JP2013131491A - Gasket for fuel cell - Google Patents

Gasket for fuel cell Download PDF

Info

Publication number
JP2013131491A
JP2013131491A JP2012253825A JP2012253825A JP2013131491A JP 2013131491 A JP2013131491 A JP 2013131491A JP 2012253825 A JP2012253825 A JP 2012253825A JP 2012253825 A JP2012253825 A JP 2012253825A JP 2013131491 A JP2013131491 A JP 2013131491A
Authority
JP
Japan
Prior art keywords
gasket
sheet
fuel cell
inner edge
base
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2012253825A
Other languages
Japanese (ja)
Other versions
JP5976509B2 (en
Inventor
Tetsuya Urakawa
哲也 浦川
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nok Corp
Original Assignee
Nok Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nok Corp filed Critical Nok Corp
Priority to JP2012253825A priority Critical patent/JP5976509B2/en
Publication of JP2013131491A publication Critical patent/JP2013131491A/en
Application granted granted Critical
Publication of JP5976509B2 publication Critical patent/JP5976509B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/30Hydrogen technology
    • Y02E60/50Fuel cells

Abstract

PROBLEM TO BE SOLVED: To effectively prevent the inflow of a reductant gas and an oxidant gas to a non power generation region, the deterioration of the generation efficiency due to a gasket protruding to a passage region, and the deterioration of the cooling efficiency due to the gasket protruding to the passage region in a manifold hole of a refrigerant liquid.SOLUTION: A gasket 1 is disposed between lamination components of a fuel battery cell and includes a flat sheet like base part 11 which is formed by a material having rubber-like elasticity, extends so as to enclose a passage region of the fuel battery cell, and has an inner edge part 11a reaching an edge part 20a of the passage region. Fine protruding sections 13, extending along the inner edge part 11a, are provided around the periphery of the inner edge part 11a in the sheet like base part 11. Each fine protruding section 13 is formed in a size, which does not allow the inner edge part 11a of the sheet like base part 11 to expand and deform, even when completely crushed.

Description

本発明は、燃料電池の発電要素をなす燃料電池セルに用いられるガスケットに関するものである。   The present invention relates to a gasket used for a fuel cell constituting a power generation element of a fuel cell.

PEFC(polymer electrolyte fuel cell;固体高分子形燃料電池)など、比較的低温で運転される燃料電池は、自動車用、家庭用、可搬型電源、携帯端末用電源など、さまざまな分野での用途が期待されており、すでに一部の分野では商用化されている。そしてこのタイプの燃料電池の基本構造は、電解質膜(イオン交換膜)の両面に負極層(アノード)及び正極層(カソード)を設けたMEA(Membrane Electrode Assembly;膜−電極複合体)を、カーボン、合成樹脂あるいは金属からなるセパレータで挟み込んでこれを一つの発電単位(燃料電池セル)とし、これを積層して直列接続することによって燃料電池スタックとし、高電圧を得られるようにしている。   Fuel cells that operate at relatively low temperatures, such as polymer electrolyte fuel cells (PEFC), can be used in a variety of fields, including automobiles, households, portable power supplies, and portable terminal power supplies. It is expected and already commercialized in some areas. The basic structure of this type of fuel cell is that MEA (Membrane Electrode Assembly) with a negative electrode layer (anode) and a positive electrode layer (cathode) on both sides of an electrolyte membrane (ion exchange membrane) is made of carbon. These are sandwiched between separators made of synthetic resin or metal to form a single power generation unit (fuel cell), and these are stacked and connected in series to form a fuel cell stack so that a high voltage can be obtained.

そしてこの種の燃料電池は、図7に示すように、還元剤(水素Hや、水素Hを含むメタノールなどの燃料ガス)が一方の流路111を通じてMEA100におけるアノード101に供給され、酸化剤(酸素Oを含む空気)が他方の流路112を通じてMEA100におけるカソード102に供給され、水の電気分解の逆反応である電気化学反応、すなわち水素Hと酸素Oから水HOを生成する反応によって、電力を発生するものである。 In this type of fuel cell, as shown in FIG. 7, a reducing agent (fuel gas such as hydrogen H 2 or methanol containing hydrogen H 2 ) is supplied to the anode 101 in the MEA 100 through one flow path 111 to be oxidized. An agent (air containing oxygen O 2 ) is supplied to the cathode 102 in the MEA 100 through the other channel 112, and is an electrochemical reaction that is a reverse reaction of water electrolysis, that is, hydrogen H 2 and oxygen O 2 to water H 2 O. Electric power is generated by the reaction of generating.

詳しくは、MEA100におけるアノード101に供給された水素Hは、このアノード101の触媒作用によって電子eと水素イオンHに分解される。そしてこれによって発生した電子eは、電流として外部の負荷Rを通ってMEA100におけるカソード102へ向けて流れる。また、水素Hから電子eが分離されることによって生じた水素イオンHは、カソード102の電子eに引き付けられるので、MEA100における電解質膜103を介してカソード102へ移動する。 Specifically, hydrogen H 2 supplied to the anode 101 in the MEA 100 is decomposed into electrons e and hydrogen ions H + by the catalytic action of the anode 101. Then, the electrons e generated thereby flow as an electric current through the external load R toward the cathode 102 in the MEA 100. Further, since the hydrogen ions H + generated by separating the electrons e from the hydrogen H 2 are attracted to the electrons e of the cathode 102, they move to the cathode 102 through the electrolyte membrane 103 in the MEA 100.

一方、MEA100におけるカソード102に供給された空気中の酸素Oは、このカソード102の触媒作用により電子eを受け取って酸素イオンOとなる。そしてこの酸素イオンOが、アノード101から電解質膜103を介して移動して来た水素イオンHと結びつくことによって水HOが生成されるのである。 On the other hand, oxygen O 2 in the air supplied to the cathode 102 in the MEA 100 receives electrons e by the catalytic action of the cathode 102 and becomes oxygen ions O . The oxygen ions O are combined with hydrogen ions H + that have moved from the anode 101 through the electrolyte membrane 103, thereby generating water H 2 O.

すなわち、この種の燃料電池では、発電に必要な水素H、あるいは水素Hを含むメタノールなどからなる還元剤ガスや、酸素Oを含む空気からなる酸化剤ガスを両極へ供給して発電し、その結果生じる水HOを排出し、さらに、冷却が必要な場合には冷媒として水や不凍液なども流通させる。そしてこれら複数種類の流体を燃料電池に供給するには、供給すべき空間からこれらの流体が散逸しないように、あるいは他の流体が流入することのないように、これらの流体の流路を確実に密封する必要があり、このため、各燃料電池セルにはゴム状弾性を有する材料、とくにゴム弾性体や熱可塑性エラストマー、熱硬化性樹脂など、成形性の良い材料で成形されたガスケットが組み込まれている。 That is, in this type of fuel cell, hydrogen H 2 necessary for power generation, or a reducing agent gas composed of methanol containing hydrogen H 2 or an oxidant gas composed of air containing oxygen O 2 is supplied to both electrodes to generate power. Then, the resulting water H 2 O is discharged, and when cooling is required, water or antifreeze liquid is also circulated as a refrigerant. In order to supply these types of fluids to the fuel cell, the flow paths of these fluids must be ensured so that these fluids do not dissipate from the space to be supplied or other fluids do not flow in. For this reason, each fuel battery cell incorporates a rubber-like elastic material, especially a gasket molded from a material with good moldability, such as a rubber elastic body, thermoplastic elastomer, or thermosetting resin. It is.

また、発電効率を高めるためには還元剤や酸化剤が非発電領域へ流入しないようにすることが重要である。例えば燃料電池セルの積層方向へ貫通して流体を各燃料電池セルへ供給あるいは各燃料電池セルからの流体を排出する孔(マニホールド孔と呼ばれる)の周辺部も非発電領域であり、このような非発電領域への流体の流入による発電効率の低下を防止するには、各燃料電池セルに組み込むガスケットとして、シート状のガスケットを用いることが有効である。   In order to increase the power generation efficiency, it is important that the reducing agent and the oxidizing agent do not flow into the non-power generation region. For example, the periphery of a hole (called a manifold hole) that penetrates in the stacking direction of fuel cells and supplies fluid to each fuel cell or discharges fluid from each fuel cell is also a non-power generation region. In order to prevent a decrease in power generation efficiency due to the inflow of fluid into the non-power generation region, it is effective to use a sheet-like gasket as a gasket incorporated in each fuel cell.

図8は従来のガスケットの一例を示す部分的な平面図、図9は図8におけるIX−IX線で切断した断面図、図10は従来のガスケットを積層により圧縮した状態を図9と同じ位置で切断した断面図である。   FIG. 8 is a partial plan view showing an example of a conventional gasket, FIG. 9 is a cross-sectional view taken along line IX-IX in FIG. 8, and FIG. 10 shows a state in which the conventional gasket is compressed by lamination in the same position as FIG. It is sectional drawing cut | disconnected by.

すなわちこのガスケット200はセパレータ300の片面にゴム弾性体などで一体に成形されたものであって、平坦なシート状基部201と、このシート状基部201の外周部から断面山形をなして突出したシールリップ202からなる。そしてシート状基部201は、セパレータ300に開設されたマニホールド孔としての開口部301の周辺及びこの開口部301から延びる流路溝302の形成領域の周辺を覆うように展開しており、その縁部201aが、流路溝302の形成領域の縁部と面一となっている。   That is, the gasket 200 is formed integrally with a rubber elastic body or the like on one side of the separator 300, and has a flat sheet-like base 201 and a seal protruding from the outer periphery of the sheet-like base 201 with a cross-sectional chevron. It consists of a lip 202. The sheet-like base 201 is developed so as to cover the periphery of the opening 301 as a manifold hole established in the separator 300 and the periphery of the formation region of the channel groove 302 extending from the opening 301. 201 a is flush with the edge of the formation region of the flow channel 302.

上記構成を備えるガスケット200は、図10に示すように燃料電池セルに組み込んで積層によりシールリップ202が完全につぶれるように圧縮した状態では、シート状基部201が例えばMEA又は他方のセパレータからなる積層部品400との間で開口部301の周辺及び流路溝302の形成領域の周辺の隙間を埋めるように介在することによって、この隙間への還元剤ガスや酸化剤ガスの流入を防止している。なお、シート状のガスケットの従来技術としては、例えば下記の特許文献1のようなものがある。   As shown in FIG. 10, the gasket 200 having the above configuration is assembled in a fuel cell and compressed in such a way that the seal lip 202 is completely crushed by stacking, and the sheet-like base 201 is stacked with, for example, MEA or the other separator. By interposing between the component 400 and the periphery of the opening 301 and the periphery of the region where the flow channel groove 302 is formed, inflow of the reducing agent gas and the oxidizing gas into the gap is prevented. . In addition, as a prior art of a sheet-like gasket, there exists a thing like the following patent document 1, for example.

特開2004−342516号公報JP 2004-342516 A

しかしながら、従来のガスケット200によれば、シート状基部201が過圧縮された場合、図10に示すように、シート状基部201の縁部201aが膨出するように変形して流路溝302の形成領域(あるいは図8に示す開口部301)へはみ出してしまい、その分、流路面積が減少して所定のガスの流量や冷媒液の流量が確保できなくなって、結果的に発電効率や冷却効率が低下するおそれがあった。   However, according to the conventional gasket 200, when the sheet-like base 201 is overcompressed, the edge 201a of the sheet-like base 201 is deformed so as to bulge as shown in FIG. It protrudes to the formation region (or the opening 301 shown in FIG. 8), and the flow passage area is reduced by that amount, so that a predetermined gas flow rate and refrigerant liquid flow rate cannot be secured, resulting in power generation efficiency and cooling. There was a risk that efficiency would decrease.

一方、このような過圧縮状態とならないように、積層による締め付け力を小さくすると、非発電領域である開口部301の周辺や流路溝302の領域の周辺で、基部201と積層部品400との間に隙間ができて、ここに還元剤ガスや酸化剤ガスが流入してしまい、発電効率が低下するおそれがあった。   On the other hand, if the tightening force due to the lamination is reduced so as not to be in such an overcompressed state, the base 201 and the laminated component 400 are formed around the opening 301 and the area of the flow channel 302 that are non-power generation areas. There was a gap between them, and the reducing agent gas or oxidant gas flowed in there, and the power generation efficiency might be reduced.

本発明は、以上のような点に鑑みてなされたものであって、その技術的課題は、非発電領域への還元剤ガスや酸化剤ガスの流入や、流路領域へのガスケットのはみ出しによる発電効率の低下や、冷媒液のマニホールド孔での流路領域へのガスケットのはみ出しによる冷却効率の低下を有効に防止することにある。   The present invention has been made in view of the above points, and the technical problem is that the reducing agent gas and the oxidizing gas flow into the non-power generation region and the gasket protrudes into the flow channel region. It is to effectively prevent a decrease in power generation efficiency and a decrease in cooling efficiency due to the gasket protruding into the flow path region in the manifold hole of the refrigerant liquid.

上述した技術的課題を有効に解決するための手段として、本発明に係る燃料電池用ガスケットは、燃料電池セルの積層部品間に介在されるガスケットであって、ゴム状弾性を有する材料からなり、前記燃料電池セルの流路領域を包囲するように延びて内側縁部が前記流路領域の縁部に達する平坦なシート状基部を有し、前記シート状基部に、前記内側縁部に沿って延びる微小突条が周設され、この微小突条は、完全につぶされても前記シート状基部の内側縁部を膨出変形させない大きさに形成されたものである。なお、ここでいう流路領域とは、マニホールド孔やこのマニホールド孔から延びる流路溝の形成領域を総称するものである。   As a means for effectively solving the above technical problem, a gasket for a fuel cell according to the present invention is a gasket interposed between laminated parts of a fuel cell, and is made of a material having rubber-like elasticity. A flat sheet-like base extending so as to surround the flow channel region of the fuel cell and reaching an edge of the flow channel region is formed on the sheet-shaped base along the inner edge. An extending micro-projection is provided around the micro-projection, and the micro-projection is formed in a size that does not bulge and deform the inner edge portion of the sheet-like base portion even when it is completely crushed. The flow channel region here is a general term for a manifold hole and a region for forming a flow channel extending from the manifold hole.

上記構成の燃料電池用ガスケットは、燃料電池セルの積層部品間に組み込むことによって、燃料電池セルの流路内を流通する還元剤、酸化剤、冷媒液などの流体を密封するものであり、流路領域の縁部に沿った微小突条がつぶれるように圧縮された状態で前記積層部品に密接されることによって、局部的に密封面圧が上昇し、流路領域の周辺の隙間へ前記流体が流入するのを防止する。そしてこの微小突条が完全につぶされてもガスケットのシート状基部の内側縁部は流路領域へ向けて膨出変形せず、このため流路面積が減少しない。   The fuel cell gasket having the above-described configuration is configured to seal a fluid such as a reducing agent, an oxidant, and a refrigerant liquid that circulates in the flow path of the fuel cell by being incorporated between the stacked components of the fuel cell. By being in close contact with the laminated part in a compressed state so that the micro-ridges along the edge of the road region are crushed, the sealing surface pressure locally increases, and the fluid flows into the gap around the channel region. Is prevented from flowing in. And even if this minute protrusion is completely crushed, the inner edge of the sheet-like base portion of the gasket does not bulge and deform toward the flow channel region, and therefore the flow channel area does not decrease.

本発明に係る燃料電池用ガスケットによれば、微小突起によって非発電領域の隙間へ還元剤や酸化剤などの流体が流入するのを防止すると共に、圧縮によるシート状基部の内側縁部の膨出変形による流路面積の減少を防止することができるので、発電効率の低下を有効に防止することができる。   According to the fuel cell gasket of the present invention, it is possible to prevent a fluid such as a reducing agent or an oxidant from flowing into the gap in the non-power generation region by the minute protrusions, and to bulge the inner edge of the sheet-like base due to compression. Since the reduction of the flow path area due to the deformation can be prevented, it is possible to effectively prevent the power generation efficiency from being lowered.

本発明に係る燃料電池用ガスケットの好ましい第一の実施の形態を示す部分的な平面図である。1 is a partial plan view showing a first preferred embodiment of a gasket for a fuel cell according to the present invention. 図1におけるII−II線で切断した断面図である。It is sectional drawing cut | disconnected by the II-II line | wire in FIG. 第一の実施の形態の燃料電池用ガスケットを積層により圧縮した状態を図2と同じ位置で切断した断面図である。It is sectional drawing which cut | disconnected the state which compressed the gasket for fuel cells of 1st embodiment by lamination | stacking in the same position as FIG. 本発明に係る燃料電池用ガスケットの好ましい第二の実施の形態を示す部分的な平面図である。It is a partial top view which shows preferable 2nd embodiment of the gasket for fuel cells which concerns on this invention. 図4におけるV−V線で切断した断面図である。It is sectional drawing cut | disconnected by the VV line | wire in FIG. 第二の実施の形態の燃料電池用ガスケットを積層により圧縮した状態を図4と同じ位置で切断した断面図である。It is sectional drawing which cut | disconnected the state which compressed the gasket for fuel cells of 2nd embodiment by lamination | stacking in the same position as FIG. 燃料電池セルにおける発電のメカニズムを概略的に示す説明図である。It is explanatory drawing which shows roughly the mechanism of the electric power generation in a fuel cell. 従来のガスケットの一例を示す部分的な平面図である。It is a partial top view which shows an example of the conventional gasket. 図8におけるIX−IX線で切断した断面図である。It is sectional drawing cut | disconnected by the IX-IX line in FIG. 従来のガスケットを積層により圧縮した状態を図9と同じ位置で切断した断面図である。It is sectional drawing which cut | disconnected the state which compressed the conventional gasket by lamination | stacking in the same position as FIG.

以下、本発明に係る燃料電池用ガスケットの好ましい実施の形態を、図面を参照しながら詳細に説明する。   Hereinafter, preferred embodiments of a gasket for a fuel cell according to the present invention will be described in detail with reference to the drawings.

まず図1〜図3は、本発明に係る燃料電池用ガスケットの第一の実施の形態を示すもので、このうち図1は燃料電池用ガスケットの部分的な平面図、図2は図1におけるII−II線で切断した断面図、図3は、ガスケットを積層により圧縮した状態を図2と同じ位置で切断した断面図である。   1 to 3 show a first embodiment of a fuel cell gasket according to the present invention, in which FIG. 1 is a partial plan view of the fuel cell gasket, and FIG. FIG. 3 is a cross-sectional view taken along the line II-II, and FIG. 3 is a cross-sectional view taken at the same position as FIG.

図1及び図2において、参照符号2は燃料電池セルを構成する積層部品であるセパレータであって、カーボン、合成樹脂あるいは金属からなる板状又はシート状を呈し、マニホールド孔となる複数の開口部(図1では1カ所のみ示す)21が開設されると共に、表面に、前記各開口部21から延びる多数の流路溝22が、発電領域と対応する範囲で形成されている。   1 and 2, reference numeral 2 is a separator which is a laminated part constituting a fuel cell, and has a plate shape or a sheet shape made of carbon, synthetic resin or metal, and has a plurality of openings serving as manifold holes. (Only one location is shown in FIG. 1) 21 is opened, and a number of flow channel grooves 22 extending from the respective openings 21 are formed on the surface in a range corresponding to the power generation region.

第一の実施の形態のガスケット1は、セパレータ2の片面に、ゴム状弾性を有する材料(ゴム弾性体又はゴム状弾性を有する合成樹脂材料)で一体に成形されたものであって、平坦なシート状基部11と、このシート状基部11の外周部から断面山形をなして突出したシールリップ12を備える。   The gasket 1 of the first embodiment is formed integrally with a material having rubber-like elasticity (a rubber elastic body or a synthetic resin material having rubber-like elasticity) on one side of a separator 2 and is flat. A sheet-like base portion 11 and a seal lip 12 protruding from the outer peripheral portion of the sheet-like base portion 11 with a mountain-shaped cross section are provided.

シート状基部11は、セパレータ2の開口部21の周辺及び流路溝22の形成領域20の周辺を覆うように展開しており、シート状基部11の内側縁部11aが、開口部21の開口縁部21a及び流路溝22の形成領域20の縁部20aに達し、この縁部21a,20aと面一をなしている。   The sheet-like base 11 is developed so as to cover the periphery of the opening 21 of the separator 2 and the periphery of the formation region 20 of the flow channel groove 22, and the inner edge 11 a of the sheet-like base 11 is an opening of the opening 21. The edge 20a reaches the edge 20a of the edge 21a and the flow channel 22 forming region 20, and is flush with the edges 21a and 20a.

シート状基部11には、その内側縁部11aに沿って延びる微小突条13が周設されている。この微小突条13は、シールリップ12に比較して断面積が十分に小さく、完全に圧縮されてもシート状基部11の内側縁部11aを膨出変形させない大きさに形成されている。また、微小突条13の内周面は、シート状基部11の内側縁部11aとほぼ面一、すなわち開口部21の開口縁部21a及び流路溝22の形成領域20の縁部20aとほぼ面一をなしている。   The sheet-like base portion 11 is provided with a minute protrusion 13 extending along the inner edge portion 11a. The minute protrusion 13 has a sufficiently small cross-sectional area as compared with the seal lip 12 and is formed in a size that does not cause the inner edge portion 11a of the sheet-like base portion 11 to bulge and deform even when completely compressed. Further, the inner peripheral surface of the minute protrusion 13 is substantially flush with the inner edge 11 a of the sheet-like base 11, that is, substantially the same as the opening edge 21 a of the opening 21 and the edge 20 a of the formation region 20 of the flow channel 22. It is the same.

以上のような構成を備える第一の実施の形態の燃料電池用ガスケット1は、これと一体のセパレータ2と共に燃料電池セルに組み込まれ、この燃料電池セルにおける他の積層部品、例えばセパレータ2の片側に配置される他方のセパレータあるいはMEAなどの積層部品3と密接され、開口部21及び流路溝22を流通する還元剤ガスや酸化剤ガス、あるいは冷媒液などの流体を密封するものである。   The fuel cell gasket 1 according to the first embodiment having the above-described configuration is incorporated in a fuel cell together with a separator 2 integrated therewith, and one side of the other laminated component in the fuel cell, for example, the separator 2 It is in close contact with the other separator 3 or the laminated part 3 such as the MEA, and seals a fluid such as a reducing agent gas, an oxidizing agent gas, or a refrigerant liquid flowing through the opening 21 and the channel groove 22.

なお、この例においては、図2に示すセパレータ2とシート状基部11の接合面から微小突条13の頂部までの高さhを、先に説明した図9に示す従来のガスケット200のシート状基部201の厚さtに相当するものとする。したがって、図3に示す組み付け状態において、セパレータ2と積層部品3との積層間隔を、先に説明した図10のセパレータ300と積層部品400との積層間隔と同等とした場合、ガスケット1は、シールリップ12及び微小突条13のみがほぼ完全につぶされた状態で積層部品3と密接され、シート状基部11は殆ど圧縮されない状態とすることができる。   In this example, the height h from the joining surface of the separator 2 and the sheet-like base 11 shown in FIG. 2 to the top of the minute protrusion 13 is the sheet-like shape of the conventional gasket 200 shown in FIG. It corresponds to the thickness t of the base 201. Therefore, in the assembled state shown in FIG. 3, when the stacking interval between the separator 2 and the laminated component 3 is equal to the stacking interval between the separator 300 and the laminated component 400 in FIG. Only the lip 12 and the minute protrusion 13 are brought into close contact with the laminated component 3 in a state of being almost completely crushed, and the sheet-like base portion 11 can be brought into a state of being hardly compressed.

そして、開口部21の開口縁部21a及び流路溝22の形成領域20の縁部20aに沿って延びる微小突条13は、積層方向への締結力が小さくても容易につぶれ、この微小突条13の圧縮によって局部的に密封面圧が立つので、開口部21の周辺や流路溝22の形成領域20の周辺などの非発電領域を覆うように展開するシート状基部11と積層部品3との間へ、還元剤ガスや酸化剤ガスなどが流入するのを有効に防止し、このため、発電効率の低下を防止することができる。   The minute protrusions 13 extending along the opening edge 21a of the opening 21 and the edge 20a of the formation region 20 of the flow channel 22 are easily crushed even if the fastening force in the stacking direction is small. Since the sealing surface pressure is locally generated by the compression of the strip 13, the sheet-like base 11 and the laminated component 3 that are unfolded so as to cover a non-power generation region such as the periphery of the opening 21 and the periphery of the formation region 20 of the flow path groove 22 are provided. Therefore, it is possible to effectively prevent a reducing agent gas, an oxidant gas, or the like from flowing in between them, and to prevent a decrease in power generation efficiency.

また、ガスケット1の微小突条13が完全につぶれた状態に圧縮されても、この微小突条13は十分に小さいものであるため圧縮による応力がシート状基部11で吸収され、しかもシート状基部11は殆ど圧縮されていないため、シート状基部11の内側縁部11aは、開口部21の開口縁部21a及び流路溝22の形成領域20の縁部20aから膨出しない。このため開口部21における流路面積及び流路溝22における流路面積が減少せず、したがって所定の起電力を得るための還元剤ガスや酸化剤ガス、あるいは冷却のための冷媒液などの流量を確保することができる。   Further, even if the minute ridge 13 of the gasket 1 is compressed into a completely crushed state, the minute ridge 13 is sufficiently small so that the stress due to the compression is absorbed by the sheet-like base 11, and the sheet-like base Since 11 is hardly compressed, the inner edge 11 a of the sheet-like base 11 does not bulge from the opening edge 21 a of the opening 21 and the edge 20 a of the formation region 20 of the flow channel 22. For this reason, the flow channel area in the opening 21 and the flow channel area in the flow channel 22 do not decrease. Therefore, the flow rate of a reducing agent gas or an oxidant gas for obtaining a predetermined electromotive force, a refrigerant liquid for cooling, or the like. Can be secured.

次に図4は本発明に係る燃料電池用ガスケットの好ましい第二の実施の形態を示す部分的な平面図、図5は図4におけるV−V線で切断した断面図、図6は、第二の実施の形態の燃料電池用ガスケットを積層により圧縮した状態を図4と同じ位置で切断した断面図である。   Next, FIG. 4 is a partial plan view showing a second preferred embodiment of the fuel cell gasket according to the present invention, FIG. 5 is a sectional view taken along line VV in FIG. 4, and FIG. It is sectional drawing which cut | disconnected the state which compressed the gasket for fuel cells of 2nd Embodiment by lamination | stacking in the same position as FIG.

第二の実施の形態のガスケット1において、第一の実施の形態と異なるところは、ラバーオンリーで成形されており、シールリップ12及び微小突条13がシート状基部11の両面に形成されている点にある。シート状基部11は、取り扱い性の観点から、第一の実施の形態に比較して厚肉に成形されている。   In the gasket 1 of the second embodiment, the difference from the first embodiment is formed by rubber only, and the seal lip 12 and the minute protrusions 13 are formed on both surfaces of the sheet-like base 11. In the point. The sheet-like base 11 is formed thicker than the first embodiment from the viewpoint of handleability.

そしてこの実施の形態による燃料電池用ガスケット1も、燃料電池セルにおけるセパレータやMEAなどの積層部品4,5の間に組み込まれて、これら積層部品4,5と密接され、マニホールド孔を形成している積層部品4,5の開口部41,51及び不図示の流路溝を流通する還元剤ガスや酸化剤ガス、あるいは冷媒液などの流体を密封するもので、シールリップ12及び微小突条13のみがほぼ完全につぶされた状態で積層部品4,5と密接され、シート状基部11は殆ど圧縮されない状態とすることができる。   The fuel cell gasket 1 according to this embodiment is also assembled between the laminated parts 4 and 5 such as the separator and MEA in the fuel cell, and is in close contact with the laminated parts 4 and 5 to form a manifold hole. Sealing fluid such as a reducing agent gas, an oxidant gas, or a refrigerant liquid that flows through the openings 41 and 51 of the laminated parts 4 and 5 and a channel groove (not shown). Only the sheet-shaped base 11 can be brought into a state of being hardly compressed by being in close contact with the laminated parts 4 and 5 in a state of being almost completely crushed.

したがって、第一の実施の形態と同様の効果を実現することができるものである。   Therefore, the same effect as that of the first embodiment can be realized.

1 ガスケット
11 シート状基部
11a 内側縁部
12 シールリップ
13 微小突条
2 セパレータ(積層部品)
20 流路溝の形成領域(流路領域)
20a 縁部
21 開口部(流路領域)
21a 開口縁部
3〜5 積層部品
DESCRIPTION OF SYMBOLS 1 Gasket 11 Sheet-like base 11a Inner edge 12 Seal lip 13 Minute protrusion 2 Separator (laminated part)
20 Channel groove formation region (channel region)
20a Edge 21 Opening (flow channel region)
21a Opening edge 3-5 Laminated parts

Claims (1)

燃料電池セルの積層部品間に介在されるガスケットであって、ゴム状弾性を有する材料からなり、前記燃料電池セルの流路領域を包囲するように延びて内側縁部が前記流路領域の縁部に達する平坦なシート状基部を有し、前記シート状基部に、前記内側縁部に沿って延びる微小突条が周設され、この微小突条は、完全につぶされても前記シート状基部の内側縁部を膨出変形させない大きさに形成されたことを特徴とする燃料電池用ガスケット。   A gasket interposed between laminated parts of a fuel cell, made of a material having rubber-like elasticity, extending so as to surround the flow channel region of the fuel cell, and an inner edge portion being an edge of the flow channel region A flat sheet-like base that reaches the portion, and a micro-projection extending around the inner edge is provided around the sheet-like base, and the micro-projection is not completely crushed, but the sheet-like base A fuel cell gasket, wherein the inner edge of the fuel cell is sized so as not to bulge and deform.
JP2012253825A 2011-11-22 2012-11-20 Gasket for fuel cell Expired - Fee Related JP5976509B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2012253825A JP5976509B2 (en) 2011-11-22 2012-11-20 Gasket for fuel cell

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
JP2011254906 2011-11-22
JP2011254906 2011-11-22
JP2012253825A JP5976509B2 (en) 2011-11-22 2012-11-20 Gasket for fuel cell

Publications (2)

Publication Number Publication Date
JP2013131491A true JP2013131491A (en) 2013-07-04
JP5976509B2 JP5976509B2 (en) 2016-08-23

Family

ID=48908865

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2012253825A Expired - Fee Related JP5976509B2 (en) 2011-11-22 2012-11-20 Gasket for fuel cell

Country Status (1)

Country Link
JP (1) JP5976509B2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN108736040A (en) * 2017-04-13 2018-11-02 丰田自动车株式会社 Washer and the fuel cell unit for having used the washer

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2004207042A (en) * 2002-12-25 2004-07-22 Sanyo Electric Co Ltd Seal structure of fuel cell plate
JP2007026847A (en) * 2005-07-15 2007-02-01 Nok Corp Seal structure body for fuel cell and its manufacturing method
JP2009099424A (en) * 2007-10-17 2009-05-07 Equos Research Co Ltd Gasket member and fuel cell stack
JP2010165577A (en) * 2009-01-16 2010-07-29 Nok Corp Seal structure of fuel battery cell
JP2011008951A (en) * 2009-06-23 2011-01-13 Toyota Motor Corp Gasket for fuel cell, laminate member for fuel cell, and fuel cell

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2004207042A (en) * 2002-12-25 2004-07-22 Sanyo Electric Co Ltd Seal structure of fuel cell plate
JP2007026847A (en) * 2005-07-15 2007-02-01 Nok Corp Seal structure body for fuel cell and its manufacturing method
JP2009099424A (en) * 2007-10-17 2009-05-07 Equos Research Co Ltd Gasket member and fuel cell stack
JP2010165577A (en) * 2009-01-16 2010-07-29 Nok Corp Seal structure of fuel battery cell
JP2011008951A (en) * 2009-06-23 2011-01-13 Toyota Motor Corp Gasket for fuel cell, laminate member for fuel cell, and fuel cell

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN108736040A (en) * 2017-04-13 2018-11-02 丰田自动车株式会社 Washer and the fuel cell unit for having used the washer

Also Published As

Publication number Publication date
JP5976509B2 (en) 2016-08-23

Similar Documents

Publication Publication Date Title
JP5532204B2 (en) Fuel cell sealing structure
US9553324B2 (en) Fuel cell resin frame equipped membrane electrode assembly
US9196911B2 (en) Fuel cell gas diffusion layer integrated gasket
CA2760979C (en) Sealing structure of fuel cell
JP2018129174A (en) Metal separator for fuel cell and manufacturing method therefor, and power generation cell
JP5482991B2 (en) Fuel cell sealing structure
JP2004335306A (en) Fuel cell
JP6053649B2 (en) Fuel cell
JP5835554B2 (en) Gasket for fuel cell
JP2010165577A (en) Seal structure of fuel battery cell
JP5976509B2 (en) Gasket for fuel cell
JP2021086649A (en) Separator for fuel cell and power generation cell
JP2014229366A (en) Fuel cell
US9350034B2 (en) Fuel cell gas diffusion layer integrated gasket
US10056619B2 (en) Fuel cell having a recess in the separator
JP6194186B2 (en) Fuel cell
JP5734823B2 (en) Fuel cell stack
JP2009252420A (en) Fuel cell and resin frame for fuel cell
JPWO2016181523A1 (en) Fuel cell stack
JP6208650B2 (en) Fuel cell
JP6395121B2 (en) Fuel cell stack
JP6092067B2 (en) Fuel cell
JP2016146277A (en) Fuel cell
JP5218232B2 (en) Fuel cell
JP2005174642A (en) Separator

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20151016

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20160622

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20160622

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20160720

R150 Certificate of patent or registration of utility model

Ref document number: 5976509

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

LAPS Cancellation because of no payment of annual fees