JP5218232B2 - Fuel cell - Google Patents

Fuel cell Download PDF

Info

Publication number
JP5218232B2
JP5218232B2 JP2009093580A JP2009093580A JP5218232B2 JP 5218232 B2 JP5218232 B2 JP 5218232B2 JP 2009093580 A JP2009093580 A JP 2009093580A JP 2009093580 A JP2009093580 A JP 2009093580A JP 5218232 B2 JP5218232 B2 JP 5218232B2
Authority
JP
Japan
Prior art keywords
separator
gas diffusion
diffusion layer
fuel cell
refrigerant
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2009093580A
Other languages
Japanese (ja)
Other versions
JP2010244913A (en
Inventor
宏 藤谷
誠治 佐野
▲隆▼ 梶原
仁 濱田
雅之 伊藤
佳史 大田
健二 壷阪
梨良 平澤
智之 高村
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toyota Motor Corp
Original Assignee
Toyota Motor Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toyota Motor Corp filed Critical Toyota Motor Corp
Priority to JP2009093580A priority Critical patent/JP5218232B2/en
Publication of JP2010244913A publication Critical patent/JP2010244913A/en
Application granted granted Critical
Publication of JP5218232B2 publication Critical patent/JP5218232B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/30Hydrogen technology
    • Y02E60/50Fuel cells

Landscapes

  • Fuel Cell (AREA)

Description

本発明は、燃料ガスと酸素含有ガスの供給を受けて発電する電池セルと、冷媒が圧送されて通過する冷媒流路を有するセパレーターとを交互に積層した燃料電池に関する。   The present invention relates to a fuel cell in which battery cells that generate power upon receiving supply of a fuel gas and an oxygen-containing gas and separators having a refrigerant flow path through which a refrigerant is pumped and passed are alternately stacked.

燃料電池は、アノードに供給された燃料ガス中の燃料、例えば水素と、カソードに供給された酸素含有ガス中の酸素との電気化学反応を進行させて発電する。電解質膜と膜両面に接合した触媒電極とを含む膜電極接合体(Membrane Electrode Assembly/MEA)のアノード・カソードの両電極面にはガス拡散層が接合されているので、両電極面にはガスが拡散供給される。   The fuel cell generates electricity by advancing an electrochemical reaction between a fuel, for example hydrogen, in the fuel gas supplied to the anode and oxygen in the oxygen-containing gas supplied to the cathode. A gas diffusion layer is bonded to both anode and cathode surfaces of a membrane electrode assembly (MEA) including an electrolyte membrane and a catalyst electrode bonded to both sides of the membrane. Is diffusely supplied.

こうしたガス供給に当たり、電極面に接合したガス拡散層の側でのシールが不可欠であり、ガスシール技術が種々提案されている(例えば、特許文献1)。   In such gas supply, sealing on the side of the gas diffusion layer joined to the electrode surface is indispensable, and various gas sealing techniques have been proposed (for example, Patent Document 1).

特開2007−324114号公報JP 2007-324114 A

上記特許文献では、セパレーター表面に設けたシール部材をMEAに押し付けて当該シール部材が位置する側のシールを図っており、この際、シール部材の押し付け力は、MEAを挟んで対向するガス拡散層に及ぶことになる。つまり、ガス拡散層自体で、シール部材の押し付け力を受けることになる。ところで、ガス拡散層はガスの拡散供給を図るため一般に多孔質であることから剛性が低い。このため、上記したような押し付け力をガス拡散層が受ける場合、シール部材の押し付け側におけるシール線圧の不足や不安定化を招くことが危惧される。   In the above-mentioned patent document, the seal member provided on the separator surface is pressed against the MEA to achieve a seal on the side where the seal member is located. At this time, the pressing force of the seal member is the gas diffusion layer facing the MEA. It will extend to. That is, the gas diffusion layer itself receives the pressing force of the seal member. By the way, since the gas diffusion layer is generally porous in order to supply and diffuse gas, it has low rigidity. For this reason, when the gas diffusion layer receives the pressing force as described above, there is a concern that the seal linear pressure on the pressing side of the seal member may be insufficient or unstable.

本発明は、上記した課題を踏まえ、燃料電池におけるガス拡散層の側でのガスシール性を高めることをその目的とする。   In view of the above-described problems, an object of the present invention is to improve the gas sealing property on the gas diffusion layer side in a fuel cell.

上記した目的の少なくとも一部を達成するために、本発明では、以下の構成を採用した。   In order to achieve at least a part of the above object, the present invention adopts the following configuration.

[適用:燃料電池]
燃料ガスと酸素含有ガスの供給を受けて発電する電池セルと、冷媒が圧送されて通過する冷媒流路を有するセパレーターとを交互に積層した燃料電池であって、
前記電池セルは、
電解質膜と膜両面に接合した触媒電極とを含む膜電極接合体と、
該膜電極接合体の一方の面に接合され、前記燃料ガスをアノード側の前記触媒電極に拡散供給するアノードガス拡散層と、
前記膜電極接合体の他方の面に接合され、前記酸素含有ガスをカソード側の前記触媒電極に拡散供給するカソードガス拡散層とを備え、
前記セパレーターは、一方のセパレーター表面の側の第1シール部材と、他方のセパレーター表面の側の第2シール部材とを前記冷媒流路を挟んで背中合わせに備え、
前記第1シール部材は、前記一方のセパレーター表面から延びて前記膜電極接合体に当接して前記膜電極接合体にシールのための力を及ぼし、
前記第2シール部材は、前記冷媒流路を通過する冷媒の圧力を受けて前記他方のセパレーター表面から突出した凸部の凸形状を維持しつつ、前記他方のセパレーター表面に接合する前記アノードガス拡散層または前記カソードガス拡散層を前記凸部にて押し付ける
ことを要旨とする。
[Application: Fuel cell]
A fuel cell in which fuel cells and oxygen-containing gas are supplied to generate power, and a separator having a refrigerant flow path through which a refrigerant is pumped and passed alternately,
The battery cell is
A membrane electrode assembly including an electrolyte membrane and a catalyst electrode bonded to both sides of the membrane;
An anode gas diffusion layer bonded to one surface of the membrane electrode assembly and supplying the fuel gas to the catalyst electrode on the anode side;
A cathode gas diffusion layer bonded to the other surface of the membrane electrode assembly and supplying the oxygen-containing gas to the catalyst electrode on the cathode side;
The separator is provided with a first seal member on one separator surface side and a second seal member on the other separator surface side back to back with the refrigerant flow path interposed therebetween,
The first seal member extends from the one separator surface and abuts on the membrane electrode assembly to exert a sealing force on the membrane electrode assembly,
The anode gas diffusion bonded to the surface of the other separator while the second seal member receives the pressure of the refrigerant passing through the refrigerant flow path and maintains the convex shape of the convex portion protruding from the surface of the other separator The gist is to press the layer or the cathode gas diffusion layer with the convex portion.

上記構成の燃料電池では、電池セルとセパレーターとを交互に積層した状態において、前記セパレーターは第1シール部材と第2シール部材とを前記冷媒流路を挟んで背中合わせに備えることから、電池セルを挟んで隣り合うセパレーターにおいては向き合うことになる。こうして向き合った第1シール部材と第2シール部材において、一方のセパレーターにおける第1シール部材は、前記一方のセパレーター表面から延びて前記膜電極接合体に当接して前記膜電極接合体にシールのための力を及ぼす。その一方、他方のセパレーターにおける前記第2シール部材は、前記冷媒流路を通過する冷媒の圧力を受けて前記他方のセパレーター表面から突出した凸部の凸形状を維持しつつ、前記他方のセパレーター表面に接合する前記アノードガス拡散層または前記カソードガス拡散層を前記凸部にて押し付ける。このため、上記構成の燃料電池では、冷媒の圧力を受けてセパレーター表面から突出した凸部の凸形状を維持する第2シール材にて、そのセパレーター表面に接合するガス拡散層を押し潰しながら、一方のセパレーターの第1シール部材による押し付け力を冷媒の圧力で受けることになる。よって、第1シール部材がその頂上で膜電極接合体に接する場合のシール線圧が高まると共に、冷媒の圧力を受けて凸の第2シール材にて押し潰された箇所のガス拡散層の剛性は高まる。この結果、上記構成の燃料電池によれば、膜電極接合体に当接する第1シール部材が存在する側のガス拡散層(アノードガス拡散層とカソードガス拡散層のいずれか一方)のガスシールを高い信頼性で確保することができる。   In the fuel cell having the above configuration, in the state where the battery cells and the separators are alternately stacked, the separator includes the first seal member and the second seal member back to back with the refrigerant flow path interposed therebetween. The separators that are adjacent to each other face each other. In the first seal member and the second seal member facing each other, the first seal member in one separator extends from the surface of the one separator and abuts on the membrane electrode assembly to seal the membrane electrode assembly. Exert the power of. On the other hand, the second seal member in the other separator receives the pressure of the refrigerant passing through the refrigerant flow path and maintains the convex shape of the convex portion protruding from the other separator surface, while the other separator surface The anode gas diffusion layer or the cathode gas diffusion layer bonded to the substrate is pressed by the convex portion. For this reason, in the fuel cell having the above-described configuration, the second sealing material that receives the pressure of the refrigerant and maintains the convex shape of the convex portion protruding from the separator surface while crushing the gas diffusion layer bonded to the separator surface, The pressing force by the first seal member of one separator is received by the pressure of the refrigerant. Therefore, the seal linear pressure when the first seal member is in contact with the membrane electrode assembly at the top increases, and the rigidity of the gas diffusion layer at the location where it is crushed by the convex second seal material under the pressure of the refrigerant Will rise. As a result, according to the fuel cell having the above-described configuration, the gas seal of the gas diffusion layer (either the anode gas diffusion layer or the cathode gas diffusion layer) on the side where the first seal member that contacts the membrane electrode assembly is present. It can be secured with high reliability.

本発明の実施例としての燃料電池システム10の概略構成を示す説明図である。It is explanatory drawing which shows schematic structure of the fuel cell system 10 as an Example of this invention. 燃料電池の要部を拡大して模式的に断面視して示す説明図である。It is explanatory drawing which expands and shows the principal part of a fuel cell typically in cross section.

以下、本発明の実施の形態について、その実施例を図面に基づき説明する。図1は本発明の実施例としての燃料電池システム10の概略構成を示す説明図、図2は燃料電池の要部を拡大して模式的に断面視して示す説明図である。   Embodiments of the present invention will be described below with reference to the drawings. FIG. 1 is an explanatory view showing a schematic configuration of a fuel cell system 10 as an embodiment of the present invention, and FIG. 2 is an explanatory view showing an enlarged main portion of the fuel cell in a schematic sectional view.

燃料電池システム10は、燃料電池12を備え、この燃料電池12を冷却系20にて冷却する。冷却系20は、ラジエーター30から燃料電池12への冷媒の循環を図る循環経路22と、当該経路における燃料電池12のイン側バルブ21aとアウト側バルブ21bと、ラジエーター30のバイパス経路24と、バイパス経路合流点の三方流量調整弁26と、循環ポンプ28と、イオン交換器40を有するバイパス経路32とを備える。そして、この冷却系20は、ラジエーター30にて熱交換した冷媒を循環経路22を経て燃料電池12の後述のセル内冷媒流路64(図2参照)に導き、燃料電池12を所定温度に冷却する。この場合、燃料電池12の運転時(発電運転時)における循環ポンプ28の駆動量、即ち冷媒の循環供給量や、三方流量調整弁26によるラジエーターパイパス流量は、燃料電池温度や発電状況に基づいて、図示しない制御装置にて定められる。なお、バイパス経路32の経路合流点に三方流量調整弁を組み込んで、イオン交換器40への流量を燃料電池温度や発電状況に基づいて定めるようにすることもできる。燃料電池システム10は、上記した冷却系20の他、燃料電池12へのガス供給を図る水素ガス供給系や空気供給系を備えるが、本発明の要旨とは直接関連しないので、その説明は省略する。   The fuel cell system 10 includes a fuel cell 12, and the fuel cell 12 is cooled by a cooling system 20. The cooling system 20 includes a circulation path 22 for circulating the refrigerant from the radiator 30 to the fuel cell 12, an in-side valve 21a and an out-side valve 21b of the fuel cell 12 in the path, a bypass path 24 of the radiator 30, and a bypass. A three-way flow rate adjustment valve 26 at the path junction, a circulation pump 28, and a bypass path 32 having an ion exchanger 40 are provided. The cooling system 20 guides the refrigerant heat-exchanged by the radiator 30 to a later-described in-cell refrigerant flow path 64 (see FIG. 2) of the fuel cell 12 through the circulation path 22, and cools the fuel cell 12 to a predetermined temperature. To do. In this case, the driving amount of the circulation pump 28 during the operation of the fuel cell 12 (during power generation operation), that is, the circulation supply amount of the refrigerant and the radiator bypass flow rate by the three-way flow control valve 26 are based on the fuel cell temperature and the power generation status. Is determined by a control device (not shown). It is also possible to incorporate a three-way flow rate adjustment valve at the path junction of the bypass path 32 so as to determine the flow rate to the ion exchanger 40 based on the fuel cell temperature and the power generation status. The fuel cell system 10 includes a hydrogen gas supply system and an air supply system for supplying gas to the fuel cell 12 in addition to the cooling system 20 described above, but the description thereof is omitted because it is not directly related to the gist of the present invention. To do.

燃料電池12は、図2に示すように、発電単位となる電池セル50とセパレーター60とを交互に積層して備え、電池セル50をその両側のセパレーター60で挟持している。電池セル50は、電解質膜の両側にアノードとカソードの両電極を接合させた膜電極接合体(Membrane Electrode Assembly/MEA)52と、その両側に接合したカソードガス拡散層54とアノードガス拡散層56とを備える。この両ガス拡散層は、ガス透過性および電子伝導性を有する部材によって構成されており、例えば、カーボンペーパーなどの炭素材料や、発泡金属、金属メッシュなどの金属部材によって形成され、電気化学反応に供されるガス(水素ガス、空気)をMEA52まで拡散供給する。本実施例の電池セル50では、一方のガス拡散層、例えばアノードガス拡散層56をMEA52のシールに利用する都合上、このアノードガス拡散層56についてはその形成範囲がMEA52の端部近傍まで達するようにされ、カソードガス拡散層54についてはMEA52の端部手前までに控えられている。   As shown in FIG. 2, the fuel cell 12 includes battery cells 50 and separators 60 that are power generation units alternately stacked, and the battery cells 50 are sandwiched between the separators 60 on both sides thereof. The battery cell 50 includes a membrane electrode assembly (MEA) 52 in which both anode and cathode electrodes are bonded to both sides of an electrolyte membrane, and a cathode gas diffusion layer 54 and an anode gas diffusion layer 56 bonded to both sides thereof. With. Both gas diffusion layers are composed of members having gas permeability and electronic conductivity. For example, the gas diffusion layers are formed of a carbon material such as carbon paper, a metal member such as a foam metal, a metal mesh, and the like. The supplied gas (hydrogen gas, air) is diffused and supplied to the MEA 52. In the battery cell 50 of the present embodiment, for the convenience of using one gas diffusion layer, for example, the anode gas diffusion layer 56 for sealing the MEA 52, the formation range of the anode gas diffusion layer 56 reaches the vicinity of the end of the MEA 52. Thus, the cathode gas diffusion layer 54 is reserved before the end of the MEA 52.

セパレーター60は、いわゆる三層セパレーターと称され、第1プレート61と第2プレート62との間に中間プレート63を介在させ、これらプレートを接合して構成される。そして、本実施例では、電池セル50のカソードガス拡散層54に接合される第2プレート62は、その外表面に凸状断面のガスケット67を備え、アノードガス拡散層56に接合される第1プレート61は、その外表面から凸となるよう突出した弾性部材68を備える。この弾性部材68は、耐熱性を有するゴム等の部材から形成されている。そして、弾性部材68は、第1プレート61に形成された貫通孔69にセパレーターの内側から、即ち第1プレート61と第2プレート62との間の中間プレート63が形成するセル内冷媒流路64の側から装着され、既述したように第1プレート61の外表面から凸に突出する。この場合、ガスケット67と弾性部材68は、同じセパレーター60においてはセル内冷媒流路64を挟んで背中合わせに位置し、電池セル50を挟んで隣り合うセパレーター60においては向き合うことになる。   The separator 60 is called a so-called three-layer separator, and is configured by interposing an intermediate plate 63 between a first plate 61 and a second plate 62 and joining these plates. In this embodiment, the second plate 62 joined to the cathode gas diffusion layer 54 of the battery cell 50 includes a gasket 67 having a convex cross section on the outer surface thereof, and is joined to the anode gas diffusion layer 56. The plate 61 includes an elastic member 68 that protrudes from the outer surface thereof. The elastic member 68 is formed of a member such as rubber having heat resistance. The elastic member 68 is inserted into the through hole 69 formed in the first plate 61 from the inside of the separator, that is, the in-cell refrigerant flow path 64 formed by the intermediate plate 63 between the first plate 61 and the second plate 62. As described above, it is projected from the outer surface of the first plate 61. In this case, the gasket 67 and the elastic member 68 are positioned back to back with the in-cell refrigerant flow path 64 sandwiched between them in the same separator 60, and face each other in the separators 60 adjacent to each other with the battery cell 50 sandwiched therebetween.

上記したセパレーター60の製造手順について簡単に説明する。まず、第1プレート61の貫通孔69に弾性部材68を装着する。次いで、弾性部材68を装着済みの第1プレート61と第2プレート62とで中間プレート63を挟持し、これらプレートを溶接等の手法で接合・固定する。これにより、第1プレート61と第2プレート62の間にセル内冷媒流路64が形成され、このセル内冷媒流路64は、ガスケット67の凸部内側と繋がることになる。中間プレート63の挟持に際して、或いはプレートの接合・固定後に、第2プレート62に弾性部材68をガスケット67と背中合わせとなる位置に接着する。このセパレーター60は、上記したセル内冷媒流路64を形成するほか、アノードガス拡散層56に水素ガスを供給するセル内ガス流路とカソードガス拡散層54に空気を供給するセル内ガス流路をも形成するが、これらセル内ガス流路は本発明の要旨と直接関係しないので、その説明は省略する。   The manufacturing procedure of the separator 60 will be briefly described. First, the elastic member 68 is attached to the through hole 69 of the first plate 61. Next, the intermediate plate 63 is sandwiched between the first plate 61 and the second plate 62 to which the elastic member 68 is already attached, and these plates are joined and fixed by a technique such as welding. Thereby, the in-cell refrigerant flow path 64 is formed between the first plate 61 and the second plate 62, and the in-cell refrigerant flow path 64 is connected to the inside of the convex portion of the gasket 67. When the intermediate plate 63 is sandwiched or after the plates are joined and fixed, the elastic member 68 is bonded to the second plate 62 at a position where the gasket 67 is back to back. The separator 60 forms the above-described in-cell refrigerant channel 64, and also includes an in-cell gas channel for supplying hydrogen gas to the anode gas diffusion layer 56 and an in-cell gas channel for supplying air to the cathode gas diffusion layer 54. However, since these in-cell gas flow paths are not directly related to the gist of the present invention, the description thereof is omitted.

燃料電池12は、上記のように得られたセパレーター60と電池セル50とを対向するエンドプレートの間で交互に積層させ、その積層方向に沿って締結力を及ぼすことで製造される。こうして得られた燃料電池12では、電池セル50を挟んで隣り合うセパレーター60は、一方のセパレーター60が有するガスケット67を上記した締結力に基づく力で電池セル50のMEA52に押し付ける。他方のセパレーター60は、その有する弾性部材68で上記一方のセパレーター60のガスケット67による押し付け力をMEA52とアノードガス拡散層56とを介して受ける。   The fuel cell 12 is manufactured by alternately stacking the separators 60 and the battery cells 50 obtained as described above between opposing end plates and exerting a fastening force along the stacking direction. In the fuel cell 12 thus obtained, the separators 60 adjacent to each other with the battery cell 50 pressed against the MEA 52 of the battery cell 50 with the force based on the above-described fastening force, the gasket 67 included in one separator 60. The other separator 60 receives the pressing force by the gasket 67 of the one separator 60 through the MEA 52 and the anode gas diffusion layer 56 by the elastic member 68 that the other separator 60 has.

ところで、上記した構成を有する燃料電池システム10では、その発電運転時において、循環ポンプ28により冷媒が循環経路22を経て燃料電池12のそれぞれの電池セル50のセパレーター60に圧送される。こうして圧送された冷媒は、セル内冷媒流路64を発電運転期間に亘って常時通過し、弾性部材68をアノードガス拡散層56の側に冷媒圧送圧力で凸とする。このため、電池セル50を挟んで隣り合うセパレーター60のうちの上記の他方のセパレーター60は、冷媒圧送圧力で凸となった弾性部材68にてアノードガス拡散層56を押し潰しながら、一方のセパレーター60のガスケット67による押し付け力を冷媒の圧送圧力で受けることになる。この結果、ガスケット67がその頂上でMEA52に接する場合のシール線圧が高まるので、カソードガス拡散層54の側のガスシール性とその信頼性を向上させることができる。この場合、弾性部材68にて押し潰された箇所のアノードガス拡散層56は、剛性が高くなるので、このアノードガス拡散層56にあってもガスケット67のシール線圧向上に寄与する。よって、冷媒の圧送圧力が何らかの原因で変動しても、シール線圧の確保、延いてはカソードガス拡散層54の側のガスシール性の確保を図ることができる。   By the way, in the fuel cell system 10 having the above-described configuration, during the power generation operation, the refrigerant is pumped by the circulation pump 28 to the separator 60 of each battery cell 50 of the fuel cell 12 through the circulation path 22. The refrigerant thus pressure-fed always passes through the in-cell refrigerant flow path 64 over the power generation operation period, and the elastic member 68 is convex toward the anode gas diffusion layer 56 by the refrigerant pressure. For this reason, of the separators 60 adjacent to each other with the battery cell 50 interposed therebetween, the other separator 60 is pressed against one of the separators while the anode gas diffusion layer 56 is crushed by the elastic member 68 convex by the refrigerant pressure. The pressing force of the 60 gaskets 67 is received by the pressure of the refrigerant. As a result, the seal linear pressure when the gasket 67 is in contact with the MEA 52 at the top is increased, so that the gas sealing performance on the cathode gas diffusion layer 54 side and its reliability can be improved. In this case, since the anode gas diffusion layer 56 at the location crushed by the elastic member 68 has high rigidity, the anode gas diffusion layer 56 also contributes to an improvement in the seal linear pressure of the gasket 67. Therefore, even if the pumping pressure of the refrigerant fluctuates for some reason, it is possible to secure the sealing linear pressure and, in turn, secure the gas sealing property on the cathode gas diffusion layer 54 side.

また、本実施例の燃料電池システム10では、発電運転の停止に際して、図1に示す循環経路22でのバルブ開閉を次のように行う。まず、運転停止がなされると、循環ポンプ28の運転を継続したままアウト側バルブ21bを閉弁し、当該バルブの停止後にイン側バルブ21aを閉弁する。こうしてアウト側・イン側の両バルブの閉弁後に循環ポンプ28を停止する。こうしたバルブ・ポンプ制御により、システムの運転停止の間においても、燃料電池12におけるそれぞれのセパレーター60のセル内冷媒流路64に、上記した冷媒圧送圧力で冷媒を封止して、弾性部材68をこの冷媒圧送圧力で凸としておくことができる。このため、本実施例の燃料電池システム10によれば、システムの運転停止の間におけるガスケット67によるシール線圧の維持と、これに伴うカソードガス拡散層54の側のガスシール性の確保とを図ることができる。   Further, in the fuel cell system 10 of the present embodiment, when the power generation operation is stopped, the valve is opened and closed in the circulation path 22 shown in FIG. 1 as follows. First, when the operation is stopped, the out side valve 21b is closed while the operation of the circulation pump 28 is continued, and the in side valve 21a is closed after the valve is stopped. Thus, the circulation pump 28 is stopped after both the out-side and in-side valves are closed. By such valve / pump control, the refrigerant is sealed in the in-cell refrigerant flow path 64 of each separator 60 in the fuel cell 12 with the above-described refrigerant pressure, and the elastic member 68 is provided even during system shutdown. It can be made convex by this refrigerant pressure. For this reason, according to the fuel cell system 10 of the present embodiment, maintenance of the sealing linear pressure by the gasket 67 during the operation stop of the system and securing of gas sealing performance on the cathode gas diffusion layer 54 side accompanying this are achieved. Can be planned.

本発明は上記した実施例や実施形態に限られるものではなく、その要旨を逸脱しない範囲において、種々の態様で実施可能である。例えば、アノードガス拡散層56の形成範囲を控えた上で、ガスケット67をセル内冷媒流路64の側に設け、弾性部材68を第2プレート62の側に設けることもできる。また、図2に示すセパレーター60は、図における上方側において第1プレート61に弾性部材68を備え、第2プレート62にガスケット67を備えてカソードガス拡散層54をシールするが、図における下方側においては、第1プレート61にガスケット67を備え、第2プレート62に弾性部材68を備えるようにすることもできる。こうすれば、アノードガス拡散層56の側においても高い信頼性でガスシールを図ることができる。   The present invention is not limited to the above-described examples and embodiments, and can be implemented in various modes without departing from the gist thereof. For example, after the formation range of the anode gas diffusion layer 56 is refrained, the gasket 67 can be provided on the in-cell refrigerant flow path 64 side, and the elastic member 68 can be provided on the second plate 62 side. 2 has an elastic member 68 on the first plate 61 and a gasket 67 on the second plate 62 to seal the cathode gas diffusion layer 54 on the upper side in the figure. The first plate 61 may be provided with a gasket 67, and the second plate 62 may be provided with an elastic member 68. In this way, gas sealing can be achieved with high reliability even on the anode gas diffusion layer 56 side.

10…燃料電池システム
12…燃料電池
20…冷却系
21a…イン側バルブ
21b…アウト側バルブ
22…循環経路
24…バイパス経路
26…三方流量調整弁
28…循環ポンプ
30…ラジエーター
32…バイパス経路
40…イオン交換器
50…電池セル
54…カソードガス拡散層
56…アノードガス拡散層
60…セパレーター
61…第1プレート
62…第2プレート
63…中間プレート
64…セル内冷媒流路
67…ガスケット
68…弾性部材
69…貫通孔
DESCRIPTION OF SYMBOLS 10 ... Fuel cell system 12 ... Fuel cell 20 ... Cooling system 21a ... In side valve 21b ... Out side valve 22 ... Circulation path 24 ... Bypass path 26 ... Three-way flow control valve 28 ... Circulation pump 30 ... Radiator 32 ... Bypass path 40 ... Ion exchanger 50 ... battery cell 54 ... cathode gas diffusion layer 56 ... anode gas diffusion layer 60 ... separator 61 ... first plate 62 ... second plate 63 ... intermediate plate 64 ... in-cell refrigerant flow path 67 ... gasket 68 ... elastic member 69 ... through hole

Claims (1)

燃料ガスと酸素含有ガスの供給を受けて発電する電池セルと、冷媒が圧送されて通過する冷媒流路を有するセパレーターとを交互に積層した燃料電池であって、
前記電池セルは、
電解質膜と膜両面に接合した触媒電極とを含む膜電極接合体と、
該膜電極接合体の一方の面に接合され、前記燃料ガスをアノード側の前記触媒電極に拡散供給するアノードガス拡散層と、
前記膜電極接合体の他方の面に接合され、前記酸素含有ガスをカソード側の前記触媒電極に拡散供給するカソードガス拡散層とを備え、
前記セパレーターは、一方のセパレーター表面の側の第1シール部材と、他方のセパレーター表面の側の第2シール部材とを前記冷媒流路を挟んで背中合わせに備え、
前記第1シール部材は、前記一方のセパレーター表面から延びて前記膜電極接合体に当接して前記膜電極接合体にシールのための力を及ぼし、
前記第2シール部材は、前記冷媒流路を通過する冷媒の圧力を受けて前記他方のセパレーター表面から突出した凸部の凸形状を維持しつつ、前記他方のセパレーター表面に接合する前記アノードガス拡散層または前記カソードガス拡散層を前記凸部にて押し付ける
燃料電池。
A fuel cell in which fuel cells and oxygen-containing gas are supplied to generate power, and a separator having a refrigerant flow path through which a refrigerant is pumped and passed alternately,
The battery cell is
A membrane electrode assembly including an electrolyte membrane and a catalyst electrode bonded to both sides of the membrane;
An anode gas diffusion layer bonded to one surface of the membrane electrode assembly and supplying the fuel gas to the catalyst electrode on the anode side;
A cathode gas diffusion layer bonded to the other surface of the membrane electrode assembly and supplying the oxygen-containing gas to the catalyst electrode on the cathode side;
The separator is provided with a first seal member on one separator surface side and a second seal member on the other separator surface side back to back with the refrigerant flow path interposed therebetween,
The first seal member extends from the one separator surface and abuts on the membrane electrode assembly to exert a sealing force on the membrane electrode assembly,
The anode gas diffusion bonded to the surface of the other separator while the second seal member receives the pressure of the refrigerant passing through the refrigerant flow path and maintains the convex shape of the convex portion protruding from the surface of the other separator A fuel cell, wherein the layer or the cathode gas diffusion layer is pressed by the convex portion.
JP2009093580A 2009-04-08 2009-04-08 Fuel cell Expired - Fee Related JP5218232B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2009093580A JP5218232B2 (en) 2009-04-08 2009-04-08 Fuel cell

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2009093580A JP5218232B2 (en) 2009-04-08 2009-04-08 Fuel cell

Publications (2)

Publication Number Publication Date
JP2010244913A JP2010244913A (en) 2010-10-28
JP5218232B2 true JP5218232B2 (en) 2013-06-26

Family

ID=43097700

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2009093580A Expired - Fee Related JP5218232B2 (en) 2009-04-08 2009-04-08 Fuel cell

Country Status (1)

Country Link
JP (1) JP5218232B2 (en)

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP3135991B2 (en) * 1992-06-18 2001-02-19 本田技研工業株式会社 Fuel cell and fuel cell stack tightening method
JP3505010B2 (en) * 1995-07-07 2004-03-08 本田技研工業株式会社 Fuel cell and its fastening method
JP4498585B2 (en) * 2000-11-06 2010-07-07 本田技研工業株式会社 Fuel cell seal
JP3752994B2 (en) * 2000-11-10 2006-03-08 日産自動車株式会社 Fuel cell

Also Published As

Publication number Publication date
JP2010244913A (en) 2010-10-28

Similar Documents

Publication Publication Date Title
JP5412804B2 (en) Fuel cell stack
JP6092060B2 (en) Electrolyte membrane / electrode structure with resin frame for fuel cells
JP2019061754A (en) Metal separator for fuel cell and power generation cell
JP2007335353A (en) Fuel cell
CN109950571B (en) Fuel cell
JP2007250353A (en) Fuel cell
JP6098948B2 (en) Fuel cell separator, fuel cell and fuel cell
JP2018181551A (en) Fuel cell
JP2008171613A (en) Fuel cells
JP5320927B2 (en) Fuel cell stack and fuel cell separator
JP5125022B2 (en) Fuel cell
JP5098652B2 (en) Fuel cell
JP2015090793A (en) Resin frame-attached electrolyte membrane-electrode structure for fuel batteries
JP5109343B2 (en) Fuel cell and fuel cell system
JP2007194124A (en) Fuel cell
JP2008140722A (en) Fuel cell
JP2007122898A (en) Fuel cell
JP2013012324A (en) Fuel cell
JP2006147258A (en) Separator and fuel battery stack
JP5218232B2 (en) Fuel cell
JP2018045882A (en) Fuel battery stack
JP2008243799A (en) Fuel cell
JP5181572B2 (en) Fuel cell separator, separator manufacturing method, and fuel cell manufacturing method
JP5242189B2 (en) Fuel cell
JP5028856B2 (en) Fuel cell

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20110803

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20130123

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20130205

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20130218

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20160315

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20160315

Year of fee payment: 3

LAPS Cancellation because of no payment of annual fees