JP2013134308A - Optical 90° hybrid circuit - Google Patents
Optical 90° hybrid circuit Download PDFInfo
- Publication number
- JP2013134308A JP2013134308A JP2011283426A JP2011283426A JP2013134308A JP 2013134308 A JP2013134308 A JP 2013134308A JP 2011283426 A JP2011283426 A JP 2011283426A JP 2011283426 A JP2011283426 A JP 2011283426A JP 2013134308 A JP2013134308 A JP 2013134308A
- Authority
- JP
- Japan
- Prior art keywords
- light
- wave plate
- optical
- wavelength
- incident
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Pending
Links
Images
Landscapes
- Optical Modulation, Optical Deflection, Nonlinear Optics, Optical Demodulation, Optical Logic Elements (AREA)
- Optical Communication System (AREA)
Abstract
Description
本発明は、複数の入射光に所定の位相差を与え、複数の干渉出射光を出射する光90°ハイブリッド回路に関する。 The present invention relates to an optical 90 ° hybrid circuit that gives a predetermined phase difference to a plurality of incident lights and emits a plurality of interference emission lights.
位相変調光通信は、伝送距離の長距離化および伝送容量の増大に適している。このため、たとえば10G−DPSK(Differential Phase Shift Keying:差動位相変調)方式、40G−DQPSK(Differential Quadrature Phase Shift Keying:差動4値位相変調)方式などといった、各種の通信方式の普及が進められている。 Phase-modulated optical communication is suitable for increasing the transmission distance and increasing the transmission capacity. For this reason, various communication systems such as 10G-DPSK (Differential Phase Shift Keying) system and 40G-DQPSK (Differential Quadrature Phase Shift Keying) system have been promoted. ing.
10G−DPSK方式あるいは40G−DQPSK方式では、光受信器は、変調された光信号を受信するとともに、当該光信号を復調する。当該復調のためには、信号ビット間の位相差が検出される。この位相差検出のために、1ビット遅延器と呼ばれる光干渉計が用いられる。 In the 10G-DPSK system or the 40G-DQPSK system, the optical receiver receives the modulated optical signal and demodulates the optical signal. For the demodulation, a phase difference between signal bits is detected. In order to detect this phase difference, an optical interferometer called a 1-bit delay device is used.
近年では、長距離伝送および大容量伝送にさらに適した、DP−QPSK(Dual Polarization−Quadrature Phase Shift Keying)方式などのデジタルコヒーレント方式が開発されている。 In recent years, digital coherent methods such as DP-QPSK (Dual Polarization-Quadrature Phase Shift Keying) method, which is more suitable for long-distance transmission and large-capacity transmission, have been developed.
このデジタルコヒーレント方式では、変調された光信号を復調するために、1ビット遅延器に代わり、光90°ハイブリッド回路が用いられる。光90°ハイブリッド回路は、コヒーレント光通信において、局発光と信号光とをミキシングしてI信号(同相成分)とQ信号(直交成分)を検出する回路である。これまでに、光90°ハイブリッド回路の構成に関して、いくつかの提案がなされてきた。 In this digital coherent system, an optical 90 ° hybrid circuit is used in place of the 1-bit delay device in order to demodulate the modulated optical signal. The optical 90 ° hybrid circuit is a circuit that detects an I signal (in-phase component) and a Q signal (quadrature component) by mixing local light and signal light in coherent optical communication. So far, several proposals have been made regarding the configuration of an optical 90 ° hybrid circuit.
たとえば特許文献1では、円偏光を得るための1/4波長板と、45°直線偏光を得るための1/2波長板と、干渉用ハーフミラーとを備える、空間光学系型の光90°ハイブリッド回路が提案されている。
For example, in
また特許文献2では、1/4波長板の位相差を電圧制御できるようにし、検出信号から出力光位相差をフィードバック制御できるようにした、デジタルコヒーレント方式用の光90°ハイブリッド回路が提案されている。
また特許文献3では、光の偏波方法を変えるために1/2波長板を用いるが、光ヘッドで用いる1/2波長板について広波長帯域化する、空間光学系型の光90°ハイブリッド回路が提案されている。
In
光90°ハイブリッド回路が出力光に付与する位相差は、理想的には90°であるが、付与したはずの位相差90°から位相ずれが生じると、この光90°ハイブリッド回路を用いた光受信器の受信特性が劣化してしまう。 The phase difference imparted to the output light by the optical 90 ° hybrid circuit is ideally 90 °, but if a phase shift occurs from the phase difference 90 ° that should have been imparted, the light using this optical 90 ° hybrid circuit The reception characteristics of the receiver will deteriorate.
よって出力光において、できるだけ所定の位相差(90°)からの位相ずれを小さくし、たとえば広い波長範囲内で位相ずれが±1°以下となるように、位相差90°を実現できることが望ましい。 Therefore, it is desirable to realize a phase difference of 90 ° in the output light so that a phase shift from a predetermined phase difference (90 °) is as small as possible, for example, so that the phase shift is within ± 1 ° within a wide wavelength range.
空間光学系型の光90°ハイブリッド回路においては、180°の位相差は、ハーフミラーの透過光と反射光の位相差により生成され、90°の位相差は、1/4波長板のリターデーション(光学軸に平行な2つの直線偏光が透過する際に生じる位相差)により生成される。 In a spatial optical system type optical 90 ° hybrid circuit, a phase difference of 180 ° is generated by a phase difference between transmitted light and reflected light of a half mirror, and the phase difference of 90 ° is retardation of a quarter wavelength plate. (A phase difference generated when two linearly polarized lights parallel to the optical axis are transmitted).
上記の特許文献1に記載されているような光90°ハイブリッド回路では、1/4波長板は、入力する光の波長によりリターデーションが異なるため、90°の位相差には波長依存性が生じる。よって、入力する光の波長に依存して、光90°ハイブリッド回路を用いた光受信器の受信特性が劣化するという問題があった。
In the optical 90 ° hybrid circuit as described in the above-mentioned
上記の特許文献2では、1/4波長板のリターデーションを可変で制御可能とし、検出信号を復調して算出される光90°ハイブリッド回路を提案しており、出力光の位相差が90°間隔であるように、フィードバック制御する方式が記載されている。
しかしながら、1/4波長板のリターデーションを制御可能とするには、機器の大型化と複雑化が避けられず、制御回路の追加を含め受信器全体が高コスト化するという問題があった。 However, in order to be able to control the retardation of the quarter-wave plate, an increase in size and complexity of the device is inevitable, and there is a problem that the cost of the entire receiver including the addition of a control circuit is increased.
また、特許文献3に記載されている1/2波長板の構成は、1/2波長板自体は広波長範囲化しているものの、1/4波長板の広波長範囲化には有効でないため、入力する光の波長に依存した受信特性の劣化を抑制することはできなかった。
In addition, the configuration of the half-wave plate described in
本発明は、上記のような問題を解決するためになされたものであり、入力する光の波長に依存した受信特性の劣化を抑制することができる、光90°ハイブリッド回路の提供を目的とする。 The present invention has been made to solve the above-described problems, and an object of the present invention is to provide an optical 90 ° hybrid circuit that can suppress deterioration of reception characteristics depending on the wavelength of input light. .
本発明は、直線偏光ビームである複数の入射光に所定の位相差を与え、複数の干渉出射光を出射する光90°ハイブリッド回路であって、複数の前記入射光のうちの第1入射光が入射される1/2波長板対と、前記1/2波長板対から出射された前記第1入射光が入射される1/4波長板と、前記1/4波長板から出射された前記第1入射光、および、複数の前記入射光のうちの第2入射光が、ともに入射されるハーフミラーと、前記ハーフミラーにおいて透過または反射した複数の前記入射光が入射され、当該光を複数の前記干渉出射光として分離出射する偏波分離器とを備え、前記1/2波長板対は、第1の1/2波長板と第2の1/2波長板とを有し、前記第1の1/2波長板の光学軸である第1光学軸が、第2の1/2波長板の光学軸である第2光学軸に対し、(45+p×90)/2°(pは整数)の角度で配置されることを特徴とする。 The present invention is a light 90 ° hybrid circuit that gives a predetermined phase difference to a plurality of incident lights that are linearly polarized beams and emits a plurality of interference emission lights, and is a first incident light of the plurality of incident lights. Are incident on the half-wave plate, the quarter-wave plate on which the first incident light emitted from the half-wave plate pair is incident, and the quarter-wave plate is emitted from the quarter-wave plate. The first incident light and a half mirror on which the second incident light of the plurality of incident lights is incident, and the plurality of incident lights transmitted or reflected by the half mirror are incident, and the plurality of the lights are incident on the half mirror. A polarization separator that separates and emits as the interference emission light, and the half-wave plate pair includes a first half-wave plate and a second half-wave plate, The first optical axis that is the optical axis of one half-wave plate is the second half-wave plate optical For the second optical axis is characterized in that it is arranged at an angle of (45 + p × 90) / 2 ° (p is an integer).
本発明によれば、直線偏光ビームである複数の入射光に所定の位相差を与え、複数の干渉出射光を出射する光90°ハイブリッド回路であって、複数の前記入射光のうちの第1入射光が入射される1/2波長板対と、前記1/2波長板対から出射された前記第1入射光が入射される1/4波長板と、前記1/4波長板から出射された前記第1入射光、および、複数の前記入射光のうちの第2入射光が、ともに入射されるハーフミラーと、前記ハーフミラーにおいて透過または反射した複数の前記入射光が入射され、当該光を複数の前記干渉出射光として分離出射する偏波分離器とを備え、前記1/2波長板対は、第1の1/2波長板と第2の1/2波長板とを有し、前記第1の1/2波長板の光学軸である第1光学軸が、第2の1/2波長板の光学軸である第2光学軸に対し、(45+p×90)/2°(pは整数)の角度で配置されることにより、出力光の位相差の、入力光波長依存性を抑制することができる。よって、入力光の波長依存性に起因する受信特性の劣化を抑制することができる。 According to the present invention, there is provided a light 90 ° hybrid circuit that gives a predetermined phase difference to a plurality of incident lights that are linearly polarized beams and emits a plurality of interference emission lights, and is a first of the plurality of incident lights. A half-wave plate pair on which incident light is incident, a quarter-wave plate on which the first incident light emitted from the half-wave plate pair is incident, and a quarter-wave plate The first incident light and the half mirror on which the second incident light of the plurality of incident lights is incident, and the plurality of incident lights transmitted or reflected by the half mirror are incident on the light. A polarization separator that separates and emits a plurality of interference outgoing lights as the interference outgoing light, and the half-wave plate pair includes a first half-wave plate and a second half-wave plate, The first optical axis that is the optical axis of the first half-wave plate is a second half-wave plate. Arranging at an angle of (45 + p × 90) / 2 ° (p is an integer) with respect to the second optical axis, which is the optical axis, suppresses the input light wavelength dependency of the phase difference of the output light. it can. Therefore, it is possible to suppress the deterioration of the reception characteristics due to the wavelength dependency of the input light.
図7は、本発明の前提技術としての、空間光学系型の光90°ハイブリッド回路の構造を説明するための図である。 FIG. 7 is a diagram for explaining the structure of a spatial optical system type optical 90 ° hybrid circuit as a prerequisite technique of the present invention.
図7に示すように、デジタルコヒーレント方式では、QPSKの信号光100と局発光101(局部発振光)とが、光90°ハイブリッド回路に入力される。光90°ハイブリッド回路は、信号光100および局発光101の各々を、偏波分離器を用いて、4つの出力ポートI1、出力ポートI2、出力ポートQ1、出力ポートQ2に分配して出力する。
As shown in FIG. 7, in the digital coherent method,
すなわち図7に示す光90°ハイブリッド回路は、2つの入力光(信号光100および局発光101)の間に所定の位相差を与えて、4つの干渉出力光を出力する。
That is, the optical 90 ° hybrid circuit shown in FIG. 7 gives a predetermined phase difference between two input lights (
出力ポートI1から出力される光i1の位相差と、出力ポートI2から出力される光i2の位相差との差は180°である。同様に、出力ポートQ1から出力される光q1の位相差と、出力ポートQ2から出力される光q2の位相差との差も180°である。 The difference between the phase difference of the light i1 output from the output port I1 and the phase difference of the light i2 output from the output port I2 is 180 °. Similarly, the difference between the phase difference of the light q1 output from the output port Q1 and the phase difference of the light q2 output from the output port Q2 is also 180 °.
一方、光i1の位相差と光q1の位相差との差、光i2の位相差と光q2の位相差との差はそれぞれ90°である。 On the other hand, the difference between the phase difference of the light i1 and the phase difference of the light q1 and the difference between the phase difference of the light i2 and the phase difference of the light q2 are each 90 °.
信号光100と局発光101との間の周波数の差によって、各出力ポートから出力された光信号の強度にビートが生じるため、出力光の強度が振動する。
Because the frequency difference between the
出力ポートI1と出力ポートI2との間では、互いに逆相の関係で2つの出力光(光i1と光i2)の強度が振動する。同じく、出力ポートQ1と出力ポートQ2との間でも、互いに逆相の関係で2つの出力光(光q1と光q2)信号の強度が振動する。 Between the output port I1 and the output port I2, the intensities of the two output lights (light i1 and light i2) vibrate in an opposite phase relationship. Similarly, the intensity of the two output light (light q1 and light q2) signals vibrate between the output port Q1 and the output port Q2 in an opposite phase relationship.
出力ポートI1、出力ポートI2の各々から出力された光i1および光i2は、1対の光検出器によって検出される。出力ポートQ1、出力ポートQ2の各々から出力された光q1および光q2は、もう1対の光検出器で検出される。 Light i1 and light i2 output from each of the output port I1 and the output port I2 are detected by a pair of photodetectors. The light q1 and the light q2 output from each of the output port Q1 and the output port Q2 are detected by another pair of photodetectors.
これら2対の光検出器における検出信号を差動検出をすることによって、信号光100と局発光101との電界振幅の積に比例した強度を有する信号がヘテロダイン検出される。なお、ヘテロダイン検出は、公知の手段によって実現される。
By differentially detecting the detection signals in these two pairs of photodetectors, a signal having an intensity proportional to the product of the electric field amplitudes of the
デジタルコヒーレント方式では、信号光100の位相が検出信号から実時間でデジタル的に検出される。
In the digital coherent method, the phase of the
このように、光90°ハイブリッド回路はデジタルコヒーレント方式にとって不可欠であるとともに、重要な光信号受信回路である。 Thus, the optical 90 ° hybrid circuit is indispensable for the digital coherent system and is an important optical signal receiving circuit.
しかし、1/4波長板のリターデーションが、入力する光の波長依存性を有するために、光90°ハイブリッド回路を用いた光受信器の受信特性が劣化するという問題が生じていた。以下に示す本発明の実施の形態では、入力する光の波長に依存した受信特性の劣化を抑制することができる、光90°ハイブリッド回路について説明する。 However, since the retardation of the quarter-wave plate has the wavelength dependency of the input light, there has been a problem that the reception characteristics of the optical receiver using the optical 90 ° hybrid circuit deteriorate. In the following embodiment of the present invention, an optical 90 ° hybrid circuit capable of suppressing deterioration of reception characteristics depending on the wavelength of input light will be described.
<実施の形態1>
<構成>
以下、本発明の実施の形態について図面を参照して詳しく説明する。なお、同一または相当する部分には同一の参照符号を付して、その詳細な説明は省略する。
<
<Configuration>
Hereinafter, embodiments of the present invention will be described in detail with reference to the drawings. In addition, the same reference number is attached | subjected to the same or an equivalent part, and the detailed description is abbreviate | omitted.
本実施の形態にかかる光90°ハイブリッド回路は、たとえば差動位相変調(QPSK)方式、差動4値位相変調(DQPSK)方式等によって変調された光信号を復調する際に用いられる、光受信器に含まれる光90°ハイブリッド回路である。 The optical 90 ° hybrid circuit according to the present embodiment is used for demodulating an optical signal modulated by, for example, a differential phase modulation (QPSK) system, a differential quaternary phase modulation (DQPSK) system, or the like. It is an optical 90 ° hybrid circuit included in the container.
図1は、実施の形態1にかかる光90°ハイブリッド回路の概略的な構成を示した図である。図1に示すように、実施の形態1にかかる光90°ハイブリッド回路は、特定の第1の波長で1/4波長板として機能する1/4波長板3と、特定の第2の波長で1/2波長板として機能する、第1の1/2波長板1および第2の1/2波長板2と、ハーフミラー4と、複数の偏波分離器5とを備える。
FIG. 1 is a diagram illustrating a schematic configuration of an optical 90 ° hybrid circuit according to the first embodiment. As shown in FIG. 1, the optical 90 ° hybrid circuit according to the first embodiment includes a ¼
第1の1/2波長板1および第2の1/2波長板2は、互いの光学軸のなす角度が(45+p×90)/2°(pは整数)となるように配置され、1/2波長板対10をなす。ここで、第1の1/2波長板1の光学軸を第1光学軸、第2の1/2波長板2の光学軸を第2光学軸とする。
The first half-
入力する光の波長範囲は、たとえば光通信で用いるC帯およびL帯であり、およそ1520〜1620nmとする。 The wavelength range of input light is, for example, the C band and the L band used in optical communication, and is approximately 1520 to 1620 nm.
特定の第1の波長は、たとえば1570nmであり、1/4波長板3は、この波長において直線偏光を円偏光に変換することが可能なリターデーションを有するものとする。
The specific first wavelength is, for example, 1570 nm, and the quarter-
特定の第2の波長も、たとえば1570.0nmであり、1/2波長板対10に用いる第1の1/2波長板1および第2の1/2波長板2は、この波長において直線偏光を偏波面の角度が異なる直線偏光に変換することが可能なリターデーションを有するものとする。特定の第2の波長は、たとえば1570.1nmなど、特定の第1の波長と異なっていても良い。
The specific second wavelength is also 1570.0 nm, for example, and the first half-
ただし、上記の特定の波長は、光90°ハイブリッド回路の使用波長範囲の中央近傍であることが望ましいが、使用波長範囲内の任意の波長や、使用波長範囲の外であってもよい。 However, the specific wavelength is preferably near the center of the used wavelength range of the optical 90 ° hybrid circuit, but may be any wavelength within the used wavelength range or outside the used wavelength range.
入力する光は、DP−QPSK方式で変調された信号光および局発光であり、上記の使用波長範囲内にあるものとする。 The input light is signal light and local light modulated by the DP-QPSK method, and is within the above-described wavelength range.
これらは、2つの光ファイバの端面から出射され(図示せず)、それぞれコリメートレンズによりビーム径0.18〜1.0mm程度のコリメート光とされる。2つのコリメート光は、偏波分離器に入射され、直線偏光として2方向に分離して出射される(図示せず)。 These are emitted from the end faces of the two optical fibers (not shown), and are each made collimated light having a beam diameter of about 0.18 to 1.0 mm by a collimating lens. The two collimated lights are incident on the polarization separator, and are separated and emitted in two directions as linearly polarized light (not shown).
偏波分離器は、たとえば表面を無反射コートしたキューブ型の偏波ビームスプリッタや、ガラス基板上に偏波分離膜を積層し裏面を無反射コートした平板型の偏波ビームスプリッタなどである。 The polarization separator is, for example, a cube-type polarization beam splitter with a non-reflective coating on the surface, or a flat-plate polarization beam splitter with a polarization separation film laminated on a glass substrate and a non-reflection coating on the back surface.
局発光は、偏波保存ファイバを介して直線偏光として光ファイバの端面から出射され、偏波分離器で強度がおおむね等分されるように、偏波面の角度が調整されている。 The local light is emitted from the end face of the optical fiber as linearly polarized light through the polarization maintaining fiber, and the angle of the polarization plane is adjusted so that the intensity is roughly divided by the polarization separator.
偏波分離器から出射された信号光の一つと局発光の一つが、光90°ハイブリッド回路への2つの入射光となる。 One of the signal light emitted from the polarization separator and one of the local light becomes two incident lights to the optical 90 ° hybrid circuit.
直線偏光ビームである一方の入射光(第1入射光、信号光6)が、その偏波面に対し光学軸が所定の角度に設置された1/2波長板対10(第1の1/2波長板1および第2の1/2波長板2)を透過し、さらに光学軸が所定の角度に設置された1/4波長板3を透過し、ハーフミラー4に入射する。
One incident light (first incident light, signal light 6) that is a linearly polarized beam is a half-wave plate pair 10 (first 1/2) whose optical axis is set at a predetermined angle with respect to the plane of polarization. The light passes through the
ハーフミラー4は、たとえば、キューブ型の無偏光ハーフミラーや、ガラス基板上にハーフミラー膜を積層した平板型のハーフミラーを用いる。ハーフミラー4は、無反射コート等により表面で反射が低減されるようにするのが望ましい。 As the half mirror 4, for example, a cube-type non-polarization half mirror or a flat plate type half mirror in which a half mirror film is laminated on a glass substrate is used. The half mirror 4 is desirably configured such that reflection on the surface is reduced by a non-reflective coating or the like.
1/2波長板は、たとえばゼロオーダーの波長板であって、所定の大きさだけ厚さの異なる石英基板の光学軸を直交させて張り合わせた、公知の1/2波長板を用いる。石英以外の材質基板の1/2波長板や、配向高分子膜による公知の1/2波長板を用いてもよい。1/2波長板は、無反射コート等により表面で反射が低減されるようにするのが望ましい。 The half-wave plate is, for example, a zero-order wave plate, and a known half-wave plate in which optical axes of quartz substrates having different thicknesses by a predetermined size are bonded to each other is used. A half-wave plate made of a material other than quartz or a known half-wave plate made of an oriented polymer film may be used. It is desirable that the half-wave plate be reduced in reflection on the surface by a non-reflective coating or the like.
1/2波長板対10は、1/2波長板が互いの光学軸(第1光学軸と第2光学軸)のなす角度が(45+p×90)/2°(pは整数)となるように配置され、たとえば22.5°(p=0)とする。
In the half-
1/4波長板3は、たとえばゼロオーダーの波長板であって、所定の大きさだけ厚さの異なる石英基板の光学軸を直交させて張り合わせた公知の1/4波長板を用いる。石英以外の材質基板の1/4波長板や配向高分子膜による公知の1/4波長板を用いてもよい。1/4波長板3は、無反射コート等により表面で反射が低減されるようにするのが望ましい。
The quarter-
図2は、信号光6が1/2波長板対10を透過し、さらに1/4波長板3に入射する際の、偏波面の方向を模式的に示したものである。図中、太線で示された矢印の方向に信号光6の偏波面が形成される。
FIG. 2 schematically shows the direction of the polarization plane when the
1/2波長板対10は、たとえば、第1の1/2波長板1の第1光学軸が信号光6の偏波面に対し48.4°の角度に、第2の1/2波長板3の第2光学軸が信号光6の偏波面に対し70.9°の角度になるように設置する(図2の細線をそれぞれ参照)。この1/2波長板対10は、光学軸が互いに22.5°の角度で交差しており、透過する光の偏波面をおおむね45°回転させる(図2参照)。
The half-
特定の第1の波長においては、1/2波長板対10を透過した信号光6は、直線偏光を保ったまま偏波面が45°回転する。1/4波長板3は、この1/2波長板対10を透過した光の偏波面に対し、光学軸が45°の角度になるように設置される(図2の細線参照)。特定の第1の波長においては、1/2波長板対10と1/4波長板3とを透過した信号光6は、円偏光となる。
At the specific first wavelength, the plane of polarization of the
また、図3に示すように、2つの1/2波長板を、1/2波長板対9のように、この配置で接着固定すると、光90°ハイブリッド回路の組み立てが簡易化できるので望ましい。 Also, as shown in FIG. 3, it is desirable that two half-wave plates are bonded and fixed in this arrangement as in the half-wave plate pair 9 because the assembly of the optical 90 ° hybrid circuit can be simplified.
また、図3に示すように、さらに、1/2波長板対9と1/4波長板3をこの配置で接着固定すると、光90°ハイブリッド回路の組み立てが簡易化できるので、さらに望ましい。
Further, as shown in FIG. 3, it is further desirable to bond and fix the half-wave plate pair 9 and the quarter-
次に、直線偏光ビームであるもう一方の入射光(第2入射光、局発光7)は、偏波面を45°傾けた状態で、信号光6がハーフミラー4に入射するのと同じ位置に入射する(図1および図3参照)。ハーフミラー4において、透過する信号光6と反射する局発光7、さらに、反射する信号光6と透過する局発光7は、それぞれ重なる。
Next, the other incident light (second incident light, local light 7) which is a linearly polarized beam is in the same position as the
以上の構成により、ハーフミラー4から2方向に出射する出力光が得られる。それぞれの出力光が入射する位置に、複数の偏波分離器5が配置される。
With the above configuration, output light emitted from the half mirror 4 in two directions is obtained. A plurality of
このような空間光学系により偏波分離器5から出射される4つの出力光8が得られる。これらの出力光8は、すべて2つの入射光(信号光6および局発光7)の干渉光となっている。出力光間の相対位相差は、それぞれ0°、90°、180°、270°となる。
Four
1/2波長板対の角度を上記のように、すなわち、第1の1/2波長板1の第1光学軸が、第2の1/2波長板2の第2光学軸に対し、(45+p×90)/2°(pは整数)の角度となるように調整することにより、信号光6の波長を変化させても出力光間の相対位相差の変動が抑制され、広波長範囲で、出力光8の間の所定の位相差に対するずれを抑制することができる。
The angle of the half-wave plate pair is as described above, that is, the first optical axis of the first half-
このような光90°ハイブリッド回路では、位相差が0°と180°の出力光対がI信号、90°と270°の出力光対がQ信号に相当する。信号を差動検出するバランスドレシーバの光検出器にレンズアレイなど結合レンズとミラー等の光学素子を用いて結合させることにより、DP−QPSK信号受信器の、位相誤差特性に優れた復調用光回路として好適に使用することができる。 In such an optical 90 ° hybrid circuit, output light pairs with phase differences of 0 ° and 180 ° correspond to I signals, and output light pairs with 90 ° and 270 ° correspond to Q signals. Demodulated light with excellent phase error characteristics of DP-QPSK signal receiver by coupling to optical detector of balanced receiver that detects signals differentially using coupling lens such as lens array and optical element such as mirror It can be suitably used as a circuit.
<動作>
次に、本実施の形態にかかる光90°ハイブリッド回路の動作機構について説明する。先に述べた空間光学系型の光90°ハイブリッド回路では、ハーフミラー特性である出力光(透過光と反射光)の位相差が180°であることと、1/4波長板を用いて生成する円偏光が直交する偏波間で90°の位相差となることとを用いて、0°、90°、180°、270°出力光位相差を得ている。
<Operation>
Next, the operation mechanism of the optical 90 ° hybrid circuit according to the present embodiment will be described. In the spatial optical system type light 90 ° hybrid circuit described above, the phase difference between the output light (transmitted light and reflected light), which is a half mirror characteristic, is 180 °, and it is generated using a quarter-wave plate. By using the fact that the circularly polarized light that is orthogonalized has a phase difference of 90 ° between the orthogonally polarized waves, 0 °, 90 °, 180 °, and 270 ° output optical phase differences are obtained.
このうちハーフミラー4による位相差は、ハーフミラー4による損失(透過光と反射光以外への損失)が大きいほど180°からずれる性質がある。そこで、ハーフミラー4を誘電多層膜等の低損失の特性のものとすることにより、広波長範囲で透過光と反射光の位相差を高精度に180°とすることが可能である。 Among these, the phase difference due to the half mirror 4 has a property of deviating from 180 ° as the loss due to the half mirror 4 (loss other than transmitted light and reflected light) increases. Therefore, by using the half mirror 4 having a low loss characteristic such as a dielectric multilayer film, the phase difference between the transmitted light and the reflected light can be set to 180 ° with high accuracy in a wide wavelength range.
これに対し、1/4波長板3を透過した信号光6における直交する偏波間の位相差は、原理的に波長依存性を有する。1/4波長板3のリターデーションは、2つの光学軸の方向の偏光に対する光路長差と波長との比で決まる。
In contrast, the phase difference between the orthogonal polarizations in the
石英基板貼り合わせの1/4波長板3の場合、石英板の厚さ差をΔL、2つの光学軸の方向の屈折率差をΔnとすると、光路長差=Δn・ΔLであり、波長をλとし、リターデーションを位相Φで表示すると、Φ=2πΔn・ΔL/λとなる。
In the case of the quarter-
Δnの波長依存性が小さいため、リターデーションはおおむね波長に反比例して変化する。このため、特定の波長でリターデーションが90°(=π/2)となったとしても、他の波長では、リターデーションは90°からずれてしまう。 Since the wavelength dependence of Δn is small, the retardation changes in inverse proportion to the wavelength. For this reason, even if the retardation becomes 90 ° (= π / 2) at a specific wavelength, the retardation shifts from 90 ° at other wavelengths.
光90°ハイブリッド回路の4つの出力光位相差は、0°、Φ、180°、180°+Φとなるので、波長が変化すると光90°ハイブリッド回路の出力光位相差が90°間隔からずれ、この光90°ハイブリッド回路を用いた光受信器で、受信特性が劣化してしまうという問題があった。 Since the four output optical phase differences of the optical 90 ° hybrid circuit are 0 °, Φ, 180 °, 180 ° + Φ, the output optical phase difference of the optical 90 ° hybrid circuit shifts from the 90 ° interval when the wavelength changes. In the optical receiver using this optical 90 ° hybrid circuit, there is a problem that the reception characteristic is deteriorated.
たとえば、エラー率10-3であるときの受信特性のQペナルティーは、位相誤差が1°のとき0.02dB、位相誤差が3°のとき0.07dB、位相誤差が5°のとき0.18dB、位相誤差が7°のとき0.33dBのように見積もられ、位相誤差が大きいほどQペナルティーが増大し、受信特性が劣化する。 For example, the Q penalty of the reception characteristic when the error rate is 10 −3 is 0.02 dB when the phase error is 1 °, 0.07 dB when the phase error is 3 °, and 0.18 dB when the phase error is 5 °. When the phase error is 7 °, it is estimated to be 0.33 dB. As the phase error is larger, the Q penalty is increased and the reception characteristic is deteriorated.
良好な受信特性を得るためには、位相誤差によるQペナルティー0.02dB以下であることが望ましいため、そのためには位相誤差を1°以内にする必要がある。 In order to obtain a good reception characteristic, it is desirable that the Q penalty due to the phase error is 0.02 dB or less. For this purpose, the phase error needs to be within 1 °.
本実施の形態にかかる光90°ハイブリッド回路では、1/4波長板3の前に1/2波長板対を挿入する。
In the optical 90 ° hybrid circuit according to the present embodiment, a half-wave plate pair is inserted before the quarter-
単体の1/2波長板を1/4波長板3の前に挿入した場合、1/4波長板3に45°傾いた偏波面で信号光6を入射させるために、偏波面を回転させる角度の1/2(すなわち、22.5°)だけ、偏波面に対して1/2波長板の光学軸の角度を傾ける必要があり、他の角度に変えることができなかった。
When a single half-wave plate is inserted in front of the quarter-
これに対し、1/2波長板対を1/4波長板3の前に挿入した場合、透過する信号光6の楕円方位角は、1/2波長板が互いの光学軸のなす角度の2倍だけ信号光6の偏波面の角度から回転し、1/2波長板のリターデーションが180°となる波長においては、信号光6の偏波面と1/2波長板対の光学軸とのなす角度には依存しない。
On the other hand, when the half-wave plate pair is inserted in front of the quarter-
ただし、1/2波長板のリターデーションが180°からずれる波長においては、1/2波長板対を透過した信号光6は、直線偏光に近いが厳密には楕円偏光となっており、その楕円率が、信号光6の偏波面と、1/2波長板対の2つの1/2波長板の光学軸の2等分線、すなわち、第1光学軸と第2光学軸との2等分線とがなす角度に依存して変化する。
However, at the wavelength where the retardation of the half-wave plate deviates from 180 °, the
図4に、1/2波長板対を有する光90°ハイブリッド回路と、1/2波長板対を有さない光90°ハイブリッド回路とにおける、1/4波長板3を透過した信号光6の楕円率の波長依存性の違いを示す。横軸が波長(nm)、縦軸が楕円率をそれぞれ示す。
FIG. 4 shows the
1/2波長板対を有さない光90°ハイブリッド回路では、C帯とL帯の波長範囲である1520−1620nmの範囲で、楕円率が0.90付近まで減少するが、1/2波長板対を有する構成では、同じ波長範囲において楕円率はほぼ1(1±0.03程度以下)の大きさを保っている。よって、透過する信号光6が、その波長によらずおおむね円偏光となっていることがわかる。
In an optical 90 ° hybrid circuit that does not have a half-wave plate pair, the ellipticity decreases to near 0.90 in the range of 1520-1620 nm, which is the wavelength range of the C band and the L band. In the configuration having a pair of plates, the ellipticity is kept approximately 1 (1 ± 0.03 or less) in the same wavelength range. Therefore, it can be seen that the transmitted
図5に、1/2波長板対を有する光90°ハイブリッド回路と、1/2波長板対を有さない光90°ハイブリッド回路とにおける、出力光の位相誤差の波長依存性の違いを示す。横軸が波長(nm)、縦軸が位相誤差(deg)をそれぞれ示す。 FIG. 5 shows the difference in wavelength dependence of the phase error of output light between an optical 90 ° hybrid circuit having a half-wave plate pair and an optical 90 ° hybrid circuit having no half-wave plate pair. . The horizontal axis represents wavelength (nm) and the vertical axis represents phase error (deg).
1/2波長板対を有さない光90°ハイブリッド回路では、位相誤差が最大±3°程度になり、位相誤差による受信特性劣化が生じている。1/2波長板対を有する光90°ハイブリッド回路では、図4で、透過光がほぼ円偏光となることが示されているように、位相誤差が0.1°以下であり、位相誤差による受信特性劣化は抑制されている。 In an optical 90 ° hybrid circuit that does not have a half-wave plate pair, the phase error is about ± 3 ° at the maximum, and reception characteristics are deteriorated due to the phase error. In the optical 90 ° hybrid circuit having a half-wave plate pair, the phase error is 0.1 ° or less, as shown in FIG. 4, that the transmitted light is substantially circularly polarized. Reception characteristic deterioration is suppressed.
1/4波長板と単体の1/2波長板とを備える光90°ハイブリッド回路では、入射光の波長変化によって出力光の位相差に不都合が生じていた。 In an optical 90 ° hybrid circuit including a quarter-wave plate and a single half-wave plate, there is a problem in the phase difference of output light due to a change in wavelength of incident light.
本実施の形態では、1/4波長板と1/2波長板対とを備えることによって、円偏光が楕円偏光となってしまう波長変化による寄与を打ち消すことができ、1/2波長板対と1/4波長板とを、広帯域の1/4波長板として動作させることができる。よって、入力光の波長依存性を抑制し、出力光の位相差を90°近傍に保持可能な光90°ハイブリッド回路を構成できる。 In the present embodiment, the provision of the ¼ wavelength plate and the ½ wavelength plate pair can cancel the contribution due to the wavelength change that causes the circularly polarized light to become elliptically polarized light. The quarter-wave plate can be operated as a broadband quarter-wave plate. Therefore, it is possible to configure an optical 90 ° hybrid circuit that can suppress the wavelength dependency of the input light and can maintain the phase difference of the output light in the vicinity of 90 °.
一方、図6に、本実施の形態にかかる光90°ハイブリッド回路における出力光の位相誤差を、1/2波長板対の入射光偏波面に対する設置角度の依存性として示す。横軸が波長(nm)、縦軸が位相誤差(deg)をそれぞれ示す。 On the other hand, FIG. 6 shows the phase error of the output light in the optical 90 ° hybrid circuit according to the present embodiment as the dependence of the installation angle on the incident light polarization plane of the half-wave plate pair. The horizontal axis represents wavelength (nm) and the vertical axis represents phase error (deg).
1/2波長板対の2つの1/2波長板は接着固定されており、光学軸の入射光偏波面に対する角度をそれぞれ48.4°と70.9°とし(すなわち、光学軸の2等分線は、入射光偏波面に対して59.65°の角度を有する)、その配置からの入射光偏波面に対する1/2波長板対の角度ずれをパラメータとした。 The two half-wave plates of the pair of half-wave plates are bonded and fixed, and the angles of the optical axis with respect to the incident light polarization plane are 48.4 ° and 70.9 °, respectively (that is, the optical axis is 2nd etc. The segment has an angle of 59.65 ° with respect to the incident light polarization plane), and the angle shift of the half-wave plate pair with respect to the incident light polarization plane from the arrangement was used as a parameter.
図6を参照すると、当該波長範囲で位相誤差を1°以内とするためには、1/2波長板対を±2°以内の角度精度で設置すればよいことがわかる。 Referring to FIG. 6, it can be seen that in order to make the phase error within 1 ° in the wavelength range, the half-wave plate pair should be installed with an angular accuracy within ± 2 °.
図8に、1/2波長板対の2つの1/2波長板のうち、光の入射側の1/2波長板の光学軸の、入射光偏波面に対する角度についての、1/2波長板対と1/4波長板とを透過した光の楕円率を計算した結果を示す。 FIG. 8 shows a half-wave plate with respect to the angle of the optical axis of the half-wave plate on the light incident side of the two half-wave plates of the half-wave plate pair with respect to the plane of polarization of the incident light. The result of having calculated the ellipticity of the light which permeate | transmitted the pair and the quarter wavelength plate is shown.
ただし、1/2波長板のうち、光の出射側の1/2波長板の光学軸は、入射側の1/2波長板に対して22.5°傾斜して配置されているものとした。 However, among the half-wave plates, the optical axis of the half-wave plate on the light exit side is inclined by 22.5 ° with respect to the half-wave plate on the incident side. .
また、図8では、波長板のリターデーションが1/4波長板で90°、1/2波長板で180°となる波長(1570nm)から50nmずれた場合、すなわち、1/4波長板で90×(1−50/1570)=87.13°、1/2波長板で180×(1−50/1570)=174.26°のリターデーションとなる場合、および、25nmずれた場合、すなわち、1/4波長板で90×(1−25/1570)=88.41°、1/2波長板で180×(1−25/1570)=176.82°のリターデーションとなる場合の結果を例として示した。 In FIG. 8, when the retardation of the wave plate is shifted by 50 nm from the wavelength (1570 nm) at 90 ° for the quarter wave plate and 180 ° for the half wave plate, that is, 90% for the quarter wave plate. × (1-50 / 1570) = 87.13 °, when the retardation is 180 × (1-50 / 1570) = 174.26 ° with a half-wave plate, and when the deviation is 25 nm, that is, The result when the retardation is 90 × (1-25 / 1570) = 88.41 ° with the quarter-wave plate and 180 × (1-25 / 1570) = 176.82 ° with the half-wave plate. Shown as an example.
図8に示されているように、光の入射側の1/2波長板の光学軸の角度を48.4°とすると、波長によらず透過光の楕円率が1に非常に近い値とでき、広い波長範囲で理想的な円偏光を得られることがわかる。 As shown in FIG. 8, when the angle of the optical axis of the half-wave plate on the light incident side is 48.4 °, the ellipticity of the transmitted light is very close to 1 regardless of the wavelength. It can be seen that ideal circularly polarized light can be obtained in a wide wavelength range.
このとき、光の出射側の1/2波長板の光学軸の角度は、48.4+22.5=70.9°としている。 At this time, the angle of the optical axis of the half-wave plate on the light emission side is set to 48.4 + 22.5 = 70.9 °.
以上のように、透過光の楕円率の波長による変化が、1/4波長板3を透過した信号光6と、1/2波長板対を透過した信号光6とで打ち消すように、1/2波長板対の2つの1/2波長板の光学軸の2等分線と、信号光6の偏波面とがなす角度を調整する(たとえば上記のように、信号光6の偏波面に対する、第1の1/2波長板1の第1光学軸の角度を48.4°、第2の1/2波長板2の第2光学軸の角度を70.9°とし、光学軸の2等分線が59.65°の角度を有するようにする)ことにより、光90°ハイブリッド回路の4つの出力光位相差の間隔を広波長範囲で90°とすることができる。
As described above, the change in the ellipticity of the transmitted light due to the wavelength is canceled by the
このような光90°ハイブリッド回路に用いることにより、位相誤差による受信特性劣化を低減したDP−QPSK受信器を構成することができる。 By using such an optical 90 ° hybrid circuit, it is possible to configure a DP-QPSK receiver in which reception characteristic deterioration due to a phase error is reduced.
<効果>
本発明にかかる実施の形態によれば、光90°ハイブリッド回路において、信号光6および局発光7のうちの第1入射光としての信号光6が入射される1/2波長板対と、1/2波長板対から出射された信号光6が入射される1/4波長板3と、1/4波長板3から出射された信号光6、および、第2入射光としての局発光7が、ともに入射されるハーフミラー4と、ハーフミラー4において透過または反射した信号光6および局発光7が入射され、当該光を複数の干渉出射光である出力光8として分離出射する偏波分離器5とを備え、1/2波長板対は、第1の1/2波長板1と第2の1/2波長板2とを有し、第1の1/2波長板1の光学軸である第1光学軸が、第2の1/2波長板2の光学軸である第2光学軸に対し、(45+p×90)/2°(pは整数)の角度で配置されることで、入力した信号光を干渉させて出力した、所定の位相差(90°)を有する複数の出力光8の間の、所定の位相差に対するずれを、広い波長範囲(使用する波長範囲)で抑制することができる。よって、入力光の波長依存性に起因する受信特性の劣化を抑制することができる。
<Effect>
According to the embodiment of the present invention, in the optical 90 ° hybrid circuit, the half-wave plate pair on which the
また、本発明にかかる実施の形態によれば、光90°ハイブリッド回路において、信号光6の偏波面と、第1光学軸とのなす角度が48.4°であり、信号光6の偏波面と、第2光学軸とのなす角度が70.9°であり、信号光6の偏波面と、1/4波長板3の光学軸である第3光学軸とのなす角度が0°であることで、入力する光の波長に依存せず、所定の位相差(90°)を有する複数の出力光8の間の、所定の位相差に対するずれを、広い波長範囲(使用する波長範囲)で抑制することができる。
Further, according to the embodiment of the present invention, in the optical 90 ° hybrid circuit, the angle formed between the polarization plane of the
なお本発明は、その発明の範囲内において、本実施の形態における任意の構成要素の変形もしくは省略が可能である。 It should be noted that the present invention can be modified or omitted in any constituent elements in the present embodiment within the scope of the invention.
1 第1の1/2波長板、2 第2の1/2波長板、3 1/4波長板、4 ハーフミラー、5 偏波分離器、6,100 信号光、7,101 局発光、8 出力光、9,10 1/2波長板対、I1,I2,Q1,Q2 出力ポート。
DESCRIPTION OF
Claims (2)
複数の前記入射光のうちの第1入射光が入射される1/2波長板対と、
前記1/2波長板対から出射された前記第1入射光が入射される1/4波長板と、
前記1/4波長板から出射された前記第1入射光、および、複数の前記入射光のうちの第2入射光が、ともに入射されるハーフミラーと、
前記ハーフミラーにおいて透過または反射した複数の前記入射光が入射され、当該光を複数の前記干渉出射光として分離出射する偏波分離器とを備え、
前記1/2波長板対は、第1の1/2波長板と第2の1/2波長板とを有し、
前記第1の1/2波長板の光学軸である第1光学軸が、第2の1/2波長板の光学軸である第2光学軸に対し、(45+p×90)/2°(pは整数)の角度で配置されることを特徴とする、
光90°ハイブリッド回路。 A light 90 ° hybrid circuit that gives a predetermined phase difference to a plurality of incident lights that are linearly polarized beams and emits a plurality of interference emission lights,
A half-wave plate pair into which the first incident light of the plurality of incident lights is incident;
A quarter-wave plate on which the first incident light emitted from the half-wave plate pair is incident;
A half mirror on which the first incident light emitted from the quarter-wave plate and the second incident light of the plurality of incident lights are incident together;
A plurality of the incident light transmitted or reflected by the half mirror is incident, and a polarization separator that separates and emits the light as the plurality of interference emission lights,
The half-wave plate pair includes a first half-wave plate and a second half-wave plate,
The first optical axis that is the optical axis of the first half-wave plate is (45 + p × 90) / 2 ° (p) with respect to the second optical axis that is the optical axis of the second half-wave plate. Is an integer) angle,
Light 90 ° hybrid circuit.
前記第1入射光の偏波面と、前記第2光学軸とのなす角度が70.9°であり、
前記第1入射光の偏波面と、前記1/4波長板の光学軸である第3光学軸とのなす角度が0°であることを特徴とする、
請求項1に記載の光90°ハイブリッド回路。 The angle formed between the plane of polarization of the first incident light and the first optical axis is 48.4 °,
The angle formed between the plane of polarization of the first incident light and the second optical axis is 70.9 °,
An angle formed between a polarization plane of the first incident light and a third optical axis that is an optical axis of the quarter-wave plate is 0 °,
The optical 90 ° hybrid circuit according to claim 1.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2011283426A JP2013134308A (en) | 2011-12-26 | 2011-12-26 | Optical 90° hybrid circuit |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2011283426A JP2013134308A (en) | 2011-12-26 | 2011-12-26 | Optical 90° hybrid circuit |
Publications (1)
Publication Number | Publication Date |
---|---|
JP2013134308A true JP2013134308A (en) | 2013-07-08 |
Family
ID=48911050
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP2011283426A Pending JP2013134308A (en) | 2011-12-26 | 2011-12-26 | Optical 90° hybrid circuit |
Country Status (1)
Country | Link |
---|---|
JP (1) | JP2013134308A (en) |
Cited By (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN110244470A (en) * | 2019-05-17 | 2019-09-17 | 西安理工大学 | 90 degree of space light bridges of high-performance crystal-type |
Citations (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPH03251827A (en) * | 1990-03-01 | 1991-11-11 | Kokusai Denshin Denwa Co Ltd <Kdd> | Optical phase detection system |
JPH05100114A (en) * | 1991-10-07 | 1993-04-23 | Nitto Denko Corp | Laminated wavelength plate and circularly polarizing plate |
JPH1068816A (en) * | 1996-08-29 | 1998-03-10 | Sharp Corp | Phase difference plate and circularly polarizing plate |
-
2011
- 2011-12-26 JP JP2011283426A patent/JP2013134308A/en active Pending
Patent Citations (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPH03251827A (en) * | 1990-03-01 | 1991-11-11 | Kokusai Denshin Denwa Co Ltd <Kdd> | Optical phase detection system |
JPH05100114A (en) * | 1991-10-07 | 1993-04-23 | Nitto Denko Corp | Laminated wavelength plate and circularly polarizing plate |
JPH1068816A (en) * | 1996-08-29 | 1998-03-10 | Sharp Corp | Phase difference plate and circularly polarizing plate |
Cited By (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN110244470A (en) * | 2019-05-17 | 2019-09-17 | 西安理工大学 | 90 degree of space light bridges of high-performance crystal-type |
CN110244470B (en) * | 2019-05-17 | 2021-05-25 | 西安理工大学 | Crystal type 90-degree space optical bridge |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JP5737874B2 (en) | Demodulator and optical transceiver | |
US9077454B2 (en) | Optical detector for detecting optical signal beams, method to detect optical signals, and use of an optical detector to detect optical signals | |
US7573641B2 (en) | Free-space optical hybrid | |
US8699122B2 (en) | Interferometer, demodulator, and optical fiber communication module | |
US8971677B2 (en) | Optical 90-degree hybrid circuit | |
US8649640B2 (en) | Optical 90-degree hybrid circuit | |
US8204378B1 (en) | Coherent optical signal processing | |
US8270067B1 (en) | Sagnac delay-line interferometer for DPSK demodulation | |
US20140064725A1 (en) | High Bandwidth Demodulator System And Method | |
US7864325B2 (en) | Interferometer, demodulator, and splitting element | |
JP5233953B2 (en) | Delay interferometer, receiver, and delay interference method | |
US20130128907A1 (en) | Coherent Micro-mixer | |
US5317382A (en) | Optical phase detection method with orthogonal polarization and phase compensation arrangement | |
JP4895052B2 (en) | Delay interferometer | |
US9075233B2 (en) | Optical cell with wavelength compensator | |
JP2013134308A (en) | Optical 90° hybrid circuit | |
CN115629447B (en) | Four-in-one space light delay self-interferometer | |
US20110261437A1 (en) | Delay-Line-Interferometer for Integration with Balanced Receivers | |
US20110176200A1 (en) | Delay-Line-Interferometer for Integration with Balanced Receivers | |
GB2485202A (en) | Polarisation diversity coherent demodulator | |
JP5212203B2 (en) | Optical receiver | |
US8174756B1 (en) | Rhomb beam splitter in optical communication | |
US7864433B1 (en) | Free-space optical hybrid | |
JP2014199995A (en) | Optical receiver | |
CN115542564B (en) | Polarization-independent space light self-homodyne interferometer |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
A621 | Written request for application examination |
Free format text: JAPANESE INTERMEDIATE CODE: A621 Effective date: 20130926 |
|
A131 | Notification of reasons for refusal |
Free format text: JAPANESE INTERMEDIATE CODE: A131 Effective date: 20140819 |
|
A02 | Decision of refusal |
Free format text: JAPANESE INTERMEDIATE CODE: A02 Effective date: 20141216 |