組織が著しく粗大化するため、加熱温度は950℃〜1250℃の範囲に限定した。
-Heating temperature of steel material: 950 ° C-1250 ° C
In order to obtain a uniform sized austenite structure before rolling, the steel material must be heated to a temperature of 950 ° C. or higher. However, if the heating temperature exceeds 1250 ° C., the structure becomes extremely coarse. The temperature was limited to the range of 950 ° C to 1250 ° C.

・オーステナイト未再結晶域での累積圧下率:50%以上
熱間圧延でのオーステナイト未再結晶域における圧下量の増加は、オーステナイト粒から変態するベイナイトのパケットサイズを微細にし、ベイナイト組織の靭性を向上させる。また、未再結晶域における圧下量の増加は、オーステナイト粒内に蓄積される転位の密度を増加させる。これにより、変態時に転位の一部が変態後のベイナイト組織に受け継がれ、さらに強度を増加させる。このような効果は、950℃以下のオーステナイト未再結晶域における累積圧下量が50%以上で顕著となる。
・ Cumulative reduction ratio in the austenite non-recrystallized region: 50% or more Increase in the amount of reduction in the austenite non-recrystallized region in hot rolling makes the packet size of bainite transformed from austenite grains finer and reduces the toughness of the bainite structure. Improve. In addition, an increase in the amount of reduction in the non-recrystallized region increases the density of dislocations accumulated in the austenite grains. Thereby, a part of dislocation is inherited by the bainite structure after transformation at the time of transformation, and the strength is further increased. Such an effect becomes remarkable when the cumulative reduction amount in the austenite non-recrystallized region at 950 ° C. or lower is 50% or more.

・圧延終了温度:650〜800℃
熱間圧延の圧延終了温度の低下も、再結晶微細オーステナイト粒からの変態によるベイナイト組織の微細化およびベイナイト組織の高転位密度化の効果によって鋼材の強度・靭性が向上するため、圧延終了温度の上限は800℃とする。しかし、圧延終了温度を650℃未満にまで低下させると、オーステナイト→フェライトまたはオーステナイト→ベイナイト変態が開始し、生成したフェライトあるいはベイナイトが加工される結果、靭性の低下や異方性の増大といった問題が生じるため、圧延終了温度の下限は650℃とする。
-Rolling end temperature: 650-800 ° C
The reduction of the rolling end temperature of hot rolling also increases the strength and toughness of the steel due to the refinement of the bainite structure due to transformation from the recrystallized fine austenite grains and the high dislocation density of the bainite structure. The upper limit is 800 ° C. However, when the rolling end temperature is lowered to less than 650 ° C., the austenite → ferrite or austenite → bainite transformation starts, and as a result of processing the produced ferrite or bainite, there is a problem of reduced toughness or increased anisotropy. Therefore, the lower limit of the rolling end temperature is 650 ° C.

・熱間圧延後の冷却速度:1.0℃/s以上
母材の強度を確保するためには、圧延後加速冷却プロセスを適用し、1.0℃/s以上の冷却速度で冷却する。1.0℃/s未満であると、母材の強度が低下する。
・冷却停止温度:580℃以下
冷却停止温度が580℃を超えると、未変態オーステナイトへの元素の激化が生じ、硬化相が生成しやすくなる。この硬化相が靭性を低下させるため、冷却停止温度は580℃以下に限定した。
-Cooling rate after hot rolling: 1.0 ° C / s or more In order to ensure the strength of the base metal, an accelerated cooling process after rolling is applied and cooling is performed at a cooling rate of 1.0 ° C / s or more. When it is less than 1.0 ° C./s, the strength of the base material is lowered.
Cooling stop temperature: 580 ° C. or less When the cooling stop temperature exceeds 580 ° C., the element is intensified into untransformed austenite and a hardened phase is easily generated. Since this hardening phase reduces toughness, the cooling stop temperature was limited to 580 ° C. or lower.

本発明では、上記した冷却処理の後、さらに焼戻し処理を施してもよい。この焼戻し処理は、冷却時に生成したベイナイトの強度・靭性の調整およびベイナイトラス間に生成した島状マルテンサイトを分解して靭性を向上させるために施すものであるが、処理時間が500℃に満たないと上記の効果が認められず、一方650℃を超えると強度が著しく低下してしまうので、焼戻し処理温度は500〜650℃程度とすることが好ましい。   In the present invention, a tempering process may be further performed after the cooling process. This tempering treatment is performed to adjust the strength and toughness of the bainite produced during cooling and to improve the toughness by decomposing the island martensite produced between the bainite laths. Otherwise, the above effect is not recognized, and when the temperature exceeds 650 ° C., the strength is remarkably lowered. Therefore, the tempering temperature is preferably about 500 to 650 ° C.

表1に示す種々の成分組成になる溶鋼を、転炉で溶製し、連続鋳造法で鋼スラブとした。
これらのスラブ(板厚300mm)を素材として、表2に示す条件で、加熱処理、圧延処理および冷却処理を施して、板厚:50〜60mmの厚鋼板とした。得られた厚鋼板の引張特性、母材靭性について調査した結果を表3に示す。また、表3には、大入熱1パス継手溶接を行った際の溶接熱影響部(HAZ)の強度、靭性および粒子径:0.01〜0.1μmの析出物の個数について調査した結果も併せて示す。
Molten steel having various composition shown in Table 1 was melted in a converter and made into a steel slab by a continuous casting method.
Using these slabs (plate thickness 300 mm) as a raw material, heat treatment, rolling treatment and cooling treatment were performed under the conditions shown in Table 2 to obtain a thick steel plate having a plate thickness of 50 to 60 mm. Table 3 shows the results of investigation on the tensile properties and base metal toughness of the obtained thick steel plates. Table 3 also shows the results of investigations on the number of precipitates having a weld heat-affected zone (HAZ) strength, toughness, and particle size: 0.01 to 0.1 μm when high heat input 1-pass joint welding is performed. Also shown.

Figure 2013136813
Figure 2013136813

Figure 2013136813
Figure 2013136813

Figure 2013136813
Figure 2013136813

なお、各特性と析出物の個数は次のようにして評価した。
(1)引張特性
各厚鋼板の板厚中心部から、平行部14φ×85mm、標点間距離70mmの丸棒引張試験片を試験片長手方向が板幅方向と一致するように採取して引張試験を実施し、降伏強度(0.2%耐力)と引張強さを測定した。
(2)母材靭性
各厚鋼板の板厚中心部から、2mmVノッチシヤルピー試験片を試験片長手方向が圧延方向と一致するように採取し、母材の脆性破面遷移温度(vTrs)を求めた。
(3)溶接熱影響部(HAZ)の強度および靭性
大入熱溶接(350〜400kJ/cm)のエレクトロガス溶接(EGW)によって継手を作製した後、HAZ強度は、板厚中心部を溶接金属からHAZおよび母材に向かって1mmピッチで硬度測定(荷重:98N)を行い、HAZ硬さの最小値で評価した。HAZ靭性は、ボンド部から1mmの箇所にノッチを入れたシャルピー試験片を用いて、試験温度−40℃での吸収エネルギーvE−40(3本平均値)により評価した。
(4)析出物の粒子径および個数の測定
上記の溶接条件を模して1450℃に再加熱した後急冷し、透過型電子顕微鏡(TEM)観察を行った。顕微鏡の倍率を6万〜2万倍として合計5視野観察し、粒子径が0.01〜0.1μmとなる析出物について測定を行い、平均粒子径と1mm当たりの個数を算出した。粒子径は粒子を円近似して各粒子の面積から求めた直径とする。
Each characteristic and the number of precipitates were evaluated as follows.
(1) Tensile properties A round bar tensile test piece with a parallel part of 14φ x 85mm and a distance between gauge points of 70mm is taken and pulled from the center of the plate thickness of each thick steel plate so that the longitudinal direction of the test piece coincides with the plate width direction. The test was conducted and the yield strength (0.2% proof stress) and tensile strength were measured.
(2) Base material toughness From the plate thickness center of each thick steel plate, a 2 mm V notch shear py test piece was taken so that the longitudinal direction of the test piece coincided with the rolling direction, and the brittle fracture surface transition temperature (vTrs) of the base material was determined. Asked.
(3) Strength and toughness of weld heat affected zone (HAZ) After producing a joint by electrogas welding (EGW) of high heat input welding (350-400 kJ / cm), the HAZ strength is measured by welding the center of the plate thickness. From HAZ to HAZ and the base material, hardness measurement (load: 98 N) was performed at a pitch of 1 mm, and the minimum value of HAZ hardness was evaluated. The HAZ toughness was evaluated by absorption energy vE- 40 (average value of three) at a test temperature of −40 ° C. using a Charpy test piece having a notch at a position 1 mm from the bond part.
(4) Measurement of particle diameter and number of precipitates Resimulating the above welding conditions to reheat to 1450 ° C., followed by rapid cooling, and observation with a transmission electron microscope (TEM). A total of five visual fields were observed with a microscope magnification of 60,000 to 20,000 times, and the precipitates having a particle size of 0.01 to 0.1 μm were measured, and the average particle size and the number per 1 mm 2 were calculated. The particle diameter is a diameter obtained by circularly approximating the particles and obtained from the area of each particle.

表3から、本発明例のNo.1〜7ではいずれも引張強さが590N/mm以上で脆性破面遷移温度も−45℃以下と優れた母材特性を有していることが確認された。また、本発明鋼は、溶接熱影響部のシャルピー衝撃吸収エネルギー値(試験温度−40℃、3本の平均値)が100J以上で、なおかつHAZ硬さ最小値が175HV以上であり、溶接熱影響部の強度・靭性にも優れている。
一方、化学成分や製造条件の少なくとも1つ以上が本発明範囲を外れる比較例のNo.8〜23は、上記のいずれか1つ以上の特性が劣っている。
From Table 3, No. of the present invention example. It was confirmed that all of Nos. 1 to 7 have excellent base material properties such as a tensile strength of 590 N / mm 2 or more and a brittle fracture surface transition temperature of −45 ° C. or less. In addition, the steel of the present invention has a Charpy impact absorption energy value (test temperature of −40 ° C., average value of three) of the weld heat-affected zone of 100 J or more, and a minimum HAZ hardness value of 175 HV or more. Excellent in strength and toughness of the part.
On the other hand, at least one of the chemical components and the production conditions is a comparative example No. 1 that is out of the scope of the present invention. 8 to 23 are inferior in any one or more of the above characteristics.

Claims (4)

質量%で、
C:0.001〜0.015%
Si:0.01〜0.80%
Mn:1.0〜2.0%
P:0.020%以下
S:0.0050%以下
Al:0.005〜0.10%
Mo:0.30〜1.5%
B:0.0003〜0.0050%
Ti:0.010〜0.050%
N:0.0060〜0.0100%
Nb:0.01%以下
を含み、残部Feおよび不可避的不純物からなり、かつ(Ti+0.5×Nb)/N≦3.40(ここでの各元素は含有量、質量%)の条件を満足する成分組成を有し、(融点−10℃)以下、1400℃以上の温度域に加熱された際、鋼中に粒子径が0.01〜0.10μmの、TiNおよび(Ti,Nb)N析出物が1.0×10個/mm以上存在することを特徴とする高靭性大入熱溶接用鋼。
% By mass
C: 0.001 to 0.015%
Si: 0.01-0.80%
Mn: 1.0-2.0%
P: 0.020% or less S: 0.0050% or less Al: 0.005-0.10%
Mo: 0.30 to 1.5%
B: 0.0003 to 0.0050%
Ti: 0.010 to 0.050%
N: 0.0060 to 0.0100%
Nb: 0.01% or less, balance Fe and inevitable impurities, and satisfies the condition of (Ti + 0.5 × Nb) /N≦3.40 (each element here is content, mass%) TiN and (Ti, Nb) N having a component composition of (melting point−10 ° C.) or less and having a particle diameter of 0.01 to 0.10 μm in steel when heated to a temperature range of 1400 ° C. or more. A steel having high toughness and high heat input welding, wherein precipitates are present at 1.0 × 10 5 pieces / mm 2 or more.
さらに、質量%でCu:0.10〜0.60%、Ni:0.10〜1.0%、Cr:0.10〜0.80%、V:0.02〜0.10%、W:0.05〜0.50%のうちから選んだ1種または2種以上を含有する請求項1に記載の高靭性大入熱溶接用鋼。   Further, Cu: 0.10 to 0.60%, Ni: 0.10 to 1.0%, Cr: 0.10 to 0.80%, V: 0.02 to 0.10%, W in mass% The high toughness high heat input welding steel according to claim 1, comprising one or more selected from 0.05 to 0.50%. さらに、質量%でCa:0.0005〜0.0050%、Mg:0.0005〜0.0050%、Zr:0.001〜0.02%、REM:0.001〜0.02%のうちから選んだ1種または2種以上を含有する請求項1または請求項2に記載の高靭性大入熱溶接用鋼。   Furthermore, in mass%: Ca: 0.0005-0.0050%, Mg: 0.0005-0.0050%, Zr: 0.001-0.02%, REM: 0.001-0.02% The steel for high toughness high heat input welding according to claim 1 or 2, which contains one or more selected from the above. 請求項1〜3のいずれか一項に記載の成分組成を有する鋼素材を950〜1250℃に加熱後、オーステナイト未再結晶域での累積圧下率:50%以上、圧延終了温度:650〜800℃の条件で熱間圧延を施し、その後1.0℃/s以上の冷却速度で580℃以下まで冷却することを特徴とする請求項1〜3のいずれか一項に記載の高靭性大入熱溶接用鋼の製造方法。
After heating the steel raw material which has a component composition as described in any one of Claims 1-3 to 950-1250 degreeC, the cumulative reduction rate in an austenite non-recrystallization area | region: 50% or more, rolling completion temperature: 650-800 The high toughness insertion according to any one of claims 1 to 3, wherein hot rolling is performed under the condition of ° C and then cooled to 580 ° C or less at a cooling rate of 1.0 ° C / s or more. Manufacturing method of steel for heat welding.
JP2011288156A 2011-12-28 2011-12-28 High toughness steel for high heat input welding and method for producing the same Pending JP2013136813A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2011288156A JP2013136813A (en) 2011-12-28 2011-12-28 High toughness steel for high heat input welding and method for producing the same

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2011288156A JP2013136813A (en) 2011-12-28 2011-12-28 High toughness steel for high heat input welding and method for producing the same

Publications (1)

Publication Number Publication Date
JP2013136813A true JP2013136813A (en) 2013-07-11

Family

ID=48912752

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2011288156A Pending JP2013136813A (en) 2011-12-28 2011-12-28 High toughness steel for high heat input welding and method for producing the same

Country Status (1)

Country Link
JP (1) JP2013136813A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2022008043A (en) * 2020-06-24 2022-01-13 Jfeスチール株式会社 Steel plate, and method for manufacturing the same

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2022008043A (en) * 2020-06-24 2022-01-13 Jfeスチール株式会社 Steel plate, and method for manufacturing the same
JP7396322B2 (en) 2020-06-24 2023-12-12 Jfeスチール株式会社 steel plate

Similar Documents

Publication Publication Date Title
JP5950045B2 (en) Steel sheet and manufacturing method thereof
KR101386042B1 (en) Steel material for high heat input welding
KR20100116701A (en) High-tensile strength steel and manufacturing method thereof
JP6648271B2 (en) High-strength steel excellent in brittle crack propagation resistance and brittle crack initiation resistance in welds and method for producing the same
JP2010229528A (en) High tensile strength steel sheet having excellent ductility and method for producing the same
JP4878219B2 (en) Steel sheet with excellent HAZ toughness and small reduction in strength due to heat treatment after welding
JP4041447B2 (en) Thick steel plate with high heat input welded joint toughness
JP5151693B2 (en) Manufacturing method of high-strength steel
JP4096839B2 (en) Manufacturing method of high yield thick steel plate with low yield ratio and excellent toughness of heat affected zone
KR101971772B1 (en) Method of manufacturing steel plate for high-heat input welding
JP4981262B2 (en) Manufacturing method of low yield ratio steel for low temperature with excellent weld toughness
JP2013049894A (en) High toughness steel for heavy heat input welding and method for manufacturing the same
JP5233364B2 (en) Steel material for large heat input welding
JP2005281842A (en) Production method of low temperature service low yield ratio steel material having excellent weld zone toughness
JP4449388B2 (en) Manufacturing method of high-strength thick steel plates with excellent brittle crack propagation stop properties and super high heat input welding heat-affected zone toughness
JP5233365B2 (en) Steel material for large heat input welding
JP2005213534A (en) Method for producing steel material excellent in toughness at welding heat affected zone
JP4959402B2 (en) High strength welded structural steel with excellent surface cracking resistance and its manufacturing method
JP2012188749A (en) Thick steel plate with high toughness in multi-pass welded part and multi-pass welded joint
JP2011074448A (en) Steel for high heat input welding
JP3644398B2 (en) Manufacturing method of non-tempered thick high-tensile steel sheet with excellent weld heat-affected zone toughness
JP4066879B2 (en) Manufacturing method of thick-walled high-tensile steel plate with excellent weld heat affected zone CTOD characteristics
JP2002371338A (en) Steel superior in toughness at laser weld
JP2012188750A (en) High toughness steel for high heat input welding and manufacturing method thereof
JP4144121B2 (en) Non-tempered high strength steel with excellent toughness of base metal and weld heat affected zone