JP5212203B2 - Optical receiver - Google Patents

Optical receiver Download PDF

Info

Publication number
JP5212203B2
JP5212203B2 JP2009068017A JP2009068017A JP5212203B2 JP 5212203 B2 JP5212203 B2 JP 5212203B2 JP 2009068017 A JP2009068017 A JP 2009068017A JP 2009068017 A JP2009068017 A JP 2009068017A JP 5212203 B2 JP5212203 B2 JP 5212203B2
Authority
JP
Japan
Prior art keywords
polarization
light
signal
beam splitter
polarization beam
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2009068017A
Other languages
Japanese (ja)
Other versions
JP2010226170A (en
Inventor
勝仁 牟禮
正英 宮地
薫 日隈
徳一 宮崎
利夫 片岡
弘幸 佐藤
浩 長枝
代康 志賀
陽一 及川
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sumitomo Osaka Cement Co Ltd
Original Assignee
Sumitomo Osaka Cement Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sumitomo Osaka Cement Co Ltd filed Critical Sumitomo Osaka Cement Co Ltd
Priority to JP2009068017A priority Critical patent/JP5212203B2/en
Publication of JP2010226170A publication Critical patent/JP2010226170A/en
Application granted granted Critical
Publication of JP5212203B2 publication Critical patent/JP5212203B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Optical Communication System (AREA)

Description

本発明は、光受信器に関し、特に、DQPSK変調された光信号を多レベルの位相変調信号に復調する光受信器に関する。   The present invention relates to an optical receiver, and more particularly to an optical receiver that demodulates a DQPSK-modulated optical signal into a multilevel phase-modulated signal.

通信トラフィックの増大に伴い、高速・大容量化が求められる次世代長距離大容量光通信システムでは、多値変復調符号化技術の導入が検討されている。その代表的なものの一つに差動四相位相偏移変調(DQPSK変調,Differential Quadrature Phase Shift keying)方式がある。この方式では、従来の2値強度変調(OOK)方式と比べ、信号帯域が狭く、周波数利用効率の向上や伝送距離の拡大が実現できるほか、高感度化も期待できる。   In a next-generation long-distance large-capacity optical communication system that requires high speed and large capacity as communication traffic increases, the introduction of multilevel modulation / demodulation coding technology is being studied. One typical example is a differential quadrature phase shift keying (DQPSK modulation) system. In this method, compared to the conventional binary intensity modulation (OOK) method, the signal band is narrow, the frequency utilization efficiency can be improved and the transmission distance can be increased, and higher sensitivity can be expected.

まず、四相位相偏移変調(QPSK変調,Quadrature Phase Shift
keying)方式は、2ビットのデータから構成される各シンボル「00」,「01」,「11」及び「10」に対して、「θ」,「θ+π/2」,「θ+π」及び「θ+3π/2」が割り当てられる。ここで、「θ」は任意の位相である。そして、受信器は、受信信号の位相を検出することにより、送信データを再生する。QPSK変調方式を比較的容易に実現する手段として、DQPSK変調方式があり、DQPSK変調では、先に送信したシンボルの値と次に送信するシンボルの値との間の搬送波の位相変化量(「0」,「π/2」,「π」及び「3π/2」)が送信情報の2ビットに対応付けられる。したがって、受信器は、隣接する2つのシンボル間の位相差を検出することにより、送信データを再生することができる。
First, quadrature phase shift keying (QPSK modulation, quadrature phase shift)
keying) method is “θ”, “θ + π / 2”, “θ + π”, and “θ + 3π” for each symbol “00”, “01”, “11”, and “10” composed of 2-bit data. / 2 "is assigned. Here, “θ” is an arbitrary phase. Then, the receiver reproduces the transmission data by detecting the phase of the received signal. As a means for realizing the QPSK modulation method relatively easily, there is a DQPSK modulation method. In the DQPSK modulation, the phase change amount of the carrier wave between the value of the symbol transmitted first and the value of the symbol transmitted next (“0 ”,“ Π / 2 ”,“ π ”, and“ 3π / 2 ”) are associated with 2 bits of transmission information. Therefore, the receiver can recover the transmission data by detecting the phase difference between two adjacent symbols.

特許文献1又は2に示すように、DQPSK変調された光信号を復調するには、I(In-phase)信号生成用とQ(Quadrature)信号生成用の2つの遅延干渉計を必要とし、しかも、高精度で位相差を復調する必要がある。しかし、光受信器の周辺温度などの影響で、遅延干渉計内の光路長が変化し、位相が安定しないため、高精度な復調が困難となる。また、いずれの干渉計でどちらの信号成分を復調しているのかが識別できないなど問題があった。また、光信号を分岐し2つの干渉計に導入するまでの光路長差や、各干渉計を構成する光路長の差を、最適に調整する必要があり、制御系が極めて複雑化するという問題を生じていた。   As shown in Patent Document 1 or 2, demodulating a DQPSK modulated optical signal requires two delay interferometers for generating an I (In-phase) signal and a Q (Quadrature) signal, and It is necessary to demodulate the phase difference with high accuracy. However, the optical path length in the delay interferometer changes due to the influence of the ambient temperature of the optical receiver and the phase is not stable, making it difficult to perform highly accurate demodulation. In addition, there is a problem that which interferometer cannot identify which signal component is demodulated. In addition, it is necessary to optimally adjust the optical path length difference between the branching of the optical signal and introduction into the two interferometers, and the difference in optical path length constituting each interferometer, and the control system becomes extremely complicated. Was produced.

また、特許文献3には、図1に示すように、DQPSK変調の光受信器を、ハーフミラーを用いた空間光学系で構成することが開示されている。DQPSK変調された光信号Aは、レンズ100を通過して2分岐プリズム101に入射する。分岐した一方の光波a1は、ハーフミラー102で、さらに2つに分かれ、第1のリフレクタ103で反射する光波a2と、第2のリフレクタで反射する光波a3となる。光波a3は、位相調整部105を通過することにより+π/4だけ位相がシフトするよう調整される。   Patent Document 3 discloses that a DQPSK-modulated optical receiver is configured with a spatial optical system using a half mirror, as shown in FIG. The DQPSK-modulated optical signal A passes through the lens 100 and enters the bifurcated prism 101. One of the branched light waves a1 is further divided into two by the half mirror 102, and becomes a light wave a2 reflected by the first reflector 103 and a light wave a3 reflected by the second reflector. The light wave a3 is adjusted so that the phase is shifted by + π / 4 by passing through the phase adjusting unit 105.

光波a2とa3は再度ハーフミラー102で合波し、2つの合成光(a4,a5)と合成光(a6,a7)を形成し、ミラー105又は106で反射し、レンズ110又は111で収束されて、信号光a8とa9となり、平衡光検出器112に入射する。   The light waves a2 and a3 are combined again by the half mirror 102 to form two combined light (a4, a5) and combined light (a6, a7), reflected by the mirror 105 or 106, and converged by the lens 110 or 111. Thus, the signal lights a8 and a9 become incident on the balanced photodetector 112.

他方、分岐したもう一方の光波b1は、ハーフミラー102で、さらに2つに分かれ、第1のリフレクタ103で反射する光波b2と、第2のリフレクタで反射する光波b3となる。光波b3は、位相調整部105を通過することにより−π/4だけ位相がシフトするよう調整される。   On the other hand, the other branched light wave b1 is further divided into two by the half mirror 102, and becomes a light wave b2 reflected by the first reflector 103 and a light wave b3 reflected by the second reflector. The light wave b <b> 3 is adjusted so that the phase is shifted by −π / 4 by passing through the phase adjustment unit 105.

光波b2とb3は再度ハーフミラー102で合波し、2つの合成光(b4,b5)と合成光(b6,b7)を形成し、ミラー105又は106で反射し、レンズ107又は108で収束されて、信号光b8とb9となり、平衡光検出器109に入射する。   The light waves b2 and b3 are combined again by the half mirror 102 to form two combined light (b4, b5) and combined light (b6, b7), reflected by the mirror 105 or 106, and converged by the lens 107 or 108. Thus, the signal lights b8 and b9 are incident on the balanced photodetector 109.

このように、DQPSK変調の光受信器を空間光学系で組み立てる場合には、位相調整部105において、光波a3とb3に異なる位相シフトを付与する必要があるため、位相調整部105の構成が複雑化する上、装置の小型化が難しい。しかも、ハーフミラー102、2つのリフレクタ(103,104)及び2つのミラー(105,106)などの各光学部品を精度よく配置する必要があり、これらの位置関係は温度変化の影響を受け易く、調整が煩雑化するなどの不具合がある。   Thus, when a DQPSK-modulated optical receiver is assembled with a spatial optical system, the phase adjustment unit 105 needs to apply different phase shifts to the light waves a3 and b3, so that the configuration of the phase adjustment unit 105 is complicated. In addition, it is difficult to reduce the size of the device. Moreover, the optical components such as the half mirror 102, the two reflectors (103, 104), and the two mirrors (105, 106) need to be arranged with high precision, and their positional relationship is easily affected by temperature changes. There are problems such as complicated adjustment.

これに対し、特許文献4において、本出願人は、図2に示すように、偏波面に着目する光受信器を提案した。具体的には、DQPSK変調光Aは、偏波コントローラ1を経て、偏波面が一方向に揃えた状態Bで、1ビット遅延回路に導入される。1ビット遅延回路では、偏波保持型のファイバカプラ(21,22,24)で構成されるとともに、一方の分岐光の経路には偏波面を90度回転させる半波長板23が配置されている。これにより、合波された光波は、符号Cに示すように、互いに1ビット遅延した2つの信号光が、偏波面が直交する状態で合成されている。   On the other hand, in Patent Document 4, the present applicant has proposed an optical receiver that focuses on the plane of polarization as shown in FIG. Specifically, the DQPSK modulated light A is introduced into the 1-bit delay circuit through the polarization controller 1 in a state B in which the plane of polarization is aligned in one direction. The 1-bit delay circuit is composed of polarization-maintaining fiber couplers (21, 22, 24), and a half-wave plate 23 that rotates the plane of polarization by 90 degrees is disposed in one of the branched light paths. . As a result, the combined light wave is combined with two signal lights delayed by 1 bit from each other in a state in which the planes of polarization are orthogonal, as indicated by reference numeral C.

さらに、信号光Cは、ハーフミラー31と反射板32〜34を経て2つに分岐し、+45度の1/4波長板41と−45度の1/4波長板を各々経て、偏波分離手段51,52で、さらに2ずつに分かれ、バランスド受光素子61,62に入射し、I成分信号とQ成分信号とを生成する。   Further, the signal light C is split into two through the half mirror 31 and the reflecting plates 32 to 34, and is polarized through the +45 degree quarter wavelength plate 41 and the -45 degree quarter wavelength plate, respectively. The means 51 and 52 further divide into two and enter the balanced light receiving elements 61 and 62 to generate the I component signal and the Q component signal.

しかしながら、偏波保持型のファイバカプラは、温度変化や外部応力などの外乱に対して非常に敏感であり、装置としての安定性が乏しいという問題がある。また、ハーフミラーも偏波依存性の影響を受けるため、光路長に誤差が生じ易く、I成分信号とQ成分信号との間に時間的なずれが発生する可能性が高い。   However, the polarization-maintaining fiber coupler is very sensitive to disturbances such as temperature changes and external stresses, and has a problem of poor stability as a device. In addition, since the half mirror is also affected by the polarization dependence, an error is likely to occur in the optical path length, and there is a high possibility that a time lag occurs between the I component signal and the Q component signal.

さらに、特許文献3のように、ハーフミラーを1ビット遅延回路における分岐手段として利用する場合には、図2の符号21に示す分岐側においては、偏波依存型のハーフミラーを使用し、符号24で示す合波側は偏波合成という、互いに機能が異なるハーフミラーを用意する必要があり、装置が複雑化するという問題もある。   Further, when a half mirror is used as a branching means in a 1-bit delay circuit as in Patent Document 3, a polarization-dependent half mirror is used on the branch side indicated by reference numeral 21 in FIG. On the multiplexing side indicated by 24, it is necessary to prepare half mirrors called polarization synthesis, which have different functions, and there is a problem that the apparatus becomes complicated.

特開2006−295603号公報JP 2006-295603 A 特開2007−158852号公報JP 2007-158852 A 特開2007−151026号公報JP 2007-151026 A 特願2008−255528号(2008年9月30日出願)Japanese Patent Application No. 2008-255528 (filed on September 30, 2008)

本発明が解決しようとする課題は、上述したような問題を解決し、DQPSK変調された光信号を多レベルの位相変調信号に復調する光受信器において、簡単な空間光学系を利用して、温度変化などの外乱の影響を受けにくい光受信器を提供することである。   The problem to be solved by the present invention is to solve the above-mentioned problems, in an optical receiver that demodulates a DQPSK-modulated optical signal into a multi-level phase-modulated signal, using a simple spatial optical system, An object of the present invention is to provide an optical receiver that is not easily affected by disturbances such as temperature changes.

上記課題を解決するため、請求項に係る発明は、DQPSK変調された光信号を多レベルの位相変調信号に復調する光受信器において、DQPSK変調された光信号を、偏波面の異なる2つの光波に分岐すると共に、一方の分岐光に1ビット分の遅れを発生させ、両者を合波する光学系を少なくとも偏光ビームスプリッターを用いて構成し、偏光ビームスプリッターから出射する光波に対して、I成分信号とQ成分信号との位相関係を相対的に固定するための1/4波長板を設け、該偏光ビームスプリッターには、偏波コントローラを介した単一の光波が入射され、該偏光ビームスプリッターから出射する光波は2つに分岐され、一方の分岐光は、+45度の該1/4波長板と22.5度の偏波面回転手段及び偏波分離手段を経てI成分信号を生成し、他方の分岐光は−45度の該1/4波長板と22.5度の偏波面回転手段及び偏波分離手段を経てQ成分信号を生成することを特徴とする。 In order to solve the above-mentioned problem, an invention according to claim 1 is directed to an optical receiver that demodulates a DQPSK-modulated optical signal into a multi-level phase-modulated signal, and converts the DQPSK-modulated optical signal into two different polarization planes. An optical system that branches into a light wave and generates a delay of one bit in one of the branched lights and combines them is configured using at least a polarization beam splitter. A quarter-wave plate for relatively fixing the phase relationship between the component signal and the Q component signal is provided, and a single light wave is incident on the polarization beam splitter via a polarization controller, and the polarization beam The light wave emitted from the splitter is branched into two, and one of the branched lights passes through the +45 degree ¼ wavelength plate, the 22.5 degree polarization plane rotating means, and the polarization separating means. It generates, the other branched light and generates a Q component signals through the polarization rotation means and the polarization separating means of the quarter-wave plate and 22.5 degrees -45 degrees.

請求項に係る発明は、DQPSK変調された光信号を多レベルの位相変調信号に復調する光受信器において、DQPSK変調された光信号を、偏波面の異なる2つの光波に分岐すると共に、一方の分岐光に1ビット分の遅れを発生させ、両者を合波する光学系を少なくとも偏光ビームスプリッターを用いて構成し、偏光ビームスプリッターから出射する光波に対して、I成分信号とQ成分信号との位相関係を相対的に固定するための1/4波長板を設け、偏波コントローラを介した単一の光波を偏波分離手段で2つ分離すると共に、45度の偏波面回転手段を通過した後に、該偏光ビームスプリッターに入射させ、該偏光ビームスプリッターから出射する2つの光波の内、一方の光波は+45度の該1/4波長板と22.5度の偏波面回転手段及び偏波分離手段を経てI成分信号を生成し、他方の光波は−45度の該1/4波長板と22.5度の偏波面回転手段及び偏波分離手段を経てQ成分信号を生成することを特徴とする。 The invention according to claim 2 is an optical receiver that demodulates a DQPSK-modulated optical signal into a multi-level phase-modulated signal, and branches the DQPSK-modulated optical signal into two optical waves having different polarization planes, An optical system for generating a delay of 1 bit in the split light and combining the two is configured using at least a polarization beam splitter, and an I component signal and a Q component signal for the light wave emitted from the polarization beam splitter A quarter-wave plate is provided to relatively fix the phase relationship between the two, a single light wave via the polarization controller is separated into two by the polarization separation means, and passes through the 45-degree polarization plane rotation means After that, one of the two light waves incident on the polarization beam splitter and emitted from the polarization beam splitter is rotated by +45 degrees of the quarter wavelength plate and 22.5 degrees of polarization plane rotation. The I component signal is generated through the stage and the polarization separation means, and the other light wave is converted to the Q component signal through the quarter wave plate of −45 degrees, the polarization plane rotation means and the polarization separation means of 22.5 degrees. It is characterized by generating.

請求項に係る発明は、DQPSK変調された光信号を多レベルの位相変調信号に復調する光受信器において、DQPSK変調された光信号を、偏波面の異なる2つの光波に分岐すると共に、一方の分岐光に1ビット分の遅れを発生させ、両者を合波する光学系を少なくとも偏光ビームスプリッターを用いて構成し、偏光ビームスプリッターから出射する光波に対して、I成分信号とQ成分信号との位相関係を相対的に固定するための1/4波長板を設け、該偏光ビームスプリッターには、偏波コントローラを介した単一の光波が入射され、該偏光ビームスプリッターから出射する光波は−45度の該1/4波長板を通過させた後に2つに分岐され、一方の分岐光は、22.5度の偏波面回転手段及び偏波分離手段を経てI成分信号を生成し、他方の分岐光は半波長板と22.5度の偏波面回転手段及び偏波分離手段を経てQ成分信号を生成することを特徴とする。 The invention according to claim 3 is an optical receiver that demodulates a DQPSK-modulated optical signal into a multi-level phase-modulated signal, and branches the DQPSK-modulated optical signal into two light waves having different polarization planes, An optical system for generating a delay of 1 bit in the split light and combining the two is configured using at least a polarization beam splitter, and an I component signal and a Q component signal for the light wave emitted from the polarization beam splitter A quarter wave plate for relatively fixing the phase relationship is provided, and a single light wave is incident on the polarization beam splitter via the polarization controller, and the light wave emitted from the polarization beam splitter is − After passing through the quarter-wave plate of 45 degrees, it is branched into two, and one of the branched lights generates an I component signal through a polarization plane rotating means and a polarization separating means of 22.5 degrees. The other branched light and generates a Q component signals through the polarization rotation means and the polarization separating means of the half-wave plate and 22.5 degrees.

請求項に係る発明は、請求項1乃至のいずれかに記載の光受信器において、該偏光ビームスプリッターから出射する光波の一部の光強度を検出し、該検出した光強度に基づく信号により、該偏光ビームスプリッターと協働して前記1ビット分の遅れを発生させる反射手段の位置を調整することを特徴とする。 According to a fourth aspect of the present invention, in the optical receiver according to any one of the first to third aspects, a signal based on the detected light intensity is detected by detecting a light intensity of a part of the light wave emitted from the polarization beam splitter. Thus, the position of the reflecting means for generating the delay of 1 bit is adjusted in cooperation with the polarizing beam splitter.

請求項1乃至3に係る発明により、DQPSK変調された光信号を多レベルの位相変調信号に復調する光受信器において、DQPSK変調された光信号を、偏波面の異なる2つの光波に分岐すると共に、一方の分岐光に1ビット分の遅れを発生させ、両者を合波する光学系を少なくとも偏光ビームスプリッターを用いて構成し、偏光ビームスプリッターから出射する光波に対して、I成分信号とQ成分信号との位相関係を相対的に固定するための1/4波長板を設けたため、偏波分離・合成を偏光ビームスプリッターを用いて簡単な空間光学系で実現でき、しかも、偏光ビームスプリッターと1/4波長板を組み合わせることにより、I成分信号とQ成分信号とを正確に分離することが可能となる。さらに、光学部品の調整を行う必要がある箇所が、偏光ビームスプリッターを利用した1ビット分の遅延回路など、従来の空間光学系と比較しても調整箇所が少なくなるため、温度変化などの外乱に対する安定性を向上することが可能となる。 According to the first to third aspects of the present invention, in an optical receiver that demodulates a DQPSK-modulated optical signal into a multilevel phase-modulated signal, the DQPSK-modulated optical signal is branched into two optical waves having different polarization planes. An optical system that generates a delay of one bit in one branched light and combines them is configured using at least a polarization beam splitter, and an I component signal and a Q component with respect to the light wave emitted from the polarization beam splitter Since a quarter wave plate for relatively fixing the phase relationship with the signal is provided, polarization separation / combination can be realized with a simple spatial optical system using a polarization beam splitter. By combining the / 4 wavelength plate, the I component signal and the Q component signal can be accurately separated. Furthermore, since there are fewer adjustment points compared to conventional spatial optical systems, such as a 1-bit delay circuit using a polarizing beam splitter, it is necessary to adjust the optical components. It becomes possible to improve the stability with respect to.

さらに請求項に係る発明により、偏光ビームスプリッターには、偏波コントローラを介した単一の光波が入射され、該偏光ビームスプリッターから出射する光波は2つに分岐され、一方の分岐光は、+45度の該1/4波長板と22.5度の偏波面回転手段及び偏波分離手段を経てI成分信号を生成し、他方の分岐光は−45度の該1/4波長板と22.5度の偏波面回転手段及び偏波分離手段を経てQ成分信号を生成するため、簡単な空間光学系でDQPSK変調の光受信器を実現することができる。 Furthermore , according to the first aspect of the present invention, a single light wave is incident on the polarization beam splitter via the polarization controller, and the light wave emitted from the polarization beam splitter is branched into two. The I component signal is generated through the +45 degree quarter wave plate and the 22.5 degree polarization plane rotating means and the polarization separating means, and the other split light is -45 degree quarter wave plate and 22 Since the Q component signal is generated through the polarization plane rotation means and the polarization separation means of 5 degrees, a DQPSK-modulated optical receiver can be realized with a simple spatial optical system.

さらに請求項に係る発明により、偏波コントローラを介した単一の光波を偏波分離手段で2つ分離すると共に、45度の偏波面回転手段を通過した後に、該偏光ビームスプリッターに入射させ、該偏光ビームスプリッターから出射する2つの光波の内、一方の光波は+45度の該1/4波長板と22.5度の偏波面回転手段及び偏波分離手段を経てI成分信号を生成し、他方の光波は−45度の該1/4波長板と22.5度の偏波面回転手段及び偏波分離手段を経てQ成分信号を生成するため、簡単な空間光学系でDQPSK変調の光受信器を実現することができる。 Further, according to the invention according to claim 2 , the single light wave via the polarization controller is separated into two by the polarization separation means, and after passing through the polarization plane rotation means of 45 degrees, is made incident on the polarization beam splitter. Of the two light waves emitted from the polarization beam splitter, one of the light waves generates an I component signal through the +45 degree quarter wave plate, the 22.5 degree polarization plane rotating means, and the polarization separating means. The other light wave generates a Q component signal through the -45 degree ¼ wavelength plate, 22.5 degree polarization plane rotating means and polarization separating means, so that DQPSK modulated light can be obtained with a simple spatial optical system. A receiver can be realized.

さらに請求項に係る発明により、偏光ビームスプリッターには、偏波コントローラを介した単一の光波が入射され、該偏光ビームスプリッターから出射する光波は−45度の該1/4波長板を通過させた後に2つに分岐され、一方の分岐光は、22.5度の偏波面回転手段及び偏波分離手段を経てI成分信号を生成し、他方の分岐光は半波長板と22.5度の偏波面回転手段及び偏波分離手段を経てQ成分信号を生成するため、簡単な空間光学系でDQPSK変調の光受信器を実現することができる。 Furthermore, according to the invention of claim 3 , a single light wave is incident on the polarization beam splitter via the polarization controller, and the light wave emitted from the polarization beam splitter passes through the quarter wave plate of −45 degrees. After being split, the light is split into two, one split light passes through a 22.5 degree polarization plane rotating means and a polarization splitting means to generate an I component signal, and the other split light is a half-wave plate and 22.5 Since the Q component signal is generated through the polarization plane rotating means and the polarization separating means, a DQPSK-modulated optical receiver can be realized with a simple spatial optical system.

請求項に係る発明により、偏光ビームスプリッターから出射する光波の一部の光強度を検出し、該検出した光強度に基づく信号により、該偏光ビームスプリッターと協働して前記1ビット分の遅れを発生させる反射手段の位置を調整するため、1ビット分の遅延回路を常に適正な状態に維持でき、温度変化などの外乱の影響を受け難いDQPSK変調の光受信器を提供することが可能となる。 According to the invention of claim 4 , the light intensity of a part of the light wave emitted from the polarization beam splitter is detected, and the signal based on the detected light intensity cooperates with the polarization beam splitter to delay the one bit. Therefore, it is possible to provide a DQPSK-modulated optical receiver that can always maintain a 1-bit delay circuit in an appropriate state and is not easily affected by disturbance such as a temperature change. Become.

従来の空間光学系で構成されるDQPSK変調の光受信器を示す図である。It is a figure which shows the optical receiver of the DQPSK modulation comprised with the conventional spatial optical system. 本出願人が先の出願で提示した偏波面を利用したDQPSK変調の光受信器を示す図である。It is a figure which shows the optical receiver of the DQPSK modulation using the polarization plane which the present applicant presented by the previous application. 本発明の光受信器に係る第1の実施例を示す図である。It is a figure which shows the 1st Example which concerns on the optical receiver of this invention. 本発明の光受信器に係る第2の実施例を示す図である。It is a figure which shows the 2nd Example which concerns on the optical receiver of this invention. 本発明の光受信器に係る第3の実施例を示す図である。It is a figure which shows the 3rd Example which concerns on the optical receiver of this invention. 本発明の光受信器において、1ビット分の遅延回路に光路長調整手段を設ける例を示す図である。It is a figure which shows the example which provides an optical path length adjustment means in the delay circuit for 1 bit in the optical receiver of this invention.

以下、本発明を好適例を用いて詳細に説明する。
本発明は、図3に示すように、DQPSK変調された光信号Aを多レベルの位相変調信号に復調する光受信器において、DQPSK変調された光信号を、偏波面の異なる2つの光波に分岐すると共に、一方の分岐光に1ビット分の遅れを発生させ、両者を合波する光学系を少なくとも偏光ビームスプリッター2を用いて構成し、偏光ビームスプリッターから出射する光波に対して、I(In-phase)成分信号とQ(Quadrature)成分信号との位相関係を相対的に固定するための1/4波長板(8,9)を設けたことを特徴とする。
Hereinafter, the present invention will be described in detail using preferred examples.
As shown in FIG. 3, in the optical receiver that demodulates the DQPSK modulated optical signal A into a multi-level phase modulated signal, the DQPSK modulated optical signal is branched into two optical waves having different polarization planes. At the same time, an optical system that generates a delay of one bit in one of the branched lights and combines them is configured by using at least the polarization beam splitter 2, and I (In -phase) component signals and Q (Quadrature) component signals are provided with quarter-wave plates (8, 9) for relatively fixing the phase relationship.

本発明の光受信器の特徴は、I成分信号及びQ成分信号の復調を行うために必要な干渉計が、図3に示すように、偏光ビームスプリッター2を用いた一つの干渉手段のみから構成されることである。この偏光ビームスプリッターを利用することで、(1)DQPSK変調された光信号を2つの直交する偏波面を有する光波に分岐できること、(2)偏波面の関係を維持しながら、2つの分岐光を合波すること、という機能を実現できる。   The optical receiver of the present invention is characterized in that an interferometer necessary for demodulating the I component signal and the Q component signal is composed of only one interference means using the polarization beam splitter 2 as shown in FIG. It is to be done. By using this polarization beam splitter, (1) the DQPSK-modulated optical signal can be branched into two light waves having two orthogonal polarization planes, and (2) the two branched lights can be split while maintaining the polarization plane relationship. The function of combining can be realized.

しかも、偏光ビームスプリッターと1/4波長板を組み合わせることにより、I成分信号とQ成分信号とを正確に分離することが可能となる。精度の高い、I成分信号とQ成分信号を得ることができる。   In addition, by combining the polarization beam splitter and the quarter wave plate, it is possible to accurately separate the I component signal and the Q component signal. A highly accurate I component signal and Q component signal can be obtained.

図3に示された本発明の光受信器の第1の実施例について、詳細に説明する。
偏波コントローラ1で光信号Aの偏波面を調整し、偏光ビームスプリッター2に入射させる。偏光ビームスプリッターでは信号光が2つの光波に分岐され、かつ、2つの分岐光は互いに直交する偏波面を有している。偏光ビームスプリッター2で分岐した2つの光波の強度がほぼ同じになるように、偏波コントローラ1を出射する光波の偏波面が設定されている。
The first embodiment of the optical receiver of the present invention shown in FIG. 3 will be described in detail.
The polarization plane of the optical signal A is adjusted by the polarization controller 1 and is incident on the polarization beam splitter 2. In the polarization beam splitter, the signal light is branched into two light waves, and the two branched lights have polarization planes orthogonal to each other. The polarization plane of the light wave emitted from the polarization controller 1 is set so that the two light waves branched by the polarization beam splitter 2 have substantially the same intensity.

一方の分岐光は、プリズムミラー3に向い、図3に示すようにプリズムミラー3で反射して、再度、偏光ビームスプリッター2に入射する。他方の分岐光は、プリズムミラー4に向い、プリズムミラー4で反射して、再度、偏光ビームスプリッター2に入射する。この2つの分岐光の光路長差は1ビット分の位相差を生じるように設定されている。特に、偏光ビームスプリッター2に対してプリズムミラー4の位置は固定されており、プリズムミラー3の位置は、偏光ビームスプリッターに対して近接又は離間できるよう移動可能なように設定されている。プリズムミラー3の移動機構は種々のものが利用可能であるが、位置を微調整する場合には、圧電素子5などが好適に利用可能である。   One branched light is directed to the prism mirror 3, reflected by the prism mirror 3 as shown in FIG. 3, and then enters the polarization beam splitter 2 again. The other branched light is directed to the prism mirror 4, is reflected by the prism mirror 4, and is incident on the polarization beam splitter 2 again. The optical path length difference between the two branched lights is set so as to produce a phase difference of 1 bit. In particular, the position of the prism mirror 4 is fixed with respect to the polarizing beam splitter 2, and the position of the prism mirror 3 is set so as to be movable so as to be close to or away from the polarizing beam splitter. Various mechanisms for moving the prism mirror 3 can be used. However, when the position is finely adjusted, the piezoelectric element 5 or the like can be preferably used.

プリズムミラー3及び4から反射して、偏光ビームスプリッター2に再入射した光波は、互いに1ビット分の位相差を有し、直交する偏波面の関係を維持しながら合波され、偏光ビームスプリッター2から出射する。   The light waves reflected from the prism mirrors 3 and 4 and re-entering the polarization beam splitter 2 have a phase difference of 1 bit and are combined while maintaining the orthogonal polarization plane relationship, and the polarization beam splitter 2 Exits from.

偏光ビームスプリッターから出射する光波は、ハーフミラー6で2つに分岐され、一方の分岐光は、+45度の1/4波長板8と22.5度の偏波面回転手段10及び方解石などの偏波分離手段11を経て、I成分信号を生成するためのI信号光とI信号光に分離される。I信号光とI信号光とは、バランスド受光素子など不図示の受光素子に入射され、I成分信号を生成する。 The light wave emitted from the polarization beam splitter is branched into two by the half mirror 6, and one of the branched lights is a +45 degree quarter wave plate 8, a 22.5 degree polarization plane rotating means 10, a calcite or other polarized light. is separated into signal light - through the wave separating means 11, I + signal light for generating I-component signal and I. The I + signal light and the I signal light are incident on a light receiving element (not shown) such as a balanced light receiving element to generate an I component signal.

他方の分岐光は、ミラー7で反射され、−45度の1/4波長板9と22.5度の偏波面回転手段10及び偏波分離手段11を経て、Q成分信号を生成するためのQ信号光とQ信号光に分離される。I成分信号と同様に、Q信号光とQ信号光とは、不図示の受光素子により、Q成分信号を生成する。 The other branched light is reflected by the mirror 7 and passes through the −45 degree quarter wave plate 9 and the 22.5 degree polarization plane rotating means 10 and polarization separating means 11 to generate a Q component signal. Q + signal light and Q - is separated into signal light. Similar to the I component signal, the Q + signal light and the Q signal light generate a Q component signal by a light receiving element (not shown).

なお、Q成分の信号光の方は、I成分の信号光と比較し、ハーフミラー6とミラー7との間の光路長だけ余分に伝搬している。この光路長差により、I成分信号とQ成分信号とが位相差を生じる場合があり、これを解消するためには、図2に示すようなハーフミラー31と反射板32〜34を利用して、両者の光路長を整合させることも可能である。なお、ハーフミラーに代わりに、偏光ビームスプリッターやカルサイトなどの複屈折部材を用いることにより、ハーフミラー特有の位相差の発生を抑制することも可能である。   Note that the Q component signal light is propagated in excess of the optical path length between the half mirror 6 and the mirror 7 as compared with the I component signal light. This optical path length difference may cause a phase difference between the I component signal and the Q component signal. In order to eliminate this, a half mirror 31 and reflectors 32 to 34 as shown in FIG. 2 are used. It is also possible to match the optical path lengths of both. In addition, it is also possible to suppress generation | occurrence | production of the phase difference peculiar to a half mirror by using birefringent members, such as a polarization beam splitter and a calcite, instead of a half mirror.

次に、図4に基づいて、本発明の光受信器の第2の実施例について、説明する。
図4において、信号光Aは、偏波コントローラ1を経た後、偏波分離手段12で2つの光波に分離される。各光波は、45度の偏波面回転手段13を通過した後に偏光ビームスプリッター2に入射し、第1の実施例と同様に、偏光ビームスプリッター2及びプリズムミラー3及び4により、1ビット分の位相差を有し互いに偏波面が直交する光波に変換される。符号5は、プリズムミラー3の位置を調整するための圧電素子を示す。なお、位置を調整するために、ポリマーやシリコンなどを光路中に介在させることで、光路長を変更することも可能である。
Next, a second embodiment of the optical receiver of the present invention will be described with reference to FIG.
In FIG. 4, the signal light A passes through the polarization controller 1 and then is separated into two light waves by the polarization separation means 12. Each light wave passes through the 45-degree polarization plane rotating means 13 and then enters the polarization beam splitter 2, and, as in the first embodiment, the polarization beam splitter 2 and the prism mirrors 3 and 4 are equivalent to one bit. It is converted into light waves having a phase difference and orthogonal polarization planes. Reference numeral 5 denotes a piezoelectric element for adjusting the position of the prism mirror 3. In order to adjust the position, it is possible to change the optical path length by interposing a polymer, silicon or the like in the optical path.

1ビット分の位相差を有し互いに偏波面が直交する光波が2つ生成された後、一方の光波は、+45度の1/4波長板8と22.5度の偏波面回転手段10及び偏波分離手段11を経て、I成分信号を生成するためのI信号光とI信号光に分離される。 After two light waves having a phase difference of 1 bit and whose polarization planes are orthogonal to each other are generated, one of the light waves is a +45 degree quarter wave plate 8 and a 22.5 degree polarization plane rotating means 10 and The light is separated into I + signal light and I signal light for generating an I component signal through the polarization separation means 11.

偏光ビームスプリッター2から出射する他方の光波は、−45度の1/4波長板9と22.5度の偏波面回転手段10及び偏波分離手段11を経て、Q成分信号を生成するためのQ信号光とQ信号光に分離される。 The other light wave emitted from the polarization beam splitter 2 passes through a -45 degree quarter wave plate 9 and a 22.5 degree polarization plane rotating means 10 and polarization separating means 11 to generate a Q component signal. Q + signal light and Q - is separated into signal light.

第2の実施例では、ハーフミラーなどの光波を分岐する手段を用いていないため、ハーフミラーの偏波依存性の影響を受けず、光路長に誤差が生じ難く、I成分信号とQ成分信号との間に時間的なずれが発生するのを抑制できる。   In the second embodiment, since no means for branching light waves such as a half mirror is used, there is no influence of the polarization dependency of the half mirror, and an error in the optical path length hardly occurs, and the I component signal and the Q component signal. It is possible to suppress the occurrence of a time lag between the two.

次に、図5に基づいて、本発明の光受信器の第3の実施例について、説明する。
図5は、図3の第1の実施例の応用例であり、偏光ビームスプリッター2を出射するまでは、両者は同じ構成である。図5では、偏光ビームスプリッター2から出射した、1ビット分の位相差を有し互いに偏波面が直交する光波は、−45度の1/4波長板14を通過させた後に、ハーフミラー15で2つに分岐され、一方の分岐光は、22.5度の偏波面回転手段及び偏波分離手段を経て、I成分信号を生成するためのI信号光とI信号光に分離される。
Next, a third embodiment of the optical receiver of the present invention will be described with reference to FIG.
FIG. 5 shows an application example of the first embodiment of FIG. 3, and both have the same configuration until they exit the polarization beam splitter 2. In FIG. 5, the light waves emitted from the polarization beam splitter 2 and having a phase difference of 1 bit and whose planes of polarization are orthogonal to each other pass through the −45 degree quarter-wave plate 14, and then are transmitted by the half mirror 15. One of the branched lights is split into I + signal light and I signal light for generating an I component signal via a polarization plane rotating means and a polarization separating means of 22.5 degrees. .

他方の分岐光は、ハーフミラー15及びミラー16を経由し、さらに、半波長板17と22.5度の偏波面回転手段10及び偏波分離手段11を経て、Q成分信号を生成するためのQ信号光とQ信号光に分離される。 The other branched light passes through the half mirror 15 and the mirror 16, and further passes through the half-wave plate 17 and the polarization plane rotating means 10 and the polarization separating means 11 of 22.5 degrees to generate a Q component signal. Q + signal light and Q - is separated into signal light.

1/4波長板14は、半波長板17と比較して高価であるため、第3の実施例では、1/4波長板を1つとし、製造コストの低減を図っている。   Since the quarter-wave plate 14 is more expensive than the half-wave plate 17, in the third embodiment, one quarter-wave plate is used to reduce the manufacturing cost.

次に、図6を用いて、偏光ビームスプリッター2及びプリズムミラー3及び4によって構成される、1ビット分の遅延回路をより正確に調整する方法を説明する。
図6の基本構成は、第2の実施例を示す図4の構成とほぼ同様である。偏光ビームスプリッター2から出射する光波の一部をハーフミラー71,72で抽出し、それらを、ミラー73及びハーフミラー74で合成し、受光素子75で光の強度を検出する。ディザ回路77で、プリズムミラー3の変位を変化させながら、該受光素子75からの光強度変化をモニタし、コントローラ76で1ビット分の遅延を実現できる最適な位置を決定する。例えば、光強度が最大光量となるようにプリズムミラー3を設定することで、最適位置を決定することができる。
Next, a method for more accurately adjusting the delay circuit for 1 bit constituted by the polarization beam splitter 2 and the prism mirrors 3 and 4 will be described with reference to FIG.
The basic configuration of FIG. 6 is substantially the same as the configuration of FIG. 4 showing the second embodiment. A part of the light wave emitted from the polarization beam splitter 2 is extracted by the half mirrors 71 and 72, synthesized by the mirror 73 and the half mirror 74, and the light intensity is detected by the light receiving element 75. The dither circuit 77 monitors the change in light intensity from the light receiving element 75 while changing the displacement of the prism mirror 3, and the controller 76 determines the optimum position where a delay of 1 bit can be realized. For example, the optimal position can be determined by setting the prism mirror 3 so that the light intensity becomes the maximum light amount.

以上説明したように、本発明によれば、DQPSK変調された光信号を多レベルの位相変調信号に復調する光受信器において、簡単な空間光学系を利用して、温度変化などの外乱の影響を受けにくい光受信器を提供することができる。   As described above, according to the present invention, in an optical receiver that demodulates a DQPSK-modulated optical signal into a multilevel phase-modulated signal, a simple spatial optical system is used to influence the influence of disturbance such as a temperature change. It is possible to provide an optical receiver that is not easily affected.

1 偏波コントローラ
2 偏光ビームスプリッター
3,4 プリズムミラー
8,9,15 1/4波長板
10 22.5度の偏波回転手段
11,12 偏波分離手段
13 45度の偏波回転手段
DESCRIPTION OF SYMBOLS 1 Polarization controller 2 Polarization beam splitters 3, 4 Prism mirror 8, 9, 15 1/4 wavelength plate 10 22.5 degree polarization rotation means 11, 12 Polarization separation means 13 45 degree polarization rotation means

Claims (4)

DQPSK変調された光信号を多レベルの位相変調信号に復調する光受信器において、
DQPSK変調された光信号を、偏波面の異なる2つの光波に分岐すると共に、一方の分岐光に1ビット分の遅れを発生させ、両者を合波する光学系を少なくとも偏光ビームスプリッターを用いて構成し、
偏光ビームスプリッターから出射する光波に対して、I成分信号とQ成分信号との位相関係を相対的に固定するための1/4波長板を設け、
該偏光ビームスプリッターには、偏波コントローラを介した単一の光波が入射され、該偏光ビームスプリッターから出射する光波は2つに分岐され、一方の分岐光は、+45度の該1/4波長板と22.5度の偏波面回転手段及び偏波分離手段を経てI成分信号を生成し、他方の分岐光は−45度の該1/4波長板と22.5度の偏波面回転手段及び偏波分離手段を経てQ成分信号を生成することを特徴とする光受信器。
In an optical receiver that demodulates a DQPSK modulated optical signal into a multi-level phase modulated signal,
An optical system that divides a DQPSK-modulated optical signal into two light waves with different polarization planes, generates a delay of one bit in one of the branched lights, and multiplexes them is configured using at least a polarization beam splitter And
A quarter wavelength plate is provided for relatively fixing the phase relationship between the I component signal and the Q component signal with respect to the light wave emitted from the polarization beam splitter,
A single light wave is incident on the polarization beam splitter via a polarization controller, and the light wave emitted from the polarization beam splitter is branched into two, and one branched light has the 1/4 wavelength of +45 degrees. The I component signal is generated through the plate, the polarization plane rotating means and the polarization separating means of 22.5 degrees, and the other branched light is the -45 degree quarter wave plate and the 22.5 degrees polarization plane rotating means. And an optical receiver that generates a Q component signal through the polarization separation means.
DQPSK変調された光信号を多レベルの位相変調信号に復調する光受信器において、
DQPSK変調された光信号を、偏波面の異なる2つの光波に分岐すると共に、一方の分岐光に1ビット分の遅れを発生させ、両者を合波する光学系を少なくとも偏光ビームスプリッターを用いて構成し、
偏光ビームスプリッターから出射する光波に対して、I成分信号とQ成分信号との位相関係を相対的に固定するための1/4波長板を設け、
偏波コントローラを介した単一の光波を偏波分離手段で2つ分離すると共に、45度の偏波面回転手段を通過した後に、該偏光ビームスプリッターに入射させ、該偏光ビームスプリッターから出射する2つの光波の内、一方の光波は+45度の該1/4波長板と22.5度の偏波面回転手段及び偏波分離手段を経てI成分信号を生成し、他方の光波は−45度の該1/4波長板と22.5度の偏波面回転手段及び偏波分離手段を経てQ成分信号を生成することを特徴とする光受信器。
In an optical receiver that demodulates a DQPSK modulated optical signal into a multi-level phase modulated signal,
An optical system that divides a DQPSK-modulated optical signal into two light waves with different polarization planes, generates a delay of one bit in one of the branched lights, and multiplexes them is configured using at least a polarization beam splitter And
A quarter wavelength plate is provided for relatively fixing the phase relationship between the I component signal and the Q component signal with respect to the light wave emitted from the polarization beam splitter,
A single light wave via a polarization controller is separated into two by a polarization separation means, and after passing through a 45-degree polarization plane rotation means, is incident on the polarization beam splitter and is emitted from the polarization beam splitter 2 Of the two light waves, one light wave generates an I component signal through the +45 degree quarter wave plate, 22.5 degree polarization plane rotating means and polarization separating means, and the other light wave is -45 degree. An optical receiver characterized in that a Q component signal is generated through the ¼ wavelength plate, a 22.5 degree polarization plane rotating means and a polarization separating means.
DQPSK変調された光信号を多レベルの位相変調信号に復調する光受信器において、
DQPSK変調された光信号を、偏波面の異なる2つの光波に分岐すると共に、一方の分岐光に1ビット分の遅れを発生させ、両者を合波する光学系を少なくとも偏光ビームスプリッターを用いて構成し、
偏光ビームスプリッターから出射する光波に対して、I成分信号とQ成分信号との位相関係を相対的に固定するための1/4波長板を設け、
該偏光ビームスプリッターには、偏波コントローラを介した単一の光波が入射され、該偏光ビームスプリッターから出射する光波は−45度の該1/4波長板を通過させた後に2つに分岐され、一方の分岐光は、22.5度の偏波面回転手段及び偏波分離手段を経てI成分信号を生成し、他方の分岐光は半波長板と22.5度の偏波面回転手段及び偏波分離手段を経てQ成分信号を生成することを特徴とする光受信器。
In an optical receiver that demodulates a DQPSK modulated optical signal into a multi-level phase modulated signal,
An optical system that divides a DQPSK-modulated optical signal into two light waves with different polarization planes, generates a delay of one bit in one of the branched lights, and multiplexes them is configured using at least a polarization beam splitter And
A quarter wavelength plate is provided for relatively fixing the phase relationship between the I component signal and the Q component signal with respect to the light wave emitted from the polarization beam splitter,
A single light wave is incident on the polarization beam splitter via a polarization controller, and the light wave emitted from the polarization beam splitter is branched into two after passing through the quarter wave plate of −45 degrees. One branched light passes through a 22.5 degree polarization plane rotating means and a polarization separating means to generate an I component signal, and the other branched light is a half-wave plate and a 22.5 degree polarization plane rotating means and a polarized light. An optical receiver characterized in that a Q component signal is generated through wave separation means.
請求項1乃至のいずれかに記載の光受信器において、該偏光ビームスプリッターから出射する光波の一部の光強度を検出し、該検出した光強度に基づく信号により、該偏光ビームスプリッターと協働して前記1ビット分の遅れを発生させる反射手段の位置を調整することを特徴とする光受信器。 In the optical receiver according to any one of claims 1 to 3, detecting the portion of light intensities of light waves emitted from the polarization beam splitter, the signal based on the light intensity the detected, polarization beam splitters and co An optical receiver characterized in that the position of the reflecting means that operates to generate a delay of one bit is adjusted.
JP2009068017A 2009-03-19 2009-03-19 Optical receiver Expired - Fee Related JP5212203B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2009068017A JP5212203B2 (en) 2009-03-19 2009-03-19 Optical receiver

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2009068017A JP5212203B2 (en) 2009-03-19 2009-03-19 Optical receiver

Publications (2)

Publication Number Publication Date
JP2010226170A JP2010226170A (en) 2010-10-07
JP5212203B2 true JP5212203B2 (en) 2013-06-19

Family

ID=43042938

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2009068017A Expired - Fee Related JP5212203B2 (en) 2009-03-19 2009-03-19 Optical receiver

Country Status (1)

Country Link
JP (1) JP5212203B2 (en)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2011077582A (en) * 2009-09-29 2011-04-14 Sumitomo Osaka Cement Co Ltd Optical receiver
CN103269251B (en) * 2013-05-30 2016-05-04 青岛海信宽带多媒体技术有限公司 Light differential quadrature phase shift keying demodulator

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2000031903A (en) * 1998-07-07 2000-01-28 Hitachi Ltd Polarized wave dispersion compensation system and polarized wave dispersion compensation method
JP4170298B2 (en) * 2005-01-31 2008-10-22 富士通株式会社 Optical receiver and optical reception method corresponding to differential four-phase shift keying

Also Published As

Publication number Publication date
JP2010226170A (en) 2010-10-07

Similar Documents

Publication Publication Date Title
JP5737874B2 (en) Demodulator and optical transceiver
US7529490B2 (en) Optical receiver and optical reception method compatible with differential quadrature phase shift keying
JP4744616B2 (en) Optical receiver
JP4710387B2 (en) Optical receiver and optical receiving method corresponding to differential M phase shift keying
JP4561443B2 (en) Optical receiver compatible with M-phase differential phase shift keying
JP5645374B2 (en) Interferometer, demodulator and optical communication module
US9077454B2 (en) Optical detector for detecting optical signal beams, method to detect optical signals, and use of an optical detector to detect optical signals
US9236940B2 (en) High bandwidth demodulator system and method
JP4820854B2 (en) Optical receiver
JP5212203B2 (en) Optical receiver
JP5343878B2 (en) Optical receiver
JP5375496B2 (en) Optical receiver
JP2011077582A (en) Optical receiver
JP2011077907A (en) Method of controlling optical receiver
JP2011217056A (en) Light receiver
JP5267070B2 (en) Demodulator and receiving device having the same
WO2013011549A1 (en) Optical demodulator
WO2011092862A1 (en) Light receiver
JP2010139888A (en) Receiving device
JP2012013781A (en) Optical demodulator
JP2012054831A (en) Optical demodulator
JP2011182027A (en) Optical demodulator
JP2010226769A (en) Optical receiver and optical receiving method corresponding to differential m-phase shift modulation system

Legal Events

Date Code Title Description
A711 Notification of change in applicant

Free format text: JAPANESE INTERMEDIATE CODE: A711

Effective date: 20110204

A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20110701

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20120829

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20121029

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20130129

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20130211

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20160308

Year of fee payment: 3

LAPS Cancellation because of no payment of annual fees