JPH03251827A - Optical phase detection system - Google Patents

Optical phase detection system

Info

Publication number
JPH03251827A
JPH03251827A JP2047313A JP4731390A JPH03251827A JP H03251827 A JPH03251827 A JP H03251827A JP 2047313 A JP2047313 A JP 2047313A JP 4731390 A JP4731390 A JP 4731390A JP H03251827 A JPH03251827 A JP H03251827A
Authority
JP
Japan
Prior art keywords
light
component
signal
phase
local
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2047313A
Other languages
Japanese (ja)
Inventor
Tetsuya Miyazaki
哲弥 宮崎
Shiro Ryu
史郎 笠
Hiroharu Wakabayashi
若林 博晴
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
KDDI Corp
Original Assignee
Kokusai Denshin Denwa KK
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kokusai Denshin Denwa KK filed Critical Kokusai Denshin Denwa KK
Priority to JP2047313A priority Critical patent/JPH03251827A/en
Publication of JPH03251827A publication Critical patent/JPH03251827A/en
Pending legal-status Critical Current

Links

Abstract

PURPOSE:To reduce a demodulation error by multiplexing signal light and local oscillation light in the same polarization state and extracting a Q component signal and an I component signal, and making those signals 180 deg. out of phase with each other and performing optical detection. CONSTITUTION:The signal light S1 which is polarized and compensated into a linear polarization state having a 45 deg. angle to the axis of the polarized wave separating element 10a of an optical 90 deg. hybrid 10 is made incident on the element 10a. The local oscillation light L0 of a linear polarized wave oscillated by a laser light source 2 for local oscillation, on the other hand, is made into local oscillation light L1 in a circular polarization state by a 1/4-wavelength plate 10b and made incident on a polarization light separating element 10c. The P and S polarization components of signal light beams S2 and S3 and local oscillation light beams L2 and L3 which are separated by the elements 10a and 10c are multiplexed by half-mirrors 10e and 10d respectively. The light signals and local oscillation light beams which are obtained by the multiplexing are light-received by balanced receivers 11 and 12 to obtain light- reception outputs Vb1 and Vb2. Thus, the outputs Vb1 and Vb2 having suppressed intensity noises are multiplied by a mixer 6 to obtain an output V3 to bring the light source 2 under feedback control through a control circuit 7.

Description

【発明の詳細な説明】 [産業上の利用分野] 本発明は光位相検波方式に係り、特にQ成分とI成分と
を用いて位相検波する光位相検波方式に関するものであ
る。
DETAILED DESCRIPTION OF THE INVENTION [Field of Industrial Application] The present invention relates to an optical phase detection method, and particularly to an optical phase detection method that performs phase detection using a Q component and an I component.

[従来の技術] 光P S K (Phase 5hift Keyin
g)ホモダイン伝送においては、位相変調された信号光
を1mするために局発光の位相θgを信号光の位相θS
に同期制御する必要がある。局発光の位相は光90”ハ
イブリッドを用いたコスタス型光P L L (Pha
seLocked Loop )により同期制御するこ
とができる。
[Conventional technology] Optical PSK (Phase 5hift Keyin)
g) In homodyne transmission, in order to spread the phase modulated signal light for 1 m, the phase θg of the local light is changed to the phase θS of the signal light.
It is necessary to perform synchronous control. The phase of the local light is determined by Costas type light PLL (Pha
(seLocked Loop) allows for synchronous control.

第3図は従来の光90°ハイブリッドを用いた光位相検
波方式の構成図である。図において、1は信号光S1と
局発光しOとを合波して互いに90゛位相が異なる出力
光を取り出す光90°ハイブリッド、2は局発光LOを
発振する局発用レーザ光源、3は局発光10の偏波面を
保存したまま伝搬させる偏波面保存光ファイバ、4及び
5は光信号を電気信号に変換する光受信器、6は光受信
器4,5のそれぞれの出力信号V1.V2をミキシング
するミキサー 7は局発用レーザ光′a2の位相を制御
する制御回路、8は変調信号を復調する符号判定器であ
る。なお、光90°ハイブリッドは直線偏光の局発光L
Oを円偏波にする1/4波長板1aと、円偏波にされた
局発光L1と信号光S1とを合波するハーフミラ−1b
と、直交する偏波面の光をそれぞれ取り出す偏、光分離
素子1Cとから構成されている。また、図中、◎はS偏
光成分、↓はP偏光成分、7は偏光分離素子1cの光学
軸に対し45°の直線偏光、○は円偏光状態を、点線矢
印は光の進行方向をそれぞれ示す。
FIG. 3 is a block diagram of an optical phase detection method using a conventional optical 90° hybrid. In the figure, 1 is an optical 90° hybrid that combines signal light S1 and local light LO to extract output lights with a phase difference of 90°, 2 is a local laser light source that oscillates local light LO, and 3 is A polarization-maintaining optical fiber is used to propagate the local light 10 while preserving the polarization plane; 4 and 5 are optical receivers that convert optical signals into electrical signals; and 6 is an output signal V1. A mixer 7 for mixing V2 is a control circuit for controlling the phase of the local laser beam 'a2, and 8 is a sign determiner for demodulating the modulated signal. In addition, the optical 90° hybrid uses linearly polarized local light L.
A quarter-wave plate 1a that makes O circularly polarized, and a half mirror 1b that combines circularly polarized local light L1 and signal light S1.
and a polarization and light separation element 1C for extracting light of orthogonal polarization planes, respectively. In addition, in the figure, ◎ indicates the S-polarized light component, ↓ indicates the P-polarized light component, 7 indicates the linearly polarized light at 45° with respect to the optical axis of the polarization separation element 1c, ○ indicates the circularly polarized state, and the dotted arrow indicates the traveling direction of the light. show.

光90°ハイブリッド1を用いて予め偏波補償された信
号光S1と、局発光10を合波し光受信器4.5で受光
検波して得られる出力V1.V2は、局発光10の位相
が90”遅れて信号光S1と合波されるQ (Quad
 rature)成分v1と、位相同期状態においては
信号光が同位相で合波される1 (Inphase )
成分v2のいずれかに相当する。
An output V1. which is obtained by combining the signal light S1 whose polarization has been compensated in advance using the optical 90° hybrid 1 and the local light 10 and receiving and detecting the light by the optical receiver 4.5. V2 is Q (Quad
In phase) component v1 and the signal light are combined in the same phase in the phase synchronization state1 (Inphase)
It corresponds to either component v2.

■1及び■2のどちらが、VQ、VIになるかは後述す
る。図ではV1=VQ、V2=V[となっている場合で
ある。ここで一般にQ成分及びI成分の出力をVQ、V
IとするとVQ、VIは各々5in(θS−θρ)及び
cos(θs−θρ)に比例する。従って無線通信にお
けるコスタスループと同様にθSに含まれる位相変調成
分を相殺するため、vlと■2をミキサー6でかけ算し
て3in2(θS−θρ)に比例するv3を得、制御回
路7を介して得られるVCを局発光の位相制御信号とし
て局発用レーザ光源2に帰還制御を施すことにより位相
同期状態を保持することができる。また、V2 (=V
I)によりθSの変調信号成分を符号判定器8で復調し
て、復調信号SOを取り出すことができる。
Which of (1) and (2) becomes VQ or VI will be described later. The figure shows a case where V1=VQ and V2=V[. Here, generally the outputs of the Q component and I component are VQ, V
When I, VQ and VI are proportional to 5 inches (θS-θρ) and cos(θs-θρ), respectively. Therefore, in order to cancel the phase modulation component included in θS, similar to the Costas loop in wireless communication, vl and ■2 are multiplied by mixer 6 to obtain v3 proportional to 3in2 (θS - θρ), and The phase synchronization state can be maintained by applying feedback control to the local laser light source 2 using the obtained VC as a phase control signal for local light. Also, V2 (=V
According to I), the modulated signal component of θS can be demodulated by the sign determiner 8, and the demodulated signal SO can be extracted.

次に、この光位相検波方式を用いる場合に、Q成分及び
I成分の出力を取り出すために必要となる光90’ハイ
ブリッド1について以下に説明する。
Next, when using this optical phase detection method, the optical 90' hybrid 1 necessary for extracting the outputs of the Q component and I component will be described below.

予め偏光分離素子1Cの光学軸に対し45°の直線偏光
となるように偏波補償された信号光S1と、1/4波長
板18により円偏光状態にされた局発光L1は、ハーフ
ミラ−1bにより合波され、局発光L2′、信号光82
′として偏光分離素子1Cに入射され、各々S及びP偏
光成分である信号光$3−と局発光し3−及び信号光S
4−と局発光し4−に分離される。ここで局発光L3−
とL4−の位相関係は、円偏波の局発光[1が1/4波
長板1aから見て右旋の時(時計回り)には局発光L4
−は局発光L3′より90°位相が遅れ、左旋の時には
局発光し3−は局発光し4−より90°位相が遅れる。
The signal light S1, which has been polarization-compensated in advance to be linearly polarized at 45 degrees with respect to the optical axis of the polarization separation element 1C, and the local light L1, which has been made into a circularly polarized state by the quarter-wave plate 18, are connected to the half mirror 1b. The local light L2' and the signal light 82 are multiplexed by
', the signal light $3-, which is the S and P polarized light components, and the local light 3- and the signal light S
It emits local light from 4- and is separated into 4-. Here, local light L3-
The phase relationship between L4- and L4- is that when the circularly polarized local light [1 is right-handed (clockwise) when viewed from the quarter-wave plate 1a, the local light L4-
- is delayed by 90 degrees in phase from the local light L3', and when rotating to the left, it emits local light, and 3- emits local light and is delayed by 90 degrees in phase from 4-.

−力信号光S1は同位相、等強度の信号光83−、S4
−に分離される。従って信号光S1、局発光しOのS、
P偏光成分を各々光受信器4.5で検波すると、左旋の
時はS偏光成分の受光検波出力VQ、P偏光成分の受光
検波出力VPがVlとなり、逆に右旋の時はVPがVQ
、VSがV I となる。
-The force signal light S1 has the same phase and equal intensity signal light 83-, S4
- separated into Therefore, the signal light S1, the local light S,
When the P-polarized light components are each detected by the optical receiver 4.5, when the rotation is left-handed, the received-detection output of the S-polarized component becomes VQ, and the received-detected output VP of the P-polarized light component becomes Vl, and conversely, when the right-handed rotation occurs, VP becomes VQ.
, VS becomes V I .

第3図の他の90°ハイブリツドの構成としては導波路
やファイバーカップラーを用いた例がある。また光90
’ハイブリッドを用いずに3dBカツプラーで信号光S
1、局発光LOを合波しバランスドレシーバで受光検波
するバランスド型光PLLも既に提案されている( I
EEE PhotonicsLet、、vol、1.N
O,11,Nov、1989 DI)395−397)
Other 90° hybrid configurations shown in FIG. 3 include examples using waveguides and fiber couplers. Also light 90
'Signal light S with 3dB coupler without using hybrid
1. A balanced optical PLL in which local light LO is multiplexed and received and detected by a balanced receiver has already been proposed (I
EEE Photonics Let,, vol, 1. N
O, 11, Nov, 1989 DI) 395-397)
.

[発明が解決しようとする課題] 第3図の光90°ハイブリッド1において、ハーフミラ
−1bの偏光特性のために、円偏波の局発光L1をハー
フミラ−1bで信号光S1と合波した出力では、局発光
し2−を円偏光状態に保持することが極めて困難である
。そのため、位相制御時には、信号光S1と局発光LO
に残留位相オフセットが生じてしまい復調で誤る確率が
高くなり位相検波感度が劣化する。また、この構成では
局発光しOの強度光雑音を抑圧することはできず、S/
Nが悪くなり復調信号SOの品質が劣化し、局発用レー
ザ光源2の位相が誤Il]御されてしまうという問題が
あった。なお、導波路を用いた光90°ハイブリッドで
は損失が大きいという問題点があり、ファイバーカップ
ラーを用いた光90゜ハイブリッドは精度や安定度に問
題があるため、光位相検波方式には適用できない。
[Problem to be solved by the invention] In the optical 90° hybrid 1 shown in Fig. 3, due to the polarization characteristics of the half mirror 1b, the output of the circularly polarized local light L1 combined with the signal light S1 by the half mirror 1b. In this case, it is extremely difficult to maintain local light 2- in a circularly polarized state. Therefore, during phase control, signal light S1 and local light LO
A residual phase offset occurs, increasing the probability of demodulation errors and deteriorating phase detection sensitivity. In addition, with this configuration, it is not possible to suppress the intensity optical noise of the local light source, and the S/
There was a problem in that N deteriorated, the quality of the demodulated signal SO deteriorated, and the phase of the local laser light source 2 was erroneously controlled. Note that an optical 90° hybrid using a waveguide has a problem of large loss, and an optical 90° hybrid using a fiber coupler has problems with accuracy and stability, so it cannot be applied to the optical phase detection method.

一方、バランスド型光PLLでは、信号光及び局発光の
スペクトル線幅がコスタス型光PLLの場合の1/10
0程度狭い必要があり、安定な狭線幅光源を得るのは難
しいという問題点があった。
On the other hand, in a balanced optical PLL, the spectral linewidth of the signal light and local light is 1/10 of that in the Costas optical PLL.
The problem is that it is difficult to obtain a stable narrow linewidth light source.

以上のように、従来の光位相検波方式では復調誤りが多
く、かつ局発光の強度光雑音の影響による復調信号品質
の劣化等により実用的な光位相検波方式が実現できなか
った。
As described above, conventional optical phase detection methods have many demodulation errors, and a practical optical phase detection method cannot be realized due to deterioration of demodulated signal quality due to the influence of intense optical noise of local light.

本発明は上述した従来技術の課題を解決するためになさ
れたもので、復調誤りが少なく、かつ品質が良い位相検
波が得られる実用的な光位相検波方式を提供することを
目的とする。
The present invention has been made to solve the problems of the prior art described above, and an object of the present invention is to provide a practical optical phase detection method that has few demodulation errors and can obtain high-quality phase detection.

[課題を解決するための手段] 前記課題の解決は、本発明の光位相検波方式が、予め偏
光状態が直線偏光となるように補償された信号光と、局
部発振用レーザからの局発光とを合波器で合波してI成
分と該I成分の局発光の位相より90’遅れたQ成分と
を取り出し、前記I成分とQ成分とを用いて前記信号成
分と前記局発光との位相同期を取りながらI成分を復調
する光位相検波方式において、前記信号光と円偏波にさ
れた局発光とをそれぞれP偏光成分とS偏光成分の直交
偏光成分に分離し、該分離された同一の偏光成分の信号
光と局発光とを合波してそれぞれ前記I成分及びQ成分
を得ると共に、該得られたI成分及びQ成分のそれぞれ
で互いに180度位相が異なる第1の出力光と第2の出
力光を取り出し、該第1の出力光と第2の出力光を電気
信号に変換した後、該電気信号に変換された第1および
第2の信号間の固定位相オフセット分を位相調整して差
動合成し、該差動合成された電気信号を用いて前記信号
光と局発光の位相同期を取ると共にI成分に相当する一
方の電気信号を復調して復調信号を得ることを特徴とす
る、以上の構成手段を採用することにより達成される。
[Means for Solving the Problems] The above problems can be solved by using a signal light whose polarization state has been compensated in advance to be linear polarization, and a local light emitted from a local oscillation laser. are combined in a multiplexer to extract an I component and a Q component that is delayed by 90' from the phase of the local light of the I component, and using the I and Q components to combine the signal component and the local light. In an optical phase detection method that demodulates the I component while maintaining phase synchronization, the signal light and circularly polarized local light are separated into orthogonal polarization components of a P polarization component and an S polarization component, and the separated A first output light in which the signal light and the local light having the same polarization component are combined to obtain the I component and the Q component, respectively, and each of the obtained I component and Q component has a phase different from each other by 180 degrees. and the second output light, convert the first output light and the second output light into electrical signals, and then calculate the fixed phase offset between the first and second signals converted into the electrical signals. Adjusting the phase and performing differential synthesis, synchronizing the phase of the signal light and the local light using the differentially synthesized electrical signal, and demodulating one of the electrical signals corresponding to the I component to obtain a demodulated signal. This is achieved by employing the above configuration means, which is characterized by the following.

[作 用] 本発明は前記手段を講じたので、信号光と局発光の偏光
状態を予め同一にした後、合波してそれぞれの出力光を
得るため局発光の位相差を90’に安定に維持でき、し
かも合波手段の偏光特性に係りなく信号光と局発光との
位相差をほぼゼロに制御することが可能となる。従って
信号光と局発光に残留位相オフセットが生じないためそ
れぞれ得た出力光は復調誤りの確率を低減されて出力さ
れる。
[Function] Since the present invention has taken the above-mentioned measures, after making the polarization states of the signal light and the local light the same in advance, the phase difference of the local light is stabilized at 90' in order to combine them and obtain the respective output lights. Moreover, it becomes possible to control the phase difference between the signal light and the local light to almost zero regardless of the polarization characteristics of the multiplexing means. Therefore, since no residual phase offset occurs between the signal light and the local light, the respective output lights are outputted with a reduced probability of demodulation errors.

さらに当該それぞれの出力光を変換した電気信号相互間
の固定位相オフセット分も位相調整して差動合成し、得
られた局発光強度雑音が押圧されたそれぞれの電気出力
により極めて良好な信号光と局発光の位相同期状態を保
持しつつ復調を行う。
Furthermore, the phase of the fixed phase offset between the electric signals converted from the respective output lights is adjusted and differentially synthesized, and the obtained local light intensity noise is suppressed to produce extremely good signal light by the respective electric outputs. Demodulation is performed while maintaining the phase synchronization state of the local light.

以下に、図面を用いて本発明の詳細な説明するが、従来
構成と同一部分には同一番号を付与し、説明の重複を省
く。
The present invention will be described in detail below with reference to the drawings, but the same numbers will be given to the same parts as in the conventional structure to avoid redundant explanation.

[実施例] 第1図は本発明による光位相検波方式の構成図であり、
従来構成(第3図)と異なる点は、信号光S1と局発光
し1をそれぞれS、P偏光成分に分離した後、合波する
光90’ハイブリッド10と、局発光強度雑音の影響を
抑圧して光信号を電気信号に復調する偏波ダイパーシテ
ィ光受信方式のバランスドレシーバ11.12とを用い
たことにある。
[Example] FIG. 1 is a configuration diagram of an optical phase detection method according to the present invention,
The difference from the conventional configuration (Fig. 3) is that the signal light S1 and local light beam 1 are separated into S and P polarized components, and then the light is combined into a 90' hybrid 10, which suppresses the influence of local light intensity noise. The present invention uses balanced receivers 11 and 12 of a polarization diversity optical reception system that demodulates optical signals into electrical signals.

先ず、本発明に用いる光90°ハイブリッドについて説
明する。第2図(a)は本発明に用いる光90°ハイブ
リッド10の構成図であり、10aは直線偏光波の信号
光S1を直交するS偏光成分S2及びP偏光成分S3に
分離するための偏光分離素子、10bは直線偏光波の局
発光LOを円偏波にする1/4波長板、10cは円偏波
の局発光し1を直交するS偏光成分L2及びP偏光成分
L3に分離するための偏光分離素子、10dはS偏光成
分の信号光S2とS偏光成分の局発光L2を合波するハ
ーフミラ−(半透明1)、10eはP偏光成分の信号光
S3とP偏光成分の局発光し3を合波するハーフミラ−
(半透明鏡)である。
First, the optical 90° hybrid used in the present invention will be explained. FIG. 2(a) is a configuration diagram of the optical 90° hybrid 10 used in the present invention, and 10a is a polarization separation for separating the linearly polarized signal light S1 into orthogonal S polarization component S2 and P polarization component S3. Element 10b is a quarter-wave plate for converting the linearly polarized local light LO into circularly polarized light, and 10c is a quarter wavelength plate for converting the linearly polarized local light LO into circularly polarized local light LO and separating the circularly polarized local light LO into orthogonal S-polarized light component L2 and P-polarized light component L3. Polarization separation element 10d is a half mirror (semi-transparent 1) that combines the S-polarization component signal light S2 and the S-polarization component local light L2, and 10e combines the P-polarization component signal light S3 and the P-polarization component local light L2. Half mirror that combines 3
(semi-transparent mirror).

次に、光90°ハイブリッド10の動作を説明する。予
め、偏光分離素子10aの軸に対して45°の角度を有
する直線偏光状態となるように偏光補償された信号光S
1は、偏光分離素子10aに入射される。一方、局発用
レーザ光1112から発振された直線偏光波の局発光L
Oは、先ず1/4波長板10bにより円偏光状態の局発
光L1にされて偏光分離素子10cに入射される。偏光
分離素子10a、IOCで分離された信号光82.83
及び局発光12.L3のP、S各編光成分S3とL3、
及びS2とL2は各々ハーフミラ−10e、10dで合
波される。合波して得られるS4゜L5と85.L4及
び86.L7と87.16を各々バランスドレシーバ1
1.12で受光し受光出力Vb1.Vb2を得る。第2
図(a)rは、■b1がQ成分、Vb2がI成分となっ
ている。
Next, the operation of the optical 90° hybrid 10 will be explained. The signal light S is polarization-compensated in advance to be in a linearly polarized state having an angle of 45° with respect to the axis of the polarization separation element 10a.
1 is incident on the polarization separation element 10a. On the other hand, local light L of linearly polarized light waves oscillated from local laser light 1112
O is first made into a circularly polarized local light L1 by the quarter-wave plate 10b, and is incident on the polarization separation element 10c. Polarization separation element 10a, signal light 82.83 separated by IOC
and local light 12. P and S of L3, each light editing component S3 and L3,
And S2 and L2 are combined by half mirrors 10e and 10d, respectively. S4°L5 obtained by combining and 85. L4 and 86. L7 and 87.16 each balanced receiver 1
1.12 and received light output Vb1. Obtain Vb2. Second
In Figure (a)r, b1 is the Q component and Vb2 is the I component.

すなわち、局発光L1の円偏波が1/4波長板1obか
ら見て右旋(II計回り)の時、P偏光成分L3がS偏
光成分L2より90″遅れ、バランスドレシーバ11.
12+7)出力Vb1.Vb2は各々Q成分(Sin(
θS−θg)に比例)及び■成分(COS (θS−θ
g)に比例)となる。また、局発光し1の円偏波が1/
4波長板10bから見て左旋の時は逆になり■b1が1
成分に、Vb2がQ成分となる。
That is, when the circularly polarized wave of the local light L1 is right-handed (II counterclockwise) when viewed from the quarter-wave plate 1ob, the P-polarized light component L3 lags the S-polarized light component L2 by 90'', and the balanced receiver 11.
12+7) Output Vb1. Vb2 is each Q component (Sin(
(proportional to θS - θg)) and ■ component (COS (θS - θg)
g)). Also, the circularly polarized wave of local light is 1/
When viewed from the 4-wavelength plate 10b, when rotating to the left, the situation is reversed, and b1 is 1.
Among the components, Vb2 becomes the Q component.

上述のように、本発明の光90°ハイブリッド10は、
信号光S1と局発光し1の偏光状態を偏光分離素子10
a、10cで予め同一にした後、ハーフミラ−1oc+
、ioeで合波するため、ハーフミラ−10d、10e
の偏光特性に左右されることなく局発光L2.L3の位
相差を90” に安定に維持できる。従って、信号光と
局発光に残留位相オフセットが生じないため、復調誤り
の確率を低減することが出来る。また、ハーフミラ−1
0d、10e及び偏光分離素子10a、10c及び1/
4波長板10bの各光部品を一体化して光90°ハイブ
リッド10を構成することができるため、光結合損失の
低減と小型化も可能となる。
As mentioned above, the optical 90° hybrid 10 of the present invention has the following characteristics:
The polarization state of signal light S1 and local light S1 is separated by polarization separation element 10.
After making them the same in advance with a and 10c, half mirror-1oc+
, half mirror 10d, 10e for multiplexing with ioe
The local light L2. The phase difference of L3 can be stably maintained at 90".Therefore, no residual phase offset occurs between the signal light and the local light, so the probability of demodulation errors can be reduced.Also, the half mirror 1
0d, 10e and polarization separation elements 10a, 10c and 1/
Since each optical component of the four-wavelength plate 10b can be integrated to form the optical 90° hybrid 10, it is possible to reduce optical coupling loss and downsize.

次に、本発明に用いるバランスドレジバー11゜12の
構成を第2図(b)に示す。なお、以下ではハーフミラ
−10eの出力光84(信号光)。
Next, the configuration of the balanced drag lever 11-12 used in the present invention is shown in FIG. 2(b). In addition, the output light 84 (signal light) of the half mirror 10e will be described below.

15(局発光)をQ+成分信号、Q4構成信号と180
度位相が異なる出力であるハーフミラ−10eの出力光
35(信号光)、L4(局発光)をQ−成分信号、ハー
フミラ−10dの出力光S6(信号光)、L7(局発光
)をビ成分信号、■“成分信号と位相が180度異なる
出力であるハーフミラ−10dの出力光S7(信号光)
、L6(局発光)を■−成分信号とする。
15 (local light) is the Q+ component signal, Q4 component signal and 180
The output lights 35 (signal light) and L4 (local light) of the half mirror 10e, which have different degrees of phase, are the Q-component signals, and the output lights S6 (signal light) and L7 (local light) of the half mirror 10d are the bi-component signals. Signal, ■ “Output light S7 (signal light) of half mirror 10d whose phase is 180 degrees different from the component signal
, L6 (local light) is a -component signal.

図におイテ、20a、20bは光90°ハイブリッド1
0のハーフミラ−10e(10d)から出射された出力
光のQ+成分信号(I+成分信号)、Q−成分信号(I
−成分信号)の光信号を取り出す光ファイバ、218.
21bは光信号を電気信号に変換する光受信器、22は
光受信器21a。
As shown in the figure, 20a and 20b are light 90° hybrid 1
A Q+ component signal (I+ component signal) and a Q-component signal (I
- an optical fiber for extracting the optical signal (component signal), 218.
21b is an optical receiver that converts an optical signal into an electrical signal, and 22 is an optical receiver 21a.

21bの出力信号D1.D2間に存在する固定位相オフ
セット分を調整するための位相調整器、23は位相調整
された電気信号D3と光受信器21bの出力信号D2と
を差動合成するための差動合成回路である。
21b output signal D1. A phase adjuster 23 is for adjusting the fixed phase offset existing between D2, and a differential synthesis circuit 23 is for differentially synthesizing the phase-adjusted electrical signal D3 and the output signal D2 of the optical receiver 21b. .

本発明では、同一の偏波成分の信号を差動合成するバラ
ンスドレシーバ11(12)を用いるため、光90°ハ
イブリッド10の出力段にあるハーフミラ−10e(1
0d)がπ−ハイブリッドとして動作し、光受信器21
a、21bの出力では信号光と局発光間のビート信号が
逆相で、局発光強度雑音が同相で出力される。従って、
光受信器21a、21bの出力信号D1.D2の間に存
在する固定位相オフセット分を位相調整器22で調整し
、その後差動合成器23で信号D3とD2とを差動合成
することにり、局発光強度雑音が抑圧された出力信号V
blを得ることができる。なお、説明を省いたが、もう
一方の偏波成分であるI成分信号に対しても同様に局発
光強度雑音の抑圧を行うことができる。
In the present invention, since the balanced receiver 11 (12) that differentially combines signals of the same polarization component is used, the half mirror 10e (1
0d) operates as a π-hybrid, and the optical receiver 21
In the outputs of a and 21b, the beat signal between the signal light and the local light is output in reverse phase, and the local light intensity noise is output in the same phase. Therefore,
Output signals D1. of the optical receivers 21a, 21b. By adjusting the fixed phase offset that exists between D2 with the phase adjuster 22, and then differentially combining the signals D3 and D2 with the differential combiner 23, an output signal with suppressed local light intensity noise is obtained. V
bl can be obtained. Although the explanation is omitted, the local light intensity noise can be similarly suppressed for the I component signal, which is the other polarization component.

上述の様に強度雑音が抑圧されたバランスドレシーバ1
1.12の出力Vbl 、Vb2は、従来と同様に、位
相変調成分を相殺するためVbl(−VQ)とVb2 
 (=VI)をミキサー6で掛は算してV3を得、制御
回路7を介して得られるVCを局発光の位相制御信号と
して局発用レーザ光源2に帰還III御を施すことによ
り、極めて良好な位相同期状態を保持することができる
。また、Vb2  (−VI)によりθSの変調信号成
分を符号判定器8で復調して、復調信号SOを取り出す
ことができる。
Balanced receiver 1 with intensity noise suppressed as described above
1.12 outputs Vbl and Vb2 are equal to Vbl (-VQ) and Vb2 in order to cancel the phase modulation component, as in the conventional case.
(=VI) is multiplied by the mixer 6 to obtain V3, and the VC obtained through the control circuit 7 is used as the phase control signal for the local oscillator light to perform feedback III control on the local oscillator laser light source 2. Good phase synchronization can be maintained. Further, the modulated signal component of θS can be demodulated by the sign determiner 8 using Vb2 (-VI), and the demodulated signal SO can be extracted.

このように、バランスドレシーバ11.12により得ら
れたvbl 、Vb2の局発光強度雑音は、光90”ハ
イブリッド10と差動合成型のバランスドレシーバ11
(12)とを組み合わせて用いることにより充分抑圧さ
れるため、S/Nの良い位相検波が可能となる。
In this way, the local light intensity noise of vbl and Vb2 obtained by the balanced receiver 11.
By using (12) in combination, sufficient suppression is achieved, making it possible to perform phase detection with a good S/N ratio.

[発明の効果] かくして本発明は、同一の偏光状態にしてから信号光S
1と局発光10とを合波してQ成分信号及び■成分信号
を取り出すと共に、それぞれの信号を180度の位相変
化を持たせて光検波を行うため、信号光と局発光に残留
位相オフセットが生じにくく、かつQ成分信号と1成分
信号のそれぞれを局発光の強度雑音の影響を受けにくい
光位相検波が出来る。従って、復調誤りが少なく、かつ
品質が良い位相検波ができる。
[Effects of the Invention] Thus, the present invention provides the same polarization state before transmitting the signal light S.
1 and the local light 10 are combined to extract the Q component signal and the ■ component signal, and in order to optically detect each signal with a 180 degree phase change, there is a residual phase offset between the signal light and the local light. It is possible to perform optical phase detection in which the Q component signal and the 1-component signal are less likely to be affected by the intensity noise of the local light. Therefore, phase detection with few demodulation errors and high quality can be achieved.

また、偏光分離素子10a、10c及びハーフミラ−1
0d、10eを対角線状に配置し1/4波長板10bも
含めて一体化することにより、光90°ハイブリッド1
0の動作を安定化させることができる。
In addition, polarization separation elements 10a, 10c and half mirror 1
By arranging 0d and 10e diagonally and integrating them including the 1/4 wavelength plate 10b, the optical 90° hybrid 1
0 operation can be stabilized.

従って、本発明は局発光の位相を信号光の位相に高精度
に同期制御することができ、光ホモダイン伝送及びコヒ
ーレント光通信方式に広く適用することが可能である。
Therefore, the present invention can control the phase of local light in synchronization with the phase of signal light with high precision, and can be widely applied to optical homodyne transmission and coherent optical communication systems.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は本発明による光位相検波方式の構成図、第2図
(a)は本発明に用いる光90°ハイブリッドの構成図
、第2図(b)は本発明に用いるパラストレジバーの構
成図、第3図は従来の光位相検波方式の構成図である。 81〜S7.S2”〜S4−・・・信号光10〜L7.
L2−〜L4−・・・局発光1.10・・・光90°ハ
イブリッド 1 C,10a、1 Qc・・・偏光分離素子1 b、
10d、10e・・・ハーフミラ−1a、10b−1/
4波長板 2・・・局発用レーザ光源 3・・・偏波面保持光ファイバ 4、5.21 a、 21 b−*受信B6・・・ミキ
サー 7・・・制御回路 8・・・符号判定器 11.12・・・バランスドレシーバ 20a、20b・・・光ファイバ 22・・・位相調整器 23・・・差動合成回路 小 ヒーー局#尤 督
Fig. 1 is a block diagram of the optical phase detection system according to the present invention, Fig. 2 (a) is a block diagram of the optical 90° hybrid used in the present invention, and Fig. 2 (b) is the structure of the parastorage bar used in the present invention. 3 are block diagrams of a conventional optical phase detection system. 81-S7. S2''~S4-...Signal light 10~L7.
L2- to L4-... Local light 1.10... Light 90° hybrid 1 C, 10a, 1 Qc... Polarization separation element 1 b,
10d, 10e...Half mirror-1a, 10b-1/
4-wavelength plate 2...Local laser light source 3...Polarization maintaining optical fiber 4, 5.21 a, 21 b-*Reception B6...Mixer 7...Control circuit 8...Sign determination Devices 11, 12... Balanced receivers 20a, 20b... Optical fibers 22... Phase adjuster 23... Differential synthesis circuit small heating station

Claims (1)

【特許請求の範囲】 1、予め偏光状態が直線偏光となるように補償された信
号光と、局部発振用レーザからの局発光とを合波器で合
波してI成分と該I成分の局発光の位相より90゜遅れ
たQ成分とを取り出し、前記I成分とQ成分とを用いて
前記信号成分と前記局発光との位相同期を取りながらI
成分を復調する光位相検波方式において、 前記信号光と円偏波にされた局発光とをそれぞれP偏光
成分とS偏光成分の直交偏光成分に分離し、 該分離された同一の偏光成分の信号光と局発光とを合波
してそれぞれ前記I成分及びQ成分を得ると共に、該得
られたI成分及びQ成分のそれぞれで互いに180度位
相が異なる第1の出力光と第2の出力光を取り出し、 該第1の出力光と第2の出力光を電気信号に変換した後
、該電気信号に変換された第1および第2の信号間の固
定位相オフセット分を位相調整して差動合成し、 該差動合成された電気信号を用いて前記信号光と局発光
の位相同期を取ると共にI成分に相当する一方の電気信
号を復調して復調信号を得ることを特徴とする光位相検
波方式。
[Claims] 1. The signal light whose polarization state has been compensated in advance to be linearly polarized light and the local light emitted from the local oscillation laser are combined by a multiplexer to combine the I component and the I component. A Q component that is delayed by 90° from the phase of the local light is extracted, and the I component and the Q component are used to synchronize the phase of the signal component and the local light.
In the optical phase detection method for demodulating the components, the signal light and the circularly polarized local light are separated into orthogonal polarization components of a P polarization component and an S polarization component, and the separated signals of the same polarization components are obtained. The light and the local light are combined to obtain the I component and the Q component, respectively, and the obtained I component and Q component each have a first output light and a second output light that have a phase different from each other by 180 degrees. After converting the first output light and the second output light into electrical signals, the fixed phase offset between the first and second signals converted to the electrical signals is adjusted to generate a differential signal. The optical phase is characterized in that the signal light and the local light are phase-synchronized using the differentially combined electrical signals, and one of the electrical signals corresponding to the I component is demodulated to obtain a demodulated signal. Detection method.
JP2047313A 1990-03-01 1990-03-01 Optical phase detection system Pending JPH03251827A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2047313A JPH03251827A (en) 1990-03-01 1990-03-01 Optical phase detection system

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2047313A JPH03251827A (en) 1990-03-01 1990-03-01 Optical phase detection system

Publications (1)

Publication Number Publication Date
JPH03251827A true JPH03251827A (en) 1991-11-11

Family

ID=12771805

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2047313A Pending JPH03251827A (en) 1990-03-01 1990-03-01 Optical phase detection system

Country Status (1)

Country Link
JP (1) JPH03251827A (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2011146908A (en) * 2010-01-14 2011-07-28 Oki Electric Industry Co Ltd Synchronous circuit of optical homodyne receiver and optical homodyne receiver
JP2013134308A (en) * 2011-12-26 2013-07-08 Mitsubishi Electric Corp Optical 90° hybrid circuit
JP2013150302A (en) * 2011-12-21 2013-08-01 Mitsubishi Electric Corp Acquisition and tracking apparatus
US8655192B2 (en) 2010-04-13 2014-02-18 Oclaro Japan, Inc. Polarization diversity optical system device, demodulator and transceiver

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2011146908A (en) * 2010-01-14 2011-07-28 Oki Electric Industry Co Ltd Synchronous circuit of optical homodyne receiver and optical homodyne receiver
US8655192B2 (en) 2010-04-13 2014-02-18 Oclaro Japan, Inc. Polarization diversity optical system device, demodulator and transceiver
JP2013150302A (en) * 2011-12-21 2013-08-01 Mitsubishi Electric Corp Acquisition and tracking apparatus
JP2013134308A (en) * 2011-12-26 2013-07-08 Mitsubishi Electric Corp Optical 90° hybrid circuit

Similar Documents

Publication Publication Date Title
EP0409260B1 (en) Receiver for coherent optical communication
US5060312A (en) Polarization independent coherent lightwave detection arrangement
JP3001943B2 (en) Polarization switching light source, optical receiver, and coherent optical transmission system
US9236940B2 (en) High bandwidth demodulator system and method
JP5796934B2 (en) Polarization diversity optical system device, demodulator and transceiver
JPS63500067A (en) Coherent optical signal receiver
WO2007044521A1 (en) Optical demodulating apparatus and method
JP2009060241A (en) High-frequency signal optical transmission system and high-frequency signal optical transmission method
US4723317A (en) Optical heterodyne mixers providing image-frequency rejection
US3970838A (en) Dual channel phase locked optical homodyne receiver
JP2658180B2 (en) Polarization diversity optical receiver
EP0246004B1 (en) Single-photodiode optical heterodyne mixers
CA1308440C (en) Optical receiving method utilizing polarization diversity and apparatus for carrying out the same
US5317382A (en) Optical phase detection method with orthogonal polarization and phase compensation arrangement
JPH0572777B2 (en)
JP5435790B2 (en) 90 degree optical hybrid
JPH03251827A (en) Optical phase detection system
US7010181B2 (en) Device and method for compensating for polarization mode dispersion in optical transmission
JPH01178940A (en) Polarization diversity optical receiver
JPS60242435A (en) Polarization diversity optical receiver
JP2758221B2 (en) Receiver for coherent optical communication
JP2659417B2 (en) Coherent optical communication system
JP2758215B2 (en) Receiver for coherent optical communication
JP2509295B2 (en) Polarization diversity optical reception system
JPH01211737A (en) Polarization diversity optical receiver for coherent optical communication