JP2013132730A - Surface coated cutting tool having excellent chipping resistance, peeling resistance and wear resistance - Google Patents

Surface coated cutting tool having excellent chipping resistance, peeling resistance and wear resistance Download PDF

Info

Publication number
JP2013132730A
JP2013132730A JP2011285681A JP2011285681A JP2013132730A JP 2013132730 A JP2013132730 A JP 2013132730A JP 2011285681 A JP2011285681 A JP 2011285681A JP 2011285681 A JP2011285681 A JP 2011285681A JP 2013132730 A JP2013132730 A JP 2013132730A
Authority
JP
Japan
Prior art keywords
layer
aluminum oxide
lower layer
average
recesses
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2011285681A
Other languages
Japanese (ja)
Other versions
JP5876724B2 (en
Inventor
Hiroaki Kakinuma
宏彰 柿沼
Hidemitsu Takaoka
秀充 高岡
Akira Osada
晃 長田
Naoki Wakitani
尚樹 脇谷
Hisao Suzuki
久男 鈴木
Kazuo Shinozaki
和夫 篠崎
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Shizuoka University NUC
Mitsubishi Materials Corp
Tokyo Institute of Technology NUC
Original Assignee
Shizuoka University NUC
Mitsubishi Materials Corp
Tokyo Institute of Technology NUC
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Shizuoka University NUC, Mitsubishi Materials Corp, Tokyo Institute of Technology NUC filed Critical Shizuoka University NUC
Priority to JP2011285681A priority Critical patent/JP5876724B2/en
Priority to CN201210567469.4A priority patent/CN103182536B/en
Publication of JP2013132730A publication Critical patent/JP2013132730A/en
Application granted granted Critical
Publication of JP5876724B2 publication Critical patent/JP5876724B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Landscapes

  • Cutting Tools, Boring Holders, And Turrets (AREA)
  • Chemical Vapour Deposition (AREA)
  • Physical Vapour Deposition (AREA)

Abstract

PROBLEM TO BE SOLVED: To provide a surface coated cutting tool in which a hard coating layer exhibits excellent chipping resistance, pealing resistance and wear resistance in high-speed interrupted cutting machining of carbon steel, stainless steel or the like.SOLUTION: The surface coated cutting tool has an undercoat layer formed on a surface of a tool substrate, and AlOhard coating layers, consisting of a lower layer and an upper layer, coated and formed further on the undercoat layer. The lower layer is made of a crystalline AlOlayer, and the upper layer of an amorphous AlOlayer. The lower layer has recesses formed thereon, and the amorphous AlOlayer of the upper layer fills the recesses to be formed into a film with the filling. An average depth of the recesses is 0.5-10.0 μm, an average aspect ratio of the recesses is 1.0-50, and an average horizontal interval between the mutual recesses is 0.5-20 μm.

Description

この発明は、高熱発生を伴うとともに、切刃に対して断続的・衝撃的負荷が作用する炭素鋼、ステンレス鋼など溶着しやすい被削材の高速断続切削加工において、硬質被覆層がすぐれた耐チッピング性、耐剥離性および耐摩耗性を発揮する表面被覆切削工具(以下、被覆工具という)に関するものである。   The present invention has a high resistance to hard coating in high-speed intermittent cutting of easily welded materials such as carbon steel and stainless steel, which are accompanied by high heat generation and intermittent and impact loads are applied to the cutting edge. The present invention relates to a surface-coated cutting tool (hereinafter referred to as a coated tool) that exhibits chipping properties, peel resistance, and wear resistance.

工具基体表面に、周期律表の4a、5a、6a族から選ばれた少なくとも1種以上の元素の炭化物、窒化物、炭窒化物等からなる硬質皮膜を下地層として成膜し、その上に、さらに上部層としての酸化アルミニウム層を被覆形成した被覆工具は、例えば、特許文献1に示すように、従来から知られている。
そして、酸化アルミニウム層は、通常は、化学蒸着(CVD)によって成膜されるが、その他、物理蒸着(PVD)法、ゾル−ゲル法によっても酸化アルミニウム層を被覆形成し得ることも知られている。
例えば、特許文献2に示すように、工具基体表面に、物理蒸着(PVD)法で下地層を形成した後、該下地層を酸化することによって酸化物含有層を形成し、該酸化物含有層上に酸化アルミニウム層を物理蒸着(PVD)することにより、耐摩耗性、耐熱性に優れた被覆工具を得ることが提案されている。
また、特許文献3には、(Ti、Al)N層からなる下地層と酸化アルミニウム層(好ましくは、γ型アルミナ層)からなる上部層を、物理蒸着(PVD)法で成膜した被覆工具が提案されている。
さらに、特許文献4に示すように、機械特性、耐久性がある酸化アルミニウム被覆構造体の製造方法として、母材上に、結晶構造がアモルファス構造、又はγ型のアルミナ、又はそれらの混合物からなる第1のアルミナ層をゾル−ゲル法で被覆した後、スパッタリングにより、γ型を主体とする第2のアルミナ層を被覆形成することが提案されている。
A hard film made of carbide, nitride, carbonitride, or the like of at least one element selected from groups 4a, 5a, and 6a of the periodic table is formed on the surface of the tool base as an underlayer, and Further, a coated tool formed by coating an aluminum oxide layer as an upper layer is conventionally known as shown in Patent Document 1, for example.
The aluminum oxide layer is usually formed by chemical vapor deposition (CVD), but it is also known that the aluminum oxide layer can be formed by physical vapor deposition (PVD) or sol-gel. Yes.
For example, as shown in Patent Document 2, after forming a base layer on the surface of a tool base by a physical vapor deposition (PVD) method, an oxide-containing layer is formed by oxidizing the base layer, and the oxide-containing layer It has been proposed to obtain a coated tool having excellent wear resistance and heat resistance by physical vapor deposition (PVD) of an aluminum oxide layer thereon.
Patent Document 3 discloses a coated tool in which a base layer made of a (Ti, Al) N layer and an upper layer made of an aluminum oxide layer (preferably a γ-type alumina layer) are formed by physical vapor deposition (PVD). Has been proposed.
Furthermore, as shown in Patent Document 4, as a manufacturing method of an aluminum oxide-coated structure having mechanical properties and durability, a crystal structure is made of an amorphous structure, γ-type alumina, or a mixture thereof on a base material. It has been proposed to coat and form a second alumina layer mainly composed of γ-type by sputtering after coating the first alumina layer by a sol-gel method.

特開平11−229144号公報Japanese Patent Laid-Open No. 11-229144 特開2004−124246号公報JP 2004-124246 A 特開2007−75990号公報JP 2007-75990 A 特開2006−205558号公報JP 2006-205558 A

化学蒸着(CVD)法、物理蒸着(PVD)法あるいはゾル−ゲル法で酸化アルミニウム層を被覆形成していた従来の被覆工具においては、これを通常条件の高速切削、断続切削に用いた場合には特段の支障はないが、特にこれを、高熱発生を伴い、切れ刃に断続的・衝撃的負荷が作用する炭素鋼、ステンレス鋼など溶着しやすい被削材の高速断続切削に用いた場合には、上記方法で成膜した酸化アルミニウム層に不可避的に存在する微小亀裂や熱膨張差に起因するクーリングクラック等を起点として、溶着や断続切削の衝撃によってチッピングや剥離が生じるために、長期の使用にわたって満足できる切削性能を発揮し得ないという問題があった。   In a conventional coated tool in which an aluminum oxide layer is formed by chemical vapor deposition (CVD), physical vapor deposition (PVD), or sol-gel, when this is used for high-speed cutting and intermittent cutting under normal conditions, There is no particular problem, but especially when this is used for high-speed intermittent cutting of easily welded materials such as carbon steel and stainless steel that generate high heat and cause intermittent and impact loads on the cutting edge. Since the chipping or peeling occurs due to the impact of welding or intermittent cutting, starting from microcracks inevitably present in the aluminum oxide layer formed by the above method and cooling cracks due to thermal expansion differences, etc. There was a problem in that satisfactory cutting performance could not be exhibited over use.

そこで、本発明者等は、耐チッピング性、耐剥離性にすぐれ、高速断続切削という厳しい条件下でも、長期の使用にわたってすぐれた耐摩耗性を発揮する被覆工具を提供すべく、鋭意研究を行ったところ、次のような知見を見出したのである。   Therefore, the present inventors have conducted intensive research to provide a coated tool that has excellent chipping resistance and peeling resistance, and exhibits excellent wear resistance over a long period of use even under severe conditions such as high-speed intermittent cutting. As a result, the following findings were found.

即ち炭化タングステン基超硬合金、炭窒化チタン基サーメットからなる工具基体表面上に、下地層として周期律表の4a、5a、6a族、AlおよびSiから選ばれる少なくとも一種以上の元素の炭化物、窒化物、炭窒化物、炭酸化物および炭窒酸化物を含有する硬質被覆層を化学蒸着または物理蒸着によって被覆形成した後に、硬質被覆層としての酸化アルミニウム層を被覆形成するにあたり、酸化アルミニウム層自体を上層と下層とで構成し、下層は、化学蒸着(CVD)法により形成された、その表面に凹部を有する耐摩耗性の高い結晶質酸化アルミニウム層で構成し、一方、上層は、平滑かつ潤滑性にすぐれ、下層との密着性が大であるゾル−ゲル法で成膜された非晶質酸化アルミニウム層で構成することにより、耐チッピング性、耐剥離性、耐摩耗性に優れた酸化アルミニウム層を成膜し得ることを見出したのである。   That is, on the surface of a tool base made of tungsten carbide-based cemented carbide or titanium carbonitride-based cermet, a carbide of at least one element selected from the group 4a, 5a, 6a, Al and Si of the periodic table as a base layer, nitrided When the aluminum oxide layer as a hard coating layer is formed by coating a hard coating layer containing a product, carbonitride, carbonate and carbonitride oxide by chemical vapor deposition or physical vapor deposition, the aluminum oxide layer itself is The upper layer is composed of an upper layer and a lower layer, and the lower layer is composed of a highly wear-resistant crystalline aluminum oxide layer formed by a chemical vapor deposition (CVD) method and having a recess on its surface, while the upper layer is smooth and lubricated. Chipping resistance by comprising an amorphous aluminum oxide layer formed by a sol-gel method with excellent properties and high adhesion to the lower layer, Peelability, it was found that it is possible to deposit a good aluminum oxide layer on the wear resistance.

つまり、従来の化学蒸着(CVD)法、物理蒸着(PVD)法あるいはゾル−ゲル法で成膜した結晶質酸化アルミニウム層では、潤滑性や平滑性が足りないために溶着などによりチッピング、剥離等の異常損傷やクレーター摩耗が短時間で発生するものの、これを下層とし、その上層としてゾル−ゲル法で成膜した非晶質酸化アルミニウム層を成膜した場合には、潤滑性、平滑性、切屑排出性が向上し、高い耐摩耗性を発揮し得ること、さらに、上層と下層の界面が凹形状となっているため、衝撃的負荷が作用する高速断続切削においても、アンカー効果により上層が剥離しにくくなること、加えて、硬質被覆層の摩耗が進行した際にも、凹部に上層の非晶質酸化アルミニウム層が充填されるように成膜されているために、上層の潤滑性と下層の耐摩耗性を、長期間にわたって同時に発揮することができるということを見出したのである。   In other words, the crystalline aluminum oxide layer formed by the conventional chemical vapor deposition (CVD) method, physical vapor deposition (PVD) method, or sol-gel method has insufficient lubricity and smoothness, so chipping, peeling, etc. by welding or the like. Although abnormal damage and crater wear occur in a short time, if this is the lower layer, and an amorphous aluminum oxide layer formed by the sol-gel method as the upper layer is formed, lubricity, smoothness, Chip removal performance can be improved and high wear resistance can be exhibited, and the upper layer and lower layer interface has a concave shape, so even in high-speed intermittent cutting where impact loads are applied, the upper layer In addition to being hard to peel off, even when wear of the hard coating layer progresses, since the film is formed so that the concave portion is filled with the upper amorphous aluminum oxide layer, the lubricity of the upper layer under The abrasion resistance is was found that it is possible to exert at the same time over a long period of time.

この発明は、上記知見に基づいてなされたものであって、
「(1) 炭化タングステン基超硬合金または炭窒化チタン基サーメットからなる工具基体の表面に、化学蒸着または物理蒸着によって被覆形成された下地層、及び該下地層上に、下層と上層とからなる酸化アルミニウム硬質被覆層を形成した表面被覆切削工具において、
(a)該下地層は、1.0〜15.0μmの平均層厚を有する周期律表の4a、5a、6a族、AlおよびSiから選ばれる少なくとも一種以上の元素の炭化物、窒化物、炭窒化物、炭酸化物および炭窒酸化物層であって、
(b)下層は、化学蒸着で形成された0.8〜10.0μmの平均層厚を有する結晶質酸化アルミニウム層、
(c)上層は、0.2〜3.0μmの平均層厚を有する非晶質酸化アルミニウム層であって、
(d)下層の結晶質酸化アルミニウム層の表面には、凹部が形成されており、上層の非晶質酸化アルミニウム層は、下層の上記凹部を埋め込むように充填成膜されており、
(e)下層に形成された凹部の平均深さは、0.5〜10.0μmの範囲(但し、下層の平均層厚以下)であり、
(f)下層に形成された凹部の平均アスペクト比は、1.0〜50の範囲であり、
(g)下層に形成された凹部相互の平均水平間隔は、0.5〜20μmの範囲であることを特徴とする表面被覆切削工具。
(2) 下層の酸化アルミニウムはκ型の結晶構造を有することを特徴とする前記(1)に記載の表面被覆切削工具。」
を特徴とするものである。
This invention has been made based on the above findings,
“(1) An underlayer formed by chemical vapor deposition or physical vapor deposition on the surface of a tool base made of tungsten carbide-based cemented carbide or titanium carbonitride-based cermet, and a lower layer and an upper layer on the underlayer. In the surface-coated cutting tool formed with the aluminum oxide hard coating layer,
(A) The underlayer is composed of carbide, nitride, charcoal of at least one element selected from Group 4a, 5a, 6a, Al and Si in the periodic table having an average layer thickness of 1.0 to 15.0 μm. A nitride, carbonate and carbonitride layer,
(B) The lower layer is a crystalline aluminum oxide layer having an average layer thickness of 0.8 to 10.0 μm formed by chemical vapor deposition,
(C) The upper layer is an amorphous aluminum oxide layer having an average layer thickness of 0.2 to 3.0 μm,
(D) A concave portion is formed on the surface of the lower crystalline aluminum oxide layer, and the upper amorphous aluminum oxide layer is filled and formed so as to fill the lower concave portion,
(E) The average depth of the recesses formed in the lower layer is in the range of 0.5 to 10.0 μm (however, below the average layer thickness of the lower layer),
(F) The average aspect ratio of the recesses formed in the lower layer is in the range of 1.0 to 50,
(G) The surface-coated cutting tool, wherein the average horizontal interval between the recesses formed in the lower layer is in the range of 0.5 to 20 μm.
(2) The surface-coated cutting tool according to (1), wherein the lower layer aluminum oxide has a κ-type crystal structure. "
It is characterized by.

以下、本発明について、詳細に説明する。   Hereinafter, the present invention will be described in detail.

本発明の被覆工具は、炭化タングステン基超硬合金、炭窒化チタン基サーメットからなる工具基体の表面に下地層として周期律表の4a、5a、6a族、AlおよびSiから選ばれる少なくとも一種以上の元素の炭化物、窒化物、炭窒化物、炭酸化物および炭窒酸化物を含有する硬質被覆層を化学蒸着または物理蒸着によって被覆形成し、上述した結晶質酸化アルミニウム層からなる下層と非晶質酸化アルミニウム層からなる上層とを該下地層上に被覆形成する。
また、上記下層の結晶質酸化アルミニウム層は下地層との密着力が優れるκ型酸化アルミニウムであることが望ましい。
下地層の具体例としては、例えば、化学蒸着によって形成したTiN層、TiCN層、TiCO層、TiCNO層等のTi化合物層を挙げることができ、また、物理蒸着によって形成したTiとAlの複合窒化物層、CrとAlの複合窒化物層等を挙げることができる。
The coated tool of the present invention comprises at least one or more selected from the group 4a, 5a, 6a of the periodic table, Al and Si as an underlayer on the surface of a tool base made of tungsten carbide base cemented carbide or titanium carbonitride base cermet. A hard coating layer containing elemental carbides, nitrides, carbonitrides, carbonates and carbonitrides is formed by chemical vapor deposition or physical vapor deposition. An upper layer made of an aluminum layer is coated on the underlayer.
The lower crystalline aluminum oxide layer is preferably κ-type aluminum oxide having excellent adhesion to the underlayer.
Specific examples of the underlayer include Ti compound layers formed by chemical vapor deposition, such as TiN layers, TiCN layers, TiCO layers, TiCNO layers, and composite nitriding of Ti and Al formed by physical vapor deposition. A material layer, a composite nitride layer of Cr and Al, and the like.

図1に、本発明の被覆工具の硬質被覆層縦断面の構成図を、また、図2に、本発明被覆工具の硬質被覆層の縦断面模式図を示す。
図1に示される本発明の被覆工具は、炭化タングステン基超硬合金からなる工具基体上に下地層を形成した後、化学蒸着で形成された0.8〜10.0μmの平均層厚を有する結晶質酸化アルミニウム層からなる下層が被覆形成され、この上に、0.2〜3.0μmの平均層厚を有する非晶質酸化アルミニウム層からなる上層が被覆形成されている。
また、図2によると下層の結晶質酸化アルミニウム層の表面には、凹部が形成されており、上層の非晶質酸化アルミニウム層は、下層の凹部を埋め込むように充填成膜されている。
FIG. 1 is a configuration diagram of a longitudinal section of a hard coating layer of the coated tool of the present invention, and FIG. 2 is a schematic longitudinal sectional view of a hard coating layer of the coated tool of the present invention.
The coated tool of the present invention shown in FIG. 1 has an average layer thickness of 0.8 to 10.0 μm formed by chemical vapor deposition after forming an underlayer on a tool substrate made of a tungsten carbide base cemented carbide. A lower layer made of a crystalline aluminum oxide layer is coated, and an upper layer made of an amorphous aluminum oxide layer having an average layer thickness of 0.2 to 3.0 μm is coated thereon.
Further, according to FIG. 2, a concave portion is formed on the surface of the lower crystalline aluminum oxide layer, and the upper amorphous aluminum oxide layer is filled to fill the lower concave portion.

ここで、下層の平均層厚を0.8〜10.0μmと定め、また、上層の平均層厚を0.2〜3.0μmと定めているが、その理由は、それぞれの層厚が下限値(0.8μm,0.2μm)を下回った場合には、長期の使用に亘って十分な耐摩耗性を発揮することができず、一方、上限値(10.0μm,3.0μm)を超える場合には、チッピングを発生しやすくなるということによる。   Here, the average layer thickness of the lower layer is determined to be 0.8 to 10.0 μm, and the average layer thickness of the upper layer is determined to be 0.2 to 3.0 μm. When the value is less than 0.8 μm or 0.2 μm, sufficient wear resistance cannot be exhibited over a long period of use, while the upper limit (10.0 μm, 3.0 μm) is not reached. If it exceeds, chipping is likely to occur.

また、下層の表面に形成されている凹部について述べる。
まず、下層の凹部の平均深さ(図1参照)は、0.5〜10.0μm、好ましくは1.0〜7.0μmの範囲内にあり、下層の凹部の平均深さが0.5μm未満である場合には、下層表面がほぼ平坦となり、下層−上層間でのアンカー効果が小さくなるため、上層が剥離しやすくなることから、凹部の平均深さは0.5μm以上必要である。一方、下層の最大平均層厚が10.0μmなのであるから、下層の凹部の最大平均深さは、自ずと10.0μmとなる。
Moreover, the recessed part currently formed in the surface of a lower layer is described.
First, the average depth of the recesses in the lower layer (see FIG. 1) is in the range of 0.5 to 10.0 μm, preferably 1.0 to 7.0 μm, and the average depth of the recesses in the lower layer is 0.5 μm. If it is less than the range, the surface of the lower layer becomes almost flat and the anchor effect between the lower layer and the upper layer becomes small, and the upper layer is easily peeled off. Therefore, the average depth of the recesses needs to be 0.5 μm or more. On the other hand, since the maximum average layer thickness of the lower layer is 10.0 μm, the maximum average depth of the recesses of the lower layer is naturally 10.0 μm.

次に、本発明では凹部の平均アスペクト比を1.0〜50、好ましくは5.0〜30の範囲内にあり、下層の凹部は長方形に近い方がアンカー効果が高く、アスペクト比が50を超えると、硬質皮膜の上部では非晶質酸化アルミニウムの割合が多くなり、下部では非晶質酸化アルミニウムの割合が少なくなるため、非晶質酸化アルミニウムの潤滑性と結晶質酸化アルミニウムの耐摩耗性を長期にわたって両立させることができない。一方、アスペクト比が1.0未満であると、上層と下層の異なる機械的・熱的特性に起因して凹部の付け根から異常損傷を起こしやすくなり、アンカー効果が小さくなるために上層が剥離しやすくなり、結果的に切り屑排出性が悪くなるために大きな発熱が生じる。   Next, in the present invention, the average aspect ratio of the recesses is in the range of 1.0 to 50, preferably 5.0 to 30, and the lower layer recess has a higher anchoring effect near the rectangle, and the aspect ratio is 50. If exceeded, the proportion of amorphous aluminum oxide increases in the upper part of the hard coating and the proportion of amorphous aluminum oxide decreases in the lower part, so the lubricity of amorphous aluminum oxide and the wear resistance of crystalline aluminum oxide Cannot be achieved over a long period of time. On the other hand, if the aspect ratio is less than 1.0, abnormal damage tends to occur from the root of the recess due to the different mechanical and thermal characteristics of the upper layer and the lower layer, and the anchor effect is reduced, so the upper layer peels off. As a result, the chip discharge performance is deteriorated, resulting in large heat generation.

また、下層に形成された凹部相互の平均水平間隔は、0.5〜20μm、好ましくは、2.0〜15μmの範囲内にあり、下層に形成された凹部相互の平均水平間隔が0.5μm未満であると、下層の結晶質酸化アルミニウムが相対的に少なくなるため高い耐摩耗性を発揮することができず、一方、平均水平間隔が20μmを超えると、非晶質酸化アルミニウムが相対的に少なくなるために、潤滑性を十分に発揮することができないばかりか、アンカー効果も低下してくるため上層−下層間での密着強度が低下することから、   Further, the average horizontal interval between the recesses formed in the lower layer is in the range of 0.5 to 20 μm, preferably 2.0 to 15 μm, and the average horizontal interval between the recesses formed in the lower layer is 0.5 μm. If the average horizontal distance exceeds 20 μm, the amorphous aluminum oxide becomes relatively less. Because it is less, not only can not sufficiently demonstrate the lubricity, but also the anchor effect is reduced, so the adhesion strength between the upper layer and the lower layer is reduced,

次に、本発明の被覆工具を得るための硬質被覆層の成膜法の一例について、以下に述べる。   Next, an example of a method for forming a hard coating layer for obtaining the coated tool of the present invention will be described below.

まず、工具基体表面と下層間に介在形成する下地層、即ち、周期律表の4a、5a、6a族、AlおよびSiから選ばれる少なくとも一種以上の元素の炭化物、窒化物、炭窒化物、炭酸化物および炭窒酸化物を含有する下地層、については、従来から知られている化学蒸着法または物理蒸着法によって形成すれば良く、特段、成膜法を限定するものではない。   First, an underlayer formed between the tool base surface and the lower layer, that is, carbide, nitride, carbonitride, carbonic acid of at least one element selected from groups 4a, 5a, 6a, Al and Si in the periodic table The underlayer containing the fluoride and oxycarbonitride may be formed by a conventionally known chemical vapor deposition method or physical vapor deposition method, and the film forming method is not particularly limited.

次に、結晶質酸化アルミニウムからなる下層については、これも従来から知られている化学蒸着法で、0.8〜10.0μmの平均層厚を有する結晶質酸化アルミニウム層を蒸着成膜すればよい。
この蒸着により、請求項1に規定される所定の凹部が下層に形成されている場合には、この上に、後記する成膜法によって上層を形成するが、蒸着成膜した結晶質酸化アルミニウム層に、所定の凹部が形成されていない場合には、例えば、エッチング処理工程とブラスト処理工程からなる凹部形成処理を成膜後に施すことにより、下層に所定の凹部を形成することができる。
凹部形成処理におけるエッチング処理工程は、結晶質酸化アルミニウム層上にレジスト膜を成膜し、所望の凹パターンを有するマスクを使用し、露光、現像を行い、凹部を形成させたい部分のみレジスト膜を除去する。その後、例えば反応性イオンエッチング法により、該結晶質酸化アルミニウム膜をエッチングし、凹部を形成する。残存するレジスト膜除去には剥離液を使用し、エッチングの際に発生するデポ物も除去することが望ましい。
また、凹部を強調するために、エッチング処理工程後にブラスト処理工程を行うことが望ましく、特に、ブラスト投射角度:50〜80度、ブラスト投射圧力:100〜250kPa、ショットの粒径:0.05〜0.2mm、の条件にて鋼球をブラストするショットブラスト処理が望ましい。
なお、下層に所定の凹部を形成するための手段は、上記エッチング処理やブラスト処理ばかりでなく、成膜後の熱処理や化学蒸着条件の調整によって行うことも勿論可能である。
Next, for a lower layer made of crystalline aluminum oxide, if a crystalline aluminum oxide layer having an average layer thickness of 0.8 to 10.0 μm is vapor deposited by a conventionally known chemical vapor deposition method, Good.
When the predetermined concave portion defined in claim 1 is formed in the lower layer by this vapor deposition, an upper layer is formed thereon by a film formation method described later. In addition, when the predetermined concave portion is not formed, for example, the predetermined concave portion can be formed in the lower layer by performing a concave portion forming process including an etching process step and a blasting step after the film formation.
In the etching process in the recess forming process, a resist film is formed on the crystalline aluminum oxide layer, a mask having a desired concave pattern is used, and exposure and development are performed. Remove. Thereafter, the crystalline aluminum oxide film is etched by, for example, a reactive ion etching method to form a recess. For removing the remaining resist film, it is desirable to use a stripping solution to remove deposits generated during etching.
Moreover, in order to emphasize a recessed part, it is desirable to perform a blasting process after an etching process, especially a blast projection angle: 50-80 degree | times, a blast projection pressure: 100-250 kPa, and the particle size of a shot: 0.05- Shot blasting is preferred in which steel balls are blasted under the condition of 0.2 mm.
Of course, the means for forming the predetermined recesses in the lower layer can be performed not only by the etching process and the blasting process, but also by a heat treatment after film formation and adjustment of chemical vapor deposition conditions.

次に、結晶質酸化アルミニウムからなる下層の表面に0.2〜3.0μmの平均層厚を有する非晶質酸化アルミニウム層を成膜する。成膜方法としては、凹部に欠陥等なく充填させるよう成膜できるためにゾル−ゲル法による成膜が望ましい。
ゾル−ゲル法による非晶質酸化アルミニウム層の形成は、調製及び保持を施したアルミナゾルを下層の表面に塗布し、これを乾燥・焼成することによって成膜することができる。
この工程を、より具体的に述べれば、以下のとおりである。
Next, an amorphous aluminum oxide layer having an average layer thickness of 0.2 to 3.0 μm is formed on the surface of the lower layer made of crystalline aluminum oxide. As a film forming method, film formation by a sol-gel method is desirable because a film can be formed so as to fill the recess without defects.
The formation of the amorphous aluminum oxide layer by the sol-gel method can be performed by applying the prepared and retained alumina sol to the surface of the lower layer, and drying and baking it.
More specifically, this process is as follows.

アルミナゾルの調製:
まず、アルミニウムのアルコキシド(例えば、アルミニウムセカンダリブトキシド)にアルコール(例えば、エタノール)を添加し、さらに、酸(例えば、塩酸)を添加した後、ゲル化しない40〜60℃以下の温度範囲にて1〜3時間攪拌することによってアルミナゾルを調整する。
Preparation of alumina sol:
First, after adding an alcohol (for example, ethanol) to an aluminum alkoxide (for example, aluminum secondary butoxide), and further adding an acid (for example, hydrochloric acid), the temperature is 40 to 60 ° C. or less at which the gel does not gel. Adjust the alumina sol by stirring for ~ 3 hours.

アルミナゾルの保持:
次いで、上記アルミナゾルについて、ゾル中で起きている加水分解・縮合反応が平衡状態に至るまで待つ目的で40〜60℃の温度範囲にて12時間以上保持する。
Alumina sol retention:
Next, the alumina sol is held at a temperature range of 40 to 60 ° C. for 12 hours or more for the purpose of waiting until the hydrolysis / condensation reaction occurring in the sol reaches an equilibrium state.

乾燥・焼成:
上記アルミナゾルを、下地層上に被覆形成した下層上に塗布し、それに続き100〜300℃での乾燥処理を繰り返し行い、次いで、300〜600℃の温度範囲で焼成処理を行って、0.2〜3.0μmの平均層厚を有する非晶質酸化アルミニウム層を成膜する。
Drying and firing:
The above-mentioned alumina sol is applied on the lower layer coated on the underlayer, followed by repeated drying at 100 to 300 ° C., followed by firing at a temperature range of 300 to 600 ° C., 0.2 An amorphous aluminum oxide layer having an average layer thickness of ˜3.0 μm is formed.

上記非晶質酸化アルミニウム層の層厚は、アルミナゾルの塗布厚さおよび塗布回数に依存するが、層厚が0.2μm未満では、長期の使用にわたってすぐれた耐摩耗性を発揮することができず、一方、層厚が3.0μmを越えると剥離、チッピングが生じやすくなることから、上記非晶質酸化アルミニウム層からなる上層の平均層厚は0.2〜3.0μmとする。   The layer thickness of the amorphous aluminum oxide layer depends on the coating thickness and the number of coatings of the alumina sol. However, if the layer thickness is less than 0.2 μm, excellent wear resistance cannot be exhibited over a long period of use. On the other hand, if the layer thickness exceeds 3.0 μm, peeling and chipping tend to occur. Therefore, the average layer thickness of the upper layer made of the amorphous aluminum oxide layer is set to 0.2 to 3.0 μm.

本発明の被覆工具によれば、下地層を介して、特定の凹形状を有する結晶質酸化アルミニウム層が下層として形成され、さらにその上に、ゾル−ゲル法により形成された非晶質酸化アルミニウム層が設けられていることから、硬質被覆層の潤滑性、平滑性、切屑排出性が向上し、高い耐摩耗性を有するとともに、上層と下層の密着性が大で剥離が生じにくいことから、高熱発生を伴うとともに、断続的・衝撃的負荷が作用する高速断続切削に用いた場合でも、長期の使用に亘ってすぐれた耐摩耗性を発揮することができるのである。   According to the coated tool of the present invention, a crystalline aluminum oxide layer having a specific concave shape is formed as a lower layer through an underlayer, and further, an amorphous aluminum oxide formed thereon by a sol-gel method Because the layer is provided, the lubricity, smoothness, chip dischargeability of the hard coating layer is improved, it has high wear resistance, and the adhesion between the upper layer and the lower layer is large and hardly peeled off, Even when used for high-speed intermittent cutting with high heat generation and intermittent / impact loads, excellent wear resistance can be exhibited over a long period of use.

本発明被覆工具の硬質被覆層縦断面の構成図を示す。The block diagram of the hard coating layer longitudinal cross-section of this invention coated tool is shown. 本発明被覆工具の硬質被覆層の縦断面模式図を示す。The longitudinal cross-sectional schematic diagram of the hard coating layer of this invention coated tool is shown.

つぎに、この発明を実施例により具体的に説明する。   Next, the present invention will be specifically described with reference to examples.

原料粉末として、いずれも1〜3μmの平均粒径を有するWC粉末、TiC粉末、ZrC粉末、VC粉末、TaC粉末、Cr32粉末、TiN粉末、TaN粉末およびCo粉末を用意し、これら原料粉末を、表1に示す所定の配合組成に配合し、さらにワックスを加えてアセトン中で24時間ボールミル混合し、減圧乾燥した後、98MPaの圧力で所定形状の圧粉体にプレス成形し、この圧粉体を5Paの真空中、1370〜1470℃の範囲内の所定の温度に1時間保持の条件で真空焼結し、焼結後、切刃部にR:0.07mmのホーニング加工を施すことによりISO・CNMG120408に規定するインサート形状をもったWC基超硬合金製の工具基体A,B,C,D(工具基体A,B,C,Dという)を製造した。 WC powder, TiC powder, ZrC powder, VC powder, TaC powder, Cr 3 C 2 powder, TiN powder, TaN powder and Co powder each having an average particle diameter of 1 to 3 μm are prepared as raw material powders. The powder was blended in the prescribed blending composition shown in Table 1, further added with wax, ball mill mixed in acetone for 24 hours, dried under reduced pressure, and then press-molded into a compact with a predetermined shape at a pressure of 98 MPa. The green compact is vacuum-sintered in a vacuum of 5 Pa at a predetermined temperature within a range of 1370 to 1470 ° C. for 1 hour. After sintering, the cutting edge is subjected to a honing process of R: 0.07 mm. Thus, WC-based cemented carbide tool bases A, B, C, and D (referred to as tool bases A, B, C, and D) having an insert shape specified in ISO / CNMG120408 were manufactured.


ついで、上記工具基体A〜Dに対して、下層を形成した。
なお、下層の形成にあたり、上記工具基体A及びBについては、化学蒸着装置に装入し、表2に示す成膜条件を用いて、表3のTi化合物からなる皮膜構成にて下地層を予め形成した。
一方、上記工具基体Cについては、物理蒸着装置の一種であるアークイオンプレーティング装置に装入し、表3に示す膜厚のTi0.5Al0.5N層からなる下地層を予め形成した。
また、上記工具基体Dについては、同じくアークイオンプレーティング装置に装入し、表3に示す膜厚のAl0.7Cr0.3N層からなる下地層を予め形成した。
Next, a lower layer was formed on the tool bases A to D.
In forming the lower layer, the tool bases A and B are charged into a chemical vapor deposition apparatus, and the underlayer is previously formed using the film formation conditions shown in Table 2 with the film configuration of the Ti compound shown in Table 3. Formed.
On the other hand, the tool base C is inserted into an arc ion plating apparatus which is a kind of physical vapor deposition apparatus, and an underlayer composed of Ti 0.5 Al 0.5 N layers having thicknesses shown in Table 3 is formed in advance. did.
Further, the tool base D was similarly inserted into an arc ion plating apparatus, and an underlayer composed of an Al 0.7 Cr 0.3 N layer having a thickness shown in Table 3 was formed in advance.

ついで、下地層を形成した上記工具基体A〜Dに対して、CVD装置を用いて、所定目標層厚になるまで表2に示す成膜条件で結晶質酸化アルミニウム層を蒸着することにより下層を形成した。
なお、工具基体A〜Dに形成された結晶質酸化アルミニウム層においては、蒸着したままの状態では、本発明で規定する凹部の形状、サイズが得られていなかったので、表4に示す条件で凹部形成処理を行い、本発明で規定する範囲内の凹部形状、サイズを形成した。エッチングガスはCF−CHF−Arを用いた。
さらに、工具基体A〜Dの下層に形成されている凹部について、走査型電子顕微鏡を用いた縦断面観察により、凹部の平均深さを測定するとともに、凹部のアスペクト比を凹部最大深さに対する凹部最大幅の比と定義して5点測定したのち、該アスペクト比の平均を本発明の凹部の平均アスペクト比として算出した。また、それと同様に、凹部の中心を凹部最大幅を示す線分の中点とし、凹部相互の平均水平間隔を該中心間の距離として走査型電子顕微鏡を用いて測定した結果を表3に示す。(但し、いずれの測定も、凹部形成処理実施後の測定である。)
Next, a lower layer is formed by depositing a crystalline aluminum oxide layer on the tool bases A to D on which the base layer is formed by using a CVD apparatus under the film forming conditions shown in Table 2 until a predetermined target layer thickness is obtained. Formed.
In addition, in the crystalline aluminum oxide layer formed on the tool bases A to D, the shape and size of the recesses defined in the present invention were not obtained in the vapor deposited state, so the conditions shown in Table 4 were used. A recess forming process was performed to form a recess shape and size within the range defined by the present invention. As the etching gas, CF 4 —CHF 3 —Ar was used.
Furthermore, about the recessed part currently formed in the lower layer of tool base | substrate A-D, while measuring the average depth of a recessed part by longitudinal cross-section observation using a scanning electron microscope, the recessed part is made into the recessed part with respect to the recessed part maximum depth. After measuring five points by defining the ratio of the maximum width, the average of the aspect ratios was calculated as the average aspect ratio of the recesses of the present invention. In the same manner, Table 3 shows the results of measurement using a scanning electron microscope with the center of the recess as the midpoint of the line segment indicating the maximum width of the recess and the average horizontal interval between the recesses as the distance between the centers. . (However, all measurements are measurements after the recess formation process is performed.)

ついで、それぞれ下層を被覆形成した上記工具基体A〜Dに対して、次の(イ)〜(ハ)の工程で、非晶質酸化アルミニウム層をゾルーゲル法で被覆形成した。
(イ)まず、アルミニウムセカンダリブトキシドに、エタノールを添加して、恒温槽中40℃で攪拌を行い、さらに、40℃で12時間保持させることで、アルミナゾルを調製した。
(ロ)ついで、上記工具基体A〜Dの下層表面に上記アルミナゾルを塗布した。
(ハ)ついで、上記塗布したアルミナゾルを、大気中300℃で0.5時間の乾燥処理を行い、さらに塗布と乾燥を所定層厚になるまで繰り返した後、大気中600℃で1時間の焼成処理を行うことにより、表3に示す本発明の被覆工具1〜10(本発明工具1〜10という)を製造した。
Subsequently, an amorphous aluminum oxide layer was formed by a sol-gel method in the following steps (a) to (c) on the tool bases A to D each having a lower layer formed thereon.
(A) First, ethanol was added to aluminum secondary butoxide, and the mixture was stirred at 40 ° C. in a thermostatic bath, and further kept at 40 ° C. for 12 hours to prepare an alumina sol.
(B) Next, the alumina sol was applied to the lower layer surfaces of the tool bases A to D.
(C) Next, the coated alumina sol is dried at 300 ° C. in the atmosphere for 0.5 hours, and further, coating and drying are repeated until a predetermined layer thickness is obtained, followed by firing at 600 ° C. in the atmosphere for 1 hour. By carrying out the treatment, coated tools 1 to 10 (referred to as present invention tools 1 to 10) of the present invention shown in Table 3 were produced.

上記本発明工具1〜10について、下層、上層の結晶構造を透過電子顕微鏡により、制限電子回折による構造解析を行ったところ、下層は明瞭な電子回折パターンが得られ、αまたはκ型の結晶構造を有する酸化アルミニウム、また、上層はハローパターンが得られたことから非晶質酸化アルミニウムで構成されていることが確認され、また、縦断面の詳細観察も同様に、透過電子顕微鏡を用いて凹部近傍の下層と上層との界面を観察したところ、下層の凹部に上層の非晶質酸化アルミニウムがポア等なく埋め込まれたような状態で充填されていることが確認された。また、同時に上層、下層の平均層厚を透過型電子顕微鏡を用いて断面測定したところ、いずれも目標層厚と実質的に同じ平均値(5ヶ所の平均値)を示した。   Regarding the above-described tools 1 to 10 of the present invention, when the crystal structure of the lower layer and the upper layer was subjected to structural analysis by limited electron diffraction using a transmission electron microscope, a clear electron diffraction pattern was obtained for the lower layer, and the α or κ type crystal structure In addition, it was confirmed that the upper layer was composed of amorphous aluminum oxide because the halo pattern was obtained, and the detailed observation of the longitudinal section was similarly performed using a transmission electron microscope. When the interface between the lower layer and the upper layer in the vicinity was observed, it was confirmed that the upper layer of amorphous aluminum oxide was filled in the recesses of the lower layer without being filled with pores. At the same time, when the average layer thicknesses of the upper layer and the lower layer were measured by cross-section using a transmission electron microscope, both showed the same average value (average value of 5 locations) as the target layer thickness.






比較例1Comparative Example 1

次に、被覆工具の切削性能に及ぼす下層(結晶質酸化アルミニウム層)の平均層厚と凹部の形状・サイズの影響を調査するため、工具基体A〜Dを用いて、下地層及び下層の平均層厚を変更するとともに、表4に示す種々の条件で凹部形成処理を施すことにより、10種類の比較材1〜10を作製した。
そして、その結果得られた比較材1〜10に形成された下層の凹部形状・サイズを測定し、その平均値を求めた。
表5に、下層の平均層厚、凹部形成処理条件、また、その結果得られた下層の凹部形状・サイズの測定平均値を示す。
Next, in order to investigate the influence of the average layer thickness of the lower layer (crystalline aluminum oxide layer) and the shape and size of the recesses on the cutting performance of the coated tool, the average of the lower layer and the lower layer was used using the tool bases A to D. 10 types of comparative materials 1 to 10 were produced by changing the layer thickness and performing a recess formation process under various conditions shown in Table 4.
And the recessed part shape and size of the lower layer formed in the comparative materials 1-10 obtained as a result were measured, and the average value was calculated | required.
Table 5 shows the average layer thickness of the lower layer, the recess formation processing conditions, and the measured average values of the recess shape and size of the lower layer obtained as a result.

ついで、上記比較材1〜10に対して、前記(イ)〜(ハ)と同様な工程で、アルミナゾルの調製、保持を行い、下層表面に塗布、乾燥、焼成を行うことで、表5に示す比較例の被覆工具1〜10(比較例工具1〜10という)を作製した。   Next, with respect to the comparative materials 1 to 10, the alumina sol is prepared and held in the same steps as in the above (a) to (c), and applied to the lower layer surface, dried and fired. The coated tools 1 to 10 (referred to as comparative tools 1 to 10) of the comparative examples shown were produced.

上記比較例工具1〜10について、下層、上層の結晶構造を透過電子顕微鏡を用いて構造解析したところ、下層はαまたはκ型の結晶構造を有する酸化アルミニウム、また、上層は非晶質酸化アルミニウムで構成されていることが確認されたが、同様に、透過電子顕微鏡を用いて凹部近傍の下層と上層との界面を観察したところ、一部の比較例工具では、下層の凹部に上層の非晶質酸化アルミニウムが十分に充填されておらず、ポアや密度の薄い部分が存在した。   For the comparative tools 1 to 10, the lower and upper crystal structures were analyzed using a transmission electron microscope. The lower layer was an aluminum oxide having an α or κ type crystal structure, and the upper layer was an amorphous aluminum oxide. Similarly, when the interface between the lower layer and the upper layer in the vicinity of the recess was observed using a transmission electron microscope, in some comparative tools, the upper layer was not formed in the lower recess. Crystalline aluminum oxide was not sufficiently filled, and there were pores and thin portions.


つぎに、上記本発明工具1〜10、比較例工具1〜10について、次の条件で高速断続切削加工試験を行った。   Next, a high-speed intermittent cutting test was performed on the above-described inventive tools 1 to 10 and comparative tools 1 to 10 under the following conditions.

被削材:JIS・S45Cの長さ方向等間隔4本縦溝入り丸棒、
切削速度: 350 m/min.、
切り込み: 2.0 mm、
送り: 0.26 mm/rev.、
切削時間: 5分、
(通常の切削速度および切り込みは、それぞれ、200 m/min.、1.5mm)
切削加工試験後の、それぞれの工具の摩耗状態について観察を行い、逃げ面摩耗量の測定を行うとともに、硬質被覆層の損傷状況を観察した。
表6に、これらの結果を示す。
Work material: JIS · S45C lengthwise equal 4 round grooved round bars,
Cutting speed: 350 m / min. ,
Cutting depth: 2.0 mm,
Feed: 0.26 mm / rev. ,
Cutting time: 5 minutes
(Normal cutting speed and cutting depth are 200 m / min. And 1.5 mm, respectively)
After the cutting test, the wear state of each tool was observed, the flank wear amount was measured, and the damage state of the hard coating layer was observed.
Table 6 shows these results.


原料粉末として、いずれも0.5〜2μmの平均粒径を有するTiCN(質量比でTiC/TiN=50/50)粉末、Mo2C粉末、ZrC粉末、NbC粉末、TaC粉末、WC粉末、Co粉末、およびNi粉末を用意し、これらを表7に示す所定の配合組成に配合し、ボールミルで24時間湿式混合し、乾燥した後、98MPaの圧力で圧粉体にプレス成形し、この圧粉体を1.3kPaの窒素雰囲気中、温度:1540℃に1時間保持の条件で焼結し、焼結後、切刃部分にR:0.07mmのホーニング加工を施すことによりISO規格・CNMG120412のチップ形状をもったTiCN基サーメット製の工具基体E,F,G,H(工具基体E〜Hという)を製造した。 As raw material powders, TiCN (mass ratio TiC / TiN = 50/50) powder, Mo 2 C powder, ZrC powder, NbC powder, TaC powder, WC powder, Co having an average particle diameter of 0.5 to 2 μm. Powders and Ni powders were prepared, blended in the prescribed blending composition shown in Table 7, wet-mixed for 24 hours with a ball mill, dried, and press-molded into compacts at a pressure of 98 MPa. The body was sintered in a nitrogen atmosphere of 1.3 kPa at a temperature of 1540 ° C. for 1 hour, and after sintering, the cutting edge portion was subjected to honing of R: 0.07 mm to achieve ISO standard / CNMG12041 Tool bases E, F, G, and H made of TiCN-based cermets having chip shapes (referred to as tool bases E to H) were manufactured.


ついで、上記工具基体E,Fについては化学蒸着法により、それぞれ、表8に示すTi化合物下地層を形成し、工具基体Gについては、アークイオンプレーティング装置を用い、表8に示す膜厚のTi0.5Al0.5N層からなる下地層を物理蒸着により予め被覆形成した。
また、上記工具基体Hについても、同じくアークイオンプレーティング装置で、表8に示す膜厚のAl0.7Cr0.3N層からなる下地層を予め被覆形成した。
Next, a Ti compound base layer shown in Table 8 is formed for each of the tool bases E and F by chemical vapor deposition, and a film thickness shown in Table 8 is used for the tool base G using an arc ion plating apparatus. A base layer composed of a Ti 0.5 Al 0.5 N layer was previously formed by physical vapor deposition.
In addition, for the tool base H, a base layer made of an Al 0.7 Cr 0.3 N layer having a thickness shown in Table 8 was previously formed by coating using the same arc ion plating apparatus.

ついで、上記工具基体E〜Hに対して、CVD装置を用いて、所定目標層厚になるまで表2に示す条件で結晶質酸化アルミニウム層を蒸着することにより下層を形成した。
なお、工具基体E〜Hに形成された結晶質酸化アルミニウム層においては、蒸着したままの状態では、本発明で規定する凹部の形状、サイズが得られていなかったので、表4に示す条件で凹部形成処理を施し、下層に、本発明で規定する範囲内の凹部形状、サイズを形成した。
表8に、工具基体E〜Hの下層に形成されている凹部について、縦断面の走査型電子顕微鏡観察において測定した凹部の形状、サイズの平均値を示す。(但し、いずれの測定も、凹部形成処理実施後の測定である。)
Next, a lower layer was formed by depositing a crystalline aluminum oxide layer on the tool bases E to H using a CVD apparatus under the conditions shown in Table 2 until a predetermined target layer thickness was reached.
In addition, in the crystalline aluminum oxide layer formed on the tool bases E to H, since the shape and size of the recess defined in the present invention were not obtained in the state as deposited, the conditions shown in Table 4 were used. Recess formation processing was performed, and the recess shape and size within the range specified by the present invention were formed in the lower layer.
Table 8 shows the average values of the shape and size of the recesses measured by scanning electron microscope observation of the longitudinal section of the recesses formed in the lower layers of the tool bases E to H. (However, all measurements are measurements after the recess formation process is performed.)

ついで、それぞれ下層を被覆形成した上記工具基体E〜Hに対して、実施例1の前記(イ)〜(ハ)と同様の処理を施すことにより、本発明の被覆工具11〜20(本発明工具11〜20という)を製造した。   Next, the above-mentioned tool bases E to H each having a lower layer coated thereon are subjected to the same treatments as in the above (a) to (c) of Example 1, whereby the coated tools 11 to 20 of the present invention (the present invention). Tools 11-20).

上記本発明工具11〜20について、下層、上層の結晶構造を透過電子顕微鏡による断面観察による構造解析を行ったところ、下層はαまたはκ型の結晶構造を有する酸化アルミニウム、また、上層は非晶質酸化アルミニウムで構成されていることが確認され、また、同様に、透過電子顕微鏡を用いて凹部近傍の下層と上層との界面を観察したところ、下層の凹部に上層の非晶質酸化アルミニウムがポア等なく埋め込まれたような状態で充填されていることが確認された。   Regarding the above-mentioned inventive tools 11 to 20, when the crystal structure of the lower layer and the upper layer was subjected to structural analysis by cross-sectional observation using a transmission electron microscope, the lower layer was aluminum oxide having an α or κ type crystal structure, and the upper layer was amorphous. Similarly, when the interface between the lower layer and the upper layer in the vicinity of the concave portion was observed using a transmission electron microscope, the upper layer of amorphous aluminum oxide was found in the lower concave portion. It was confirmed that the material was filled without any pores.


比較例2Comparative Example 2

次に、被覆工具の切削性能に及ぼす下層(結晶質酸化アルミニウム層)の平均層厚と凹部の形状・サイズの影響を調査するため、工具基体E〜Hを用いて、下地層及び下層の平均層厚を変更するとともに、表4に示す種々の条件で凹部形成処理を施すことにより、10種類の比較材11〜20を作製した。
そして、その結果得られた比較材11〜20に形成された下層の凹部形状・サイズを測定し、その平均値を求めた。
表9に、下層の平均層厚、凹部形成処理条件、また、その結果得られた下層の凹部形状・サイズの測定平均値を示す。
Next, in order to investigate the influence of the average layer thickness of the lower layer (crystalline aluminum oxide layer) and the shape and size of the recesses on the cutting performance of the coated tool, the average of the lower layer and the lower layer was used using the tool bases E to H. 10 types of comparative materials 11 to 20 were produced by changing the layer thickness and performing the recess formation process under various conditions shown in Table 4.
And the recessed part shape and size of the lower layer formed in the comparative materials 11-20 obtained as a result were measured, and the average value was calculated | required.
Table 9 shows the measured average values of the lower layer average layer thickness, the recess formation process conditions, and the lower layer recess shape and size obtained as a result.

ついで、上記比較材11〜20に対して、前記(イ)〜(ハ)と同様な工程で、アルミナゾルの調製、保持を行い、下層表面に塗布、乾燥、焼成を行うことで、表8に示す比較例の被覆工具11〜20(比較例工具11〜20という)を作製した。   Then, for the comparative materials 11 to 20, the alumina sol is prepared and held in the same steps as in the above (a) to (c), and applied to the lower layer surface, dried and fired. Coated tools 11 to 20 (referred to as comparative example tools 11 to 20) of the comparative examples shown were produced.

上記比較例工具11〜20について、下層、上層の結晶構造を透過電子顕微鏡による断面観察による構造解析を行ったところ、下層はαまたはκ型の結晶構造を有する酸化アルミニウム、また、上層は非晶質酸化アルミニウムで構成されていることが確認されたが、凹部近傍の下層と上層との界面を観察したところ、一部の比較例工具では、下層の凹部に上層の非晶質酸化アルミニウムが十分に充填されていないことがわかった。   For the comparative tools 11 to 20, the lower and upper crystal structures were analyzed by cross-sectional observation using a transmission electron microscope. The lower layer was an aluminum oxide having an α- or κ-type crystal structure, and the upper layer was amorphous. Although the interface between the lower layer and the upper layer in the vicinity of the recess was observed, in some comparative tools, the upper layer of amorphous aluminum oxide was sufficient in the lower recess. It was found that it was not filled.


つぎに、上記本発明工具11〜20、比較例工具11〜20について、次の条件で高速湿式断続切削加工試験を行った。
被削材:JIS・SUS316の長さ方向等間隔4本縦溝入り丸棒、
切削速度:300m/min.、
切り込み:1.5 mm、
送り:0.24mm/rev.、
切削時間: 5 分、
(通常の切削速度および切り込みは、それぞれ、150 m/min.、0.2mm)
切削加工試験後の、それぞれの工具の摩耗状態について観察を行い、逃げ面摩耗量の測定を行うとともに、硬質被覆層の損傷状況を観察した。
これらの結果を表10に示す。
Next, a high-speed wet intermittent cutting test was performed on the above-described inventive tools 11 to 20 and comparative tools 11 to 20 under the following conditions.
Work material: JIS / SUS316 lengthwise equidistant 4 round grooved round bars,
Cutting speed: 300 m / min. ,
Cutting depth: 1.5 mm,
Feed: 0.24 mm / rev. ,
Cutting time: 5 minutes,
(Normal cutting speed and cutting depth are 150 m / min. And 0.2 mm, respectively)
After the cutting test, the wear state of each tool was observed, the flank wear amount was measured, and the damage state of the hard coating layer was observed.
These results are shown in Table 10.


表3〜6、8〜10に示される結果から、本発明の被覆工具によれば、硬質被覆層の下層が、特定の凹部形状を有するαまたはκ型の結晶構造を有する酸化アルミニウム層で構成され、その上層として、ゾル−ゲル法により形成された非晶質酸化アルミニウム層が設けられていることから、硬質被覆層の潤滑性、平滑性、切屑排出性が向上し、高い耐摩耗性を有するとともに、上層と下層の密着性が大で剥離が生じにくいことがわかる。   From the results shown in Tables 3-6 and 8-10, according to the coated tool of the present invention, the lower layer of the hard coating layer is composed of an aluminum oxide layer having an α or κ type crystal structure having a specific concave shape. As an upper layer, an amorphous aluminum oxide layer formed by a sol-gel method is provided, so that the lubricity, smoothness and chip discharge performance of the hard coating layer are improved, and high wear resistance is achieved. In addition, it can be seen that the adhesion between the upper layer and the lower layer is large and peeling does not easily occur.

これに対して、硬質被覆層の下層が、特定の凹部形状を有する結晶質酸化アルミニウム層で構成されていない比較例の被覆工具では、硬質被覆層の潤滑性、平滑性、切屑排出性が劣り、また、耐摩耗性も劣り、さらに、剥離も生じるため、短時間で使用寿命に至ることは明らかである。   On the other hand, in the comparative coated tool in which the lower layer of the hard coating layer is not composed of a crystalline aluminum oxide layer having a specific concave shape, the lubricity, smoothness, and chip dischargeability of the hard coating layer are inferior. Also, since the wear resistance is inferior and peeling occurs, it is clear that the service life is reached in a short time.

この発明の耐チッピング性、耐剥離性、耐摩耗性にすぐれた表面被覆切削工具によれば、高熱発生を伴うと共に、断続的・衝撃的負荷が作用する高速断続切削に用いた場合に、長期の使用に亘ってすぐれた耐摩耗性を発揮するものであるから、工具寿命の長寿命化を図れるばかりか、製造工程上の省資源、省エネにも寄与し得るものであって、実用上の効果が大である。









According to the surface-coated cutting tool having excellent chipping resistance, peel resistance, and wear resistance according to the present invention, when used for high-speed intermittent cutting with high heat generation and intermittent / impact loads, Because it exhibits excellent wear resistance over the use of the tool, not only can the tool life be extended, but it can also contribute to resource saving and energy saving in the manufacturing process. The effect is great.









Claims (2)

炭化タングステン基超硬合金または炭窒化チタン基サーメットからなる工具基体の表面に、化学蒸着または物理蒸着によって被覆形成された下地層、及び該下地層上に、下層と上層とからなる酸化アルミニウム硬質被覆層を形成した表面被覆切削工具において、
(a)該下地層は、1.0〜15.0μmの平均層厚を有する周期律表の4a、5a、6a族、AlおよびSiから選ばれる少なくとも一種以上の元素の炭化物、窒化物、炭窒化物、炭酸化物および炭窒酸化物層であって、
(b)下層は、化学蒸着で形成された0.8〜10.0μmの平均層厚を有する結晶質酸化アルミニウム層、
(c)上層は、0.2〜3.0μmの平均層厚を有する非晶質酸化アルミニウム層であって、
(d)下層の結晶質酸化アルミニウム層の表面には、凹部が形成されており、上層の非晶質酸化アルミニウム層は、下層の上記凹部を埋め込むように充填成膜されており、
(e)下層に形成された凹部の平均深さは、0.5〜10.0μmの範囲(但し、下層の平均層厚以下)であり、
(f)下層に形成された凹部の平均アスペクト比は、1.0〜50の範囲であり、
(g)下層に形成された凹部相互の平均水平間隔は、0.5〜20μmの範囲であることを特徴とする表面被覆切削工具。
An underlayer formed by chemical vapor deposition or physical vapor deposition on the surface of a tool substrate made of tungsten carbide-based cemented carbide or titanium carbonitride-based cermet, and an aluminum oxide hard coating comprising a lower layer and an upper layer on the underlayer In the surface-coated cutting tool in which the layer is formed,
(A) The underlayer is composed of carbide, nitride, charcoal of at least one element selected from Group 4a, 5a, 6a, Al and Si in the periodic table having an average layer thickness of 1.0 to 15.0 μm. A nitride, carbonate and carbonitride layer,
(B) The lower layer is a crystalline aluminum oxide layer having an average layer thickness of 0.8 to 10.0 μm formed by chemical vapor deposition,
(C) The upper layer is an amorphous aluminum oxide layer having an average layer thickness of 0.2 to 3.0 μm,
(D) A concave portion is formed on the surface of the lower crystalline aluminum oxide layer, and the upper amorphous aluminum oxide layer is filled and formed so as to fill the lower concave portion,
(E) The average depth of the recesses formed in the lower layer is in the range of 0.5 to 10.0 μm (however, below the average layer thickness of the lower layer),
(F) The average aspect ratio of the recesses formed in the lower layer is in the range of 1.0 to 50,
(G) The surface-coated cutting tool, wherein the average horizontal interval between the recesses formed in the lower layer is in the range of 0.5 to 20 μm.
下層の酸化アルミニウムはκ型の結晶構造を有することを特徴とする請求項1に記載の表面被覆切削工具。


























The surface-coated cutting tool according to claim 1, wherein the lower layer aluminum oxide has a κ-type crystal structure.


























JP2011285681A 2011-12-27 2011-12-27 Surface coated cutting tool with excellent chipping resistance, peel resistance and wear resistance Active JP5876724B2 (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
JP2011285681A JP5876724B2 (en) 2011-12-27 2011-12-27 Surface coated cutting tool with excellent chipping resistance, peel resistance and wear resistance
CN201210567469.4A CN103182536B (en) 2011-12-27 2012-12-24 Surface-coated cutting tool with excellent chipping resistance, peeling resistance, and wear resistance

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2011285681A JP5876724B2 (en) 2011-12-27 2011-12-27 Surface coated cutting tool with excellent chipping resistance, peel resistance and wear resistance

Publications (2)

Publication Number Publication Date
JP2013132730A true JP2013132730A (en) 2013-07-08
JP5876724B2 JP5876724B2 (en) 2016-03-02

Family

ID=48674122

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2011285681A Active JP5876724B2 (en) 2011-12-27 2011-12-27 Surface coated cutting tool with excellent chipping resistance, peel resistance and wear resistance

Country Status (2)

Country Link
JP (1) JP5876724B2 (en)
CN (1) CN103182536B (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2013188852A (en) * 2012-03-15 2013-09-26 Mitsubishi Materials Corp Surface-coated cutting tool exhibiting superior chipping resistance, peeling resistance and wearing resistance

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
RU2653399C2 (en) * 2016-09-15 2018-05-08 Федеральное государственное бюджетное учреждение науки Институт электрофизики Уральского отделения Российской академии наук (ИЭФ УрО РАН) Method of amorphous oxide of aluminum coating by reactive evaporation of aluminum in low pressure discharge

Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5757865A (en) * 1980-07-28 1982-04-07 Sandvik Ab Coated sintered carbite body and production thereof
JPH03202475A (en) * 1989-12-28 1991-09-04 Sumitomo Electric Ind Ltd Production of inorganic insulating material
JPH04310302A (en) * 1991-04-05 1992-11-02 Ishikawajima Harima Heavy Ind Co Ltd Cutting tool and manufacture thereof
JPH0544012A (en) * 1991-08-08 1993-02-23 Mitsubishi Heavy Ind Ltd Coated member
JPH07188933A (en) * 1993-12-28 1995-07-25 Sumitomo Electric Ind Ltd Coated tool member and its production
JPH0911003A (en) * 1995-06-27 1997-01-14 Sumitomo Electric Ind Ltd Cutting tool member and manufacture thereof
JPH10130843A (en) * 1996-10-23 1998-05-19 Mitsubishi Materials Corp Cutting tool made of surface coated cement, excellent in chipping resistance
US20070087211A1 (en) * 2005-10-18 2007-04-19 Endres Machining Innovations Llc System for improving the wearability of a surface and related method

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH11229144A (en) * 1998-02-12 1999-08-24 Hitachi Tool Eng Ltd Coated tool
JP2003071609A (en) * 2001-08-31 2003-03-12 Mitsubishi Materials Corp Surface coated cemented carbide cutting tool exerting excellent heat-resisting plastic deformation in high- speed cutting
EP1564312B1 (en) * 2004-02-12 2018-12-05 Hitachi Tool Engineering Ltd. Hard coating and its formation method, and hard-coated tool
JP4797608B2 (en) * 2005-12-02 2011-10-19 三菱マテリアル株式会社 Surface-coated cutting insert and manufacturing method thereof
EP2168702B1 (en) * 2008-03-26 2014-09-03 Kyocera Corporation Cutting tool

Patent Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5757865A (en) * 1980-07-28 1982-04-07 Sandvik Ab Coated sintered carbite body and production thereof
JPH03202475A (en) * 1989-12-28 1991-09-04 Sumitomo Electric Ind Ltd Production of inorganic insulating material
JPH04310302A (en) * 1991-04-05 1992-11-02 Ishikawajima Harima Heavy Ind Co Ltd Cutting tool and manufacture thereof
JPH0544012A (en) * 1991-08-08 1993-02-23 Mitsubishi Heavy Ind Ltd Coated member
JPH07188933A (en) * 1993-12-28 1995-07-25 Sumitomo Electric Ind Ltd Coated tool member and its production
JPH0911003A (en) * 1995-06-27 1997-01-14 Sumitomo Electric Ind Ltd Cutting tool member and manufacture thereof
JPH10130843A (en) * 1996-10-23 1998-05-19 Mitsubishi Materials Corp Cutting tool made of surface coated cement, excellent in chipping resistance
US20070087211A1 (en) * 2005-10-18 2007-04-19 Endres Machining Innovations Llc System for improving the wearability of a surface and related method

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2013188852A (en) * 2012-03-15 2013-09-26 Mitsubishi Materials Corp Surface-coated cutting tool exhibiting superior chipping resistance, peeling resistance and wearing resistance

Also Published As

Publication number Publication date
CN103182536A (en) 2013-07-03
JP5876724B2 (en) 2016-03-02
CN103182536B (en) 2017-04-12

Similar Documents

Publication Publication Date Title
JP6608937B2 (en) Coated tool
CN102596456B (en) Surface coated cutting tool with excellent chip resistance
US20210001409A1 (en) Surface-coated cutting tool
JP6614446B2 (en) Surface coated cutting tool with excellent chipping and peeling resistance with excellent hard coating layer
CN109562461B (en) Surface-coated cutting tool having excellent welding chipping resistance and peeling resistance
JP5876724B2 (en) Surface coated cutting tool with excellent chipping resistance, peel resistance and wear resistance
JP5246518B2 (en) Surface coated cutting tool with excellent toughness and chipping resistance due to hard coating layer
JP2004122269A (en) Surface coated cermet cutting tool exhibiting superior chipping resistance under high speed heavy duty cutting
JP2008296292A (en) Surface-coated cutting tool having hard coating layer exhibiting superior chipping resistance
JP7043869B2 (en) Surface coating cutting tool with excellent welding resistance and abnormal damage resistance for the hard coating layer
JP3087503B2 (en) Manufacturing method of surface-coated tungsten carbide based cemented carbide cutting tools with excellent wear and fracture resistance
JP4114854B2 (en) Slow-away tip made of surface-coated cemented carbide that exhibits excellent chipping resistance with a hard coating layer in high-speed interrupted cutting
JPH08269719A (en) Production of cutting tool surface-coated with titanium oxycarbonitride layer
EP3112064B1 (en) Cutting tool made of surface-coated titanium carbonitride-based cermet having exceptional chipping resistance
JP2004188500A (en) Cutting tool of surface-coated cermet with hard coating layer having excellent thermal shock resistance
JP4575009B2 (en) Coated cutting tool
JP3087504B2 (en) Manufacturing method of surface-coated tungsten carbide based cemented carbide cutting tools with excellent wear and fracture resistance
JP2014140928A (en) Surface-coated cutting tool which exerts excellent wear resistance in high-speed continuous cutting
JP5850405B2 (en) Surface coated cutting tool with excellent chipping resistance, peel resistance and wear resistance
JP2009034766A (en) Surface coated cutting tool with hard coat layer having improved chipping resistance and wear resistance
JP2002239807A (en) Surface-covered thermet made cutting tool hard covered layer of which has excellent thermal shock resistance
CN103537720A (en) Surface-wrapped cutting tool
JP2014037048A (en) Surface-coated cutting tool exhibiting superior chipping resistance, peeling resistance and wearing resistance
JP2001150206A (en) Surface-coated tungsten carbide group sintered allow- made cutting tool which displays excellent defect resistance in interrupted double cutting
JP3109272B2 (en) Surface coated titanium carbonitride based cermet cutting tool with excellent fracture and wear resistance

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20141204

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20141204

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20151016

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20151022

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20151215

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20160112

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20160122

R150 Certificate of patent or registration of utility model

Ref document number: 5876724

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250