JP2013135129A - Abnormality detection method of instrument transformer and protection method of circuit - Google Patents

Abnormality detection method of instrument transformer and protection method of circuit Download PDF

Info

Publication number
JP2013135129A
JP2013135129A JP2011285478A JP2011285478A JP2013135129A JP 2013135129 A JP2013135129 A JP 2013135129A JP 2011285478 A JP2011285478 A JP 2011285478A JP 2011285478 A JP2011285478 A JP 2011285478A JP 2013135129 A JP2013135129 A JP 2013135129A
Authority
JP
Japan
Prior art keywords
instrument
circuit
instrument transformer
abnormality
transformers
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2011285478A
Other languages
Japanese (ja)
Other versions
JP5944162B2 (en
Inventor
Teruhiko Maeda
照彦 前田
Miwa Takeuchi
美和 竹内
Fumiaki Takeuchi
文章 竹内
Yoshihiro Kamikawa
芳弘 上川
Seiji Kubota
正治 久保田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toshiba Corp
Toshiba Industrial Products and Systems Corp
Original Assignee
Toshiba Corp
Toshiba Industrial Products Manufacturing Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toshiba Corp, Toshiba Industrial Products Manufacturing Corp filed Critical Toshiba Corp
Priority to JP2011285478A priority Critical patent/JP5944162B2/en
Publication of JP2013135129A publication Critical patent/JP2013135129A/en
Application granted granted Critical
Publication of JP5944162B2 publication Critical patent/JP5944162B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Protection Of Transformers (AREA)

Abstract

PROBLEM TO BE SOLVED: To provide an abnormality detection method of instrument transformers capable of quickly and accurately detecting internal abnormality of the instrument transformers, and further to provide a protection method of a circuit capable of appropriately protecting the circuit when the abnormality occurs inside the instrument transformer.SOLUTION: An abnormality detection method of instrument transformers comprises the steps of: connecting at least two instrument transformers with respect to one circuit; comparing output voltages of individual ones of the instrument transformers; and detecting abnormality of one instrument transformer on the basis of a variation in the output voltage of one of the individual ones of the instrument transformers. A protection method of the circuit connects a circuit breaker for cutting off power supply to the instrument transformers and an actuator that operates the circuit breaker while being input with the output voltages of the instrument transformers to the circuit. When detecting the abnormality of the instrument transformer, the actuator operates the circuit breaker and cuts off the power supply to the instrument transformer in which the abnormality is detected.

Description

本発明の実施形態は、計器用変圧器の異常検出方法および回路の保護方法に関する。   Embodiments described herein relate generally to an abnormality detection method for an instrument transformer and a circuit protection method.

一般に、受変電設備などを有する回路において、その保護や電圧計測のために計器用変圧器が用いられる。この場合、例えば計器用変圧器の内部で故障が発生すると、回路の短絡あるいは地絡故障に至ることがあり、その結果、受変電設備などが正常であるにもかかわらず、障害を取り除くための間、長時間にわたって回路の停電を招くおそれがあった。このような回路の停電を回避するためにも、計器用変圧器の内部に異常が生じた場合には、迅速にその異常を特定して障害を取り除く必要がある。   Generally, in a circuit having a power receiving / transforming facility, an instrument transformer is used for protection and voltage measurement. In this case, for example, if a fault occurs inside an instrument transformer, it may lead to a short circuit or a ground fault, and as a result, the fault is removed even though the substation equipment is normal. During this time, there was a risk of causing a power outage of the circuit for a long time. In order to avoid such a power failure of the circuit, when an abnormality occurs in the instrument transformer, it is necessary to quickly identify the abnormality and remove the failure.

しかし、一般に計器用変圧器のコイルは、電力用変圧器のコイルに比べて細い巻線で構成されており、巻線抵抗が比較的大きい。そのため、例えば一次コイルに短絡が生じてその一次コイル内に循環電流が生じた場合、その一次コイルは、循環電流が生じてもすぐには焼損に至らず、数分から数十分をかけて徐々に焼損に至る。つまり、このような計器用変圧器の内部異常は、コイルが焼損するまで検知され難く、一次コイルが焼損に至り、回路が停電して初めて計器用変圧器の異常が検知されることが多いという事情があった。   However, in general, the coil of an instrument transformer is composed of a thinner winding than the coil of a power transformer, and the winding resistance is relatively large. Therefore, for example, when a short circuit occurs in the primary coil and a circulating current is generated in the primary coil, the primary coil does not burn immediately even if the circulating current occurs, and gradually takes several minutes to several tens of minutes. Leads to burnout. In other words, such an internal abnormality of an instrument transformer is hard to be detected until the coil is burned out, the primary coil is burned out, and the abnormality of the instrument transformer is often detected only after the circuit is interrupted. There was a situation.

特開平8−153639号公報Japanese Patent Laid-Open No. 8-1553639

そこで、計器用変圧器の内部の異常が生じたことを迅速かつ精度よく検出することのできる計器用変圧器の異常検出方法、および計器用変圧器の内部に異常が生じた場合に回路を適切に保護することのできる回路の保護方法を提供する。   Therefore, an abnormality detection method for an instrument transformer that can quickly and accurately detect the occurrence of an abnormality inside the instrument transformer, and an appropriate circuit when an abnormality occurs inside the instrument transformer. A circuit protection method that can be protected is provided.

本実施形態の計器用変圧器の異常検出方法は、一つの回路に対して少なくとも二つの計器用変圧器を接続し、前記各計器用変圧器の出力電圧を比較し、前記各計器用変圧器のうち一の計器用変圧器の出力電圧が変動したことに基づいて前記一の計器用変圧器の異常を検出する。
また、本実施形態の回路の保護方法は、一つの回路に対し、少なくとも二つの計器用変圧器と、前記計器用変圧器に対する電力供給を遮断する遮断器と、前記計器用変圧器の出力電圧に基づいて前記遮断器を操作する操作器と、を接続する。前記操作器は、前記計器用変圧器の異常を検出した場合に、前記遮断器を操作して、異常が検出された計器用変圧器に対する電力供給を遮断する。
According to the abnormality detection method for an instrument transformer of the present embodiment, at least two instrument transformers are connected to one circuit, output voltages of the instrument transformers are compared, and the instrument transformers are compared. The abnormality of the one instrument transformer is detected based on the fact that the output voltage of one of the instrument transformers varies.
The circuit protection method according to the present embodiment includes at least two instrument transformers, a circuit breaker that cuts off power supply to the instrument transformer, and an output voltage of the instrument transformer. And an operating device for operating the circuit breaker on the basis of. When the controller detects an abnormality in the instrument transformer, the controller operates the circuit breaker to interrupt power supply to the instrument transformer in which the abnormality is detected.

第一実施形態による回路に対する計器用変圧器の接続態様を示す図The figure which shows the connection aspect of the instrument transformer with respect to the circuit by 1st embodiment 第二実施形態による図1相当図FIG. 1 equivalent diagram according to the second embodiment 第三実施形態による図1相当図FIG. 1 equivalent diagram according to the third embodiment 第四実施形態による図1相当図FIG. 1 equivalent diagram according to the fourth embodiment 第五実施形態による図1相当図FIG. 1 equivalent diagram according to the fifth embodiment 第六実施形態による図1相当図FIG. 1 equivalent diagram according to the sixth embodiment 第七実施形態による図1相当図FIG. 1 equivalent diagram according to the seventh embodiment 一般的な計器用変圧器の一次コイルの巻線の概念を示すものであり、(a)は正常な状態を示す図、(b)は端部間が短絡した状態を示す図It shows the concept of the winding of the primary coil of a general instrument transformer, (a) is a diagram showing a normal state, (b) is a diagram showing a state in which the ends are short-circuited

以下、複数の実施形態について図面を参照して説明する。なお、各実施形態において実質的に同一の構成部位には同一の符号を付し、説明を省略する。   Hereinafter, a plurality of embodiments will be described with reference to the drawings. In addition, in each embodiment, the same code | symbol is attached | subjected to the substantially same component, and description is abbreviate | omitted.

(第一実施形態)
まず、図8を参照して、計器用変圧器の内部に生じる異常について説明する。計器用変圧器は、鉄心に対して巻き数の異なる一次コイルおよび二次コイルを巻回して構成されている。この一次コイルは、一次コイルに入力される高電圧を所定の変圧比で精度よく降圧して二次コイルに出力するため、細い巻線によって二次コイルよりも多くの巻き数に設定されている。図8に一般的な一次コイル1の巻線態様を示すが、一次コイル1は、図8(a)の実線矢印Cで示すように、一次巻線2を鉄心3の外周に沿って巻いたものを、鉄心3の所定範囲内において折り返しながら、内周側から外周側へ向かって複数層この場合N層重ねて構成されている。
(First embodiment)
First, with reference to FIG. 8, the abnormality which arises inside an instrument transformer is demonstrated. An instrument transformer is configured by winding a primary coil and a secondary coil having different numbers of turns around an iron core. This primary coil is set to a higher number of turns than the secondary coil by a thin winding in order to accurately step down the high voltage input to the primary coil with a predetermined transformation ratio and output it to the secondary coil. . FIG. 8 shows a winding form of a general primary coil 1. The primary coil 1 is formed by winding the primary winding 2 along the outer periphery of the iron core 3 as indicated by a solid arrow C in FIG. A plurality of layers, that is, N layers in this case are overlapped from the inner peripheral side to the outer peripheral side while folding back within a predetermined range of the iron core 3.

計器用変圧器の内部に生じる異常としては、一次コイル1に生じる絶縁破壊がある。この場合、絶縁破壊は、隣接する二層においてその折返し部分を中心とした両端部、すなわち二層間における巻始めと巻終わり部分で生じ易い。例えば、図8(a)において、(N−1)層と(N)層との間にあっては、(N−1)層の巻始めとなる端部Aと、(N)層の巻終わりとなる端部Bとの間で絶縁破壊が生じ易い。これは、(N−1)層と(N)層との間では、両端部となる端部Aと端部Bとの間の電位差が最も大きくなるからである。   As an abnormality that occurs inside the instrument transformer, there is a dielectric breakdown that occurs in the primary coil 1. In this case, dielectric breakdown is likely to occur at both ends of the adjacent two layers centering on the folded portion, that is, at the beginning and end of winding between the two layers. For example, in FIG. 8A, between the (N-1) layer and the (N) layer, an end A that is the winding start of the (N-1) layer, and the winding end of the (N) layer, It is easy for dielectric breakdown to occur between the end B. This is because, between the (N-1) layer and the (N) layer, the potential difference between the end A and the end B, which are both ends, is the largest.

そして一次巻線2は細線で構成されて比較的抵抗が大きいことから、端部Aと端部Bとの間が短絡すると、一次コイル1を流れる電流は、図8(b)に示すように、(N−1)層および(N)層において両端部A、B間を流れて、太破線Dで示す巻線に循環電流が生じる。この場合、一次コイル1の実質的な層数は、短絡した層数この場合2層分減少したと見なすことができる。つまり、一次コイル1に絶縁破壊が生じていない正常な場合の出力電圧をV0とすると、(N−1)層の端部Aと(N)層の端部Bが短絡した場合の出力電圧V1は、次の(1)式で表わされる。
V1=V0×N/(N−2) …(1)
Since the primary winding 2 is composed of a thin wire and has a relatively large resistance, when the end A and the end B are short-circuited, the current flowing through the primary coil 1 is as shown in FIG. , (N-1) layer and (N) layer flow between both end portions A and B, and a circulating current is generated in the winding indicated by a thick broken line D. In this case, it can be considered that the substantial number of layers of the primary coil 1 is reduced by the number of short-circuited layers, in this case, two layers. That is, when the output voltage in a normal case where no breakdown occurs in the primary coil 1 is V0, the output voltage V1 when the end A of the (N-1) layer and the end B of the (N) layer are short-circuited. Is represented by the following equation (1).
V1 = V0 × N / (N−2) (1)

さて、図1に示すように、第一実施形態の回路10は、図示しない単相交流の電源に接続された配電線11、12に、受変電設備などの負荷13を接続して構成されている。また、この一つの回路10に対して、二つの計器用変圧器すなわち第一計器用変圧器14および第二計器用変圧器15が接続されている。計器用変圧器14、15は、同一構成であり、図8に示すような一般的な計器用変圧器で構成されている。この計器用変圧器14、15は、それぞれ一次コイル141、151側すなわち入力側が、配電線11、12に接続されている。また、二次コイル142、152すなわち出力側は、図示しない電圧計測器などに接続される。ここで、一次コイル141、151の両端に入力される電圧を入力電圧とし、二次コイル142、152の両端に生じる電圧を出力電圧とする。   As shown in FIG. 1, the circuit 10 of the first embodiment is configured by connecting a load 13 such as a power receiving / transforming facility to distribution lines 11 and 12 connected to a single-phase AC power source (not shown). Yes. In addition, two instrument transformers, that is, a first instrument transformer 14 and a second instrument transformer 15 are connected to the one circuit 10. The instrument transformers 14 and 15 have the same configuration, and are configured by a general instrument transformer as shown in FIG. The instrument transformers 14 and 15 are respectively connected to the distribution lines 11 and 12 on the primary coils 141 and 151 side, that is, the input side. The secondary coils 142 and 152, that is, the output side, are connected to a voltage measuring instrument (not shown). Here, a voltage input to both ends of the primary coils 141 and 151 is set as an input voltage, and a voltage generated at both ends of the secondary coils 142 and 152 is set as an output voltage.

この構成において、計器用変圧器14、15の内部の異常つまり一次コイル141、151の短絡による異常は、第一計器用変圧器14の出力電圧と第二計器用変圧器15の出力電圧とを比較して、いずれか一方の出力電圧が変動したことに基づいて検出される。すなわち、第一計器用変圧器14および第二計器用変圧器15の両方ともが正常に動作していれば、第一計器用変圧器14の出力電圧および第二計器用変圧器15の出力電圧はほぼ同じ値になる。したがって、第一計器用変圧器14の出力電圧および第二計器用変圧器15の出力電圧はほぼ同じ値を示していれば、第一計器用変圧器14および第二計器用変圧器15は正常に動作していると判断できる。   In this configuration, an abnormality inside the instrument transformers 14 and 15, that is, an abnormality caused by a short circuit of the primary coils 141 and 151, causes the output voltage of the first instrument transformer 14 and the output voltage of the second instrument transformer 15 to be In comparison, it is detected based on a change in either output voltage. That is, if both the first instrument transformer 14 and the second instrument transformer 15 are operating normally, the output voltage of the first instrument transformer 14 and the output voltage of the second instrument transformer 15 Are almost the same value. Therefore, if the output voltage of the first instrument transformer 14 and the output voltage of the second instrument transformer 15 show substantially the same value, the first instrument transformer 14 and the second instrument transformer 15 are normal. It can be determined that it is operating.

例えば、計器用変圧器14、15の出力電圧はともに変動したが、両者はほぼ同じ値を示している場合、計器用変圧器14、15は、ともに正常に動作していると判断できる。そのため、出力電圧の変動は、回路10の電圧の変動に起因しているものであると判断できる。このように、計器用変圧器14、15の出力電圧を監視することによって、回路10に異常が生じたことを検出することができる。この場合、回路10に生じた異常を修理などにより取り除くことで、回路10を適切に保護することができる。   For example, if the output voltages of the instrument transformers 14 and 15 both fluctuate, but both show substantially the same value, it can be determined that both the instrument transformers 14 and 15 are operating normally. Therefore, it can be determined that the fluctuation in the output voltage is caused by the fluctuation in the voltage of the circuit 10. Thus, by monitoring the output voltages of the instrument transformers 14 and 15, it is possible to detect that an abnormality has occurred in the circuit 10. In this case, the circuit 10 can be appropriately protected by removing the abnormality that has occurred in the circuit 10 by repair or the like.

これに対し、計器用変圧器14、15のいずれか一方の出力電圧のみが変動した場合、計器用変圧器14、15のうち少なくとも一方が正常に動作していないと判断できる。この場合、異常の原因が一次コイル141または一次コイル151の短絡によるものであれば、内部異常が生じた計器用変圧器の出力電圧のみが(1)式に準じた傾向で上昇する。そのため、計器用変圧器14、15のうち、出力電圧が上昇した側の計器用変圧器に内部異常が生じたと特定することができる。このように、計器用変圧器14、15の出力電圧を比較することで、その差が所定以上の大きさになった場合に、出力電圧が上昇した方の計器用変圧器に内部異常が生じていると判断することができる。   On the other hand, when only one of the output voltages of the instrument transformers 14 and 15 changes, it can be determined that at least one of the instrument transformers 14 and 15 is not operating normally. In this case, if the cause of the abnormality is due to a short circuit of the primary coil 141 or the primary coil 151, only the output voltage of the instrument transformer in which the internal abnormality has occurred increases with a tendency according to the equation (1). Therefore, it is possible to specify that an internal abnormality has occurred in the instrument transformer on the side where the output voltage has increased among the instrument transformers 14 and 15. In this way, by comparing the output voltages of the instrument transformers 14 and 15, when the difference becomes larger than a predetermined value, an internal abnormality occurs in the instrument transformer whose output voltage has increased. Can be determined.

これによれば、計器用変圧器14、15のいずれか一方に、一次コイル141、151の短絡などによる内部異常が生じたことを、迅速かつ精度よく検出することができる。また、異常が生じた計器用変圧器を迅速に特定することができるため、いち早く障害を取り除くことが可能となり、その結果、計器用変圧器14、15の一方に内部異常が生じた場合であっても回路10を適切に保護することができる。
なお、計器用変圧器を三つ以上設ける構成でもよく、この場合、計器用変圧器の出力電圧をそれぞれ比較することで、各計器用変圧器の内部異常を検出することができる。
According to this, it is possible to quickly and accurately detect that an internal abnormality has occurred in one of the instrument transformers 14 and 15 due to a short circuit of the primary coils 141 and 151. In addition, since it is possible to quickly identify the faulty instrument transformer, it is possible to quickly remove the fault. As a result, when one of the instrument transformers 14 and 15 has an internal fault. However, the circuit 10 can be appropriately protected.
In addition, the structure which provides three or more instrument transformers may be sufficient, In this case, the internal abnormality of each instrument transformer can be detected by comparing the output voltage of each instrument transformer.

(第二実施形態)
次に、第二実施形態について、図2を参照して説明する。
この第二実施形態では、第一実形態の構成に加えて、第一計器用変圧器14および第二計器用変圧器15が、互いの出力電圧が打ち消し合うように直列に接続されている。すなわち、計器用変圧器14、15の二次コイル142、152において、互いの高電位側は接続線16によって接続されている。一方、二次コイル142の低電位側には引出線17が接続され、二次コイル152の低電位側には引出線18が接続されている。
このように、第一計器用変圧器14の二次コイル142および第二計器用変圧器15の二次コイル152は反平行に接続されている。そして、直列に接続した二次コイル142、152の両端、すなわち引出線17、18間の電位差を測定し、この電位差が変動したこと、つまり電位差が所定以上の大きさになったことに基づいて、計器用変圧器14、15の内部異常を検出する。
(Second embodiment)
Next, a second embodiment will be described with reference to FIG.
In the second embodiment, in addition to the configuration of the first embodiment, the first instrument transformer 14 and the second instrument transformer 15 are connected in series so that their output voltages cancel each other. That is, the high potential sides of the secondary coils 142 and 152 of the instrument transformers 14 and 15 are connected by the connection line 16. On the other hand, the lead wire 17 is connected to the low potential side of the secondary coil 142, and the lead wire 18 is connected to the low potential side of the secondary coil 152.
Thus, the secondary coil 142 of the first instrument transformer 14 and the secondary coil 152 of the second instrument transformer 15 are connected in antiparallel. Then, the potential difference between both ends of the secondary coils 142 and 152 connected in series, that is, between the lead wires 17 and 18 is measured. Based on the fact that the potential difference fluctuates, that is, the potential difference becomes larger than a predetermined value. The internal abnormality of the instrument transformers 14 and 15 is detected.

この第二実施形態によれば、第一実施形態と同様の効果を得ることができる。さらに、計器用変圧器14、15のいずれか一方の内部異常が、引出線17、18間の電位差となって現れる。そのため、引出線17、18間の電位差を監視することで計器用変圧器14、15の内部異常を検出できることから、簡易な構成とすることができる。
利便性が向上する。
According to the second embodiment, the same effect as that of the first embodiment can be obtained. Furthermore, an internal abnormality in one of the instrument transformers 14 and 15 appears as a potential difference between the lead wires 17 and 18. Therefore, since the internal abnormality of the instrument transformers 14 and 15 can be detected by monitoring the potential difference between the lead wires 17 and 18, the configuration can be simplified.
Convenience is improved.

(第三実施形態)
次に、第三実施形態について、図3を参照して説明する。
この第三実施形態では、図1に示す第一実施形態の構成に加え、回路10に単相回路遮断器19および操作器20が接続されている。単相回路遮断器19は、計器用変圧器14、15に対して図示しない高圧電源側つまり負荷13とは反対側に設けられており、回路10を遮断して計器用変圧器14、15に対する電力供給を遮断する。操作器20は、計器用変圧器14、15の各出力電圧が入力されるとともに、この出力電圧に基づいて単相回路遮断器19を操作する。すなわち、操作器20は、各接続線21によって各二次コイル142、152に接続されて、計器用変圧器14、15の出力電圧が入力される。そして、操作器20は、第一実施形態に示す方法によって、計器用変圧器14、15の内部異常を検出し、その検出結果に基づいて単相回路遮断器19を操作する。
(Third embodiment)
Next, a third embodiment will be described with reference to FIG.
In the third embodiment, a single-phase circuit breaker 19 and an operating device 20 are connected to the circuit 10 in addition to the configuration of the first embodiment shown in FIG. The single-phase circuit breaker 19 is provided on the high-voltage power supply side (not shown), that is, on the opposite side of the load 13 with respect to the instrument transformers 14 and 15, and interrupts the circuit 10 to the instrument transformers 14 and 15. Shut off the power supply. The operating device 20 receives the output voltages of the instrument transformers 14 and 15 and operates the single-phase circuit breaker 19 based on the output voltages. That is, the operating device 20 is connected to the secondary coils 142 and 152 by the connection lines 21 and the output voltages of the instrument transformers 14 and 15 are input. And the operating device 20 detects the internal abnormality of the instrument transformers 14 and 15 by the method shown in 1st embodiment, and operates the single phase circuit breaker 19 based on the detection result.

この場合、操作器20は、計器用変圧器14、15のいずれか一方の内部異常を検出、つまり、計器用変圧器14、15のいずれか一方に内部異常が生じて出力電圧に差が生じたことを検出すると、単相回路遮断器19を操作すなわちトリップさせる。これにより、回路10を遮断して、計器用変圧器14、15に対する電力供給を遮断する。   In this case, the controller 20 detects an internal abnormality in one of the instrument transformers 14 and 15, that is, an internal abnormality occurs in one of the instrument transformers 14 and 15, resulting in a difference in output voltage. When this is detected, the single-phase circuit breaker 19 is operated or tripped. Thereby, the circuit 10 is interrupted and the power supply to the instrument transformers 14 and 15 is interrupted.

この第三実施形態によれば、計器用変圧器14、15のいずれか一方に内部異常が生じた場合に、その異常を操作器20が検出し、単相回路遮断器19をトリップさせて回路10を遮断することで、計器用変圧器14、15に対する電力供給を遮断することができる。この場合、回路10が遮断されて計器用変圧器14、15に対する電力供給が遮断されるため、一次コイル141、151が循環電流によって焼損に至ることを回避することができる。これにより、計器用変圧器14、15の内部異常による影響の波及を抑制し、回路10を迅速かつ適切に保護することができる。   According to the third embodiment, when an internal abnormality occurs in either one of the instrument transformers 14 and 15, the operation device 20 detects the abnormality and trips the single-phase circuit breaker 19 to cause a circuit. By shutting off 10, power supply to the instrument transformers 14 and 15 can be shut off. In this case, since the circuit 10 is interrupted and the power supply to the instrument transformers 14 and 15 is interrupted, the primary coils 141 and 151 can be prevented from being burned out by the circulating current. Thereby, the influence of the internal abnormality of the instrument transformers 14 and 15 can be suppressed, and the circuit 10 can be protected quickly and appropriately.

なお、この場合、図2に示す第二実施形態のように、二次コイル142、152を反平行に接続し、その両端に生じる二次コイル142、152の差電圧を操作器20に直接入力する構成、つまり引出線17、18を操作器20に接続する構成でもよい。この場合、二次コイル142、152の差電圧は、既に比較された状態で引出線17、18から出力されるため、操作器20は、引出線17、18間の電位差を監視するだけでよく、その結果、操作器20を簡易な構成とすることができる。   In this case, as in the second embodiment shown in FIG. 2, the secondary coils 142 and 152 are connected in antiparallel, and the voltage difference between the secondary coils 142 and 152 generated at both ends thereof is directly input to the controller 20. The structure which connects, ie, the leader lines 17 and 18 to the operation device 20 may be sufficient. In this case, since the differential voltage of the secondary coils 142 and 152 is output from the leader lines 17 and 18 in a state of comparison, the controller 20 only needs to monitor the potential difference between the leader lines 17 and 18. As a result, the operation device 20 can have a simple configuration.

(第四実施形態)
次に、第四実施形態について、図4を参照して説明する。
この第四実施形態では、図3に示す第三実施形態の単相回路遮断器19に代えて、互いに同一構成の第一遮断器22および第二遮断器23が回路10に接続されている。この場合、第一遮断器22は、回路10の配電線11、12と、第一計器用変圧器14の一次コイル141との間に接続されている。また、第二遮断器23は、回路10の配電線11、12と、第二計器用変圧器15の一次コイル151との間に接続されている。
(Fourth embodiment)
Next, a fourth embodiment will be described with reference to FIG.
In the fourth embodiment, a first circuit breaker 22 and a second circuit breaker 23 having the same configuration are connected to the circuit 10 instead of the single-phase circuit breaker 19 of the third embodiment shown in FIG. In this case, the first circuit breaker 22 is connected between the distribution lines 11 and 12 of the circuit 10 and the primary coil 141 of the first instrument transformer 14. The second circuit breaker 23 is connected between the distribution lines 11 and 12 of the circuit 10 and the primary coil 151 of the second instrument transformer 15.

この構成において、操作器20は、計器用変圧器14、15のうち、いずれか一方の内部異常を検出した場合に、遮断器22または遮断器23をトリップさせて、異常が生じた方の計器用変圧器を回路10から切り離す。つまり、例えば第一計器用変圧器14に内部異常が生じた場合、第一計器用変圧器14の出力電圧のみが上昇する。操作器20は、この出力電圧の変動に基づいて第一計器用変圧器14に内部異常が生じたことを検出し、第一遮断器22をトリップさせる。すると、回路10と第一計器用変圧器14との間が遮断されて、第一計器用変圧器14が回路10から切り離される。これにより、内部異常が生じた第一計器用変圧器14に対する電力供給が遮断される。このとき、第二遮断器23はトリップされないため、第二計器用変圧器15は、回路10から切り離されずに電力供給が継続される。   In this configuration, when the controller 20 detects an internal abnormality of either one of the instrument transformers 14 and 15, the controller 20 trips the circuit breaker 22 or the circuit breaker 23 so that the abnormality occurs. Disconnect the transformer from the circuit 10. That is, for example, when an internal abnormality occurs in the first instrument transformer 14, only the output voltage of the first instrument transformer 14 increases. The controller 20 detects that an internal abnormality has occurred in the first instrument transformer 14 based on the fluctuation of the output voltage, and trips the first circuit breaker 22. Then, the circuit 10 and the first instrument transformer 14 are disconnected, and the first instrument transformer 14 is disconnected from the circuit 10. Thereby, the power supply to the first instrument transformer 14 in which the internal abnormality has occurred is cut off. At this time, since the second circuit breaker 23 is not tripped, the power supply of the second instrument transformer 15 is continued without being disconnected from the circuit 10.

この第四実施形態によれば、計器用変圧器14、15のいずれか一方に内部異常が生じた場合に、その異常を操作器20が検出し、異常が生じた計器用変圧器を遮断器22、23によって回路10から切り離すことができる。この場合、計器用変圧器14、15のうち、内部異常が生じた計器用変圧器に対する電力供給のみが遮断されるため、一次コイル141、151のうち短絡した一次コイルが循環電流によって焼損に至ることを適切に回避することができる。これにより、計器用変圧器14、15の内部異常による影響の波及を抑制し、回路10を迅速かつ適切に保護することができる。   According to the fourth embodiment, when an internal abnormality occurs in one of the instrument transformers 14 and 15, the controller 20 detects the abnormality, and the malfunctioning instrument transformer is disconnected. 22 and 23 can be separated from the circuit 10. In this case, since only the power supply to the instrument transformer in which the internal abnormality has occurred is interrupted among the instrument transformers 14 and 15, the shorted primary coil of the primary coils 141 and 151 is burned by the circulating current. This can be avoided appropriately. Thereby, the influence of the internal abnormality of the instrument transformers 14 and 15 can be suppressed, and the circuit 10 can be protected quickly and appropriately.

さらに、この場合、計器用変圧器14、15のうち、異常が生じた一方の計器用変圧器が回路10から切り離されても、異常が生じていない他方の計器用変圧器は回路10と接続されている。そのため、異常が生じていない他方の計器用変圧器を用いることで、障害を取り除くまでの間であっても、回路10を停止させることなく継続して運転することができる。   Furthermore, in this case, even if one of the instrument transformers 14 and 15 in which an abnormality has occurred is disconnected from the circuit 10, the other instrument transformer in which no abnormality has occurred is connected to the circuit 10. Has been. Therefore, by using the other instrument transformer in which no abnormality has occurred, the circuit 10 can be continuously operated without stopping even if the failure is removed.

(第五実施形態)
次に、第五実施形態について、図5を参照して説明する。
この第五実施形態において、回路30は、図示しない三相交流の高圧電源に接続されたU、V、W相の配電線31、32、33に、受変電設備などの負荷34を接続して構成されている。また、この一つの回路30に対して三つの計器用変圧器、すなわち第三計器用変圧器35、第四計器用変圧器36、および第五計器用変圧器37が接続されている。これら各計器用変圧器35、36、37は、互いに同一構成であり、三相の回路30の各相間に接続されている。
(Fifth embodiment)
Next, a fifth embodiment will be described with reference to FIG.
In the fifth embodiment, the circuit 30 is configured by connecting a load 34 such as a power receiving / transforming facility to U, V, and W phase distribution lines 31, 32, and 33 connected to a three-phase AC high-voltage power supply (not shown). It is configured. Further, three instrument transformers, that is, a third instrument transformer 35, a fourth instrument transformer 36, and a fifth instrument transformer 37 are connected to the one circuit 30. These instrument transformers 35, 36, and 37 have the same configuration and are connected between the phases of the three-phase circuit 30.

具体的には、第三計器用変圧器35は、一次コイル351すなわち入力側が、U相の配電線31およびV相の配電線32に接続されている。このため、第三計器用変圧器35の二次コイル352すなわち出力u1、v1には、U相とV相との相間電圧が降圧されて出力される。また、第四計器用変圧器36は、一次コイル361が、V相の配電線32およびW相の配電線33に接続されている。このため、第四計器用変圧器36の二次コイル362すなわち出力v2、w2には、V相とW相との相間電圧が降圧されて出力される。さらに、第五計器用変圧器37は、一次コイル371が、W相の配電線33およびV相の配電線31に接続されている。このため、第五計器用変圧器37の二次コイル372すなわち出力w3、u3には、W相とV相との相間電圧が降圧されて出力される。   Specifically, a primary coil 351, that is, an input side of the third instrument transformer 35 is connected to the U-phase distribution line 31 and the V-phase distribution line 32. Therefore, the interphase voltage between the U phase and the V phase is stepped down and output to the secondary coil 352 of the third instrument transformer 35, that is, the outputs u1 and v1. In the fourth instrument transformer 36, the primary coil 361 is connected to the V-phase distribution line 32 and the W-phase distribution line 33. Therefore, the interphase voltage between the V phase and the W phase is stepped down and output to the secondary coil 362 of the fourth instrument transformer 36, that is, the outputs v2 and w2. Further, in the fifth instrument transformer 37, the primary coil 371 is connected to the W-phase distribution line 33 and the V-phase distribution line 31. Therefore, the interphase voltage between the W phase and the V phase is stepped down and output to the secondary coil 372 of the fifth instrument transformer 37, that is, the outputs w3 and u3.

ここで、三つ計器用変圧器35、36、37のいずれもが正常に動作していれば、計器用変圧器35、36、37の出力電圧を位相差も含めて合成すると、その結果はほぼ0の値を示す。したがって、三つの計器用変圧器35、36、37の各出力電圧を位相差も含めて合成した場合に、その結果がほぼ0の値を示していれば、これら計器用変圧器35、36、37は、いずれも正常に動作していると判断できる。   Here, if all of the three-instrument transformers 35, 36, and 37 are operating normally, and the output voltages of the instrument transformers 35, 36, and 37 including the phase difference are combined, the result is A value of almost zero is shown. Therefore, when the output voltages of the three instrument transformers 35, 36, and 37 are combined including the phase difference, if the result shows a value of almost zero, these instrument transformers 35, 36, 37 can be determined to be operating normally.

例えば、計器用変圧器35、36、37の出力電圧はそれぞれ変動したが、各出力電圧の位相差を含めた合成の結果がほぼ0の値を示している場合、これら計器用変圧器35、36、37は正常に動作していると判断できる。そのため、出力電圧の変動は、回路30の電圧の変動に起因しているものであると判断できる。この場合、回路30に異常が生じていると判断できることから、その異常を修理などにより取り除くことで、回路30を適切に保護することができる。   For example, when the output voltages of the instrument transformers 35, 36, and 37 fluctuate, but the result of the synthesis including the phase difference of each output voltage shows a value of almost zero, the instrument transformers 35, It can be determined that 36 and 37 are operating normally. Therefore, it can be determined that the variation in the output voltage is caused by the variation in the voltage of the circuit 30. In this case, since it can be determined that an abnormality has occurred in the circuit 30, the circuit 30 can be appropriately protected by removing the abnormality by repair or the like.

これに対し、計器用変圧器35、36、37の各出力電圧の合成結果が0ではない値を示した場合、計器用変圧器35、36、37のうち少なくとも一つが正常に動作していないと判断できる。この場合、異常の原因が一次コイル351、361、371のいずれかの短絡によるものであれば、計器用変圧器35、36、37のうち、内部異常が生じた計器用変圧器の出力電圧のみが(1)式に従って上昇する。   On the other hand, when the combined result of the output voltages of the instrument transformers 35, 36, and 37 indicates a non-zero value, at least one of the instrument transformers 35, 36, and 37 is not operating normally. It can be judged. In this case, if the cause of the abnormality is due to a short circuit of one of the primary coils 351, 361, 371, only the output voltage of the instrument transformer in which the internal abnormality has occurred among the instrument transformers 35, 36, 37. Rises according to equation (1).

ここで、計器用変圧器35、36、37が正常に動作していれば、これらの出力電圧の合成結果は0であることから、任意の二つ例えば計器用変圧器35、36の出力電圧から求めた残り一つの計器用変圧器37の出力電圧と、この残り一つの計器用変圧器37の実際の出力電圧とは、ほぼ同じ値を示す。しかし、例えば計器用変圧器37に内部異常が生じてその出力電圧が上昇した場合、計器用変圧器37の実際の出力電圧は、計器用変圧器35、36の出力電圧から求めた計器用変圧器37の出力電圧よりも大きい値を示す。   Here, if the instrument transformers 35, 36, and 37 are operating normally, the combined result of these output voltages is 0, so that the output voltage of any two, for example, the instrument transformers 35, 36, can be obtained. The output voltage of the remaining one instrument transformer 37 obtained from the above and the actual output voltage of the remaining one instrument transformer 37 show substantially the same value. However, for example, when an internal abnormality occurs in the instrument transformer 37 and its output voltage rises, the actual output voltage of the instrument transformer 37 is determined from the output voltage of the instrument transformers 35 and 36. The value is larger than the output voltage of the device 37.

つまり、一の計器用変圧器37の実際の出力電圧が、他の二つの計器用変圧器35、36の出力電圧から算出した一の計器用変圧器37の出力電圧よりも大きい値を示している場合、その一の計器用変圧器37には内部異常が生じていると判断することができる。このように、三相の各相間に接続された三つの計器用変圧器35、36、37のうち、二つの計器用変圧器の出力電圧から求まる残り一つの計器用変圧器に対して、この残り一つの計器用変圧器の実際の出力電圧が大きくなったことに基づいて、この残り一つの計器用変圧器に内部異常が生じたことを検出している。   That is, the actual output voltage of one instrument transformer 37 is larger than the output voltage of one instrument transformer 37 calculated from the output voltages of the other two instrument transformers 35 and 36. If it is, it can be determined that an internal abnormality has occurred in the one instrument transformer 37. Thus, among the three instrument transformers 35, 36, and 37 connected between the three phases, the remaining one of the instrument transformers obtained from the output voltage of the two instrument transformers is used. Based on the fact that the actual output voltage of the remaining one instrument transformer has increased, it is detected that an internal abnormality has occurred in the remaining one instrument transformer.

この第五実施形態によれば、三相の回路30に接続された計器用変圧器35、36、37のいずれか一つに内部異常が生じたことを、迅速かつ精度よく検出することができる。また、異常が生じた計器用変圧器を迅速に特定することができるため、いち早く障害を取り除くことが可能となり、その結果、計器用変圧器35、36、36のいずれか一つに内部異常が生じた場合であっても回路30を適切に保護することができる。
なお、計器用変圧器を四つ以上設ける構成であってもよい。この場合、同相に接続された二つの計器用変圧器の出力電圧を互いに比較することによって、この二つ計器用変圧器のうちのどちらか一方の内部異常を検出することもできる。
According to the fifth embodiment, it is possible to quickly and accurately detect that an internal abnormality has occurred in any one of the instrument transformers 35, 36, and 37 connected to the three-phase circuit 30. . In addition, since the faulty instrument transformer can be quickly identified, it is possible to quickly remove the fault. As a result, any one of the instrument transformers 35, 36, 36 has an internal fault. Even if it occurs, the circuit 30 can be appropriately protected.
In addition, the structure which provides four or more transformers for instruments may be sufficient. In this case, by comparing the output voltages of the two instrument transformers connected in the same phase with each other, it is possible to detect an internal abnormality of either one of the two instrument transformers.

(第六実施形態)
次に、第六実施形態について、図6を参照して説明する。
この第六実施形態では、第五実施形態の構成に加え、回路30に三相回路遮断器38および操作器39が接続されている。三相回路遮断器38は、計器用変圧器35、36、37に対して図示しない高圧電源側つまり負荷34とは反対側に設けられており、回路30を遮断して計器用変圧器35、36、37に対する電力供給を遮断する。操作器39は、計器用変圧器35、36、37の各出力電圧が入力されるとともに、この出力電圧に基づいて三相回路遮断器38を操作する。すなわち、操作器39は、各接続線40によって、各二次コイル352、362、372に接続されて、計器用変圧器35、36、37の出力電圧が入力される。そして、操作器39は、上記第五実施形態に示す方法によって、計器用変圧器35、36、37の内部異常を検出し、その検出結果に基づいて三相回路遮断器38を操作する。
(Sixth embodiment)
Next, a sixth embodiment will be described with reference to FIG.
In the sixth embodiment, a three-phase circuit breaker 38 and an operating device 39 are connected to the circuit 30 in addition to the configuration of the fifth embodiment. The three-phase circuit breaker 38 is provided on the high voltage power source side (not shown), that is, on the side opposite to the load 34 with respect to the instrument transformers 35, 36, and 37. The power supply to 36 and 37 is cut off. The operating device 39 receives the output voltages of the instrument transformers 35, 36, and 37, and operates the three-phase circuit breaker 38 based on the output voltages. That is, the operating device 39 is connected to each secondary coil 352, 362, 372 by each connection line 40, and the output voltage of the instrument transformers 35, 36, 37 is input. And the operating device 39 detects the internal abnormality of the instrument transformers 35, 36, and 37 by the method shown in the fifth embodiment, and operates the three-phase circuit breaker 38 based on the detection result.

この構成において、操作器39は、計器用変圧器35、36、37のいずれか一つの内部異常を検出した場合、つまり、計器用変圧器35、36、37のいずれか一つに内部異常が生じた場合に、三相回路遮断器38をトリップさせて回路30を遮断することで、計器用変圧器35、36、37に対する電力供給を遮断する。   In this configuration, the controller 39 detects an internal abnormality in any one of the instrument transformers 35, 36, 37, that is, an internal abnormality has occurred in any one of the instrument transformers 35, 36, 37. When it occurs, the three-phase circuit breaker 38 is tripped and the circuit 30 is cut off to cut off the power supply to the instrument transformers 35, 36, and 37.

この第六実施形態によれば、三相の回路30において、計器用変圧器35、36、37のいずれか一つに内部異常が生じた場合に、その異常を操作器39が検出し、三相回路遮断器38をトリップさせて回路30を遮断することで、計器用変圧器35、36、37に対する電力供給を遮断することができる。この場合、回路30が遮断されて計器用変圧器35、36、37に対する電力供給が遮断されるため、一次コイル351、361、371が循環電流によって焼損に至ることを回避することができる。これにより、計器用変圧器35、36、37の内部異常による影響の波及を抑制し、回路30を迅速かつ適切に保護することができる。   According to the sixth embodiment, when an internal abnormality occurs in any one of the instrument transformers 35, 36, and 37 in the three-phase circuit 30, the operation device 39 detects the abnormality, By tripping the phase circuit breaker 38 and cutting off the circuit 30, the power supply to the instrument transformers 35, 36, and 37 can be cut off. In this case, since the circuit 30 is interrupted and the power supply to the instrument transformers 35, 36, and 37 is interrupted, it is possible to avoid the primary coils 351, 361, and 371 from being burned by the circulating current. Thereby, the influence of the internal abnormality of the instrument transformers 35, 36, and 37 can be suppressed, and the circuit 30 can be protected quickly and appropriately.

(第七実施形態)
次に、第七実施形態について、図7を参照して説明する。
この第七実施形態では、図6に示す第三実施形態の三相回路遮断器38に代えて、互いに同一構成の第三遮断器41、第四遮断器42、および第五遮断器43が回路30に接続されている。この場合、第三遮断器41は、回路30の配電線31、32と、第三計器用変圧器35の一次コイル351との間に接続されている。また、第四遮断器42は、回路30の配電線32、33と、第四計器用変圧器36の一次コイル361との間に接続されている。そして、第五遮断器43は、回路30の配電線33、31と、第五計器用変圧器37の一次コイル371との間に接続されている。
(Seventh embodiment)
Next, a seventh embodiment will be described with reference to FIG.
In the seventh embodiment, instead of the three-phase circuit breaker 38 of the third embodiment shown in FIG. 6, a third breaker 41, a fourth breaker 42, and a fifth breaker 43 having the same configuration are arranged in a circuit. 30. In this case, the third circuit breaker 41 is connected between the distribution lines 31 and 32 of the circuit 30 and the primary coil 351 of the third instrument transformer 35. The fourth circuit breaker 42 is connected between the distribution lines 32 and 33 of the circuit 30 and the primary coil 361 of the fourth instrument transformer 36. The fifth circuit breaker 43 is connected between the distribution lines 33 and 31 of the circuit 30 and the primary coil 371 of the fifth instrument transformer 37.

この構成において、操作器39は、計器用変圧器35、36、37のいずれか一つに内部異常を検出した場合に、遮断器41、42、43のいずれかをトリップさせて、異常が生じた計器用変圧器を回路30から切り離す。つまり、操作器39は、例えば第五計器用変圧器37に内部異常が生じたことを検出すると、第五遮断器43をトリップさせる。すると、回路30と第五計器用変圧器37との間が遮断されて、第五計器用変圧器37が回路30から切り離される。これにより、内部異常が生じた第五計器用変圧器37に対する電力供給が遮断される。このとき、第三遮断器41および第四遮断器42はトリップされないため、第三計器用変圧器35および第四計器用変圧器36は、回路30から切り離されずに電力供給が継続される。   In this configuration, when the controller 39 detects an internal abnormality in any one of the instrument transformers 35, 36, and 37, the controller 39 trips one of the circuit breakers 41, 42, and 43, and an abnormality occurs. Disconnect the instrument transformer from the circuit 30. That is, the operating device 39 trips the fifth circuit breaker 43 when detecting that an internal abnormality has occurred in the fifth instrument transformer 37, for example. Then, the circuit 30 and the fifth instrument transformer 37 are disconnected, and the fifth instrument transformer 37 is disconnected from the circuit 30. Thereby, the power supply to the fifth instrument transformer 37 in which the internal abnormality has occurred is cut off. At this time, since the third circuit breaker 41 and the fourth circuit breaker 42 are not tripped, the third instrument transformer 35 and the fourth instrument transformer 36 are not disconnected from the circuit 30 and the power supply is continued.

この第七実施形態によれば、三相の回路30において、計器用変圧器35、36、37のいずれか一つに内部異常が生じた場合に、その異常を操作器39が検出し、異常が生じた計器用変圧器を、遮断器41、42、43によって回路30から切り離すことができる。この場合、計器用変圧器35、36、37のうち、内部異常が生じた計器用変圧器に対する電力供給のみが遮断されるため、一次コイル351、361、371のうち短絡した一次コイルが循環電流によって焼損に至ることを適切に回避することができる。これにより、計器用変圧器35、36、37の内部異常による影響の波及を抑制し、回路30を迅速かつ適切に保護することができる。   According to the seventh embodiment, when an internal abnormality occurs in any one of the instrument transformers 35, 36, and 37 in the three-phase circuit 30, the controller 39 detects the abnormality, The instrumental transformer in which this occurs can be disconnected from the circuit 30 by the circuit breakers 41, 42, 43. In this case, only the power supply to the instrument transformer in which the internal abnormality has occurred is interrupted among the instrument transformers 35, 36, and 37, so that the shorted primary coil of the primary coils 351, 361, and 371 is the circulating current. Therefore, it is possible to appropriately avoid burning. Thereby, the influence of the internal abnormality of the instrument transformers 35, 36, and 37 can be suppressed, and the circuit 30 can be protected quickly and appropriately.

さらに、この場合、計器用変圧器35、36、37のうち、異常が生じた一つの計器用変圧器が回路30から切り離されても、異常が生じていない残り二つの計器用変圧器は回路30と接続されている。そのため、異常が生じていない残り二つの計器用変圧器を用いることで、障害を取り除くまでの間であっても、回路30を停止させることなく継続して運転することができる。   Further, in this case, even if one of the instrument transformers 35, 36, 37 is disconnected from the circuit 30, the remaining two instrument transformers having no abnormality are the circuits. 30. Therefore, by using the remaining two instrument transformers in which no abnormality has occurred, operation can be continued without stopping the circuit 30 even during the period until the failure is removed.

以上説明した実施形態における計器用変圧器の異常検出方法によれば、一つの回路に接続された少なくとも二つの計器用変圧器の出力電圧を比較することによって、計器用変圧器の内部異常を検出することができる。これにより、回路に接続された計器用変圧器に内部異常が生じたことを、迅速かつ精度よく検出することができる。さらに、異常が生じた計器用変圧器を迅速に特定することができるため、いち早く障害を取り除くことが可能となる。   According to the abnormality detection method for an instrument transformer in the embodiment described above, the internal abnormality of the instrument transformer is detected by comparing the output voltages of at least two instrument transformers connected to one circuit. can do. Thereby, it is possible to quickly and accurately detect that an internal abnormality has occurred in the instrument transformer connected to the circuit. Furthermore, since the instrument transformer in which an abnormality has occurred can be quickly identified, it is possible to quickly remove the failure.

また、以上説明した実施形態における回路の保護方法によれば、計器用変圧器に内部異常が生じた場合に、操作器および遮断器によって、異常が生じた計器用変圧器に対する電力供給が遮断される。これにより、計器用変圧器に内部異常が生じた場合に、その内部異常による影響の波及を抑制し、回路を迅速かつ適切に保護することができる。   Further, according to the circuit protection method in the embodiment described above, when an internal abnormality occurs in the instrument transformer, the power supply to the instrument transformer in which the abnormality has occurred is interrupted by the operation unit and the circuit breaker. The As a result, when an internal abnormality occurs in the instrument transformer, the influence of the internal abnormality can be suppressed and the circuit can be protected quickly and appropriately.

本発明のいくつかの実施形態を説明したが、これらの実施形態は、例として提示したものであり、発明の範囲を限定することは意図していない。これら新規な実施形態は、その他の様々な形態で実施されることが可能であり、発明の要旨を逸脱しない範囲で、種々の省略、置き換え、変更を行うことができる。これら実施形態やその変更は、発明の範囲や要旨に含まれるとともに、特許請求の範囲に記載された発明とその均等の範囲に含まれる。   Although several embodiments of the present invention have been described, these embodiments are presented by way of example and are not intended to limit the scope of the invention. These novel embodiments can be implemented in various other forms, and various omissions, replacements, and changes can be made without departing from the scope of the invention. These embodiments and modifications thereof are included in the scope and gist of the invention, and are included in the invention described in the claims and equivalents thereof.

図面中、10は回路、14は第一計器用変圧器(計器用変圧器)、15は第二計器用変圧器(計器用変圧器)、19は単相回路遮断器(遮断器)、20は操作器、22は第一遮断器(遮断器)、23は第二遮断器(遮断器)、30は回路、35は第三計器用変圧器(計器用変圧器)、36は第四計器用変圧器(計器用変圧器)、37は第五計器用変圧器(計器用変圧器)、38は三相回路遮断器(遮断器)、39は操作器、41は第三遮断器(遮断器)、42は第四遮断器(遮断器)、43は第五遮断器(遮断器)を示す。   In the drawing, 10 is a circuit, 14 is a first instrument transformer (instrument transformer), 15 is a second instrument transformer (instrument transformer), 19 is a single-phase circuit breaker (breaker), 20 Is an operating device, 22 is a first circuit breaker (breaker), 23 is a second circuit breaker (breaker), 30 is a circuit, 35 is a third instrument transformer (instrument transformer), and 36 is a fourth instrument. Transformer (instrument transformer), 37 is a fifth instrument transformer (instrument transformer), 38 is a three-phase circuit breaker (breaker), 39 is an operating device, 41 is a third breaker (breaker) ), 42 is a fourth circuit breaker (breaker), and 43 is a fifth circuit breaker (breaker).

Claims (6)

一つの回路に対して少なくとも二つの計器用変圧器を接続し、前記各計器用変圧器の出力電圧を比較し、前記各計器用変圧器のうち一の計器用変圧器の出力電圧が変動したことに基づいて前記一の計器用変圧器の異常を検出することを特徴とする計器用変圧器の異常検出方法。   At least two instrument transformers are connected to one circuit, the output voltages of the instrument transformers are compared, and the output voltage of one of the instrument transformers fluctuates. An abnormality detection method for an instrument transformer, comprising detecting an abnormality of the one instrument transformer based on the above. 二つの計器用変圧器をそれぞれ出力電圧が打ち消し合うように直列に接続し、前記直列に接続した両端の差電圧が変動したことに基づいて前記差電圧の高電圧側に接続された計器用変圧器の異常を検出することを特徴とする請求項1記載の計器用変圧器の異常検出方法。   Two instrument transformers are connected in series so that output voltages cancel each other, and the instrument transformer connected to the high voltage side of the difference voltage based on the difference in the difference voltage between the two ends connected in series. An abnormality detection method for an instrument transformer according to claim 1, wherein an abnormality of the instrument is detected. 前記回路は三相の回路であって、三つの計器用変圧器をそれぞれ三相の各相間に接続し、前記三つの計器用変圧器のうち二つの計器用変圧器の出力電圧から求まる残り一つの計器用変圧器の出力電圧に対して、当該残り一つの計器用変圧器の実際の出力電圧が大きくなったことに基づいて前記残り一つの計器用変圧器の異常を検出することを特徴とする請求項1記載の計器用変圧器の異常検出方法。   The circuit is a three-phase circuit, in which three instrument transformers are connected between the three phases, respectively, and the remaining one of the three instrument transformers is obtained from the output voltage of two instrument transformers. An abnormality of the remaining one instrument transformer is detected based on an increase in an actual output voltage of the remaining one instrument transformer with respect to an output voltage of one instrument transformer. An abnormality detection method for an instrument transformer according to claim 1. 一つの回路に対し、少なくとも二つの計器用変圧器と、前記計器用変圧器に対する電力供給を遮断する遮断器と、前記計器用変圧器の出力電圧に基づいて前記遮断器を操作する操作器と、を接続し、
前記操作器は、前記請求項1から3のいずれか一項記載の計器用変圧器の異常検出方法を用いて前記計器用変圧器の異常を検出した場合に、前記遮断器を操作して、異常が検出された計器用変圧器に対する電力供給を遮断することを特徴とする回路の保護方法。
For one circuit, at least two instrument transformers, a circuit breaker that cuts off power supply to the instrument transformer, and an operator that operates the circuit breaker based on an output voltage of the instrument transformer; Connect,
When the controller detects an abnormality of the instrument transformer using the abnormality detection method of the instrument transformer according to any one of claims 1 to 3, the controller operates the circuit breaker, A method for protecting a circuit, characterized in that power supply to an instrument transformer in which an abnormality is detected is cut off.
前記遮断器は、前記回路を遮断するものであることを特徴とする請求項4記載の回路の保護方法。   5. The circuit protection method according to claim 4, wherein the circuit breaker interrupts the circuit. 前記遮断器は、前記回路と前記計器用変圧器との間に設けられて前記回路から前記計器用変圧器を切り離すものであることを特徴とする請求項4記載の回路の保護方法。   5. The circuit protection method according to claim 4, wherein the circuit breaker is provided between the circuit and the instrument transformer and separates the instrument transformer from the circuit.
JP2011285478A 2011-12-27 2011-12-27 Anomaly detection method for instrument transformer and circuit protection method Active JP5944162B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2011285478A JP5944162B2 (en) 2011-12-27 2011-12-27 Anomaly detection method for instrument transformer and circuit protection method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2011285478A JP5944162B2 (en) 2011-12-27 2011-12-27 Anomaly detection method for instrument transformer and circuit protection method

Publications (2)

Publication Number Publication Date
JP2013135129A true JP2013135129A (en) 2013-07-08
JP5944162B2 JP5944162B2 (en) 2016-07-05

Family

ID=48911624

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2011285478A Active JP5944162B2 (en) 2011-12-27 2011-12-27 Anomaly detection method for instrument transformer and circuit protection method

Country Status (1)

Country Link
JP (1) JP5944162B2 (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2015220459A (en) * 2014-05-13 2015-12-07 エルエス産電株式会社Lsis Co., Ltd. Deviation compensation method for instrument transformer
JP2015220460A (en) * 2014-05-13 2015-12-07 エルエス産電株式会社Lsis Co., Ltd. Deviation compensation method for instrument transformer
JP2015220461A (en) * 2014-05-13 2015-12-07 エルエス産電株式会社Lsis Co., Ltd. Deviation compensation method for instrument transformer

Citations (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS4891520A (en) * 1972-03-06 1973-11-28
JPS55170674U (en) * 1979-05-25 1980-12-08
JPS6434131A (en) * 1987-07-29 1989-02-03 Toshiba Corp Protective relay
JPH02285918A (en) * 1989-04-24 1990-11-26 Mitsubishi Electric Corp Separator of potential transformer
JPH07288986A (en) * 1994-04-15 1995-10-31 Mitsubishi Electric Corp Abnormality detection circuit for power converter
JPH09215171A (en) * 1996-01-31 1997-08-15 Toshiba Corp Protective relay device
JPH1169607A (en) * 1997-08-14 1999-03-09 Yaskawa Electric Corp Ground-fault protective system
JP2004132937A (en) * 2002-10-15 2004-04-30 Fuji Electric Systems Co Ltd Abnormality detecting method for voltage detector
JP2009100551A (en) * 2007-10-17 2009-05-07 Yokogawa Electric Corp Current detector
JP2009131043A (en) * 2007-11-22 2009-06-11 Hitachi Ltd Motor control device

Patent Citations (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS4891520A (en) * 1972-03-06 1973-11-28
JPS55170674U (en) * 1979-05-25 1980-12-08
JPS6434131A (en) * 1987-07-29 1989-02-03 Toshiba Corp Protective relay
JPH02285918A (en) * 1989-04-24 1990-11-26 Mitsubishi Electric Corp Separator of potential transformer
JPH07288986A (en) * 1994-04-15 1995-10-31 Mitsubishi Electric Corp Abnormality detection circuit for power converter
JPH09215171A (en) * 1996-01-31 1997-08-15 Toshiba Corp Protective relay device
JPH1169607A (en) * 1997-08-14 1999-03-09 Yaskawa Electric Corp Ground-fault protective system
JP2004132937A (en) * 2002-10-15 2004-04-30 Fuji Electric Systems Co Ltd Abnormality detecting method for voltage detector
JP2009100551A (en) * 2007-10-17 2009-05-07 Yokogawa Electric Corp Current detector
JP2009131043A (en) * 2007-11-22 2009-06-11 Hitachi Ltd Motor control device

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2015220459A (en) * 2014-05-13 2015-12-07 エルエス産電株式会社Lsis Co., Ltd. Deviation compensation method for instrument transformer
JP2015220460A (en) * 2014-05-13 2015-12-07 エルエス産電株式会社Lsis Co., Ltd. Deviation compensation method for instrument transformer
JP2015220461A (en) * 2014-05-13 2015-12-07 エルエス産電株式会社Lsis Co., Ltd. Deviation compensation method for instrument transformer
US9654018B2 (en) 2014-05-13 2017-05-16 Lsis Co., Ltd. Deviation compensation method of potential transformer
US9866137B2 (en) 2014-05-13 2018-01-09 Lsis Co., Ltd. Deviation compensation method of potential transformer

Also Published As

Publication number Publication date
JP5944162B2 (en) 2016-07-05

Similar Documents

Publication Publication Date Title
EP1890369B1 (en) Ground fault detection
RU2542494C2 (en) Device and method for detection of ground short-circuit
JP5726047B2 (en) Operation test apparatus and operation test method for high-voltage system protection equipment
JP5256757B2 (en) Micro ground fault detector
JP2010154631A (en) Device for preventing opening of secondary circuit in current transformer for measuring instrument
JP5944162B2 (en) Anomaly detection method for instrument transformer and circuit protection method
KR101451389B1 (en) The Switchboard with the device of sensing open state and protecting of a current transformer
Pillai et al. Grounding and ground fault protection of multiple generator installations on medium-voltage industrial and commercial power systems II. Grounding methods
JP4352267B2 (en) Digital protection relay system for generator main circuit
EP3062436A1 (en) Method of responding to a winding fault
US8542469B2 (en) Methodology for protection of current transformers from open circuit burden
US20230341441A1 (en) Circuit breaker operating current/fault current measuring device using single rogowski coil
Pillai et al. Grounding and ground fault protection of multiple generator installations on medium-voltage industrial and commercial power systems. Part 1-the problem defined
Pillai et al. Grounding and ground fault protection of multiple generator installations on medium-voltage industrial and commercial systems-Part 2: Grounding Methods Working Group report
JP2011130634A (en) Grounding protection system of non-grounded generator
US20140177108A1 (en) Power system having short circuit protection controller
De Ronde et al. Loss of effective system grounding–best practices protection challenges and solutions
KR20190019764A (en) Neutral ground reactor for preventing harmonics and manufacture method thereof
JP6604882B2 (en) Transformer high voltage side phase loss detection system
JP2014110714A (en) Ground fault protection device
EP3010134B1 (en) Single-phase photovoltaic inverter
JP7354926B2 (en) earth leakage breaker
JP4361923B2 (en) GPT addition type ground voltage suppression device
JP5283521B2 (en) Zero-phase reference input device
JP6694554B2 (en) Inductive element protection

Legal Events

Date Code Title Description
A711 Notification of change in applicant

Free format text: JAPANESE INTERMEDIATE CODE: A712

Effective date: 20140213

A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20140901

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20150708

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20150818

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20151014

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20160426

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20160525

R150 Certificate of patent or registration of utility model

Ref document number: 5944162

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313115

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313531

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350