JP5846113B2 - High strength thin steel sheet with excellent dent resistance and method for producing the same - Google Patents

High strength thin steel sheet with excellent dent resistance and method for producing the same Download PDF

Info

Publication number
JP5846113B2
JP5846113B2 JP2012269076A JP2012269076A JP5846113B2 JP 5846113 B2 JP5846113 B2 JP 5846113B2 JP 2012269076 A JP2012269076 A JP 2012269076A JP 2012269076 A JP2012269076 A JP 2012269076A JP 5846113 B2 JP5846113 B2 JP 5846113B2
Authority
JP
Japan
Prior art keywords
less
temperature
rolling
strength
steel sheet
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2012269076A
Other languages
Japanese (ja)
Other versions
JP2013151738A (en
Inventor
重宏 ▲高▼城
重宏 ▲高▼城
花澤 和浩
和浩 花澤
藤田 耕一郎
耕一郎 藤田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
JFE Steel Corp
Original Assignee
JFE Steel Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by JFE Steel Corp filed Critical JFE Steel Corp
Priority to JP2012269076A priority Critical patent/JP5846113B2/en
Publication of JP2013151738A publication Critical patent/JP2013151738A/en
Application granted granted Critical
Publication of JP5846113B2 publication Critical patent/JP5846113B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Description

本発明は、建材、家電、自動車、缶などの使途に好適な高強度薄鋼板に係り、とくに耐デント性の向上に関する。   The present invention relates to a high-strength thin steel sheet suitable for use in building materials, home appliances, automobiles, cans, and the like, and particularly relates to improvement in dent resistance.

建材、電機、自動車、缶などの分野では、地球環境の保全等の観点から、製品や部材の軽量化が要望されている。このような要望に対しては、まず素材の薄肉化が考えられる。
電機・建材分野で多く使用されている、YP220MPa級薄鋼板(引張強さTS:330MPa級)では、通常用いている0.8mm厚の薄鋼板に代えて、例えば0.7mm厚あるいは0.6mm厚の薄鋼板とする、更なる薄肉化が要望されている。
In the fields of building materials, electrical machinery, automobiles, cans, etc., there is a demand for weight reduction of products and members from the viewpoint of global environmental conservation. In order to meet such demands, it is conceivable to reduce the thickness of the material.
In YP220MPa class thin steel sheets (tensile strength TS: 330MPa class), which are widely used in the electrical and building materials field, for example, 0.7mm thickness or 0.6mm thickness is used instead of the 0.8mm thickness steel sheet that is normally used. There is a demand for further thinning of the steel sheet.

しかし、同一鋼種規格による素材の薄肉化は、部材の耐デント性が低下することが懸念される。そのため、薄肉化する多くの場合には、部材の耐デント性向上が必須となっている。平板部材の耐デント性Aは、次式
A∝t×t×(部材の降伏強度)
(ここで、t:板厚)
で表されるとされる。この式によれば、薄肉化による耐デント性の低下は、強度の増加によって補えることになる。例えば、素材として、降伏点YPが220MPa級の、板厚t:0.8mmの鋼材(現行材)を使用している部材を、t:0.7mm、あるいはt:0.6mmの薄肉鋼材を使用した部材に置き換える場合、同等の耐デント性Aを保つためには、0.7mm厚の薄肉鋼材では降伏点YP:287MPaと、また、0.6mm厚の薄肉鋼材では降伏点YP:391MPaと、高強度化することが必要となることになる。
However, there is a concern that the reduction in the dent resistance of the member may be caused by reducing the thickness of the material according to the same steel type standard. Therefore, in many cases where the thickness is reduced, it is essential to improve the dent resistance of the member. The dent resistance A of the flat plate member is
A ∝ t × t × (yield strength of member)
(Where t: thickness)
It is said that According to this formula, the decrease in dent resistance due to the thinning can be compensated by the increase in strength. For example, a material that uses steel (current material) with a thickness of t: 0.8 mm and a thin steel material of t: 0.7 mm or t: 0.6 mm, with a yield point YP of 220 MPa. In order to maintain equivalent dent resistance A, yield strength YP: 287MPa for 0.7mm thick thin steel, and yield point YP: 391MPa for 0.6mm thick thin steel, increase strength. Will be necessary.

素材である鋼材(鋼板)の高強度の方法としては、従来から、大別して、固溶元素添加による固溶強化や、析出物を微細かつ多量に析出させる析出分散強化、あるいは、Mnなどの焼入れ性向上元素の添加により、マルテンサイト相を生成させて高強度化する変態強化や、未再結晶の加工組織によって高強度化する転位強化、が用いられてきた。
例えば、特許文献1には、缶用鋼板の製造方法が記載されている。特許文献1に記載された技術は、C:0.0015%以下、Si:0.020%以下、Mn:0.10%以下、N:0.003%以下、Al:0.150%以下を含み、さらにCr:0.020〜0.500%、Nb:0.0020〜0.0200%、Ti:0.0050〜0.0200%、B:0.0002〜0.0020%のうちの1種または2種以上を含むスラブに、1050℃以下に再加熱したのち、仕上圧延機入側温度を950℃以下とし、合計圧下率を40%以上、最終圧下率を25%以上とし、500〜750℃の温度で巻取り、酸洗の後、圧下率50〜98%の冷間圧延を行う、缶用鋼板の製造方法である。特許文献1に記載された技術は、焼鈍工程を省略して、冷間圧延ままで缶用鋼板として所望の特性を確保する、いわゆる、転位強化を利用して高強度化する方法である。
Conventionally, high strength methods for steel (steel plates), which are raw materials, can be broadly divided into solid solution strengthening by adding solid solution elements, precipitation dispersion strengthening that precipitates a large amount of precipitates, or quenching such as Mn. For example, transformation strengthening has been used in which a martensite phase is generated to increase the strength by the addition of a property improving element and dislocation strengthening to increase the strength by an unrecrystallized processed structure.
For example, Patent Document 1 describes a method for manufacturing a steel plate for cans. The technology described in Patent Document 1 includes C: 0.0015% or less, Si: 0.020% or less, Mn: 0.10% or less, N: 0.003% or less, Al: 0.150% or less, and Cr: 0.020-0.500%. Nb: 0.0020-0.0200%, Ti: 0.0050-0.0200%, B: 0.0002-0.0020% Slabs containing one or more types are reheated to 1050 ° C or lower, and the finishing mill entry temperature is 950 ° C. or less, total rolling reduction of 40% or more, final rolling reduction of 25% or more, winding at a temperature of 500 to 750 ° C., and after pickling, cold rolling with a rolling reduction of 50 to 98% is performed. It is a manufacturing method of the steel plate for cans. The technique described in Patent Document 1 is a method of increasing strength using so-called dislocation strengthening, in which an annealing step is omitted, and desired properties are ensured as a steel plate for cans while being cold-rolled.

また、特許文献2には、C:0.08%以下、Si:0.01〜0.05%、Mn:0.1〜2.5%、酸可溶性Al:0.010%以下、N:0.004〜0.02%を含み、不可避的に混入する酸可溶性TiとN、Alとが特定関係を満足するように含まれる組成のスラブを、熱間圧延し、コイル状に巻取り、コイルの温度が350℃以上のとき水槽に浸漬し、合計で圧下率20%以上の冷間圧延を施す、冷間圧延後の延性に優れた鉄板の製造方法が記載されている。特許文献2に記載された技術によれば、焼鈍を省略しても、延性に優れた鉄板が製造できるとしている。特許文献2に記載された技術は、焼鈍を省略して、冷間圧延ままで、所望の延性を確保する、いわゆる、転位強化を利用した高強度化する方法である。   Patent Document 2 includes C: 0.08% or less, Si: 0.01 to 0.05%, Mn: 0.1 to 2.5%, acid-soluble Al: 0.010% or less, and N: 0.004 to 0.02%. A slab with a composition that contains acid-soluble Ti, N, and Al to satisfy a specific relationship is hot-rolled, wound into a coil, and immersed in a water bath when the coil temperature is 350 ° C or higher. A method for producing an iron plate excellent in ductility after cold rolling, which is subjected to cold rolling with a rolling reduction of 20% or more is described. According to the technique described in Patent Document 2, an iron plate having excellent ductility can be manufactured even if annealing is omitted. The technique described in Patent Document 2 is a method of increasing the strength using so-called dislocation strengthening, in which annealing is omitted and the desired ductility is ensured while still in cold rolling.

また、特許文献3には、高強度缶用極薄冷延鋼板の製造方法が記載されている。特許文献3に記載された技術では、質量%で、C:0.02%以下、Mn:1.5%以下、Al:0.01%以下、N:0.0050〜0.0250%を含む圧延素材を用いて、N量の90%以上が固溶状態となる温度で圧延を開始し、(Ar3変態点−30℃)以上で仕上圧延を終了する熱間圧延を施し、熱間圧延終了後、強冷を開始し、600℃以上で巻取り、巻取り後水冷して熱延板とし、冷間圧延を施し、さらに再結晶温度以上で均熱し、均熱終了後60s以内に40℃まで冷却する連続焼鈍を施す、高強度缶用極薄冷延鋼板の製造方法である。特許文献3に記載された技術では、塗装焼付処理後の降伏強さ:550MPa以上で、焼付け硬化量100MPa以上、塗装焼付処理による引張強さの増加量が30MPa以上となるとしている。特許文献3に記載された技術では、焼鈍後に(固溶C+固溶N)が0.0050%以上存在するいわゆる、固溶強化を利用して高強度化する方法である。   Patent Document 3 describes a method for producing an ultrathin cold-rolled steel sheet for a high-strength can. In the technique described in Patent Document 3, by using a rolling material containing C: 0.02% or less, Mn: 1.5% or less, Al: 0.01% or less, and N: 0.0050 to 0.0250% by mass%, the N amount is 90%. Rolling is started at a temperature at which at least% is in a solid solution state, hot rolling is performed to finish finish rolling at (Ar3 transformation point −30 ° C.) or more, and after the hot rolling is finished, strong cooling is started, and 600 ° C. Winding, winding and water-cooling after hot rolling, cold rolling, soaking at a temperature above the recrystallization temperature, and continuous annealing to cool to 40 ° C within 60 s after soaking It is a manufacturing method of the ultra-thin cold-rolled steel plate for cans. In the technique described in Patent Document 3, the yield strength after paint baking treatment is 550 MPa or more, the bake hardening amount is 100 MPa or more, and the increase in tensile strength by the paint baking treatment is 30 MPa or more. The technique described in Patent Document 3 is a method of increasing the strength using so-called solid solution strengthening in which (solid solution C + solid solution N) is present in an amount of 0.0050% or more after annealing.

また、特許文献4には、浸炭焼入れ方法を利用した浸窒焼入れ品が記載されている。特許文献4に記載された技術は、鉄または鉄合金製のワーク(素材)を、アンモニアガスが供給された熱処理炉に装入し、オーステナイト域の温度まで昇温、保持したのち、急冷し焼入れして、ワークの表面に硬化層を形成し、浸窒焼入れ品とする、いわゆる変態強化を利用して高強度化する方法である。   Patent Document 4 describes a nitrocarburized product using a carburizing and quenching method. The technology described in Patent Document 4 is a method in which an iron or iron alloy workpiece (material) is charged into a heat treatment furnace supplied with ammonia gas, heated to an austenite temperature, held, and then quenched and quenched. In this method, a hardened layer is formed on the surface of the workpiece to obtain a nitrocarburized product, which is a method of increasing the strength by utilizing so-called transformation strengthening.

特許文献5には、高強度冷延鋼板の製造方法が記載されている。特許文献5に記載された技術では、質量%で、C:0.016〜0.2%を含み、かつTi:0.025〜1%、Nb:0.01〜1.5%、V:0.01〜1%のいずれか1種以上を含有する鋼を、熱間圧延後650℃以下で巻き取り、85%以下の圧下率で冷間圧延後、600℃から再結晶終了までの温度域を30℃/s以上の加熱速度で焼鈍して、低降伏比で、加工性、溶接性に優れた高強度冷延鋼板を得るとしている。特許文献5に記載された技術は、Ti、Nb、Vの炭化物あるいは窒化物を微細に析出させた、いわゆる析出強化を利用して高強度化する方法である。   Patent Document 5 describes a method for producing a high-strength cold-rolled steel sheet. In the technique described in Patent Document 5, the mass% includes C: 0.016-0.2%, and Ti: 0.025-1%, Nb: 0.01-1.5%, V: 0.01-1%. After hot rolling, the steel containing is rolled up at 650 ° C or less, cold-rolled at a reduction rate of 85% or less, and then annealed at a heating rate of 30 ° C / s or more from 600 ° C to the end of recrystallization. Thus, a high strength cold-rolled steel sheet having a low yield ratio and excellent workability and weldability is obtained. The technique described in Patent Document 5 is a method for increasing the strength using so-called precipitation strengthening, in which carbides or nitrides of Ti, Nb, and V are finely precipitated.

特開平08−176674号公報Japanese Unexamined Patent Publication No. 08-176674 特開2000−87184号公報JP 2000-87184 A 特開2001−107186号公報Japanese Patent Laid-Open No. 2001-107186 特開2009−270155号公報JP 2009-270155 A 特開2002−363649号公報JP 2002-363649 A

しかしながら、特許文献1、2に記載された技術で利用された、転位強化による高強度化は、引張強さTSを高めるだけでなく、延性を著しく低下させるという問題がある。また、特許文献5に記載された技術で利用した、析出強化による高強度化は、Ti、Nbなどの高価な元素を多量に含有する必要があり、材料コストを高騰させるという問題がある。また、特許文献4に記載された技術が利用した、変態強化による高強度化は、降伏強さYPよりも引張強さTSを高める傾向が強く、成形加工時の金型摩耗を促進し、さらに成形加工後のスプリングバックを大きくするという問題がある。このように、析出強化、変態強化、転位強化を用いた高強度化には、上記したような問題があった。   However, the increase in strength by dislocation strengthening used in the techniques described in Patent Documents 1 and 2 has a problem of not only increasing the tensile strength TS but also significantly reducing the ductility. In addition, the increase in strength by precipitation strengthening used in the technique described in Patent Document 5 requires a large amount of expensive elements such as Ti and Nb, which raises the problem of increasing the material cost. Further, the increase in strength by transformation strengthening used by the technique described in Patent Document 4 has a strong tendency to increase the tensile strength TS rather than the yield strength YP, and promotes mold wear during molding processing. There is a problem of increasing the spring back after molding. As described above, the increase in strength using precipitation strengthening, transformation strengthening, and dislocation strengthening has the above-described problems.

本発明は、かかる従来技術の問題を有利に解決し、建材、電機、自動車、缶などの分野で好適な高強度薄鋼板であって、降伏強さYP:400MPa以上で耐デント性に優れ、かつ1.25YP以下の低引張強さTSを有する、耐デント性に優れた高強度薄鋼板およびその製造方法を提供することを目的とする。本発明では、目標特性を、耐デント性を確保するために、降伏強さYPを400MPa以上と高YPに、成形加工後のスプリングバックを低く抑えるために、引張強さTSを1.25YP以下と低TSに限定した。なお、ここでいう「薄鋼板」とは、板厚1.5mm以下の鋼板(鋼帯)をいうものとする。   The present invention advantageously solves the problems of the prior art, and is a high-strength thin steel sheet suitable in the fields of building materials, electrical machinery, automobiles, cans, etc., and has a yield strength of YP: 400 MPa or more and excellent dent resistance. Another object of the present invention is to provide a high-strength thin steel sheet having a low tensile strength TS of 1.25 YP or less and excellent in dent resistance and a method for producing the same. In the present invention, the target property is a yield strength YP of 400 MPa or higher and a high YP to ensure dent resistance, and a tensile strength TS of 1.25 YP or less in order to keep the springback after molding low. Limited to low TS. The “thin steel plate” here refers to a steel plate (steel strip) having a thickness of 1.5 mm or less.

本発明者らは、上記した目的を達成するために、まず、固溶強化による高強度化に着目した。一般に、固溶強化は、少ない添加量で高強度化できること、固溶元素は析出物のように成形性を阻害しにくいこと、などの利点がある。特許文献3に記載された技術では、連続焼鈍均熱後に、例えば、冷却速度:150℃/s以上の高速冷却を行い、鋼板中に固溶C、固溶Nを残存させて高強度化を図っている。しかし、フェライト(鋼板)中に固溶できるC、N量は、高々0.017質量%程度までであり、所望の高強度化を達成するうえでは少ない。   In order to achieve the above-described object, the present inventors first focused on increasing the strength by solid solution strengthening. In general, the solid solution strengthening has advantages such that the strength can be increased with a small addition amount, and the solid solution element is unlikely to hinder formability like a precipitate. In the technique described in Patent Document 3, after continuous annealing and soaking, for example, high-speed cooling at a cooling rate of 150 ° C./s or more is performed, and solid solution C and solid solution N remain in the steel sheet to increase the strength. I am trying. However, the amount of C and N that can be dissolved in the ferrite (steel plate) is at most about 0.017% by mass, and is small in achieving the desired high strength.

さらに、一般に、固溶C量の増大を目的に鋼中C量を増加すると、同時に、鋼板中に鉄炭化物の生成が促進され、十分な固溶C量を確保できないという問題がある。一方、N量の増大は、Cほどには、鉄窒化物の生成を促進しない。このことから、Nは、鋼中に十分な量、固溶状態で存在しやすく、固溶強化による高強度化が達成できるものと、考えた。
しかし、通常の製鋼法で、高N化を達成するためには、同時にV、Crなどの元素を多量に添加する必要があり、コスト高を招くため、ステンレス鋼などの特殊鋼の溶製以外には、有用ではないといわれている。鋼中のN量を高める方法としては、さらに、例えば、加圧式ESR(Electro Slag Remelting)法、メカニカルアロイング法が知られているが、高強度薄鋼板の製造のような大量生産を必要とする場合には不適である。
Furthermore, generally, when the amount of C in steel is increased for the purpose of increasing the amount of solute C, at the same time, there is a problem that the formation of iron carbide in the steel sheet is promoted and a sufficient amount of solute C cannot be secured. On the other hand, the increase in the amount of N does not promote the formation of iron nitride as much as C. From this, it was considered that N is easily present in a sufficient amount and in a solid solution state in the steel, and that high strength can be achieved by solid solution strengthening.
However, in order to achieve high N by the normal steel making method, it is necessary to add a large amount of elements such as V and Cr at the same time, and this leads to high costs. It is said that it is not useful. As a method for increasing the amount of N in steel, for example, the pressurization type ESR (Electro Slag Remelting) method and the mechanical alloying method are known, but mass production such as manufacturing of high-strength thin steel sheet is required. It is unsuitable if you do.

そこで、本発明者らは、高N化の方法として、窒素吸収処理法に着目した。窒素吸収処理法は、雰囲気ガスを変えることによって吸収する窒素量を調整するもので、薄鋼板製造時の焼鈍プロセスに組み込むことが可能であるという利点がある。
特許文献4にも、熱処理時に窒素をワーク内に拡散浸透させて吸収する技術が記載されている。しかし、従来の高窒素化は、とにかく吸収窒素量を高めることに重点が置かれ、固溶N量を増加させて高YP化を達成するための、具体的な鋼板組成、製造プロセスについての言及はまったくない。例えば、Ti、Cr、Alなどが添加されている場合、窒素は窒化物として析出し、固溶状態で存在しにくく、延性を低下させるという問題がある。また、実際の薄鋼板製造では、調質圧延などの形状矯正工程で低YP化する場合があるなどの問題がある。
Therefore, the present inventors paid attention to a nitrogen absorption treatment method as a method for increasing N. The nitrogen absorption treatment method adjusts the amount of nitrogen to be absorbed by changing the atmospheric gas, and has an advantage that it can be incorporated into an annealing process when manufacturing a thin steel sheet.
Patent Document 4 also describes a technique for diffusing and penetrating nitrogen into a workpiece and absorbing it during heat treatment. However, in the conventional high nitrogenization, any emphasis is placed on increasing the amount of absorbed nitrogen, and a specific steel sheet composition and manufacturing process for achieving high YP by increasing the amount of dissolved N is mentioned. There is no. For example, when Ti, Cr, Al, or the like is added, nitrogen precipitates as a nitride, and is difficult to exist in a solid solution state, which causes a problem of reducing ductility. In addition, in actual thin steel sheet production, there is a problem that the YP may be lowered in a shape correction process such as temper rolling.

このようなことから、本発明者らは、固溶Nを利用した固溶強化による高強度化に着目し、種々の検討を行った結果、冷間圧延後の焼鈍工程に窒素吸収処理法を組み込んで利用することが、上記した目的を達成するために有効であるという知見を得た。そして、窒化物の生成を抑え、鋼中に固溶Nをより多く存在させ、所望の延性、降伏強さ、引張強さを確保するためには、適正な成分範囲に調整したうえで、鋼板板厚に応じた、適正な熱処理条件が存在することを見出した。   For these reasons, the inventors focused on increasing the strength by solid solution strengthening using solid solution N, and as a result of various investigations, the nitrogen absorption treatment method was applied to the annealing process after cold rolling. It was found that incorporating and using it is effective for achieving the above-described purpose. And to suppress the formation of nitrides, to make more solid solution N exist in the steel, and to secure the desired ductility, yield strength, tensile strength, after adjusting to the appropriate component range, It was found that appropriate heat treatment conditions exist according to the plate thickness.

本発明は、上記した知見に基づき、さらに検討を加えて完成されたものである。すなわち、本発明の要旨はつぎのとおりである。
(1)質量%で、C:0.0005〜0.0250%、Si:1.0%以下、Mn:0.1〜2.5%、P:0.10%以下、S:0.05%以下、Al:0.05%以下、N:0.015〜0.500%を含み、残部Feおよび不可避的不純物からなる組成と、面積率で70%以上のフェライト相と、面積率で5%以下のマルテンサイト相とを含み、残部がフェライト相、マルテンサイト相以外の相とからなり、Nを含む析出物をN換算で0.010質量%以下に調整した組織と、を有し、圧延方向の降伏強さYPが400MPa以上で、引張強さTSが1.25YP以下の引張特性を有することを特徴とする耐デント性に優れた高強度薄鋼板。
(2)鋼素材に、熱間圧延工程と、冷間圧延工程と、焼鈍工程とを施し薄鋼板とする薄鋼板の製造方法であって、前記鋼素材を、質量%で、C:0.0005〜0.0250%、Si:1.0%以下、Mn:0.1〜2.5%、P:0.10%以下、S:0.05%以下、Al:0.05%以下、N:0.015%未満を含み、残部Feおよび不可避的不純物からなる組成を有する鋼素材とし、前記熱間圧延工程が、前記鋼素材を1100℃以上の温度に加熱し、粗圧延と、仕上圧延終了温度:850℃以上とする仕上圧延とを施し、巻取り温度:650℃以下で巻き取る工程であり、前記冷間圧延工程が、冷間圧延率:70〜85%の冷間圧延を施す工程であり、前記焼鈍工程が、体積率で0.03〜50%のアンモニアを含み、残部が不活性ガスからなる雰囲気中で、550℃以上、次(1)式
TN(℃)=723−10.7×[Mn] ‥‥(1)
(ここで、[Mn]:Mnの含有量(質量%))
で定義されるTN温度以下の焼鈍温度で所定の保持時間保持する処理とする工程であり、圧延方向の降伏強さYPが400MPa以上で、引張強さTSが1.25YP以下である引張特性を有する薄鋼板とすることを特徴とする高強度薄鋼板の製造方法。
(3)(2)において、前記焼鈍温度での前記所定の保持時間thが、次(2)式
th(s)≧4.5×10×(板厚[m])×exp(9.5×10/T[K]) ‥‥(2)
(ここで、T:焼鈍温度(K))
を満足することを特徴とする高強度薄鋼板の製造方法。
(4)(2)または(3)において、前記焼鈍工程後に、さらに伸長率2%以下の調質圧延を施す調質工程と、さらに200℃以下の時効温度で時効処理を行う時効処理工程とを施すことを特徴とする高強度薄鋼板の製造方法。
(5)(4)において、前記時効温度での保持時間taが、次(3)式
ta(s)≧4.8×10−10×T×exp(9500/T)‥‥(3)
(ここで、T:時効温度(K))
を満足することを特徴とする高強度薄鋼板の製造方法。
The present invention has been completed based on the above findings and further studies. That is, the gist of the present invention is as follows.
(1) By mass%, C: 0.0005 to 0.0250%, Si: 1.0% or less, Mn: 0.1 to 2.5%, P: 0.10% or less, S: 0.05% or less, Al: 0.05% or less, N: 0.015 to 0.500 %, A composition comprising the balance Fe and inevitable impurities, a ferrite phase with an area ratio of 70% or more, and a martensite phase with an area ratio of 5% or less, with the balance being other than the ferrite phase and the martensite phase. And a structure in which a precipitate containing N is adjusted to 0.010% by mass or less in terms of N, and has a yield strength YP in the rolling direction of 400 MPa or more and a tensile strength TS of 1.25 YP or less. A high-strength thin steel sheet with excellent dent resistance, characterized by having properties.
(2) A method for producing a thin steel sheet by subjecting a steel material to a hot rolling process, a cold rolling process, and an annealing process to obtain a thin steel sheet, wherein the steel material is in mass%, and C: 0.0005 to Contains 0.0250%, Si: 1.0% or less, Mn: 0.1-2.5%, P: 0.10% or less, S: 0.05% or less, Al: 0.05% or less, N: less than 0.015%, and the balance Fe and inevitable impurities A steel material having a composition, wherein the hot rolling step heats the steel material to a temperature of 1100 ° C. or higher, performs rough rolling and finish rolling at a finish rolling finish temperature of 850 ° C. or higher, and a coiling temperature : A step of winding at 650 ° C. or less, the cold rolling step is a step of performing cold rolling with a cold rolling ratio of 70 to 85%, and the annealing step is 0.03 to 50% in volume ratio In an atmosphere containing ammonia and the balance consisting of inert gas, 550 ° C or higher, the following formula (1)
TN (℃) = 723-10.7 × [Mn] (1)
(Where [Mn]: Mn content (mass%))
Is a process of holding for a predetermined holding time at an annealing temperature defined as TN temperature or less, and has tensile properties in which the yield strength YP in the rolling direction is 400 MPa or more and the tensile strength TS is 1.25 YP or less. A method for producing a high-strength thin steel sheet, characterized by being a thin steel sheet.
(3) In (2), the predetermined holding time th at the annealing temperature is expressed by the following equation (2): th (s) ≧ 4.5 × 10 4 × (plate thickness [m]) 2 × exp (9.5 × 10 3 / T [K]) (2)
(Where T: annealing temperature (K))
A method for producing a high-strength thin steel sheet, characterized by satisfying
(4) In (2) or (3), after the annealing step, a tempering step in which temper rolling with an elongation of 2% or less is further performed, and an aging treatment step in which an aging treatment is performed at an aging temperature of 200 ° C. or less, A method for producing a high-strength thin steel sheet, characterized in that
(5) In (4), the holding time ta at the aging temperature is expressed by the following equation (3)
ta (s) ≧ 4.8 × 10 −10 × T × exp (9500 / T) (3)
(Where, T: Aging temperature (K))
A method for producing a high-strength thin steel sheet, characterized by satisfying

本発明によれば、過剰な合金化元素を添加することなく、降伏強さ:400MPa以上で、成形後のスプリングバックを低減でき、かつ優れた耐デント性を有する高強度薄鋼板を、安価にしかも容易に製造でき、産業上格段の効果を奏する。また、本発明によれば、部材の耐デント性を損なわずに、部材の肉厚を0.1mm〜0.2mm程度薄肉化でき、部材の軽量化に寄与できるという効果を奏する。   According to the present invention, it is possible to reduce the yield strength: 400 MPa or more without adding an excessive alloying element, to reduce the spring back after forming, and to reduce the high-strength thin steel sheet having excellent dent resistance. Moreover, it can be manufactured easily and has a remarkable industrial effect. Further, according to the present invention, the thickness of the member can be reduced by about 0.1 mm to 0.2 mm without impairing the dent resistance of the member, and the effect of contributing to the weight reduction of the member can be achieved.

まず、本発明薄鋼板の組成限定理由について説明する。以下、質量%は単に%で記す。
C:0.0005%以上0.0250%以下
Cは、鋼の強度を増加させる元素であるが、0.0250%を超えて多量に含有すると、炭化物量が増大し、延性が低下する。このため、本発明では、Cは0.0250%以下に限定した。なお、過剰の低減は、精錬コストの高騰を招くため、0.0005%以上に限定した。
First, the reason for limiting the composition of the thin steel sheet of the present invention will be described. Hereinafter, mass% is simply expressed as%.
C: 0.0005% or more and 0.0250% or less
C is an element that increases the strength of steel, but if it is contained in a large amount exceeding 0.0250%, the amount of carbide increases and the ductility decreases. For this reason, in the present invention, C is limited to 0.0250% or less. In addition, since excessive reduction causes the refining cost to rise, it was limited to 0.0005% or more.

Si:1.0%以下
Siは、固溶して、フェライトを安定化させ、さらに鋼の強度を増加させる元素である。このような効果を得るためには0.01%以上含有することが望ましい。一方、1.0%を超える過度の含有は、化成処理性、めっき性、延性を低下させる。このため、Siは1.0%以下に限定した。なお、好ましくは0.2%以下である。
Si: 1.0% or less
Si is an element that dissolves to stabilize ferrite and further increase the strength of steel. In order to acquire such an effect, it is desirable to contain 0.01% or more. On the other hand, excessive content exceeding 1.0% lowers chemical conversion treatment properties, plating properties, and ductility. For this reason, Si was limited to 1.0% or less. In addition, Preferably it is 0.2% or less.

Mn:0.1〜2.5%
Mnは、Sと結合してMnSを形成し、Sによる熱間脆性を抑制する元素である。また、Mnは固溶して鋼の強度を増加させる。このような効果を得るためには、0.1%以上の含有を必要とする。一方、2.5%を超える過度の含有は、焼鈍時にマルテンサイト組織を生成し、延性を損なう。このようなことから、Mnは0.1〜2.5%の範囲に限定した。なお、材料コストの高騰を抑える観点からは、1.0%以下とすることが好ましい。
Mn: 0.1-2.5%
Mn is an element that combines with S to form MnS and suppresses hot brittleness due to S. Mn also dissolves and increases the strength of the steel. In order to obtain such an effect, the content of 0.1% or more is required. On the other hand, an excessive content exceeding 2.5% generates a martensite structure during annealing and impairs ductility. For these reasons, Mn was limited to a range of 0.1 to 2.5%. In addition, from the viewpoint of suppressing an increase in material cost, it is preferably 1.0% or less.

P:0.10%以下
Pは、フェライト安定化元素であり、強度を増加させる作用を有するが、粒界等に偏析しやすく、延性を低下させるため、できるだけ低減することが好ましい。なお、0.10%を超えて、過度に含有すると、めっき性が低下する。このため、Pは0.10%以下に限定した。なお、好ましくは0.03%以下である。
P: 0.10% or less
P is a ferrite stabilizing element and has the effect of increasing the strength. However, P is preferably segregated at grain boundaries and the like, and decreases ductility. In addition, if it exceeds 0.10% and it contains excessively, plateability will fall. For this reason, P was limited to 0.10% or less. In addition, Preferably it is 0.03% or less.

S:0.05%以下
Sは、鋼中では、硫化物として存在し、延性を低下させる。このため、Sはできるだけ低減することが望ましいが、0.05%までは許容できる。このため、Sは0.05%以下に限定した。なお、好ましくは0.02%以下である。
A1:0.05%以下
Alは、脱酸剤として作用し、鋼中の酸化物(介在物)を低減し、延性向上、脆性向上に有効に寄与する。このような効果を得るためには0.001%以上含有することが望ましい。また、Alは、Nとの親和力が強いために、固溶N量を低減し、固溶Nによる固溶強化能を低下させる。このため、Alは0.05%以下に限定した。なお、好ましくは0.001〜0.04%である。
S: 0.05% or less
S exists as a sulfide in steel and reduces ductility. For this reason, it is desirable to reduce S as much as possible, but 0.05% is acceptable. For this reason, S was limited to 0.05% or less. In addition, Preferably it is 0.02% or less.
A1: 0.05% or less
Al acts as a deoxidizer, reduces oxides (inclusions) in steel, and contributes effectively to improving ductility and brittleness. In order to acquire such an effect, it is desirable to contain 0.001% or more. Moreover, since Al has strong affinity with N, the amount of solid solution N is reduced, and the solid solution strengthening ability by solid solution N is reduced. For this reason, Al was limited to 0.05% or less. In addition, Preferably it is 0.001 to 0.04%.

N:0.015〜0.500%
Nは、強い固溶強化能を有し、所望の高YPを確保するために、本発明で最も重要な元素であり、本発明では可能な限り多量に含有させる。所望の高YPを確保するためには、0.015%以上の含有を必要とする。通常の製鋼法によるN添加限が0.015%程度であることから、本発明では、焼鈍工程での窒素吸収処理法で、Nを吸収させる。一方、0.500%を超える多量のNを焼鈍工程で吸収させるには、過度な焼鈍時間が必要になる。このため、生産性の観点から、Nは0.500%以下に限定した。このようなことから、Nは0.015〜0.500%の範囲に限定した。
N: 0.015-0.500%
N has a strong solid solution strengthening ability and is the most important element in the present invention in order to ensure a desired high YP. In the present invention, N is contained as much as possible. In order to ensure the desired high YP, it is necessary to contain 0.015% or more. In the present invention, N is absorbed by the nitrogen absorption treatment method in the annealing process because the N addition limit by the normal steel making method is about 0.015%. On the other hand, an excessive annealing time is required to absorb a large amount of N exceeding 0.500% in the annealing process. For this reason, N was limited to 0.500% or less from the viewpoint of productivity. For these reasons, N is limited to a range of 0.015 to 0.500%.

また、本発明では、不純物である、Ti、Nbを、それぞれ0.003%以下に調整する。
Ti、Nbは、強力な窒化物形成元素であり、固溶N量を低減し、固溶Nによる固溶強化能を低下させる。また、Ti、Nbは窒化物を熱間圧延時に析出し、結晶粒を微細化するため、AlNの析出サイトとなる結晶粒界面積を増大させ固溶N量を低減し、固溶強化を低減させる。このため、不純物である、Ti、Nbを、それぞれ0.003%以下に調整することとした。それぞれが、0.003%以下であれば、上記したような悪影響を許容できる。
In the present invention, the impurities Ti and Nb are adjusted to 0.003% or less, respectively.
Ti and Nb are strong nitride-forming elements, reduce the amount of solute N, and lower the solid solution strengthening ability of solute N. In addition, Ti and Nb precipitate nitride during hot rolling and refine the crystal grains, so the crystal interfacial area that becomes the AlN precipitation site is increased, the amount of solid solution N is reduced, and the solid solution strengthening is reduced. Let For this reason, impurities Ti and Nb are adjusted to 0.003% or less, respectively. If each is 0.003% or less, the above-mentioned adverse effects can be tolerated.

上記した成分以外の残部は、Feおよび不可避的不純物である。
つぎに、本発明薄鋼板の組織限定理由について説明する。
本発明薄鋼板は、面積率で70%以上のフェライト相を主相とする組織を有する。フェライト相中での固溶Nの拡散量はオーステナイト相中に比較して多いため、フェライト相が多いほどより均一に固溶Nを分散させることができる。フェライト相が70%未満では、鋼板組織が不均一化し加工性が低下するうえ、固溶Nによる固溶強化を利用して所望の高YPを確保できなくなる。このようなことから、フェライト相を面積率で70%以上に限定した。なお、好ましくは、95%以上である。
The balance other than the above components is Fe and inevitable impurities.
Next, the reason for limiting the structure of the thin steel sheet of the present invention will be described.
The thin steel sheet of the present invention has a structure whose main phase is a ferrite phase with an area ratio of 70% or more. Since the diffusion amount of the solid solution N in the ferrite phase is larger than that in the austenite phase, the solid solution N can be more uniformly dispersed as the ferrite phase increases. If the ferrite phase is less than 70%, the steel sheet structure becomes non-uniform and the workability is lowered, and the desired high YP cannot be secured by utilizing the solid solution strengthening by the solid solution N. For this reason, the ferrite phase was limited to 70% or more by area ratio. In addition, Preferably, it is 95% or more.

主相以外の第二相は、面積率で5%以下のマルテンサイト相とする。マルテンサイト相は、硬質相であるため延性を低下させる傾向を示す。マルテンサイト相が、面積率で5%を超えると、変態時に空隙の生成を伴うことがあり、また、延性の低下が著しくなるとともに、引張強さTSに比べて降伏点(降伏強さ)YPを下げる要因となる。このため、第二相であるマルテンサイト相は面積率で5%以下に限定した。   The second phase other than the main phase is a martensite phase with an area ratio of 5% or less. Since the martensite phase is a hard phase, it tends to reduce ductility. If the martensite phase exceeds 5% in area ratio, voids may be generated during transformation, and the ductility is significantly reduced, and the yield point (yield strength) YP compared to the tensile strength TS. It becomes a factor to lower. For this reason, the martensite phase which is the second phase is limited to 5% or less in terms of area ratio.

主相、第二相以外の残部は、フェライト相、マルテンサイト相以外の相(その他の相)である。その他の相としてはオーステナイト相がある。なお、オーステナイト相は、N(窒素)を吸収するサイトとなり、所望の固溶Nによるフェライト相の固溶強化能を低減する傾向を示す。このため、本発明では、オーステナイト相は、0%を含み、できるだけ少なくすることが望ましい。   The balance other than the main phase and the second phase is a phase (other phase) other than the ferrite phase and the martensite phase. There is an austenite phase as another phase. Note that the austenite phase becomes a site that absorbs N (nitrogen), and tends to reduce the solid solution strengthening ability of the ferrite phase by the desired solid solution N. For this reason, in the present invention, it is desirable that the austenite phase contains 0% and is minimized.

なお、オーステナイト相は、フェライト相へのN侵入量が多くなるにつれて、鋼板表層に形成されることがある。多量の表層オーステナイト相の形成は、板厚中心部へのN拡散を阻害する傾向を示すが、表層オーステナイト相が多量に形成されても、延性を過度に低下させることは無い。
また、本発明では、Nを含む析出物(窒化物)を、N換算で0.010質量%以下に調整する。
The austenite phase may be formed on the steel sheet surface layer as the amount of N penetration into the ferrite phase increases. The formation of a large amount of the surface austenite phase tends to inhibit N diffusion to the center of the plate thickness, but even if a large amount of the surface austenite phase is formed, the ductility is not excessively lowered.
Moreover, in this invention, the precipitate (nitride) containing N is adjusted to 0.010 mass% or less in N conversion.

Nを含む析出物(窒化物)、例えばFeN、AlN等は、曲げ加工時に、亀裂の起点となり、延性を低下させる。このため、本発明ではNを含む析出物(窒化物)を、析出にあずかるN量(析出N量ともいう)換算で0.010質量%以下で、可能な限り低減することとした。析出N量が、0.010質量%を超えると、曲げ特性等の加工性が低下する。なお、好ましくは0.005%以下である。ここで、析出N量は、電解抽出法で抽出した電解残渣について、含まれるN量を分析して、電解抽出物全量に対する質量%で表示することとした。 Precipitates (nitrides) containing N, for example, Fe 4 N, AlN, etc., become the starting point of cracks during bending and reduce ductility. For this reason, in this invention, it was decided to reduce the precipitate (nitride) containing N as much as possible at 0.010 mass% or less in terms of the amount of N (also referred to as the amount of precipitated N) involved in the precipitation. When the amount of precipitated N exceeds 0.010% by mass, workability such as bending characteristics is deteriorated. In addition, Preferably it is 0.005% or less. Here, the amount of precipitated N was expressed by mass% with respect to the total amount of the electrolytic extract by analyzing the amount of N contained in the electrolytic residue extracted by the electrolytic extraction method.

つぎに、本発明高強度薄鋼板の好ましい製造方法について説明する。
まず、N含有量以外、上記した組成を有する鋼素材(スラブ)に、粗圧延、仕上圧延からなる熱間圧延を施して、熱延板とする熱間圧延工程を施す。
鋼素材の製造方法は、とくに限定する必要はない。転炉等、通常公知の溶製方法により、N含有量以外、上記した組成を有する溶鋼を溶製し、連続鋳造法等の通常公知の鋳造方法により、スラブ等の鋼素材とすることが好ましい。なお、溶鋼のN含有量は、通常の溶製方法で可能な、最大限である0.015%程度まで含有させることが望ましく、0.015%未満とすることが好ましい。また、N量は、精錬コストの観点から0.0005%以上とすることが好ましい。
Below, the preferable manufacturing method of this invention high strength thin steel plate is demonstrated.
First, the hot rolling process which makes hot rolling which consists of rough rolling and finish rolling is given to the steel raw material (slab) which has the above-mentioned composition except N content, and the hot rolling process which makes a hot-rolled sheet is given.
The method for producing the steel material is not particularly limited. It is preferable to melt a molten steel having the above-described composition other than N content by a generally known melting method such as a converter, and to make a steel material such as a slab by a generally known casting method such as a continuous casting method. . The N content of molten steel is desirably up to about 0.015%, which is the maximum possible by a normal melting method, and is preferably less than 0.015%. The N amount is preferably 0.0005% or more from the viewpoint of refining costs.

熱間圧延工程では、まず、上記した組成の鋼素材を、加熱温度:1100℃以上、好ましくは1280℃以下の範囲の温度に加熱する。加熱温度:1100℃未満では、AlNが析出し、焼鈍工程後まで残存し、延性を低下させる。また、加熱温度は変形抵抗を小さくする観点から高い方が好ましいが、1280℃を超えて過度に加熱を行うと、酸化スケールが鋼表面に厚く生成し、酸化ロスが増大し、歩留りが低下するうえ、酸洗処理のコストが増大する。このようなことから、鋼素材の加熱温度は1100℃以上、好ましくは1280℃以下の範囲の温度に限定した。   In the hot rolling step, first, the steel material having the above composition is heated to a temperature in the range of heating temperature: 1100 ° C. or higher, preferably 1280 ° C. or lower. Heating temperature: If it is less than 1100 ° C., AlN precipitates and remains until after the annealing step, thereby reducing ductility. The heating temperature is preferably higher from the viewpoint of reducing the deformation resistance. However, if the heating temperature is excessively higher than 1280 ° C, the oxide scale is formed thick on the steel surface, the oxidation loss increases, and the yield decreases. In addition, the cost of pickling treatment increases. For this reason, the heating temperature of the steel material is limited to a temperature in the range of 1100 ° C. or higher, preferably 1280 ° C. or lower.

熱間圧延工程では、加熱された鋼素材に、粗圧延を施す。施される粗圧延の条件はとくに限定する必要はなく、所定の寸法形状のシートバーとすることができればよい。熱間圧延工程では、ついで、シートバーに仕上圧延を施す。
仕上圧延は、仕上圧延終了温度(出側温度)を、850℃以上のオーステナイト域とする圧延とする。仕上圧延終了温度(出側温度)が850℃未満では、二相域での圧延になり、熱延板の組織が不均一化、微細化し、材質が不安定になる。また、フェライト域での過度の圧延は、鋼板の強度を増加させ、冷間加工時の圧延荷重増大に繋がり、製造コストの高騰を招く。このようなことから、仕上圧延の仕上圧延終了温度(出側温度)を、850℃以上に限定した。
In the hot rolling process, the heated steel material is subjected to rough rolling. The rough rolling conditions to be applied are not particularly limited as long as the sheet bar can have a predetermined size and shape. In the hot rolling process, the sheet bar is then subjected to finish rolling.
In the finish rolling, the finish rolling finish temperature (exit temperature) is an austenite region of 850 ° C. or higher. When the finish rolling finish temperature (exit temperature) is less than 850 ° C., rolling is performed in a two-phase region, and the structure of the hot-rolled sheet becomes uneven and refined, and the material becomes unstable. Moreover, excessive rolling in the ferrite region increases the strength of the steel sheet, leads to an increase in rolling load during cold working, and causes an increase in manufacturing cost. For this reason, the finish rolling finish temperature (exit temperature) of finish rolling is limited to 850 ° C. or higher.

仕上圧延終了後、空冷等で冷却し、巻取り温度:650℃以下で巻き取る。巻取り温度が650℃超えでは、AlN が析出し、固溶Nが低減する。なお、好ましくは450℃以上600℃以下である。
熱延板には、ついで、冷間圧延工程を施す。
冷間圧延工程では、熱延板に、通常の方法で酸洗し、冷間圧延を施し、所望の板厚の冷延板とする。冷間圧延の冷間圧延率は、70%以上とする。冷間圧延率は高い方が、その後の焼鈍処理時に再結晶が低温で進行し、低延性化の原因となるAlNの析出サイトとなる転位を消失させることができる。一方、85%を超えると、加工硬化が進行し、圧延荷重が増大する。このようなことから、冷間圧延の冷間圧延率は70〜85%の範囲とした。
After finishing rolling, it is cooled by air cooling or the like, and wound at a winding temperature of 650 ° C. or lower. When the coiling temperature exceeds 650 ° C., AlN precipitates and solid solution N decreases. In addition, Preferably it is 450 degreeC or more and 600 degrees C or less.
The hot-rolled sheet is then subjected to a cold rolling process.
In the cold rolling step, the hot-rolled sheet is pickled by a normal method and cold-rolled to obtain a cold-rolled sheet having a desired thickness. The cold rolling rate of cold rolling is 70% or more. The higher the cold rolling rate, the more the recrystallization proceeds at a low temperature during the subsequent annealing treatment, and the dislocations that become AlN precipitation sites that cause the low ductility can be eliminated. On the other hand, when it exceeds 85%, work hardening progresses and a rolling load increases. For this reason, the cold rolling rate of the cold rolling is set in the range of 70 to 85%.

ついで、冷延板に、焼鈍工程を施す。
焼鈍工程は、体積率で0.03〜50%のアンモニアを含み、残部が不活性ガスからなる雰囲気中で、550℃以上、次(1)式
TN(℃)=723−10.7×[Mn] ‥‥(1)
(ここで、[Mn]:Mnの含有量(質量%))
で定義されるTN温度以下の焼鈍温度で所定の保持時間保持する処理を施す工程とする。
Next, the cold rolled sheet is subjected to an annealing process.
In the annealing process, ammonia is contained in an amount of 0.03 to 50% by volume and the balance is made of inert gas.
TN (℃) = 723-10.7 × [Mn] (1)
(Where [Mn]: Mn content (mass%))
And a step of performing a process of holding for a predetermined holding time at an annealing temperature not higher than the TN temperature defined in.

焼鈍温度が、TN温度超えでは、焼鈍後に、マルテンサイト相が過度に増え、延性が低下する。なお、TN温度は、オーステナイト相が生成し始める温度(変態点)であり、合金元素量に依存する。また、焼鈍温度が550℃未満では、再結晶が十分に起こらず、焼鈍後にも未再結晶組織が残存し、延性が極端に低下する。このため、焼鈍温度は、550℃以上TN温度以下に限定した。なお、窒素吸収が進行すると、鋼中N量が増加するに従い、オーステナイト相が安定して生成するため、焼鈍温度は、700℃以下とすることが好ましい。   When the annealing temperature exceeds the TN temperature, the martensite phase increases excessively after annealing and the ductility decreases. The TN temperature is a temperature (transformation point) at which the austenite phase starts to be generated, and depends on the amount of alloy elements. In addition, when the annealing temperature is less than 550 ° C., recrystallization does not occur sufficiently, an unrecrystallized structure remains even after annealing, and the ductility is extremely reduced. For this reason, the annealing temperature was limited to 550 ° C. or higher and TN temperature or lower. As nitrogen absorption proceeds, the austenite phase is stably generated as the amount of N in the steel increases. Therefore, the annealing temperature is preferably 700 ° C. or lower.

また、焼鈍処理の雰囲気は、体積率で0.03〜50%のアンモニアを含み、残部不活性ガスからなる雰囲気中とする。アンモニアガスの含有量が0.03%未満では、焼鈍処理で所望の鋼中N量を確保することができない。一方、アンモニアガスの含有量が、50%を超えると、鋼板表面に多くのボイドが発生し、固溶N量が少なくなる。なお、焼鈍処理の雰囲気の残部は、不活性ガスである。不活性ガスとしては、窒素ガス、アルゴンガスのいずれか、あるいはそれらの混合とすることが好ましい。また、アンモニアガスの作用に影響を与えない程度の量であれば、水素ガス、酸素ガス、二酸化炭素ガスを含有してもよい。   Moreover, the atmosphere of annealing treatment shall be in the atmosphere which contains ammonia of 0.03 to 50% by volume, and consists of remainder inert gas. If the ammonia gas content is less than 0.03%, the desired N content in steel cannot be ensured by annealing treatment. On the other hand, if the ammonia gas content exceeds 50%, many voids are generated on the surface of the steel sheet, and the amount of solute N decreases. Note that the remainder of the annealing atmosphere is an inert gas. The inert gas is preferably nitrogen gas, argon gas, or a mixture thereof. Further, hydrogen gas, oxygen gas, and carbon dioxide gas may be contained as long as the amount does not affect the action of ammonia gas.

また、焼鈍工程では、上記した焼鈍温度での保持時間th(s)が、次(2)式
th(s)≧4.5×10×(板厚[m])×exp(9.5×10/T[K])‥‥(2)
(ここで、Tは焼鈍温度(K))
を満足することが好ましい。保持時間th(s)が、(2)式を満足しない場合には、所望のN量を鋼板中に吸収することができないうえ、鋼板表層から吸収された窒素Nを板厚方向に均一に分布させることができない。保持時間thは、鋼板表層から吸収されたNが、板厚方向に、少なくとも板厚の1/4の位置まで拡散するのに要する時間として定義した。なお、拡散係数として文献(金属データブック第4版、日本金属学会編、丸善)に記載された値を使用した。
In the annealing process, the holding time th (s) at the above-described annealing temperature is expressed by the following equation (2).
th (s) ≥ 4.5 x 10 4 x (plate thickness [m]) 2 x exp (9.5 x 10 3 / T [K]) (2)
(Where T is the annealing temperature (K))
Is preferably satisfied. If the retention time th (s) does not satisfy the formula (2), the desired amount of N cannot be absorbed into the steel sheet, and the nitrogen N absorbed from the steel sheet surface layer is uniformly distributed in the thickness direction. I can't let you. The holding time th was defined as the time required for N absorbed from the steel sheet surface layer to diffuse in the thickness direction to at least a quarter of the thickness. In addition, the value described in the literature (Metal Data Book 4th edition, edited by the Japan Institute of Metals, Maruzen) was used as the diffusion coefficient.

なお、保持時間thを、板厚表層から板厚方向に1/2の位置まで拡散するのに要する時間を満足するようにすることがより望ましい。このような場合には、保持時間th(s)は、次式
th(s)≧1.8×10×(板厚[m])×exp(9.5×10/T[K])
(ここで、Tは焼鈍温度(K))
を満足するように調整することがより好ましい。
It is more desirable to satisfy the holding time th so as to satisfy the time required for diffusing from the plate thickness surface layer to 1/2 position in the plate thickness direction. In such a case, the retention time th (s) is given by
th (s) ≧ 1.8 × 10 5 × (plate thickness [m]) 2 × exp (9.5 × 10 3 / T [K])
(Where T is the annealing temperature (K))
It is more preferable to adjust so as to satisfy the above.

なお、焼鈍工程後に、板形状の矯正などを目的として調質圧延やレベリングを行っても良いが、過度の調質圧延の付与は、延性を劣化させるため、伸長率:2%以下とすることが好ましい。
しかし、調質圧延を行った場合には、可動転位の導入によって、降伏点は低下し、所望の降伏点YPを確保できなくなる。そこで、可動転位を固溶窒素や炭素によって固着させ、高降伏点化するために、時効処理工程を施す必要がある。
In addition, temper rolling and leveling may be performed after the annealing process for the purpose of correcting the plate shape, etc. However, excessive temper rolling imparts deterioration of ductility, so the elongation rate should be 2% or less. Is preferred.
However, when temper rolling is performed, the yield point decreases due to the introduction of movable dislocations, and the desired yield point YP cannot be secured. Therefore, it is necessary to perform an aging treatment step in order to fix the movable dislocations with solute nitrogen or carbon to obtain a high yield point.

時効処理は、200℃以下の温度(時効温度)Tで行うことが好ましい。そして、その温度(時効温度)Tでの保持時間ta(s)は、次(3)式
ta(s)≧4.8×10−10×T×exp(9500/T)‥‥(3)
(ここで、T:時効温度(K))
を満足するように調整することが好ましい。
The aging treatment is preferably performed at a temperature (aging temperature) T of 200 ° C. or lower. And the holding time ta (s) at the temperature (aging temperature) T is the following equation (3)
ta (s) ≧ 4.8 × 10 −10 × T × exp (9500 / T) (3)
(Where, T: Aging temperature (K))
It is preferable to adjust so as to satisfy the above.

時効温度Tは、高いほど窒素の拡散が促進され、より短時間で転位を固着することが可能となるが、過度に高い場合は、Feとの窒化物が形成し、固溶元素が低減する。このため、時効温度Tは200℃以下とすることが好ましい。また、時効温度Tで保持時間ta(s)が、(3)式を満足しない場合には、転位の固着が不十分となり、所望の高YPを確保できなくなる。   As the aging temperature T is higher, the diffusion of nitrogen is promoted, and dislocations can be fixed in a shorter time. However, when it is excessively high, nitrides with Fe are formed, and solid solution elements are reduced. . Therefore, the aging temperature T is preferably 200 ° C. or lower. Further, when the holding time ta (s) at the aging temperature T does not satisfy the expression (3), the dislocations are not sufficiently fixed, and a desired high YP cannot be secured.

また、鋼板の表面に亜鉛、ニッケルなどのめっきをしたり、耐食性や摺動性などを向上させる化成処理を行ったりしても良いことはいうまでもない。   Needless to say, the surface of the steel plate may be plated with zinc, nickel or the like, or a chemical conversion treatment may be performed to improve corrosion resistance, slidability, or the like.

表1に示す組成を有する鋼素材(スラブ)を、表2に示す条件で加熱し、表2に示す仕上圧延終了温度からなる仕上圧延を施し、表2に示す巻取り温度でコイル状に巻き取り、熱延板(鋼帯)とする熱間圧延工程を施した。得られた熱延板に常用の酸洗処理を施したのち、表2に示す条件で冷間圧延を施し、表2に示す板厚の冷延板とする冷延工程を施した。ついで、得られた冷延板に表2に示す条件で焼鈍処理を施す焼鈍工程を施し、冷延焼鈍板とした。一部の冷延焼鈍板には、表2に示す条件の調質圧延と、表2に示す条件で時効処理を施した。   A steel material (slab) having the composition shown in Table 1 is heated under the conditions shown in Table 2, subjected to finish rolling consisting of finish rolling end temperatures shown in Table 2, and wound in a coil shape at the winding temperature shown in Table 2. Then, a hot rolling process for forming a hot-rolled sheet (steel strip) was performed. The obtained hot-rolled sheet was subjected to conventional pickling treatment, and then cold-rolled under the conditions shown in Table 2 to give a cold-rolling step to obtain a cold-rolled sheet having the thickness shown in Table 2. Subsequently, the obtained cold-rolled sheet was subjected to an annealing process for annealing under the conditions shown in Table 2 to obtain a cold-rolled annealed sheet. Some cold-rolled annealed sheets were subjected to temper rolling under the conditions shown in Table 2 and aging treatment under the conditions shown in Table 2.

得られた冷延焼鈍板から、試験片を採取し、組織観察、析出物分析、引張試験を実施した。試験方法は次のとおりとした。
(1)組織観察
得られた冷延焼鈍板から、組織観察用試験片を採取し、圧延方向断面を研磨し、腐食(ナイタール液)して、板厚の1/4から3/4の位置について、光学顕微鏡(倍率:200倍)または走査型電子顕微鏡(倍率:200倍)で視野数:3視野以上を観察し、撮像して組織を同定するとともに、画像解析装置を用いて各相の組織分率を求めた。
(2)析出物分析
得られた冷延焼鈍板から、電解抽出用試験片を採取し、A−A系電解液中で定電位電解法により抽出した電解抽出残査について、N量を分析し、Nを含む析出物となっているN量として、析出N量とした。得られた析出N量を鋼中の全N量から差し引き、固溶N量とした。なお、焼鈍工程後のN含有量についても分析した。
(3)引張試験
得られた冷延焼鈍板から、引張方向が圧延方向となるようにJIS 13号B引張試験片を採取し、JIS Z 2241の規定に準拠して、引張試験を実施し、引張特性(降伏点YP、引張強さTS)を求めた。
A test piece was collected from the obtained cold-rolled annealed plate and subjected to structure observation, precipitate analysis, and tensile test. The test method was as follows.
(1) Microstructure observation From the obtained cold-rolled annealed sheet, a specimen for microstructural observation is collected, the cross section in the rolling direction is polished and corroded (Nital solution), and the position is 1/4 to 3/4 of the sheet thickness. The number of fields of view: 3 or more fields of view was observed with an optical microscope (magnification: 200 times) or a scanning electron microscope (magnification: 200 times), and the tissues were identified by imaging. The tissue fraction was determined.
(2) Precipitate analysis From the obtained cold-rolled annealed plate, a test piece for electrolytic extraction was collected, and the amount of N was analyzed for the electrolytic extraction residue extracted by the constant potential electrolysis method in the AA-based electrolytic solution. The amount of precipitated N was defined as the amount of N that is a precipitate containing N. The obtained amount of precipitated N was subtracted from the total amount of N in the steel to obtain a solid solution N amount. In addition, it analyzed also about N content after an annealing process.
(3) Tensile test From the obtained cold-rolled annealed plate, a JIS 13B tensile test piece was collected so that the tensile direction was the rolling direction, and a tensile test was performed in accordance with the provisions of JIS Z 2241. Tensile properties (yield point YP, tensile strength TS) were determined.

得られた結果を表3に示す。   The obtained results are shown in Table 3.

Figure 0005846113
Figure 0005846113

Figure 0005846113
Figure 0005846113

Figure 0005846113
Figure 0005846113

本発明例はいずれも、降伏強さYP:400MPa以上の高YPと、1.25YP以下の低引張強さTSを有し、耐デント性に優れ、かつスプリングバックの少ない高強度薄鋼板となっている。一方、本発明範囲を外れる比較例は、降伏強さYPが400MPa未満であるか、引張強さTSが1.25YP超えて高くなり、スプリングバックが大きな薄鋼板となっている。   Each of the inventive examples has a yield strength YP: high YP of 400 MPa or more and a low tensile strength TS of 1.25 YP or less, which is a high strength thin steel sheet having excellent dent resistance and less spring back. Yes. On the other hand, in the comparative example that is out of the scope of the present invention, the yield strength YP is less than 400 MPa, or the tensile strength TS is higher than 1.25 YP, and the steel plate has a large spring back.

Claims (5)

質量%で、
C :0.0005〜0.0250%、 Si:1.0%以下、
Mn:0.1〜2.5%、 P :0.10%以下、
S :0.05%以下、 Al:0.05%以下、
N :0.015〜0.500%
を含み、残部Feおよび不可避的不純物からなる組成と、
面積率で70%以上のフェライト相と、面積率で5%以下のマルテンサイト相を含み、残部がフェライト相、マルテンサイト相以外の相からなり、Nを含む析出物をN換算で0.010質量%以下に調整した組織と、
を有し、圧延方向の降伏強さYPが400MPa以上で、引張強さTSが1.25YP以下の引張特性を有することを特徴とする耐デント性に優れた高強度薄鋼板。
% By mass
C: 0.0005 to 0.0250%, Si: 1.0% or less,
Mn: 0.1-2.5%, P: 0.10% or less,
S: 0.05% or less, Al: 0.05% or less,
N: 0.015-0.500%
A composition comprising the balance Fe and inevitable impurities,
It contains a ferrite phase with an area ratio of 70% or more and a martensite phase with an area ratio of 5% or less, and the balance consists of phases other than the ferrite phase and martensite phase, and the N-containing precipitate is 0.010% by mass in terms of N With the organization adjusted below,
A high strength thin steel sheet with excellent dent resistance, characterized by having a tensile strength with a yield strength YP in the rolling direction of 400 MPa or more and a tensile strength TS of 1.25 YP or less.
鋼素材に、熱間圧延工程と、冷間圧延工程と、焼鈍工程とを施し薄鋼板とする薄鋼板の製造方法であって、
前記鋼素材を、質量%で、
C :0.0005〜0.0250%、 Si:1.0%以下、
Mn:0.1〜2.5%、 P :0.10%以下、
S :0.05%以下、 Al:0.05%以下、
N :0.015%未満
を含み、残部Feおよび不可避的不純物からなる組成を有する鋼素材とし、
前記熱間圧延工程が、前記鋼素材を1100℃以上の温度に加熱し、粗圧延と、仕上圧延終了温度:850℃以上とする仕上圧延とを施し、巻取り温度:650℃以下で巻き取る工程であり、
前記冷間圧延工程が、冷間圧延率:70〜85%の冷間圧延を施す工程であり、
前記焼鈍工程が、体積率で0.03〜50%のアンモニアを含み、残部が不活性ガスからなる雰囲気中で、550℃以上、下記(1)式で定義されるTN温度以下の焼鈍温度で所定の保持時間保持する処理とする工程であり、
圧延方向の降伏強さYPが400MPa以上で、引張強さTSが1.25YP以下である引張特性を有する薄鋼板とすることを特徴とする高強度薄鋼板の製造方法。

TN(℃)=723−10.7×[Mn] ‥‥(1)
ここで、[Mn]:Mnの含有量(質量%)
It is a manufacturing method of a thin steel sheet that is subjected to a hot rolling process, a cold rolling process, and an annealing process on a steel material,
The steel material in mass%,
C: 0.0005 to 0.0250%, Si: 1.0% or less,
Mn: 0.1-2.5%, P: 0.10% or less,
S: 0.05% or less, Al: 0.05% or less,
N: A steel material containing less than 0.015% and having the balance Fe and inevitable impurities,
In the hot rolling step, the steel material is heated to a temperature of 1100 ° C. or higher, subjected to rough rolling and finish rolling at a finish rolling finish temperature of 850 ° C. or higher, and wound at a winding temperature of 650 ° C. or lower. Process,
The cold rolling step is a step of performing cold rolling with a cold rolling ratio of 70 to 85%,
The annealing step includes 0.03 to 50% by volume of ammonia and the remainder is made of an inert gas, and the annealing process is performed at an annealing temperature not lower than 550 ° C. and not higher than TN temperature defined by the following formula (1). It is a process that is a process for holding the holding time,
A method for producing a high-strength thin steel sheet, characterized by producing a thin steel sheet having tensile properties with a yield strength YP in the rolling direction of 400 MPa or more and a tensile strength TS of 1.25 YP or less.
Record
TN (℃) = 723-10.7 × [Mn] (1)
Where [Mn]: Mn content (% by mass)
前記焼鈍温度での前記所定の保持時間thが、下記(2)式を満足することを特徴とする請求項2に記載の高強度薄鋼板の製造方法。

th(s)≧4.5×10×(板厚[m])×exp(9.5×10/T[K])‥‥(2)
ここで、T:焼鈍温度(K)
The method for producing a high-strength thin steel sheet according to claim 2, wherein the predetermined holding time th at the annealing temperature satisfies the following expression (2).
Record
th (s) ≥ 4.5 x 10 4 x (plate thickness [m]) 2 x exp (9.5 x 10 3 / T [K]) (2)
Where T: annealing temperature (K)
前記焼鈍工程に引続き、さらに伸長率2%以下の調質圧延を施す調質工程と、さらに200℃以下の温度で時効処理を行う時効処理工程を施すことを特徴とする請求項2または3に記載の高強度薄鋼板の製造方法。   4. The tempering step of performing temper rolling with an elongation rate of 2% or less and the aging treatment step of performing an aging treatment at a temperature of 200 ° C. or less are performed following the annealing step. The manufacturing method of the high strength thin steel plate as described. 前記時効温度での保持時間taが、下記(3)式を満足することを特徴とする請求項4に記載の高強度薄鋼板の製造方法。

ta(s)≧4.8×10−10×T×exp(9500/T)‥‥(3)
ここで、T:時効温度(K)
The method for producing a high-strength thin steel sheet according to claim 4, wherein the holding time ta at the aging temperature satisfies the following expression (3).
Record
ta (s) ≧ 4.8 × 10 −10 × T × exp (9500 / T) (3)
Where T: Aging temperature (K)
JP2012269076A 2011-12-28 2012-12-10 High strength thin steel sheet with excellent dent resistance and method for producing the same Expired - Fee Related JP5846113B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2012269076A JP5846113B2 (en) 2011-12-28 2012-12-10 High strength thin steel sheet with excellent dent resistance and method for producing the same

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
JP2011287474 2011-12-28
JP2011287474 2011-12-28
JP2012269076A JP5846113B2 (en) 2011-12-28 2012-12-10 High strength thin steel sheet with excellent dent resistance and method for producing the same

Publications (2)

Publication Number Publication Date
JP2013151738A JP2013151738A (en) 2013-08-08
JP5846113B2 true JP5846113B2 (en) 2016-01-20

Family

ID=49048297

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2012269076A Expired - Fee Related JP5846113B2 (en) 2011-12-28 2012-12-10 High strength thin steel sheet with excellent dent resistance and method for producing the same

Country Status (1)

Country Link
JP (1) JP5846113B2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPWO2021149810A1 (en) * 2020-01-24 2021-07-29

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR102048807B1 (en) * 2015-09-02 2019-11-26 제이에프이 스틸 가부시키가이샤 Insulative coating processing liquid and method for manufacturing metal having insulative coating

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH03243757A (en) * 1990-02-21 1991-10-30 Nippon Steel Corp Production of cold-rolled steel sheet with superior workability having high strength surface layer part
JP3105380B2 (en) * 1993-06-21 2000-10-30 新日本製鐵株式会社 Manufacturing method of cold-rolled steel sheet for deep drawing with excellent dent resistance and surface distortion resistance
JP3115746B2 (en) * 1993-08-19 2000-12-11 新日本製鐵株式会社 Manufacturing method of cold-rolled steel sheet for non-aging deep drawing with excellent dent resistance and surface strain resistance
JP3777049B2 (en) * 1998-04-30 2006-05-24 新日本製鐵株式会社 Manufacturing method of BH cold-rolled steel sheet for deep drawing excellent in dent resistance and surface strain resistance

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPWO2021149810A1 (en) * 2020-01-24 2021-07-29

Also Published As

Publication number Publication date
JP2013151738A (en) 2013-08-08

Similar Documents

Publication Publication Date Title
JP6108046B1 (en) High-strength cold-rolled steel sheet, high-strength hot-dip galvanized steel sheet, and high-strength galvannealed steel sheet
JP5003785B2 (en) High tensile steel plate with excellent ductility and method for producing the same
JP6536294B2 (en) Hot dip galvanized steel sheet, alloyed hot dip galvanized steel sheet, and method for producing them
KR101613806B1 (en) Method for manufacturing high strength steel sheet having excellent formability
JP6766190B2 (en) Ultra-high-strength, high-ductility steel sheet with excellent yield strength and its manufacturing method
JP6846522B2 (en) High-strength cold-rolled steel sheets with excellent yield strength, ductility, and hole expansion properties, hot-dip galvanized steel sheets, and methods for manufacturing these.
JP5310919B2 (en) Method for producing high-strength cold-rolled steel sheets with excellent aging resistance and seizure curability
JP2023011852A (en) Cold rolled and heat treated steel sheet and method of manufacturing thereof
JP2005126733A (en) Steel sheet for hot press having excellent hot workability, and automotive member
WO2010119971A1 (en) Cold-rolled steel sheet having excellent slow-aging property and high curability in baking, and method for producing same
JPWO2016113781A1 (en) High strength steel plate and manufacturing method thereof
JP6007571B2 (en) High-strength cold-rolled steel sheet and high-strength galvanized steel sheet
JP5846113B2 (en) High strength thin steel sheet with excellent dent resistance and method for producing the same
JP5310920B2 (en) High strength cold-rolled steel sheet with excellent aging resistance and seizure hardening
JP5660291B2 (en) High strength cold-rolled thin steel sheet with excellent formability and method for producing the same
JP6760543B1 (en) Steel plate and steel plate manufacturing method
CN111868283B (en) Steel plate
JP5440370B2 (en) Alloyed hot-dip galvanized steel sheet and method for producing the same
CN115461482B (en) Steel sheet, component, and method for manufacturing same
CN115362280B (en) Steel sheet and method for producing same
JP6687171B1 (en) steel sheet
WO2020195279A1 (en) Steel sheet
CN115461482A (en) Steel sheet, component and method for producing same
JP2003138317A (en) Method of producing high tensile strength cold rolled steel sheet having excellent aging resistance and strain age hardening property
JP2003064445A (en) High tensile strength cold rolled steel sheet having excellent heat treatability to increase its strength after forming and deep drawability, and production method therefor

Legal Events

Date Code Title Description
RD04 Notification of resignation of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7424

Effective date: 20140402

A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20150223

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20151027

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20151109

R150 Certificate of patent or registration of utility model

Ref document number: 5846113

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

LAPS Cancellation because of no payment of annual fees