JP2013133510A - Cold-rolled steel sheet having excellent shape fixability and aging resistance, and method for manufacturing the same - Google Patents

Cold-rolled steel sheet having excellent shape fixability and aging resistance, and method for manufacturing the same Download PDF

Info

Publication number
JP2013133510A
JP2013133510A JP2011285172A JP2011285172A JP2013133510A JP 2013133510 A JP2013133510 A JP 2013133510A JP 2011285172 A JP2011285172 A JP 2011285172A JP 2011285172 A JP2011285172 A JP 2011285172A JP 2013133510 A JP2013133510 A JP 2013133510A
Authority
JP
Japan
Prior art keywords
less
cold
aging
steel sheet
rolled steel
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2011285172A
Other languages
Japanese (ja)
Other versions
JP5887920B2 (en
Inventor
Taro Kizu
太郎 木津
Koichiro Fujita
耕一郎 藤田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
JFE Steel Corp
Original Assignee
JFE Steel Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by JFE Steel Corp filed Critical JFE Steel Corp
Priority to JP2011285172A priority Critical patent/JP5887920B2/en
Publication of JP2013133510A publication Critical patent/JP2013133510A/en
Application granted granted Critical
Publication of JP5887920B2 publication Critical patent/JP5887920B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P10/00Technologies related to metal processing
    • Y02P10/20Recycling

Landscapes

  • Heat Treatment Of Sheet Steel (AREA)

Abstract

PROBLEM TO BE SOLVED: To provide a cold-rolled steel sheet having excellent shape fixability and aging resistance without using rare metals, and to provide a method for manufacturing the same.SOLUTION: The cold-rolled steel sheet having excellent shape fixability and aging resistance has a chemical composition including, by mass, 0.0030% or less of C, 0.05% or less of Si, 0.30% or less of Mn, 0.05% or less of P, 0.03% or less of S, 0.01-0.10% of Al, and 0.0030% or less of N, and the balance Fe with inevitable impurities, and satisfies [Mn]×[C]≤4.0×10, wherein [M] represents the content (mass%) of an element M. Further, the steel sheet is characterized in that the aging index AI is 20 MPa or less and the yield strength YP after aging for 6 months at 25°C is 180 MPa or less.

Description

本発明は、自動車、家電、OA機器の分野で、部品にプレス成形して使用される冷延鋼板、特に、形状精度が必要とされる部品に適用可能な冷延鋼板およびその製造方法に関する。   The present invention relates to a cold-rolled steel sheet that is used by press-molding a part in the fields of automobiles, home appliances, and office automation equipment, and more particularly, to a cold-rolled steel sheet that can be applied to a part that requires shape accuracy and a manufacturing method thereof.

従来、鉄鋼材料は、レアメタルを有効に活用することで、用途に応じた様々な特性を実現してきている。しかしながら、近年、レアメタルの価格が急騰し、鋼材価格に大きな影響を与えたり、また、レアメタル資源の枯渇に対する懸念も増大しており、レアメタルを使用しない鉄鋼材料に対する期待は益々大きくなっている。   Conventionally, steel materials have realized various characteristics according to applications by effectively utilizing rare metals. However, in recent years, the price of rare metals has soared, greatly affecting the price of steel materials, and concerns about depletion of rare metal resources are increasing, and expectations for steel materials that do not use rare metals are increasing.

レアメタルを使用しない鉄鋼材料の例として、耐時効性に優れた鋼板を挙げることができる。例えば、特許文献1には、C:0.006wt%以下、Mn:0.05〜0.3wt%、Al:0.02〜0.1wt%を含む極低炭素Alキルド鋼を、Ar3変態点以上の温度で熱延仕上げ圧延を行い、630℃以下の温度で巻取ったのち、76%以上の圧下率で冷間圧延し焼鈍することで、結晶粒径を小さくし、固溶Cを粒界に固定する遅時効性冷延鋼板の製造方法が開示されている。 As an example of a steel material that does not use a rare metal, a steel plate having excellent aging resistance can be given. For example, in Patent Document 1, an ultra-low carbon Al killed steel containing C: 0.006 wt% or less, Mn: 0.05 to 0.3 wt%, Al: 0.02 to 0.1 wt% is hot rolled at a temperature equal to or higher than the Ar 3 transformation point. After final rolling, winding at a temperature of 630 ° C or less, cold rolling and annealing at a reduction rate of 76% or more, the crystal grain size is reduced, and the slow aging that fixes solid solution C to the grain boundaries A method for producing a cold-rolled cold rolled steel sheet is disclosed.

特開昭63-266025号公報Japanese Unexamined Patent Publication No. Sho 63-266025

しかしながら、特許文献1に記載された遅時効性冷延鋼板では、結晶粒径が小さい上に、時効指数AIも高く耐時効性に劣るため、プレス成形時には、降伏強度YPが高くなり、スプリングバックにより形状精度が低下し、形状凍結性に劣るといった問題があった。   However, the slow-aging cold-rolled steel sheet described in Patent Document 1 has a small crystal grain size and also has a high aging index AI and poor aging resistance. Therefore, there is a problem that the shape accuracy is lowered and the shape freezing property is inferior.

本発明は、レアメタルを使用することなく、形状凍結性と耐時効性に優れた冷延鋼板およびその製造方法を提供することを目的とする。   An object of this invention is to provide the cold-rolled steel plate excellent in shape freezing property and aging resistance, and its manufacturing method, without using a rare metal.

本発明者等は、上記の目的とする冷延鋼板について次のような検討を行った。   The inventors of the present invention conducted the following investigation on the cold-rolled steel sheet having the above object.

レアメタルを含有しない種々の極低炭素Alキルド鋼板(板厚0.8mm)を25℃で6ヶ月時効させた後、140×100mmの試験片を採取し、図1に示す形状のポンチとダイを用いて、しわ押さえ力200kNで、図2に示すような高さ4mmの張出し成形を行い、図2に示す点線に沿って高さプロファイルを測定し、最大高さと最小高さの差を反り高さとして求め、形状凍結性を評価した。また、時効処理前の鋼板から、同様に140×100mmの試験片を採取し、図1に示す形状のポンチとダイを用いて、しわ押さえ力200kNで、図2に示すような高さ4mmの張出し成形を行い、時効処理前の鋼板の反り高さを求めた。そして、25℃、6ヶ月の時効前後での反り高さの差を求めて、これを反り高さのばらつきとし、形状凍結性のばらつきを評価した。   After aging various ultra-low carbon Al-killed steel sheets (thickness 0.8mm) that do not contain rare metals for 6 months at 25 ° C, 140 x 100mm specimens were collected and used with punches and dies with the shape shown in Fig. 1. Then, with a wrinkle holding force of 200kN, a 4mm-high bulge is formed as shown in Fig. 2, the height profile is measured along the dotted line shown in Fig. 2, and the difference between the maximum and minimum height is warped. And the shape freezing property was evaluated. Similarly, a 140 × 100 mm test piece was taken from the steel sheet before aging treatment, and using a punch and die having the shape shown in FIG. 1, a wrinkle holding force of 200 kN and a height of 4 mm as shown in FIG. Overhang forming was performed, and the warp height of the steel sheet before aging treatment was determined. Then, the difference in warp height before and after aging at 25 ° C. for 6 months was obtained, and this was regarded as the variation in warp height, and the variation in shape freezing property was evaluated.

また、時効前の鋼板のAIを、JIS 5号試験片を用いて、予歪み7.5%を付加し、100℃で30分熱処理した後に引張試験を行って求めたYPから予歪み付加後の応力を引いて求めた。さらに、時効後YPを、JIS 5号試験片を用いて、引張試験を行って求めた。引張試験は、いずれの場合も、JIS Z2241に準じて行った。   In addition, AI of steel plate before aging was applied with JIS No. 5 test piece, pre-strained 7.5%, stress after applying pre-strain from YP obtained by conducting a tensile test after heat treatment at 100 ° C for 30 minutes It was calculated by subtracting Furthermore, YP after aging was obtained by conducting a tensile test using a JIS No. 5 test piece. In each case, the tensile test was performed according to JIS Z2241.

図3に時効後YPと反り高さとの関係を示したが、時効後YPが180MPaを超えると、反り高さが急激に大きくなり、一方、時効後YPを180MPa以下にすれば、反り高さを0.3mm以下にでき、優れた形状凍結性が得られることがわかる。   Fig. 3 shows the relationship between YP after aging and warp height.If YP after aging exceeds 180 MPa, the warp height increases rapidly, while if YP after aging is 180 MPa or less, the warp height increases. It can be seen that the thickness can be reduced to 0.3 mm or less, and excellent shape freezing property can be obtained.

また、図4にAIと反り高さのばらつきとの関係を示したが、AIが20MPaを超えると、反り高さのばらつきが急激に大きくなり、一方、AI を20MPa以下にすれば、反り高さのばらつきを0.04mm以下に小さくできることがわかる。   Figure 4 shows the relationship between AI and warp height variation.If AI exceeds 20 MPa, the warp height variation increases rapidly, while if AI is set to 20 MPa or less, the warp height is increased. It can be seen that the variation in thickness can be reduced to 0.04 mm or less.

このように、反り高さを小さくすることで、形状凍結性を改善でき、例えばプレス成形後の反り高さを0mm、すなわち反りをなくすために追加プレスをする場合でも、反りの矯正が容易となる。また、反り高さのばらつきを小さくすることで、追加プレスを行うような場合であっても、反り高さに応じた所定の条件でばらつきなく反りを小さくすることができる。   In this way, by reducing the warp height, the shape freezing property can be improved, for example, the warp height after press molding is 0 mm, that is, even when an additional press is performed to eliminate the warp, it is easy to correct the warp. Become. Further, by reducing the variation in the warp height, it is possible to reduce the warp without variation under a predetermined condition corresponding to the warp height even when performing additional pressing.

本発明は、以上のような知見に基づきなされたもので、質量%で、C:0.0030%以下、Si:0.05%以下、Mn:0.30%以下、P:0.05%以下、S:0.03%以下、Al:0.01〜0.10%、N:0.0030%以下を含み、かつ[Mn]×[C]≦4.0×10-4を満たし、残部がFeおよび不可避的不純物である化学組成を有するとともに、時効指数AIが20MPa以下、25℃で6ヶ月時効後の降伏強度YPが180MPa以下であることを特徴とする形状凍結性と耐時効性に優れた冷延鋼板を提供する。 The present invention has been made based on the above findings, and in mass%, C: 0.0030% or less, Si: 0.05% or less, Mn: 0.30% or less, P: 0.05% or less, S: 0.03% or less, Al: 0.01 to 0.10%, N: not more than 0.0030%, satisfying [Mn] × [C] ≦ 4.0 × 10 −4 , the balance being Fe and inevitable impurities, and aging index AI The present invention provides a cold-rolled steel sheet excellent in shape freezing property and aging resistance, characterized in that the yield strength YP after aging at 25 ° C. for 6 months is 180 MPa or less.

本発明の冷延鋼板は、上記の化学組成を有する鋼のスラブを、熱間圧延し、酸洗後、50%以上の圧下率で冷間圧延を行い、焼鈍を行うに際し、均熱温度を700〜900℃とし、均熱時間t秒と([Mn]/[C])との比t/([Mn]/[C])を1.0以上とする方法により製造できる。   The cold-rolled steel sheet of the present invention is a steel slab having the above chemical composition, hot-rolled, pickled, cold-rolled at a reduction rate of 50% or more, and subjected to annealing at a soaking temperature. It can be produced by a method in which the temperature is set to 700 to 900 ° C., and the ratio t / ([Mn] / [C]) between the soaking time t seconds and ([Mn] / [C]) is 1.0 or more.

ただし、[M]は元素Mの含有量(質量%)を表す。   However, [M] represents the content (mass%) of the element M.

本発明により、レアメタルを使用せずに、形状凍結性と耐時効性に優れた冷延鋼板を製造できるようになった。本発明の冷延鋼板は、自動車、家電、OA機器の分野におけるプレス成形部品に好適である。   According to the present invention, a cold-rolled steel sheet having excellent shape freezing property and aging resistance can be produced without using rare metals. The cold-rolled steel sheet of the present invention is suitable for press-formed parts in the fields of automobiles, home appliances, and OA equipment.

反り高さを求めるために用いたポンチとダイの形状を示す図である。It is a figure which shows the shape of the punch and die which were used in order to obtain | require curvature height. 張出し成形後の高さプロファイルの測定位置を示す図である。It is a figure which shows the measurement position of the height profile after bulge forming. 時効後YPと反り高さとの関係を示す図である。It is a figure which shows the relationship between YP after aging and curvature height. AIと反り高さのばらつきとの関係を示す図である。It is a figure which shows the relationship between AI and the dispersion | variation in curvature height. [Mn]×[C]とAIとの関係を示す図である。It is a figure which shows the relationship between [Mn] x [C] and AI. [Mn]×[C]と時効後YPとの関係を示す図である。It is a figure which shows the relationship between [Mn] x [C] and YP after aging. t/([Mn]/[C])とAIとの関係を示す図である。It is a figure which shows the relationship between t / ([Mn] / [C]) and AI. t/([Mn]/[C])と時効後YPとの関係を示す図である。It is a figure which shows the relationship between t / ([Mn] / [C]) and YP after aging.

以下に、本発明の詳細を説明する。なお、以下の「%」は、特に断らない限り「質量%」を表す。   Details of the present invention will be described below. The “%” below represents “% by mass” unless otherwise specified.

1)化学組成
C:0.0030%以下
Cは、固溶Cとして粒内に存在するとAIを上昇させる。一方、固溶Cは粒界に偏析すると、粒内に存在する場合に比べてAIを低下させることができる。ただし、粒界の固溶C量が多くなりすぎるとセメンタイトとして存在するようになり、YPを上昇させる。それゆえ、25℃で6ヶ月時効後YPを180MPa以下にするには、C量は0.0030%以下、好ましくは0.0020%以下、より好ましくは0.0015%以下とする必要がある。
1) Chemical composition
C: 0.0030% or less
C, when present in the grain as solute C, raises AI. On the other hand, when solute C segregates at the grain boundaries, AI can be reduced compared to the case where it exists in the grains. However, if the amount of solute C at the grain boundary becomes too large, it will exist as cementite and raise YP. Therefore, in order to reduce the YP after aging at 25 ° C. for 6 months to 180 MPa or less, the C content needs to be 0.0030% or less, preferably 0.0020% or less, more preferably 0.0015% or less.

Si:0.05%以下
多量のSiは、硬質化により成形性を劣化させる。したがって、Si量は0.05%以下、好ましくは0.03%以下とする。
Si: 0.05% or less A large amount of Si deteriorates formability by hardening. Therefore, the Si content is 0.05% or less, preferably 0.03% or less.

Mn:0.30%以下、かつ[Mn]×[C]≦4.0×10-4
Mnは、硬質化により成形性を劣化させる。したがって、Mn量は0.30%以下、好ましくは0.15%以下、より好ましく0.10%以下とする。
Mn: 0.30% or less and [Mn] × [C] ≦ 4.0 × 10 −4
Mn deteriorates moldability by hardening. Therefore, the Mn content is 0.30% or less, preferably 0.15% or less, more preferably 0.10% or less.

さらに、MnはCとの相互作用を有し、固溶Cの拡散を阻害してCの粒界偏析を抑制するため、AIを上昇させる。この影響は、C量が多いほど顕著となる。発明者らが検討した結果、AIを20MPa以下にするには、Mn量は0.30%以下とし、さらに[Mn]×[C]≦4.0×10-4、好ましくは[Mn]×[C]≦3.0×10-4、より好ましくは[Mn]×[C]≦2.0×10-4を満足する必要がある。なお、本願では上記のようにMn量を調整して固溶Cの粒界偏析を図るため、細粒化により固溶Cの粒界偏析を行った場合と比べてYPの上昇を抑えることができ、低AI化に加え、低YP化も達成でき、結果、時効後YPを低下することができる。 Furthermore, Mn has an interaction with C and raises AI in order to inhibit the diffusion of solute C and suppress the segregation of C grain boundaries. This effect becomes more prominent as the C content increases. As a result of investigations by the inventors, in order to make AI 20 MPa or less, the Mn amount is 0.30% or less, and [Mn] × [C] ≦ 4.0 × 10 −4 , preferably [Mn] × [C] ≦ It is necessary to satisfy 3.0 × 10 −4 , more preferably [Mn] × [C] ≦ 2.0 × 10 −4 . In the present application, the amount of Mn is adjusted as described above to achieve grain boundary segregation of solute C. Therefore, it is possible to suppress the increase in YP compared to the case where grain boundary segregation of solute C is performed by refining. In addition to lowering AI, lowering YP can also be achieved, and as a result, YP can be lowered after aging.

P:0.05%以下
Pは、粒界に偏析して延性や靭性を劣化させる。したがって、P量は0.05%以下、好ましくは0.03%以下とする。
P: 0.05% or less
P segregates at the grain boundaries and deteriorates ductility and toughness. Therefore, the P content is 0.05% or less, preferably 0.03% or less.

S: 0.03%以下
Sは、熱間での延性を著しく低下させ、熱間割れを誘発し、表面性状を著しく劣化させる。したがって、S量は0.03%以下、好ましくは0.02%以下、より好ましくは0.01%以下とする。
S: 0.03% or less
S significantly lowers the hot ductility, induces hot cracking, and significantly deteriorates the surface properties. Therefore, the S content is 0.03% or less, preferably 0.02% or less, more preferably 0.01% or less.

Al:0.01〜0.10%
Alは、Nを窒化物として固定することで、固溶Nによる時効硬化を抑制することができる。それゆえ、AIを20MPa以下にするには、Al量は0.01%以上、好ましくは0.03%以上、より好ましくは0.05%以上とする必要がある。一方、0.10%を超える多量のAlは、製造コストの上昇を招く。したがって、Al量は0.01〜0.10%、好ましくは0.03〜0.10%、より好ましくは0.05〜0.10%とする。
Al: 0.01-0.10%
Al can suppress age hardening due to solute N by fixing N as a nitride. Therefore, in order to reduce AI to 20 MPa or less, the Al content needs to be 0.01% or more, preferably 0.03% or more, more preferably 0.05% or more. On the other hand, a large amount of Al exceeding 0.10% causes an increase in production cost. Therefore, the Al content is 0.01 to 0.10%, preferably 0.03 to 0.10%, more preferably 0.05 to 0.10%.

N:0.0030%以下
Nは、多量に含有されると、熱間圧延中にスラブ割れを伴い、表面疵が発生する恐れがある。また、固溶Nとして存在する場合には、時効硬化を引き起こす。したがって、N量は0.0030%以下、好ましくは0.0020%以下とする。
N: 0.0030% or less
When N is contained in a large amount, there is a risk that surface flaws occur due to slab cracking during hot rolling. Moreover, when it exists as solid solution N, age hardening is caused. Therefore, the N content is 0.0030% or less, preferably 0.0020% or less.

残部は、Feおよび不可避的不純物である。   The balance is Fe and inevitable impurities.

2)AI:20MPa以下、時効後YP:180MPa以下
上述したように、優れた形状凍結性を得るには、AIが20MPa以下、25℃で6ヶ月時効後のYPが180MPa以下である必要がある。
2) AI: 20MPa or less, YP after aging: 180MPa or less As described above, AI must be 20MPa or less and YP after 6 months aging at 25 ° C must be 180MPa or less to obtain excellent shape freezing properties. .

3)製造方法
本発明の冷延鋼板は、上記の化学組成を有する鋼のスラブを、熱間圧延し、酸洗後、以下の条件で冷間圧延、焼鈍を行うことにより製造できる。
3) Manufacturing method The cold-rolled steel sheet of the present invention can be manufactured by hot rolling a steel slab having the above chemical composition, pickling, and then performing cold rolling and annealing under the following conditions.

冷間圧延の圧下率:50%以上
圧下率が50%未満だと、焼鈍後の結晶粒が大きくなり、粒内に固溶Cが残り、AIを20MPa以下にできない。したがって、冷間圧延の圧下率は50%以上とする。なお、圧下率が90%を超えると、圧延荷重が大きくなることから、圧下率は90%以下とすることが好ましく、80%以下とすることがより好ましい。
Cold rolling reduction: 50% or more When the rolling reduction is less than 50%, the crystal grains after annealing become large, solid solution C remains in the grains, and AI cannot be reduced to 20 MPa or less. Therefore, the rolling reduction of cold rolling is set to 50% or more. If the rolling reduction exceeds 90%, the rolling load increases, so the rolling reduction is preferably 90% or less, and more preferably 80% or less.

焼鈍の均熱温度:700〜900℃
均熱温度が700℃未満だと、未再結晶組織が残ったり、結晶粒が細粒化してしまって、時効後YPを180MPa以下にできない。一方、均熱温度が900℃を超え、オーステナイト域に入ると均熱後の冷却でフェライト変態するため固溶Cを粒界に偏析させることが困難となり、AIを20MPa以下にできない。したがって、焼鈍の均熱温度は700〜900℃、好ましくは750〜900℃とする。
Soaking temperature for annealing: 700-900 ℃
If the soaking temperature is less than 700 ° C, an unrecrystallized structure remains or crystal grains become finer, and YP cannot be reduced to 180 MPa or less after aging. On the other hand, when the soaking temperature exceeds 900 ° C and enters the austenite region, ferrite transformation occurs due to cooling after soaking, so it becomes difficult to segregate solid solution C at the grain boundaries, and AI cannot be reduced to 20 MPa or less. Therefore, the soaking temperature for annealing is 700 to 900 ° C, preferably 750 to 900 ° C.

焼鈍の均熱時間t:t/([Mn]/[C])が1.0以上となる時間(秒)
t/([Mn]/[C])が1.0未満で均熱時間が短いと、固溶Cの拡散が抑制されることから、固溶Cを粒界に偏析させることができなくなり、AIを20MPa以下にできない。したがって、焼鈍の均熱時間tは、t/([Mn]/[C])が1.0以上、好ましくは3.0以上、より好ましくは5.0以上、さらに好ましくは10.0以上とする。
Annealing time t of annealing: Time for t / ([Mn] / [C]) to be 1.0 or more (second)
If t / ([Mn] / [C]) is less than 1.0 and the soaking time is short, diffusion of the solid solution C is suppressed, so that the solid solution C cannot be segregated at the grain boundaries, and AI Can not be less than 20MPa. Accordingly, the soaking time t of annealing is set so that t / ([Mn] / [C]) is 1.0 or more, preferably 3.0 or more, more preferably 5.0 or more, and further preferably 10.0 or more.

なお、上記t/([Mn]/[C])とAIとの関係は、均熱時間が短いと固溶Cの拡散が抑制されて固溶Cを粒界に偏析させることが困難となり、また、C量に対してMn量が多くなるほど、このような固溶Cの拡散の抑制が顕著となることから、発明者らが、均熱時間t、鋼中のC量、Mn量と、AIとの関係を検討した結果得たものである。なお、均熱時間があまりに長くなると、粒径が粗大化して、成形後の外観が低下する懸念があるため、3時間以下とすることが好ましい。   Note that the relationship between the above t / ([Mn] / [C]) and AI is that when the soaking time is short, it is difficult to segregate the solid solution C to the grain boundary because the diffusion of the solid solution C is suppressed, In addition, as the amount of Mn increases with respect to the amount of C, the suppression of such solute C diffusion becomes more prominent, so the inventors have determined that the soaking time t, the amount of C in the steel, the amount of Mn, It was obtained as a result of examining the relationship with AI. Note that if the soaking time is too long, the particle size becomes coarse and the appearance after molding may be deteriorated.

鋼の溶製方法には、通常の転炉法、電炉法などを適宜適用することができる。また、溶製された鋼は、スラブに鋳造後、そのまま、あるいは冷却して加熱後、熱間圧延が施される。冷間圧延後の焼鈍は、均一な材質の得やすい連続焼鈍炉で行うことが好ましい。焼鈍後の冷延鋼板には、圧下率0.5〜3%程度の調質圧延、溶融亜鉛めっき処理や化成処理などの表面処理を施すことができる。   A normal converter method, an electric furnace method, or the like can be appropriately applied to the steel melting method. The molten steel is cast into a slab and then subjected to hot rolling as it is or after cooling and heating. The annealing after the cold rolling is preferably performed in a continuous annealing furnace in which a uniform material can be easily obtained. The cold-rolled steel sheet after annealing can be subjected to surface treatment such as temper rolling at a rolling reduction of about 0.5 to 3%, hot dip galvanizing treatment or chemical conversion treatment.

表1に示す化学組成の鋼を溶製し、スラブとした後、1200℃で1時間加熱し、オーステナイト域で仕上げ圧延を行い、600℃で巻取り、板厚2.6mmの熱延鋼板とし、酸洗後、表1に示す条件で冷間圧延、焼鈍を行い、次いで1.0%の圧下率で調質圧延を行って、冷延鋼板とした。このとき、焼鈍は連続焼鈍炉にて行った。そして、圧延方向からJIS5号引張試験片を切り出し、引張試験を行ってYP、引張強度TS、伸びElを測定した。また、上記の方法により、AIおよび時効後YPの測定を行った。   After melting the steel with the chemical composition shown in Table 1 and making it into a slab, heat at 1200 ° C for 1 hour, finish rolling in the austenite region, wind up at 600 ° C, and make a hot rolled steel plate with a thickness of 2.6 mm, After pickling, cold rolling and annealing were performed under the conditions shown in Table 1, and then temper rolling was performed at a rolling reduction of 1.0% to obtain a cold rolled steel sheet. At this time, annealing was performed in a continuous annealing furnace. Then, a JIS No. 5 tensile test piece was cut out from the rolling direction, a tensile test was performed, and YP, tensile strength TS, and elongation El were measured. In addition, AI and post-aging YP were measured by the above methods.

結果を表2に示す。   The results are shown in Table 2.

また、図5に、[Mn]×[C]とAIとの関係を、図6に、[Mn]×[C]と時効後YPとの関係を、図7に、t/([Mn]/[C])とAIとの関係を、図8に、t/([Mn]/[C])と時効後YPとの関係を示す。図5、6より、[Mn]×[C]≦4×10-4とすることでAIを20MPa以下、時効後YPを180MPa以下とでき、形状凍結性に優れることがわかる。図7、8より、t/([Mn]/[C])を1.0以上にすることでAIを20MPa以下、時効後YPを180MPa以下とでき、形状凍結性に優れることがわかる。一方、表2の供試鋼No.7に示すように、冷間圧延の圧下率が50%未満の場合や、供試鋼No.16、23に示すように、C量やMn量が本発明範囲外の場合や、供試鋼No.24、25に示すように、焼鈍の均熱温度が700〜900℃の範囲外の場合は、AIが20MPaを超え、時効後YPが180MPaを超えて、形状凍結性に劣ることがわかる。 FIG. 5 shows the relationship between [Mn] × [C] and AI, FIG. 6 shows the relationship between [Mn] × [C] and post-aging YP, and FIG. 7 shows t / ([Mn] FIG. 8 shows the relationship between t / ([Mn] / [C]) and post-aging YP. 5 and 6, it can be seen that by setting [Mn] × [C] ≦ 4 × 10 −4 , AI can be 20 MPa or less, and YP after aging is 180 MPa or less, and the shape freezing property is excellent. 7 and 8, it can be seen that by setting t / ([Mn] / [C]) to 1.0 or more, AI can be 20 MPa or less and YP after aging is 180 MPa or less, and the shape freezing property is excellent. On the other hand, as shown in Test Steel No. 7 in Table 2, when the rolling reduction of cold rolling is less than 50%, or as shown in Test Steel Nos. When the temperature is outside the scope of the invention or when the annealing temperature is outside the range of 700 to 900 ° C, as shown in Test Steel Nos. 24 and 25, AI exceeds 20 MPa, and after aging, YP exceeds 180 MPa. Thus, it can be seen that the shape freezing property is inferior.

Claims (2)

質量%で、C:0.0030%以下、Si:0.05%以下、Mn:0.30%以下、P:0.05%以下、S:0.03%以下、Al:0.01〜0.10%、N:0.0030%以下を含み、かつ[Mn]×[C]≦4.0×10-4を満たし、残部がFeおよび不可避的不純物である化学組成を有するとともに、時効指数AIが20MPa以下、25℃で6ヶ月時効後の降伏強度YPが180MPa以下であることを特徴とする形状凍結性と耐時効性に優れた冷延鋼板;ただし、[M]は元素Mの含有量(質量%)を表す。 In mass%, C: 0.0030% or less, Si: 0.05% or less, Mn: 0.30% or less, P: 0.05% or less, S: 0.03% or less, Al: 0.01-0.10%, N: 0.0030% or less, and It has a chemical composition satisfying [Mn] × [C] ≦ 4.0 × 10 −4 , the balance being Fe and inevitable impurities, an aging index AI of 20 MPa or less, and a yield strength YP after aging for 6 months at 25 ° C. Cold-rolled steel sheet excellent in shape freezing property and aging resistance characterized by being 180 MPa or less; provided that [M] represents the content (% by mass) of element M. 請求項1に記載の化学組成を有する鋼のスラブを、熱間圧延し、酸洗後、50%以上の圧下率で冷間圧延を行い、焼鈍を行うに際し、均熱温度を700〜900℃とし、均熱時間t秒と([Mn]/[C])との比t/([Mn]/[C])を1.0以上とすることを特徴とする形状凍結性と耐時効性に優れた冷延鋼板の製造方法;ただし、[M]は元素Mの含有量(質量%)を表す。   When the steel slab having the chemical composition according to claim 1 is hot-rolled, pickled, cold-rolled at a reduction rate of 50% or more, and annealed, the soaking temperature is 700 to 900 ° C. And the ratio of soaking time t seconds to ([Mn] / [C]) t / ([Mn] / [C]) is 1.0 or more. Excellent shape freezing and aging resistance. A method for producing a cold-rolled steel sheet; where [M] represents the content (% by mass) of element M.
JP2011285172A 2011-12-27 2011-12-27 Cold-rolled steel sheet with excellent shape freezing and aging resistance and method for producing the same Active JP5887920B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2011285172A JP5887920B2 (en) 2011-12-27 2011-12-27 Cold-rolled steel sheet with excellent shape freezing and aging resistance and method for producing the same

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2011285172A JP5887920B2 (en) 2011-12-27 2011-12-27 Cold-rolled steel sheet with excellent shape freezing and aging resistance and method for producing the same

Publications (2)

Publication Number Publication Date
JP2013133510A true JP2013133510A (en) 2013-07-08
JP5887920B2 JP5887920B2 (en) 2016-03-16

Family

ID=48910412

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2011285172A Active JP5887920B2 (en) 2011-12-27 2011-12-27 Cold-rolled steel sheet with excellent shape freezing and aging resistance and method for producing the same

Country Status (1)

Country Link
JP (1) JP5887920B2 (en)

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6230259B2 (en) * 1979-02-27 1987-07-01 Kawasaki Steel Co
JPH0249373B2 (en) * 1985-09-17 1990-10-30 Kawasaki Steel Co
JPH04346625A (en) * 1991-05-24 1992-12-02 Kobe Steel Ltd Manufacture of baking hardening type cold rolled steel sheet excellent in aging resistance and press formability
JPH05195060A (en) * 1992-01-13 1993-08-03 Kobe Steel Ltd Production of baking hardening type cold rolled steel sheet excellent in ageing resistance and press formability
JPH11179427A (en) * 1997-12-22 1999-07-06 Kawasaki Steel Corp Manufacture of cold rolling steel plate having excellent workability and aging resistance
JP2004218018A (en) * 2003-01-16 2004-08-05 Jfe Steel Kk High-strength cold-rolled steel sheet which is excellent in workability and strain age-hardening property, high-strength plated steel sheet and their production methods

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6230259B2 (en) * 1979-02-27 1987-07-01 Kawasaki Steel Co
JPH0249373B2 (en) * 1985-09-17 1990-10-30 Kawasaki Steel Co
JPH04346625A (en) * 1991-05-24 1992-12-02 Kobe Steel Ltd Manufacture of baking hardening type cold rolled steel sheet excellent in aging resistance and press formability
JPH05195060A (en) * 1992-01-13 1993-08-03 Kobe Steel Ltd Production of baking hardening type cold rolled steel sheet excellent in ageing resistance and press formability
JPH11179427A (en) * 1997-12-22 1999-07-06 Kawasaki Steel Corp Manufacture of cold rolling steel plate having excellent workability and aging resistance
JP2004218018A (en) * 2003-01-16 2004-08-05 Jfe Steel Kk High-strength cold-rolled steel sheet which is excellent in workability and strain age-hardening property, high-strength plated steel sheet and their production methods

Also Published As

Publication number Publication date
JP5887920B2 (en) 2016-03-16

Similar Documents

Publication Publication Date Title
JP5609945B2 (en) High-strength cold-rolled steel sheet and manufacturing method thereof
JP5549307B2 (en) Cold-rolled steel sheet excellent in aging and bake hardenability and method for producing the same
JP5387073B2 (en) Steel plate for hot pressing, method for manufacturing the same, and method for manufacturing steel plate member for hot pressing
WO2011126154A1 (en) High-strength steel sheet having excellent hot rolling workability, and process for production thereof
JP2005126733A (en) Steel sheet for hot press having excellent hot workability, and automotive member
KR101164471B1 (en) Process for producing high-strength cold rolled steel sheet with low yield strength and with less material quality fluctuation
JP2012153957A (en) High-strength cold-rolled steel sheet with excellent ductility, and method for producing the same
JP4324226B1 (en) High-strength cold-rolled steel sheet with excellent yield stress, elongation and stretch flangeability
JP5857913B2 (en) Hot-formed steel plate member, method for producing the same, and hot-formed steel plate
JP2013040390A (en) Method for manufacturing hot-pressed member
JP5501819B2 (en) Cold-rolled steel sheet for nitriding with excellent nitriding characteristics and anti-recrystallization softening characteristics and method for producing the same
JP6003837B2 (en) Manufacturing method of high strength pressed parts
JP6098537B2 (en) High-strength cold-rolled steel sheet and manufacturing method thereof
JP5310920B2 (en) High strength cold-rolled steel sheet with excellent aging resistance and seizure hardening
JP5903884B2 (en) Manufacturing method of high-strength thin steel sheet with excellent resistance to folding back
JP4385754B2 (en) Ultra-high-strength steel sheet excellent in formability and bending workability and manufacturing method thereof
WO2011004554A1 (en) Process for production of cold-rolled steel sheet having excellent press moldability, and cold-rolled steel sheet
JP6062353B2 (en) Steel sheet for hot press
JP2007177293A (en) Ultrahigh-strength steel sheet and manufacturing method therefor
JP5846113B2 (en) High strength thin steel sheet with excellent dent resistance and method for producing the same
JP5887920B2 (en) Cold-rolled steel sheet with excellent shape freezing and aging resistance and method for producing the same
JP2022510188A (en) Aluminum-based galvanized steel sheet for hot pressing with excellent hydrogen delayed fracture characteristics and spot weldability and its manufacturing method
JP2007009271A (en) Steel sheet having low anisotropy, and manufacturing method therefor
JP4114522B2 (en) Ultra-high strength cold-rolled steel sheet and method for producing the same
JP5834901B2 (en) Hot-rolled steel sheet excellent in shape freezing and aging resistance and method for producing the same

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20140825

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20150728

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20150914

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20151013

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20151209

A911 Transfer to examiner for re-examination before appeal (zenchi)

Free format text: JAPANESE INTERMEDIATE CODE: A911

Effective date: 20151216

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20160119

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20160201

R150 Certificate of patent or registration of utility model

Ref document number: 5887920

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250