JP2013129985A - Seismic strengthening method with reinforced inner lining of tunnel - Google Patents

Seismic strengthening method with reinforced inner lining of tunnel Download PDF

Info

Publication number
JP2013129985A
JP2013129985A JP2011279386A JP2011279386A JP2013129985A JP 2013129985 A JP2013129985 A JP 2013129985A JP 2011279386 A JP2011279386 A JP 2011279386A JP 2011279386 A JP2011279386 A JP 2011279386A JP 2013129985 A JP2013129985 A JP 2013129985A
Authority
JP
Japan
Prior art keywords
tunnel
panel
support
reinforcing
axial
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2011279386A
Other languages
Japanese (ja)
Other versions
JP5933250B2 (en
Inventor
Toshiko Yoshimura
敏子 吉村
Makoto Nakamura
誠 中村
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
HIKARI KEIKAKU SEKKEI JIMUSYO CO Ltd
KIZAI TECTO CORP
Original Assignee
HIKARI KEIKAKU SEKKEI JIMUSYO CO Ltd
KIZAI TECTO CORP
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by HIKARI KEIKAKU SEKKEI JIMUSYO CO Ltd, KIZAI TECTO CORP filed Critical HIKARI KEIKAKU SEKKEI JIMUSYO CO Ltd
Priority to JP2011279386A priority Critical patent/JP5933250B2/en
Publication of JP2013129985A publication Critical patent/JP2013129985A/en
Application granted granted Critical
Publication of JP5933250B2 publication Critical patent/JP5933250B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Abstract

PROBLEM TO BE SOLVED: To provide a seismic strengthening method with reinforced inner concrete lining of a tunnel using a resin concrete panel, which allows a tunnel to have an improved earthquake resistance level of 2.SOLUTION: A seismic strengthening method for a tunnel comprises the steps of: installing an H-shaped steel support 2 on the inner face of a tunnel lining concrete; arranging a circumferential reinforcing bar 3 along the direction parallel with the support 2; arranging an axial reinforcing bar 4 along the axial direction of the tunnel; binding the circumferential and axial reinforcing bars to each other at an intersection; further installing a reinforcement steel plate 5 along the axial direction of the tunnel; temporarily fixing a resin concrete panel 1 to the entire surface of the support 2, the resin concrete panel 1 having an insert fitting 10 for fixing the panel at the rear panel face which is mineral surfaced for adhesion enhancement at the rear face; filling a gap between the panel back side and an existing lining concrete 7 with a high strength fine particle grout mortar 6; and integrating the support 2, the circumferential and axial reinforcing bars 3 and 4, the reinforcement steel plate 5, and the panel 1.

Description

本発明は、トンネル覆工コンクリートの補強や補修による覆工内巻補強工に関し、特に耐震補強を目的としたトンネル内巻補強覆工に関する。   The present invention relates to a lining inner winding reinforcement by reinforcement or repair of tunnel lining concrete, and more particularly, to a tunnel inner winding reinforcement lining for the purpose of seismic reinforcement.

トンネルの内巻補強覆工に際して、トンネル覆工コンクリート内面に沿ってH型鋼製支保工を設置し、この支保工に覆工用樹脂コンクリートパネルを固定する工法が採用されることが多くなっている。この工法は、トンネル内に設置された複数の支保工に樹脂コンクリートパネルを固定して、内巻補強用充填材の型枠を兼ねてトンネル内面を覆い、パネルと既設コンクリート面の間に補強材を充填し、樹脂コンクリートパネルと補強充填材とを一体化してトンネル内面を内巻覆工することで行われる。そして、支保工とパネルとの固定方法もコストの低減や作業の効率化を目的とした資材や工法も提案されている。そのため、トンネルの補修や補強だけでなく、トンネルの新設に際しても、この工法の採用検討が増加している。   In tunnel inner lining reinforcement lining, an H-shaped steel support is installed along the inner surface of the tunnel lining concrete, and a method of fixing a resin concrete panel for lining to this support is often adopted. Yes. In this method, resin concrete panels are fixed to a plurality of supporters installed in the tunnel, and the tunnel inner surface is covered with the inner volume reinforcing filler, and the reinforcing material is provided between the panels and the existing concrete surface. Is carried out by integrating the resin concrete panel and the reinforcing filler and lining the inner surface of the tunnel. Also, materials and methods for fixing the support work and the panel have been proposed for the purpose of reducing costs and improving work efficiency. For this reason, not only the repair and reinforcement of tunnels but also the establishment of new tunnels, the adoption of this method is increasing.

特許文献1には、トンネル補修板をH型鋼製支保工に支持するための支持部材が示されており、補修板を隣接する支保工のフランジ部に簡単な作業で取り付けることのできる支持部材が示されている。そして特許文献2にも、内面覆工用樹脂コンクリートパネルを効率よく支保工に固定することのできる固定材が示されている。   Patent Document 1 shows a support member for supporting a tunnel repair plate on an H-shaped steel support, and the support member can be attached to the flange portion of an adjacent support by a simple operation. It is shown. Patent Document 2 also discloses a fixing material capable of efficiently fixing a resin concrete panel for inner surface lining to a support work.

一方、大震災もあり、トンネルに対しても耐震補強の要求は大きく、樹脂コンクリートパネルを用いた内面覆工においても耐震構造とすることが必要であり、耐震補強に向けた強度の向上が望まれている。しかし、特許文献1や2に示されている資材や工法は内面覆工を効率よく、低コストで行うことができ一定の補強効果を有するものではあるが、レベル2基準までの耐震補強構造は示されていない。   On the other hand, due to the great earthquake, there is a great demand for earthquake-resistant reinforcement for tunnels, and it is necessary to provide an earthquake-resistant structure for inner surface lining using resin concrete panels, and it is desirable to improve the strength for earthquake-resistant reinforcement. ing. However, although the materials and methods shown in Patent Documents 1 and 2 can perform inner surface lining efficiently and at a low cost and have a certain reinforcement effect, the seismic reinforcement structure up to the level 2 standard is Not shown.

特開2002−188399号公報JP 2002-188399 A 実用新案登録第3165913号公報Utility Model Registration No. 3165913

本発明の課題は、樹脂コンクリートパネルを使用して補強材としてH型鋼製支保工と組合せ鉄筋を用いた構造に、補強鋼板を加えたトンネルの耐震内巻補強覆工であって、かつ内巻補強工によりトンネル内空断面の欠損部分を極力少ない方法にてトンネルの耐震強度をレベル2基準までに向上させた耐震構造とする工法を提供することである。   An object of the present invention is an earthquake resistant inner winding reinforcement lining for a tunnel in which a reinforcing steel plate is added to a structure using a resin concrete panel and a reinforcing steel bar combined with an H-shaped steel support as a reinforcing material. The purpose is to provide a method of constructing a seismic structure in which the seismic strength of the tunnel is improved to the level 2 standard by winding reinforcement work in a manner that minimizes the missing part of the hollow section in the tunnel.

本発明の工法は、トンネルコンクリート覆工内面にH型鋼製支保工を設置し、トンネル内空断面の欠損量を少なくするため、所要強度を満たすには鉄筋の配筋が地山側とトンネル内側のダブル配筋となるケースを、せん断補強鋼板の構造強度にてシングル配筋にて可能としたことや、該支保工の平行方向に沿って周方向補強鉄筋を機械式継手組合せにて配筋することと、フック式組合せ鉄筋の両端部を対面するウェブに取り付けたスリーブに挿入固定して配筋することで、鋼製支保工のウェブ部分に、軸方向鉄筋を連結するために通す切穴が不要となり、支保工強度の低下を防ぐことができるため小断面の支保工サイズが可能になると共に、該軸方向鉄筋および周方向主鉄筋とを交差部にて相互に結束し、さらにトンネルの軸方向に沿って鋼製支保工の断面内にせん断補強鋼板を支保工間に設置することができ、次いで前記支保工の表面全体に、背面にパネル固定用インサート金具を装着した樹脂コンクリートパネルを仮固定し、該パネル背面と既設覆工コンクリートとの間隙に高強度微粒子グラウトモルタルを充填固結することで、前記支保工、周方向および軸方向の補強鉄筋、補強鋼板ならびに前記パネルが一体化されていることを特徴とするトンネルの耐震補強工法である。   In the construction method of the present invention, an H-shaped steel support is installed on the inner surface of the tunnel concrete lining to reduce the amount of voids in the tunnel's internal cross section. The case where the double reinforcement is made possible by the single reinforcement with the structural strength of the shear reinforced steel sheet, and the circumferential reinforcement reinforcement along the parallel direction of the support work And through holes to connect the axial rebar to the web part of the steel support by inserting and fixing to the sleeve attached to the web facing both ends of the hook type combined rebar Since the support strength of the small cross section is possible, the axial rebar and the circumferential main rebar are bound to each other at the intersection, further reducing the tunnel strength. Steel along the axial direction A shear-reinforced steel plate can be installed between the supports in the cross section of the support work, and then a resin concrete panel with a panel fixing insert metal fitting is temporarily fixed to the entire surface of the support work. The support structure, the reinforcing bars in the circumferential direction and the axial direction, the reinforcing steel plate, and the panel are integrated by filling and consolidating high-strength fine particle grout mortar in the gap between the lining concrete and the existing lining concrete. It is a seismic reinforcement method for tunnels.

また上記工法において、トンネルの軸方向に沿って配筋される補強鉄筋を、フック式組合せ鉄筋継手方式とすることで、隣接する前記支保工の対面するウェブに設けたスリーブに両端部のフックを挿入する方法で配筋されることになり作業空間が発生し、トンネルの軸方向に設置される補強鋼板は、前記支保工の対面するフランジに設けた端部受金具への両端部の挿入固定が容易となり小断面鋼製支保工の断面内において設置することが可能となることも特徴とする。   In the above method, the reinforcing reinforcing bars arranged along the axial direction of the tunnel are hook-type combined reinforcing bar joints, so that hooks at both ends are attached to the sleeve provided on the web facing the adjacent support work. Reinforcing steel plates installed in the axial direction of the tunnel will be arranged by the insertion method and the work space will be generated, and both ends will be inserted and fixed to the end fittings provided on the flange facing the support It becomes easy, and it can also be installed in the cross section of a small cross section steel support.

これらの工法では、支保工と平行方向であるトンネルの周方向に沿って配筋される補強鉄筋が主筋となり、トンネルの軸方向に沿って配筋される補強鉄筋が配力筋となり、これらの補強鉄筋は、交差する箇所で相互に結束され、鋼製支保工と共に内巻補強構造となっている。同じくトンネルの軸方向で支保工間に設置される補強鋼板は、せん断補強用として設置されている。支保工に仮固定される樹脂コンクリートパネルは、装着したパネル固定用インサート金具が高強度微粒子グラウトモルタルに埋設固定され、パネル背面の砂付加工による付着力と組み合されることでより強固に固定される。   In these methods, the reinforcing bars that are arranged along the circumferential direction of the tunnel, which is parallel to the support work, are the main reinforcing bars, and the reinforcing bars that are arranged along the axial direction of the tunnel are the reinforcing bars. Reinforcing bars are bound to each other at crossing points, and have an internal winding reinforcement structure together with a steel support. Similarly, the reinforcing steel plate installed between the support works in the axial direction of the tunnel is installed for shear reinforcement. Resin concrete panels that are temporarily fixed to the support are fixed more firmly by attaching the mounting brackets for panel mounting embedded in high-strength fine grain grout mortar and combining with the adhesive force by sanding on the back of the panel .

また、主補強鉄筋の継手としては、簡易な作業で取り付けられ接続強度も大きい機械式継手を用い、補強充填モルタルとしては流動性に優れ、狭い断面内に配置された鋼板や鉄筋に阻害されることなく細部にわたり完全に充填され、さらに長距離圧送打設においても沈降分離現象が発生しない安定した懸濁性を有する高強度微粒子グラウトモルタルを用いることが好ましい。   In addition, as a joint of the main reinforcing bar, a mechanical joint that is attached by simple work and has high connection strength is used. As a reinforcing filling mortar, it has excellent fluidity and is obstructed by steel plates and reinforcing bars arranged in a narrow cross section. It is preferable to use a high-strength fine-grain grout mortar that is completely filled without any details and that has a stable suspending property that does not cause sedimentation separation even in long-distance pumping.

本発明の工法にて補強されたトンネルは、主筋である周方向補強鉄筋と配力筋である軸方向補強鉄筋による補強だけでなく、設置された補強鋼板が地震の振動により発生するせん断力に対して補強効果を発揮し、優れた耐震補強構造となる。さらに、樹脂コンクリートパネルは固定用インサート金具を装着しており、充填された高強度微粒子グラウトモルタルにより、支保工、鉄筋や鋼板などの補強用鋼材ともに埋設され緊密に一体化する。そのため、地震に際しても、分離したり、脱落したりすることなく優れた耐震補強効果を発揮し、レベル2基準までの耐震構造となる。   The tunnel reinforced by the construction method of the present invention is not only reinforced by the circumferential reinforcing bar which is the main reinforcing bar and the axial reinforcing bar which is the distribution bar, but also by the shearing force generated by the installed reinforcing steel plate due to the vibration of the earthquake. In contrast, it exerts a reinforcing effect and has an excellent seismic reinforcement structure. Furthermore, the resin concrete panel is fitted with a fixing insert metal fitting, and is embedded with a reinforcing steel material such as a support, a reinforcing bar and a steel plate by a high-strength fine particle grout mortar filled and closely integrated. Therefore, even in the event of an earthquake, it exhibits an excellent seismic strengthening effect without being separated or dropped off, resulting in an earthquake resistant structure up to Level 2 standards.

また本工法では、鉄筋や鋼板などの補強用鋼材の設置を、支保工に設置したスリーブや端部受金具に各補強鋼材の端部を挿入し支保工に組み合わせる構造とすることで補強用鋼材を効率よく定着固定することができ、その後流動性に優れた高強度微粒子グラウトモルタルを充填固結して一体化させる構造とすることで、小断面の内巻方法にて強度が高い補強効果が得られ効率よく鋼材を組立できる工法となる。   In addition, in this construction method, reinforcing steel materials such as reinforcing bars and steel plates are combined with the supporting steel by inserting the ends of each reinforcing steel material into sleeves and end fittings installed in the supporting steel. Can be fixed and fixed efficiently, and then a high-strength fine grain grout mortar with excellent fluidity is packed and consolidated to form an integrated structure. The resulting method is a steel material that can be assembled efficiently.

樹脂コンクリートパネルを用いた内面覆工により耐震補強されたトンネルの断面説明図。Cross-sectional explanatory drawing of the tunnel reinforced by earthquake resistance by inner surface lining using a resin concrete panel. 図1におけるA部の詳細説明図であって、周方向および軸方向補強鉄筋の配筋状態を示す。It is detailed explanatory drawing of the A section in FIG. 1, Comprising: The circumferential and axial reinforcement reinforcement state is shown. 図1におけるB部の詳細図であって、補強鋼板の設置状態を示す。FIG. 2 is a detailed view of a portion B in FIG. 1 and shows a state where a reinforcing steel plate is installed. 樹脂コンクリートパネルの固定状態を示す上四半部の断面説明図。Cross-sectional explanatory drawing of the upper quarter part which shows the fixed state of the resin concrete panel. パネル固定用インサート金具を装着した樹脂コンクリートパネルの平面説明図。Plane explanatory drawing of the resin concrete panel which attached the metal fitting for panel fixation. 図4におけるC部の詳細説明図であって、パネル固定用インサート金具の装着状態を示す。FIG. 5 is a detailed explanatory view of a portion C in FIG. 4 and shows a mounting state of the panel fixing insert fitting. 図6に示したパネル固定用インサート金具および装着部材の詳細説明図。FIG. 7 is a detailed explanatory view of the panel fixing insert fitting and the mounting member shown in FIG. 6. 図1に示した耐震補強されたトンネルの上方から見た部分断面平面説明図。FIG. 2 is a partial cross-sectional plan view seen from above the tunnel reinforced with earthquake resistance shown in FIG. 1.

以下本発明の詳細を実施例図に基づき説明する。   The details of the present invention will be described below with reference to the accompanying drawings.

図1は、本発明の工法にて内面覆工を耐震補強構造としたトンネルの断面説明図であり、トンネルの既設覆工コンクリート7を削ったトンネル内面に、トンネルの周方向に沿って複数のH型鋼製支保工2を設置し、この支保工2の平行方向に沿って主筋である周方向補強鉄筋3が配筋され、トンネルの軸方向(図1においては図の垂直方向)に沿って配力筋である軸方向補強鉄筋4が配筋されている。この周方向補強鉄筋3と軸方向補強鉄筋4とは相互に結束され、トンネル内面に沿って格子状に配筋されている。さらにトンネルの軸方向に沿って複数の補強鋼板5がせん断補強用に設置されている。そして、前記支保工2の表面全体には、背面が砂付加工されたパネルの背面にパネル固定用インサート金具10を装着した樹脂コンクリートパネル1が仮固定され、この樹脂コンクリートパネル1の背面と既設覆工コンクリート7との間隙に高強度微粒子グラウトモルタル6が充填され、前記支保工2、周方向補強鉄筋3および軸方向補強鉄筋4、補強鋼板5ならびに前記パネル1とが一体化して埋設固定されている。   FIG. 1 is a cross-sectional explanatory view of a tunnel having an inner lining as a seismic reinforcement structure according to the method of the present invention. An H-shaped steel support 2 is installed, and a circumferential reinforcing bar 3 as the main reinforcement is arranged along the parallel direction of the support 2, and along the axial direction of the tunnel (the vertical direction in the figure in FIG. 1) The reinforcing bars 4 in the axial direction, which are the reinforcing bars, are arranged. The circumferential reinforcing bar 3 and the axial reinforcing bar 4 are bound to each other and arranged in a lattice pattern along the inner surface of the tunnel. Further, a plurality of reinforcing steel plates 5 are installed for shear reinforcement along the axial direction of the tunnel. The entire surface of the support 2 is temporarily fixed with a resin concrete panel 1 having a panel fixing insert 10 attached to the back surface of the panel whose back surface is sanded. The gap with the lining concrete 7 is filled with high-strength fine particle grout mortar 6, and the support 2, the circumferential reinforcing bar 3 and the axial reinforcing bar 4, the reinforcing steel plate 5, and the panel 1 are integrally embedded and fixed. ing.

図1に示すトンネルの周方向に沿って設置されるH型鋼製支保工2は、トンネル天頂部にて継手板23により連結され、天井のアーチ部から側壁部にかけて設置され、底板24にてトンネル底部に固定されている一対の支保工と、トンネル底部にてこの一対の支保工に連結される支保工とにより構成されている。周方向補強鉄筋3は、主筋としてH型鋼製支保工2に沿った方向に配筋され、鉄筋の接続は機械式継手31により行われている。軸方向補強鉄筋4はH型鋼製支保工2に設けたスリーブ8に両端部のフックを挿入することにより、隣接する支保工間に配筋されている。また、補強鋼板5はH型鋼製支保工2に設けた端部受金具9に両端部を挿入することにより、隣接する支保工間に設置されている。そして、樹脂コンクリートパネル1は天井のアーチ部、側壁部、底部(インバート部)の表面全体に設置されている。   The H-shaped steel support 2 installed along the circumferential direction of the tunnel shown in FIG. 1 is connected by a joint plate 23 at the tunnel zenith, and is installed from the arch portion of the ceiling to the side wall portion. A pair of support works fixed to the bottom of the tunnel and a support work connected to the pair of support works at the bottom of the tunnel. The circumferential reinforcing steel bars 3 are arranged in the direction along the H-shaped steel support 2 as main bars, and the reinforcing bars are connected by mechanical joints 31. The axial reinforcing reinforcing bars 4 are arranged between adjacent supporting works by inserting hooks at both ends into a sleeve 8 provided in the H-shaped steel supporting works 2. Further, the reinforcing steel plate 5 is installed between the adjacent support works by inserting both end parts into the end receiving metal fitting 9 provided in the H-shaped steel support work 2. And the resin concrete panel 1 is installed in the whole surface of the arch part of a ceiling, a side wall part, and a bottom part (invert part).

図2は図1におけるA部の詳細説明図であり、各鉄筋の配筋状態を示し、(A1)はトンネルの上方からみた平面図、(A2)は側面図である。トンネルの軸方向に沿って配筋される軸方向補強鉄筋4はフック式組合せ継手鉄筋であって、両端部が90度折り曲げたフック41となっている。隣接するH型鋼製支保工2の対面するウェブ21に設けたスリーブ8に両端部のフック41を挿入することで配筋される。そして、主筋である周方向補強鉄筋3と配力筋である軸方向補強鉄筋4とは、交差部42にて相互に結束されている。   FIG. 2 is a detailed explanatory view of a portion A in FIG. 1, showing a bar arrangement state of each reinforcing bar, (A1) is a plan view seen from above the tunnel, and (A2) is a side view. The axial reinforcing reinforcing bars 4 arranged along the axial direction of the tunnel are hook-type combined joint reinforcing bars, and both ends are hooks 41 bent 90 degrees. The bars are arranged by inserting hooks 41 at both ends into the sleeve 8 provided on the web 21 facing the adjacent H-shaped steel support 2. The circumferential reinforcing bar 3 that is the main reinforcing bar and the axial reinforcing bar 4 that is the distributing bar are bound to each other at the intersection 42.

図3は図1におけるB部の詳細説明図であり、補強鋼板5の設置状態を示し、(B1)はトンネルの上方から見た平面図、(B2)はトンネルの軸方向の側面図、(B3)は壁側方向から見た側面図である。トンネルの軸方向に沿って設置される補強鋼板5は、隣接するH型鋼製支保工2の対面するフランジ22に設けたL字状の端部受金具9に両端部を挿入して、隣接する支保工間に設置される。   3 is a detailed explanatory view of a portion B in FIG. 1, showing an installation state of the reinforcing steel plate 5, (B 1) is a plan view seen from above the tunnel, (B 2) is a side view in the axial direction of the tunnel, B3) is a side view seen from the wall side direction. The reinforcing steel plate 5 installed along the axial direction of the tunnel is inserted into the L-shaped end receiving bracket 9 provided on the flange 22 facing the adjacent H-shaped steel support 2 so as to be adjacent. It is installed between supporting works.

図4は樹脂コンクリートパネル1の固定状態を示す上四半部の断面説明図であり、このパネル1は周方向補強鉄筋3や軸方向補強鉄筋4などが設置されたH型鋼製支保工2の表面に固定されている。樹脂コンクリートパネル1の背面は砂付加工され、その背面にはパネル固定用インサート金具10が装着されており、充填される高強度微粒子グラウトモルタルにより、周方向補強鉄筋3や軸方向補強鉄筋4などと共に埋設され一体化し、樹脂コンクリートパネル1はH型鋼製支保工2に対して仮固定され、高強度微粒子グラウトモルタルが固結後はインサート金具と共に強固に固定される。図5はパネル固定用インサート金具10を装着した樹脂コンクリートパネル1の平面説明図であり、背面にパネル固定用インサート金具10が4個装着されている。この樹脂コンクリートパネル1にはH型鋼製支保工2に仮固定を行うための取り付け部11が設けられており、この取り付け部11を利用してボルトなどによりH型鋼製支保工2に仮固定することができる。樹脂コンクリートパネル1は、トンネル内で固定される場所に応じた曲面と大きさを持つ複数の種類のパネルが用いられる。複数の種類のパネルを用いて、天井のアーチ部、側壁部、インバート部などトンネルの内面全体を覆工すべく、H型鋼製支保工2の表面全体に取り付け固定する。図1に示されるように、仮固定された樹脂コンクリートパネル1は、背面に装着したパネル固定用インサート金具10が高強度微粒子グラウトモルタル6に埋設され、補強用鋼材などと一体化されることで、H型鋼製支保工2と共に高強度微粒子グラウトモルタルに強固に固定することができ、耐震構造とすることができる。   FIG. 4 is a cross-sectional explanatory view of the upper quadrant showing the fixed state of the resin concrete panel 1, and this panel 1 is an H-shaped steel support 2 in which the circumferential reinforcing bar 3 and the axial reinforcing bar 4 are installed. It is fixed on the surface. The back surface of the resin concrete panel 1 is sanded, and a panel fixing insert metal fitting 10 is mounted on the back surface, and the circumferential reinforcing reinforcing bar 3 and the axial reinforcing reinforcing rod 4 are made of high strength fine grain grout mortar to be filled. The resin concrete panel 1 is temporarily fixed to the H-shaped steel support 2 and is firmly fixed together with the insert fitting after the high-strength fine particle grout mortar is consolidated. FIG. 5 is an explanatory plan view of the resin concrete panel 1 to which the panel fixing insert fitting 10 is attached, and four panel fixing insert fittings 10 are attached to the back surface. The resin concrete panel 1 is provided with a mounting portion 11 for temporarily fixing the H-shaped steel support 2 to the H-shaped steel support 2. Can be fixed. As the resin concrete panel 1, a plurality of types of panels having a curved surface and a size corresponding to a place to be fixed in the tunnel are used. A plurality of types of panels are used to attach and fix to the entire surface of the H-shaped steel support 2 so as to cover the entire inner surface of the tunnel such as the arch, side wall, and invert of the ceiling. As shown in FIG. 1, the temporarily fixed resin concrete panel 1 has a panel fixing insert fitting 10 mounted on the back surface embedded in a high-strength fine particle grout mortar 6 and integrated with a reinforcing steel material or the like. In addition, it can be firmly fixed to the high-strength fine particle grout mortar together with the H-shaped steel support 2 so that an earthquake-resistant structure can be obtained.

図6は図4におけるC部の詳細説明図であり、樹脂コンクリートパネル1へのパネル固定用インサート金具10の装着説明図である。図7は装着に使用する部材の説明図である。図6と図7とに示されるように、パネル固定用インサート金具10はボルト13にねじ込まれて、樹脂コンクリートパネル1に固定装着される。先ずボルト穴12を貫通させたボルト13をワッシャー14とナット15により、樹脂コンクリートパネル1に固定し、次いで固定したボルト13の先端にインサート金具10をねじ込み取り付けることで、インサート金具をパネルに固定装着できる。   FIG. 6 is a detailed explanatory view of a portion C in FIG. 4, and is an explanatory view of mounting the panel fixing insert fitting 10 to the resin concrete panel 1. FIG. 7 is an explanatory view of members used for mounting. As shown in FIGS. 6 and 7, the panel fixing insert fitting 10 is screwed into a bolt 13 and fixedly attached to the resin concrete panel 1. First, the bolt 13 that has penetrated the bolt hole 12 is fixed to the resin concrete panel 1 by the washer 14 and the nut 15, and then the insert fitting 10 is screwed and attached to the tip of the fixed bolt 13, so that the insert fitting is fixedly attached to the panel. it can.

図8は、図1に断面図が示されている耐震補強されたトンネルの上方から見た部分断面平面説明図であり、隣接するH型鋼製支保工の間(8−1)〜(8−5)が、トンネルの天井アーチ部分の各補強材やパネルなどの設置説明図となっている。   8 is a partial cross-sectional plan view seen from above the tunnel reinforced with earthquake resistance whose cross-sectional view is shown in FIG. 1, and between adjacent H-shaped steel support works (8-1) to (8 -5) is an explanatory diagram of the installation of the reinforcing members and panels at the ceiling arch of the tunnel.

(8−1)は、H型鋼製支保工2に設けたスリーブ8に端部のフックを挿入して配筋された軸方向補強鉄筋4を示している。(8−2)では周方向補強鉄筋3がH型鋼製支保工2と平行に配筋され、軸方向補強鉄筋4との交差部42にて結束され、両補強鉄筋が格子状に配筋されていることを示している。(8−3)にはパネル固定用インサート金具10を装着した樹脂コンクリートパネル1が示され、(8−4)には配置された樹脂コンクリートパネル1の天頂部および支保工部でのつなぎ目に目地工16が施されていることを示している。(8−5)には樹脂コンクリートパネル1と既設覆工コンクリート7との間隙に高強度微粒子グラウトモルタル6が充填されている状態であって、本発明の工法により耐震補強されたトンネルの内面覆工構造を示している。   (8-1) shows an axial reinforcing steel bar 4 which is arranged by inserting a hook at an end into a sleeve 8 provided in the H-shaped steel support 2. In (8-2), the circumferential reinforcing bar 3 is laid in parallel with the H-shaped steel support 2 and bound at the intersection 42 with the axial reinforcing bar 4 so that both reinforcing bars are arranged in a lattice pattern. It has been shown. (8-3) shows a resin concrete panel 1 fitted with the panel fixing insert metal fitting 10, and (8-4) shows joints at the joints at the zenith and support sections of the resin concrete panel 1 arranged. It shows that the work 16 is applied. (8-5) is a state in which the gap between the resin concrete panel 1 and the existing lining concrete 7 is filled with high-strength fine particle grout mortar 6, and the inner surface cover of the tunnel reinforced by earthquake resistance by the method of the present invention. The construction structure is shown.

本発明に用いられる樹脂コンクリートパネルは、不飽和ポリエステル樹脂やエポキシ樹脂などの熱硬化性樹脂に珪砂、炭酸カルシウムなどの細骨材やガラス繊維などを混合し、加熱しながら高圧力にてプレス成形したパネルが最適であり、非常に緊密で硬く、安定した化学的性質を持ったものである。そのため、強度的にも優れ、厚さ10mm程度でも十分に覆工用プレキャストパネルとして使用されているものであり、耐震補強用材料として好ましいものである。   The resin concrete panel used in the present invention is mixed with thermosetting resin such as unsaturated polyester resin or epoxy resin with fine aggregate such as silica sand and calcium carbonate, glass fiber, etc., and press-molded at high pressure while heating. Panel is optimal, very tight, hard and has stable chemistry. Therefore, it is excellent in strength, and is sufficiently used as a precast panel for lining even with a thickness of about 10 mm, and is preferable as a material for seismic reinforcement.

裏込モルタルとしては、セメントに微粒子混和材を加えた高強度微粒子グラウトモルタルが好ましく用いられる。微粒子グラウトモルタルは長距離圧送性に優れ、特殊添加剤によりブリーディングが少なく、長期耐久性にも優れており、好ましく用いられる。   As the back-filling mortar, a high-strength fine particle grout mortar obtained by adding a fine particle admixture to cement is preferably used. Fine grain grout mortar is preferably used because it has excellent long-distance pumpability, little bleeding due to special additives, and excellent long-term durability.

また、パネル固定用インサート金具として、面積に対して外周が短く角部がないため装着に際して、補強鉄筋と交錯することが少なく作業性のよい円板状のインサートを示したが、この形状は特に限定されることなく、ほかの形状のものでも使用できる。   In addition, as a panel fixing insert metal fitting, the outer periphery is short with respect to the area and there are no corners. Without limitation, other shapes can also be used.

本発明の工法は、既設トンネルを補強して、耐震補強構造とする方法に適しているが、トンネルの新設に際して、耐震構造の内面覆工としても応用できる。   The construction method of the present invention is suitable for a method of reinforcing an existing tunnel to provide a seismic reinforcement structure, but can also be applied as an inner surface lining of a seismic structure when a tunnel is newly established.

1 樹脂コンクリートパネル
2 H型鋼製支保工
21 ウェブ
22 フランジ
3 周方向補強鉄筋
31 機械式継手
4 軸方向補強鉄筋
41 フック
42 交差部
5 補強鋼板
6 高強度微粒子グラウトモルタル(裏込モルタル)
7 既設覆工コンクリート
8 スリーブ
9 端部受金具
10 パネル固定用インサート金具
11 取り付け部
12 ボルト穴
13 ボルト
14 ワッシャー
15 ナット
16 目地工
DESCRIPTION OF SYMBOLS 1 Resin concrete panel 2 H-shaped steel support 21 Web 22 Flange 3 Circumferential reinforcement reinforcement 31 Mechanical joint 4 Axial reinforcement reinforcement 41 Hook 42 Intersection 5 Reinforcement steel plate 6 High strength fine grain grout mortar (backing mortar)
7 Existing lining concrete 8 Sleeve 9 End bracket 10 Insert bracket for panel fixing 11 Mounting portion 12 Bolt hole 13 Bolt 14 Washer 15 Nut 16 Joint construction

Claims (3)

トンネル覆工コンクリート内面にH型鋼製支保工を設置し、該支保工の平行方向に沿って周方向補強鉄筋を配筋すると共に、トンネルの軸方向に沿って軸方向補強鉄筋を配筋し、該周方向および軸方向補強鉄筋とを交差部にて相互に結束し、さらにトンネルの軸方向に沿って補強鋼板を設置し、次いで前記支保工の表面全体に、背面に付着力を高めるために砂付加工したパネル背面にパネル固定用インサート金具を装着した樹脂コンクリートパネルを取り付け仮固定し、該パネル背面と既設覆工コンクリートとの間隙に流動性に優れた高強度微粒子グラウトモルタルを充填し、前記支保工、周方向および軸方向補強鉄筋、補強鋼板ならびに前記パネルを一体化することを特徴とするトンネルの耐震補強工法。   An H-shaped steel support is installed on the inner surface of the tunnel lining concrete, and circumferential reinforcement bars are arranged along the parallel direction of the support works, and axial reinforcement reinforcement bars are arranged along the axial direction of the tunnel. In order to bind the circumferential and axial reinforcing bars to each other at the intersection, and further install a reinforcing steel plate along the axial direction of the tunnel, and then increase the adhesion to the back surface over the entire surface of the support A resin concrete panel fitted with a panel fixing insert fitting is temporarily attached to the back of the panel that has been sanded, and the gap between the back of the panel and the existing lining concrete is filled with high strength fine grain grout mortar with excellent fluidity. An earthquake-resistant reinforcement method for tunnels, comprising integrating the support, circumferential and axial reinforcing bars, reinforcing steel plates, and the panel. 請求項1に記載の耐震補強工法において、トンネルの軸方向に沿って配筋される軸方向補強鉄筋は、フック式組合せ継手鉄筋であって、隣接する前記支保工の対面するウェブに設けたスリーブに両端部のフックを挿入することで其々の支保工が連結配筋され、トンネルの軸方向に設置される補強鋼板は、隣接する前記支保工の対面するフランジに設けた端部受金具に両端部を挿入することで設置されていることを特徴とするトンネルの耐震補強工法。   2. The seismic reinforcement method according to claim 1, wherein the axial reinforcing reinforcing bars arranged along the axial direction of the tunnel are hook-type combined joint reinforcing bars, and are provided on the web facing the adjacent supporting works. By inserting hooks at both ends, each support work is connected and reinforced, and the reinforcing steel plate installed in the axial direction of the tunnel is attached to the end receiving bracket provided on the flange facing the adjacent support work A seismic reinforcement method for tunnels, which is installed by inserting both ends. 請求項1または2に記載の耐震補強工法において、パネル固定インサート金具の形状が円板状であることを特徴とするトンネルの耐震補強工法。   The earthquake-resistant reinforcement method according to claim 1 or 2, wherein the shape of the panel fixing insert metal fitting is a disk shape.
JP2011279386A 2011-12-21 2011-12-21 Seismic reinforcement method by tunnel inner winding reinforcement lining Active JP5933250B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2011279386A JP5933250B2 (en) 2011-12-21 2011-12-21 Seismic reinforcement method by tunnel inner winding reinforcement lining

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2011279386A JP5933250B2 (en) 2011-12-21 2011-12-21 Seismic reinforcement method by tunnel inner winding reinforcement lining

Publications (2)

Publication Number Publication Date
JP2013129985A true JP2013129985A (en) 2013-07-04
JP5933250B2 JP5933250B2 (en) 2016-06-08

Family

ID=48907755

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2011279386A Active JP5933250B2 (en) 2011-12-21 2011-12-21 Seismic reinforcement method by tunnel inner winding reinforcement lining

Country Status (1)

Country Link
JP (1) JP5933250B2 (en)

Cited By (20)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103953366A (en) * 2014-05-20 2014-07-30 长安大学 Middle separation wall top original lining cavity backfilling construction method when single-hole tunnel is changed into multiple arches
CN104047619A (en) * 2014-06-06 2014-09-17 中国水电顾问集团华东勘测设计研究院有限公司 Steel grating lagging jack with adjustable size and construction method thereof
CN104790970A (en) * 2015-03-31 2015-07-22 同济大学 Method for utilizing combined structure to conduct shield tunnel strengthening
CN105201530A (en) * 2015-10-28 2015-12-30 北京工业大学 Repairing and strengthening method for large cracks on rock tunnel lining
CN106050266A (en) * 2016-07-22 2016-10-26 中铁建大桥工程局集团第五工程有限公司 Construction method for undermining connected channel between shield sections in water-rich sand cobble stratum tunnel
CN106801405A (en) * 2017-02-28 2017-06-06 中国电建集团华东勘测设计研究院有限公司 A kind of method of underground rich water with the multiple issue pre-treatments of hole section
KR101750908B1 (en) * 2017-02-01 2017-06-29 한국건설기술연구원 System of the shotcrete lining reinforced the adhesion/tension by wire mesh and assembly structure thereof and method setting up the wire mesh to the steel rib for tunnel
CN107288656A (en) * 2017-06-20 2017-10-24 清华大学 A kind of water seal cave depot country rock actively carries the construction method of system
CN107975383A (en) * 2017-11-20 2018-05-01 中国电建集团华东勘测设计研究院有限公司 Underground chamber tee T intersection excavation supporting construction method
CN108019221A (en) * 2017-12-15 2018-05-11 西南交通大学 Meizoseismal area Cross-fault leveling tunnel-liner flexible telescopic joint device and tunnel lining structure
CN108119166A (en) * 2017-12-15 2018-06-05 西南交通大学 Across the large-scale activity fracture belt tunnel prefbricated tunnel lining structure in meizoseismal area and tunnel
CN108761044A (en) * 2018-08-13 2018-11-06 重庆科技学院 The experimental rig and method of microorganism induction precipitation of calcium carbonate solidification sand under a kind of subnormal ambient
JP2018184724A (en) * 2017-04-24 2018-11-22 大成建設株式会社 Construction method of culvert
CN109184742A (en) * 2018-09-19 2019-01-11 中国水利水电第四工程局有限公司 A kind of front pre-grouting method of high-pressure water-enriched weak surrounding rock mountain tunnel
JP2019007258A (en) * 2017-06-27 2019-01-17 キザイテクト株式会社 Fixing method of resin concrete panel in tunnel inside lining
CN109252875A (en) * 2018-12-03 2019-01-22 中铁三局集团有限公司 Existing tunnel lining reinforcement structure and reinforcement means
CN110107319A (en) * 2019-06-26 2019-08-09 洛阳理工学院 A method of utilizing embedding arch shotcrete composite structure Strengthening Tunnel lining cutting
CN113074006A (en) * 2021-04-08 2021-07-06 刘京津 Highway tunnel engineering is with preventing square device that collapses
CN113700503A (en) * 2021-08-30 2021-11-26 长业建设集团有限公司 Uneven settlement reinforcement treatment method in expressway tunnel bottom plate construction process
CN113833499A (en) * 2021-10-18 2021-12-24 重庆交通大学 Grouting device for pipe shed arch center for tunnel construction and grouting method thereof

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN107575242B (en) * 2017-09-25 2019-02-22 扬州市城市规划设计研究院有限责任公司 A kind of tunnel structure of high-strength anti-seismic
CN109139048B (en) * 2018-09-04 2020-05-15 中铁十二局集团有限公司 Advanced small conduit grouting structure and construction method thereof
CN110820702A (en) * 2019-12-11 2020-02-21 黄河勘测规划设计研究院有限公司 Lining construction method for assembled reinforced mesh cast-in-place concrete tunnel

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH1025997A (en) * 1996-07-11 1998-01-27 Ozawa Concrete Kogyo Kk Repairing method for tunnel wall
JPH11200785A (en) * 1998-01-13 1999-07-27 Taisei Corp Reinforcing method of shield tunnel
JP2001280089A (en) * 2000-03-29 2001-10-10 Ozawa Concrete Industries Co Ltd Reinforcing method when placing concrete in high- strength buried form and repairing method for tunnel wall
JP3165913U (en) * 2010-11-29 2011-02-10 キザイテクト株式会社 Panel fixing material
JP3174028U (en) * 2011-12-21 2012-03-01 株式会社光計画設計事務所 Seismic reinforcement structure for tunnels

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH1025997A (en) * 1996-07-11 1998-01-27 Ozawa Concrete Kogyo Kk Repairing method for tunnel wall
JPH11200785A (en) * 1998-01-13 1999-07-27 Taisei Corp Reinforcing method of shield tunnel
JP2001280089A (en) * 2000-03-29 2001-10-10 Ozawa Concrete Industries Co Ltd Reinforcing method when placing concrete in high- strength buried form and repairing method for tunnel wall
JP3165913U (en) * 2010-11-29 2011-02-10 キザイテクト株式会社 Panel fixing material
JP3174028U (en) * 2011-12-21 2012-03-01 株式会社光計画設計事務所 Seismic reinforcement structure for tunnels

Cited By (27)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103953366A (en) * 2014-05-20 2014-07-30 长安大学 Middle separation wall top original lining cavity backfilling construction method when single-hole tunnel is changed into multiple arches
CN104047619A (en) * 2014-06-06 2014-09-17 中国水电顾问集团华东勘测设计研究院有限公司 Steel grating lagging jack with adjustable size and construction method thereof
CN104047619B (en) * 2014-06-06 2016-10-05 中国水电顾问集团华东勘测设计研究院有限公司 The steel grating bow member of size adjustable and construction method thereof
CN104790970A (en) * 2015-03-31 2015-07-22 同济大学 Method for utilizing combined structure to conduct shield tunnel strengthening
CN105201530A (en) * 2015-10-28 2015-12-30 北京工业大学 Repairing and strengthening method for large cracks on rock tunnel lining
CN106050266B (en) * 2016-07-22 2018-01-02 中铁建大桥工程局集团第五工程有限公司 The construction method of shield section service channel tunneling in rich water sand-pebble layer tunnel
CN106050266A (en) * 2016-07-22 2016-10-26 中铁建大桥工程局集团第五工程有限公司 Construction method for undermining connected channel between shield sections in water-rich sand cobble stratum tunnel
KR101750908B1 (en) * 2017-02-01 2017-06-29 한국건설기술연구원 System of the shotcrete lining reinforced the adhesion/tension by wire mesh and assembly structure thereof and method setting up the wire mesh to the steel rib for tunnel
CN106801405A (en) * 2017-02-28 2017-06-06 中国电建集团华东勘测设计研究院有限公司 A kind of method of underground rich water with the multiple issue pre-treatments of hole section
JP2018184724A (en) * 2017-04-24 2018-11-22 大成建設株式会社 Construction method of culvert
CN107288656A (en) * 2017-06-20 2017-10-24 清华大学 A kind of water seal cave depot country rock actively carries the construction method of system
CN107288656B (en) * 2017-06-20 2019-12-13 清华大学 construction method of water seal cave depot surrounding rock active bearing system
JP2019007258A (en) * 2017-06-27 2019-01-17 キザイテクト株式会社 Fixing method of resin concrete panel in tunnel inside lining
CN107975383A (en) * 2017-11-20 2018-05-01 中国电建集团华东勘测设计研究院有限公司 Underground chamber tee T intersection excavation supporting construction method
CN107975383B (en) * 2017-11-20 2019-11-08 中国电建集团华东勘测设计研究院有限公司 Underground chamber tee T intersection excavation supporting construction method
CN108119166A (en) * 2017-12-15 2018-06-05 西南交通大学 Across the large-scale activity fracture belt tunnel prefbricated tunnel lining structure in meizoseismal area and tunnel
CN108019221A (en) * 2017-12-15 2018-05-11 西南交通大学 Meizoseismal area Cross-fault leveling tunnel-liner flexible telescopic joint device and tunnel lining structure
CN108761044A (en) * 2018-08-13 2018-11-06 重庆科技学院 The experimental rig and method of microorganism induction precipitation of calcium carbonate solidification sand under a kind of subnormal ambient
CN109184742A (en) * 2018-09-19 2019-01-11 中国水利水电第四工程局有限公司 A kind of front pre-grouting method of high-pressure water-enriched weak surrounding rock mountain tunnel
CN109252875A (en) * 2018-12-03 2019-01-22 中铁三局集团有限公司 Existing tunnel lining reinforcement structure and reinforcement means
CN109252875B (en) * 2018-12-03 2024-03-19 中铁三局集团有限公司 Existing tunnel lining reinforcing structure and reinforcing method
CN110107319A (en) * 2019-06-26 2019-08-09 洛阳理工学院 A method of utilizing embedding arch shotcrete composite structure Strengthening Tunnel lining cutting
CN113074006A (en) * 2021-04-08 2021-07-06 刘京津 Highway tunnel engineering is with preventing square device that collapses
CN113700503A (en) * 2021-08-30 2021-11-26 长业建设集团有限公司 Uneven settlement reinforcement treatment method in expressway tunnel bottom plate construction process
CN113700503B (en) * 2021-08-30 2023-08-25 长业建设集团有限公司 Non-uniform settlement reinforcement treatment method in expressway tunnel bottom plate construction process
CN113833499A (en) * 2021-10-18 2021-12-24 重庆交通大学 Grouting device for pipe shed arch center for tunnel construction and grouting method thereof
CN113833499B (en) * 2021-10-18 2023-10-24 重庆交通大学 Grouting device for tunnel construction pipe shed arch centering and grouting method thereof

Also Published As

Publication number Publication date
JP5933250B2 (en) 2016-06-08

Similar Documents

Publication Publication Date Title
JP5933250B2 (en) Seismic reinforcement method by tunnel inner winding reinforcement lining
JP3174028U (en) Seismic reinforcement structure for tunnels
CN103510640B (en) A kind of fabricated shear wall and assembly method thereof
CN104652654A (en) Novel assembled shear wall structure
KR101522504B1 (en) Construction method of tunnel airduct slab
KR101021854B1 (en) Half precast composite slab and this production technique
CN103225422A (en) Existing masonry structure using light steel structure direct storey-adding technology and construction method of existing masonry structure
CN108756021A (en) Envelope storehouse method for assembled architecture conversion layer sleeve grouting exterior wall
CN204112525U (en) Band perps precast shear wall structure in strong concrete precast frame
KR101135881B1 (en) Joint structure of pc column and pc flat plate and construction method thereof
KR101334071B1 (en) The needless filling structure in the junction of pc beam and vertical member
KR100940550B1 (en) Reinforcing concrete structure and method using hybrid fiber composite
CN204590344U (en) Sheet material curtain wall antidetonation connects Combined hanger
KR100690395B1 (en) Continuous Beam Construction Method of Prestressed Concrete Beam
JP6691515B2 (en) Fixing method for resin concrete panel in tunnel inner lining
JP3799053B1 (en) Floor slab structure and method for reinforcing steel slab
KR100812243B1 (en) Self-surporting form system for constructing concrete walls
JP5443193B2 (en) Lattice body manufacturing method and concrete body construction method
CN204059941U (en) A kind of arrangement of reinforcement formula permanent formwork and concrete structure member
CN209384511U (en) Based on the frame structure building with the prefabricated light aggregate concrete filling big-wall board group dress of groove
JP2018119281A (en) Thin embedded mold form and assembly method of thin embedded mold form
CN207794375U (en) Concrete walls with through connection bridge
KR101957880B1 (en) Structure and method for constructing of shear connecting between outside strengthen wall and slab
JP5345238B1 (en) Construction method of base-isolated base structure and base-isolated base structure
JP3211895U (en) Fixed structure of resin concrete panel fixed steel and steel support

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20141216

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20150914

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20151006

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20151126

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20151210

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20160419

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20160502

R150 Certificate of patent or registration of utility model

Ref document number: 5933250

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313118

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250