JP2013129793A - Metal particle-containing ink and method for forming conductive pattern - Google Patents

Metal particle-containing ink and method for forming conductive pattern Download PDF

Info

Publication number
JP2013129793A
JP2013129793A JP2011281950A JP2011281950A JP2013129793A JP 2013129793 A JP2013129793 A JP 2013129793A JP 2011281950 A JP2011281950 A JP 2011281950A JP 2011281950 A JP2011281950 A JP 2011281950A JP 2013129793 A JP2013129793 A JP 2013129793A
Authority
JP
Japan
Prior art keywords
metal particle
containing ink
group
general formula
metal
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2011281950A
Other languages
Japanese (ja)
Other versions
JP5978621B2 (en
Inventor
Masahiro Yanagisawa
匡浩 柳澤
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Ricoh Co Ltd
Original Assignee
Ricoh Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Ricoh Co Ltd filed Critical Ricoh Co Ltd
Priority to JP2011281950A priority Critical patent/JP5978621B2/en
Publication of JP2013129793A publication Critical patent/JP2013129793A/en
Application granted granted Critical
Publication of JP5978621B2 publication Critical patent/JP5978621B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Landscapes

  • Manufacturing Of Electric Cables (AREA)
  • Inks, Pencil-Leads, Or Crayons (AREA)
  • Conductive Materials (AREA)

Abstract

PROBLEM TO BE SOLVED: To provide a metal particle-containing ink having a low volume resistivity value even after having been coated on a substrate or the like and fired.SOLUTION: A metal particle-containing ink includes a metal particle, a metal particle dispersant, and a solvent. The metal particle dispersant is a polymer compound obtained by polymerizing a monomer represented by the following general formula (I). (In the general formula (I), Rrepresents a hydrogen atom or a methyl group, Rrepresents a hydrogen atom or a 1-4 C alkyl group, n represents a natural number, and x represents an integer of 1-3).

Description

本発明は、金属粒子含有インク及び導電性パターンの形成方法に関する。   The present invention relates to a metal particle-containing ink and a method for forming a conductive pattern.

電子回路などに用いられる機能性材料のパターン形成方法として、金属粒子含有インクを基板上の所定位置に所定量供給してパターンを形成する、インクジェット印刷法などの印刷法が知られている。   As a pattern forming method of a functional material used for an electronic circuit or the like, a printing method such as an ink jet printing method is known in which a predetermined amount of metal particle-containing ink is supplied to a predetermined position on a substrate to form a pattern.

インクジェット印刷法は、フォトリソグラフィー法などに比べて、大がかりな設備を必要としない、工程数が少ない、材料使用効率が高いなどの点で優れている。   The ink jet printing method is superior to the photolithography method in that it does not require large-scale equipment, the number of processes is small, and the material use efficiency is high.

インクジェット印刷法で使用されるインクとしては、1次粒径がナノオーダーである金属粒子を溶媒に分散した、ナノメタルインクが主に使用される(例えば、特許文献1)。ナノメタルインクは、焼成温度で融着して、パターン化された導体電極となる。   As an ink used in the inkjet printing method, a nano metal ink in which metal particles having a primary particle size of nano order are dispersed in a solvent is mainly used (for example, Patent Document 1). The nanometal ink is fused at the firing temperature to become a patterned conductor electrode.

特許文献1などのナノメタルインクには、インクの溶媒中で金属微粒子が凝集しないように、有機材料を含む分散安定剤が含有される。含有される分散安定剤は、インクの基板への塗布、乾燥を経て、加熱されることによって、酸化及び/又は分解されて、除去される。しかしながら、従来の加熱による分散安定剤の除去では、分散安定剤が完全には除去されず、基板中に分散安定剤が残留することがある。分散安定剤が残留すると、焼成時に金属微粒子同士の融着が阻害され、空隙が多くなるため、体積抵抗値が大きくなるという問題点があった。   The nanometal ink such as Patent Document 1 contains a dispersion stabilizer containing an organic material so that metal fine particles do not aggregate in the solvent of the ink. The dispersion stabilizer contained is removed by being oxidized and / or decomposed by being heated after being applied to the substrate of the ink and dried. However, in the conventional removal of the dispersion stabilizer by heating, the dispersion stabilizer is not completely removed, and the dispersion stabilizer may remain in the substrate. When the dispersion stabilizer remains, there is a problem in that the fusion between the metal fine particles is inhibited at the time of firing and the voids increase, resulting in an increase in the volume resistance value.

そこで、本発明は、基板などへの塗布及び焼成後においても、体積抵抗値が小さい金属粒子含有インクを提供することを課題とする。   Accordingly, an object of the present invention is to provide a metal particle-containing ink having a small volume resistance value even after being applied to a substrate or the like and baked.

金属粒子と、金属粒子分散剤と、溶媒と、を含み、
前記金属粒子分散剤は、下記一般式(I)で示す単量体を重合した高分子化合物である、
金属粒子含有インクが提供される。
Metal particles, a metal particle dispersant, and a solvent,
The metal particle dispersant is a polymer compound obtained by polymerizing a monomer represented by the following general formula (I).
A metal particle-containing ink is provided.

Figure 2013129793
(一般式(I)中、Rは水素原子又はメチル基であり、R1'は水素原子又は炭素数1〜4のアルキル基であり、nは自然数であり、xは1〜3の整数を表す。)
Figure 2013129793
(In general formula (I), R 1 is a hydrogen atom or a methyl group, R 1 ′ is a hydrogen atom or an alkyl group having 1 to 4 carbon atoms, n is a natural number, and x is an integer of 1 to 3) Represents.)

本発明によれば、基板などへの塗布及び焼成後においても、体積抵抗値が小さい金属粒子含有インクが提供できる。   According to the present invention, it is possible to provide a metal particle-containing ink having a small volume resistivity even after being applied to a substrate or the like and baked.

実施形態により、本発明をより詳細に説明する。   The present invention will be described in more detail by way of embodiments.

本発明の金属粒子含有インクは、金属粒子、金属粒子分散剤及び溶媒を含む。先ずは、それぞれの材料について説明する。   The metal particle-containing ink of the present invention contains metal particles, a metal particle dispersant, and a solvent. First, each material will be described.

[金属粒子分散剤]
本発明の金属粒子含有インクに含まれる金属粒子分散剤は、下記一般式(1)で示される単量体(モノマー)を重合した高分子化合物である。
[Metal particle dispersant]
The metal particle dispersant contained in the metal particle-containing ink of the present invention is a polymer compound obtained by polymerizing a monomer (monomer) represented by the following general formula (1).

Figure 2013129793
(一般式(I)中、Rは水素原子又はメチル基であり、R1'は水素原子又は炭素数1〜4のアルキル基であり、nは自然数であり、xは1〜3の整数を表す)。
Figure 2013129793
(In general formula (I), R 1 is a hydrogen atom or a methyl group, R 1 ′ is a hydrogen atom or an alkyl group having 1 to 4 carbon atoms, n is a natural number, and x is an integer of 1 to 3) Represents).

一般式(I)で示した単量体を重合した高分子化合物を、金属粒子含有インクに含まれる金属粒子分散剤として使用する場合、分散液中で、金属粒子が概ね一次粒子の状態で存在することができる。即ち、概ね一次粒子の粒径の金属粒子を有する、多分散度が小さい分散液を得ることができる。非常に凝集しやすい、ナノメートルサイズの金属粒子を使用した場合においても、この効果が得られる。   When the polymer compound obtained by polymerizing the monomer represented by the general formula (I) is used as a metal particle dispersant contained in the metal particle-containing ink, the metal particles are present in the state of primary particles in the dispersion. can do. That is, it is possible to obtain a dispersion having a small polydispersity and having metal particles having a particle size of primary particles. This effect can be obtained even when nanometer-sized metal particles that are very easily aggregated are used.

一般式(I)で示した単量体を重合した高分子化合物(重合体)は、ポリシロキサン部位を有する。このポリシロキサン部位は、重合体において側鎖となるため、重合体は、高い立体効果を有する。そのため、ポリシロキサン部位の立体障害により、分散液中において、金属粒子同士が凝集しにくくなる。   The polymer compound (polymer) obtained by polymerizing the monomer represented by the general formula (I) has a polysiloxane moiety. Since this polysiloxane site becomes a side chain in the polymer, the polymer has a high steric effect. Therefore, metal particles are less likely to aggregate in the dispersion due to steric hindrance at the polysiloxane site.

また、本発明の金属粒子含有インクは、一般式(I)で示した単量体に加え、後述するイオン性官能基及び/又は含窒素複素環基を有する単量体を添加し、共重合した高分子化合物を金属粒子分散剤として使用することが好ましい。一般式(I)で示した単量体と、後述するイオン性官能基及び/又は含窒素複素環基を有する単量体と、を共重合した共重合体を金属粒子分散剤として使用することにより、金属粒子表面への共重合体への吸着が促進される。また、前述した、一般式(I)で示した単量体が含まれることによる、ポリシロキサン部位の立体効果も維持される。結果として、イオン性官能基及び/又は含窒素複素環基を有する単量体は、金属微粒子(銅)又は金属微粒子の酸化皮膜への吸着効果が高く、少量の添加により効果を発揮する。   The metal particle-containing ink of the present invention is a copolymer obtained by adding a monomer having an ionic functional group and / or a nitrogen-containing heterocyclic group, which will be described later, in addition to the monomer represented by the general formula (I). It is preferable to use the polymer compound prepared as a metal particle dispersant. A copolymer obtained by copolymerizing the monomer represented by the general formula (I) and a monomer having an ionic functional group and / or a nitrogen-containing heterocyclic group described later is used as a metal particle dispersant. By this, adsorption to the copolymer on the surface of the metal particles is promoted. Further, the steric effect of the polysiloxane moiety due to the inclusion of the monomer represented by the general formula (I) described above is also maintained. As a result, the monomer having an ionic functional group and / or a nitrogen-containing heterocyclic group has a high effect of adsorbing metal fine particles (copper) or metal fine particles on the oxide film, and exhibits the effect when added in a small amount.

イオン性官能基としては、アミノ基、カルボキシル基、スルホニル基、ホスホ基などが挙げられる。   Examples of the ionic functional group include an amino group, a carboxyl group, a sulfonyl group, and a phospho group.

アミノ基を有する単量体としては、N−メチルアミノエチル(メタ)アクリレート、N−エチルアミノエチル(メタ)アクリレート、N,N−ジメチルアミノエチル(メタ)アクリレート、N,N−ジエチルアミノエチル(メタ)アクリレート、N,N−ジブチルアミノエチルアクリレート、N,N−ジ−tert−ブチルアミノエチルアクリレート、N−フェニルアミノエチルメタクリレート、N,N−ジフェニルアミノエチルメタクリレート、アミノスチレン、ジメチルアミノスチレン、N−メチルアミノエチルスチレン、ジメチルアミノエトキシスチレン、ジフェニルアミノエチルスチレン、N−フェニルアミノエチルスチレン、2−N−ピペリジルエチル(メタ)アクリレート、2−ビニルピリジン、4−ビニルピリジン、2−ビニル−6−メチルピリジンなどが挙げられる。   Examples of the monomer having an amino group include N-methylaminoethyl (meth) acrylate, N-ethylaminoethyl (meth) acrylate, N, N-dimethylaminoethyl (meth) acrylate, N, N-diethylaminoethyl (meth) ) Acrylate, N, N-dibutylaminoethyl acrylate, N, N-di-tert-butylaminoethyl acrylate, N-phenylaminoethyl methacrylate, N, N-diphenylaminoethyl methacrylate, aminostyrene, dimethylaminostyrene, N- Methylaminoethylstyrene, dimethylaminoethoxystyrene, diphenylaminoethylstyrene, N-phenylaminoethylstyrene, 2-N-piperidylethyl (meth) acrylate, 2-vinylpyridine, 4-vinylpyridine, 2-vinyl Such as 6-methyl-pyridine.

カルボキシル基を有する単量体としては、(メタ)アクリル酸、マレイン酸、無水マレイン酸、イタコン酸、無水イタコン酸、フマル酸、桂皮酸、クロトン酸、ビニル安息香酸、2−メタクリロキシエチルコハク酸、2−メタクリロキシエチルマレイン酸、2−メタクリロキシエチルヘキサヒドロフタル酸、2−メタクリロキシエチルトリメリット酸などが挙げられる。   Monomers having a carboxyl group include (meth) acrylic acid, maleic acid, maleic anhydride, itaconic acid, itaconic anhydride, fumaric acid, cinnamic acid, crotonic acid, vinyl benzoic acid, 2-methacryloxyethyl succinic acid 2-methacryloxyethyl maleic acid, 2-methacryloxyethyl hexahydrophthalic acid, 2-methacryloxyethyl trimellitic acid, and the like.

スルホニル基を有する単量体としては、ビニルスルホン酸、アリルスルホン酸、スチレンスルホン酸、2−アクリルアミド−2−メチルプロパンスルホン酸などが挙げられる。   Examples of the monomer having a sulfonyl group include vinyl sulfonic acid, allyl sulfonic acid, styrene sulfonic acid, and 2-acrylamido-2-methylpropane sulfonic acid.

ホスホ基を有する単量体としては、(メタ)アクリロキシプロピルホスホン酸などが挙げられる。   Examples of the monomer having a phospho group include (meth) acryloxypropylphosphonic acid.

また、含窒素複素環基を有する単量体としては、特に限定されないが、例えば、ビニルピロリドンなどを使用することができる。   Moreover, it does not specifically limit as a monomer which has a nitrogen-containing heterocyclic group, For example, vinylpyrrolidone etc. can be used.

共重合における、各々の単量体の含有割合は、分散剤の金属粒子への吸着性及び金属粒子同士の凝集性のバランスの観点などから、当業者が適宜決定することができる。好ましい含有割合としては、各々の単量体の仕込み比で、「一般式(I)に示した単量体」:「イオン性官能基及び/又は含窒素複素環基を有する単量体」=90:10〜99.9:0.1である。   The content ratio of each monomer in the copolymerization can be appropriately determined by those skilled in the art from the viewpoint of the balance between the adsorptivity of the dispersant to the metal particles and the cohesiveness of the metal particles. As a preferable content ratio, “the monomer represented by the general formula (I)”: “monomer having an ionic functional group and / or a nitrogen-containing heterocyclic group” = 90: 10-99.9: 0.1.

なお、一般式(I)で示した単量体は、例えば、MCR−M07、M11、M17、M22(Gelest社製)、x−22−2475、2426(信越化学工業株式会社製)、サイラプレーンFM−0711、0721、0725(JNC株式会社製)などを使用することができる。   The monomer represented by the general formula (I) is, for example, MCR-M07, M11, M17, M22 (manufactured by Gelest), x-22-2475, 2426 (manufactured by Shin-Etsu Chemical Co., Ltd.), Silaplane FM-0711, 0721, 0725 (manufactured by JNC Corporation) and the like can be used.

[溶媒]
金属粒子含有インクに使用される溶媒としては、一般式(I)で示した単量体に含まれるポリシロキサン部位との相溶性などの観点から、非極性の有機溶媒を使用することが好ましい。溶媒として非極性の有機溶媒を使用することにより、ポリシロキサン部位による、前述の立体効果が高くなり、分散液の分散安定性が高くなる。
[solvent]
As the solvent used in the metal particle-containing ink, it is preferable to use a nonpolar organic solvent from the viewpoint of compatibility with the polysiloxane moiety contained in the monomer represented by formula (I). By using a nonpolar organic solvent as the solvent, the above-mentioned steric effect due to the polysiloxane moiety is increased, and the dispersion stability of the dispersion is increased.

非極性の有機溶媒としては、ペンタン、ヘキサン、ヘプタン、オクタン、ノナン、デカン、ドデカン、テトラデカンなどのパラフィン系炭化水素;イソヘキサン、イソオクタン、イソドデカン等のイソパラフィン系炭化水素;シクロドデセンなどのシクロオレフィン系炭化水素;流動パラフィンなどのアルキルナフテン系炭化水素;ベンゼン、トルエン、キシレン、アルキルベンゼン、ソルベントナフサなどの芳香族炭化水素;ジメチルシリコーンオイル、フェニルメチルシリコーンオイル、ジアルキルシリコーンオイル、アルキルフェニルシリコーンオイル、環状ポリジアルキルシロキサン又は環状ポリアルキルフェニルシロキサンなどのシリコーン系のオイル;が、一例として挙げられる。   Nonpolar organic solvents include paraffinic hydrocarbons such as pentane, hexane, heptane, octane, nonane, decane, dodecane, and tetradecane; isoparaffinic hydrocarbons such as isohexane, isooctane, and isododecane; cycloolefin hydrocarbons such as cyclododecene Alkyl naphthenic hydrocarbons such as liquid paraffin; aromatic hydrocarbons such as benzene, toluene, xylene, alkyl benzene and solvent naphtha; dimethyl silicone oil, phenyl methyl silicone oil, dialkyl silicone oil, alkyl phenyl silicone oil, cyclic polydialkyl siloxane Or silicone-based oils such as cyclic polyalkylphenylsiloxanes.

[金属粒子]
金属粒子としては、特に限定されないが、インクの電気的特性などから、例えば、銅が使用される。
[Metal particles]
Although it does not specifically limit as a metal particle, For example, copper is used from the electrical property of an ink.

[分散方法]
金属粒子を、金属粒子分散剤を用いて溶媒中に分散させる方法としては、特に限定されず、ホモジナイザー、ボールミル、サンドミル、アトライターなどの、従来の分散装置を用いて、分散することができる。
[Distribution method]
The method for dispersing the metal particles in the solvent using the metal particle dispersant is not particularly limited, and the metal particles can be dispersed using a conventional dispersing device such as a homogenizer, a ball mill, a sand mill, or an attritor.

[導電性パターンの形成方法]
本発明に係る導電性パターンの形成方法は、本発明のインクを塗布する塗布工程と、インクを焼結することにより、導電性を発現させる焼結工程と、を有する。
[Method of forming conductive pattern]
The method for forming a conductive pattern according to the present invention includes a coating process for applying the ink according to the present invention, and a sintering process for developing conductivity by sintering the ink.

塗布工程における、塗布手段としては、インクを使用する印刷法であれば特に限定されないが、直接パターニングが実現できる観点から、インクジェット印刷法を使用することが好ましい。   The application means in the application step is not particularly limited as long as it is a printing method using ink, but it is preferable to use an ink jet printing method from the viewpoint of realizing direct patterning.

焼成工程では、インクを焼結して、金属粒子同士を結合させることにより、粒子間の界面が消失する。この焼成工程によって、インクの導電性が発現する。なお、金属粒子同士が融合するための駆動力としては、熱エネルギーなどが考えられるが、本発明はこれに限定されない。   In the firing step, the interface between the particles disappears by sintering the ink and bonding the metal particles together. By this baking process, the conductivity of the ink is developed. The driving force for fusing the metal particles may be thermal energy, but the present invention is not limited to this.

熱エネルギー以外のエネルギーによる焼成としては、具体的には、光エネルギーによる焼成(光焼成)などが挙げられる。光エネルギーを照射して、室温乃至低温加熱の状態で金属粒子を焼成することができる。なお、ここでの低温とは、基材が照射熱によりダメージを受けない温度のことを指し、基材の材質などによっても変わるが、通常、略200℃以下である。光エネルギーの光源としては、特に限定されないが、例えば、キセノンランプなどを使用することができる。なお、光照射の際には、溶媒を予備加熱して、蒸発させておくことが好ましい。   Specific examples of firing by energy other than thermal energy include firing by light energy (photo firing). The metal particles can be fired in the state of room temperature to low-temperature heating by irradiation with light energy. In addition, the low temperature here refers to a temperature at which the base material is not damaged by the irradiation heat, and is usually about 200 ° C. or lower although it varies depending on the material of the base material. The light source of light energy is not particularly limited, and for example, a xenon lamp can be used. In addition, it is preferable to evaporate by preheating a solvent in the case of light irradiation.

また、(熱)焼成工程では、窒素やアルゴンなどの不活性ガスで置換された、実質的に無酸素の雰囲気で実行することが好ましい。無酸素の雰囲気で焼成を実行することにより、焼成時及び焼成後に、金属粒子が酸化することを防ぐことができ、得られる金属粒子含有インクの導電率が向上するため好ましい。   In addition, the (thermal) firing step is preferably performed in a substantially oxygen-free atmosphere that is replaced with an inert gas such as nitrogen or argon. By performing firing in an oxygen-free atmosphere, it is preferable to oxidize the metal particles during and after firing, and the conductivity of the resulting metal particle-containing ink is improved.

[実施例]
実施例を挙げて、本発明をより詳細に説明するが、本発明は下記の実施例に限定されない。なお、実施例における、「部」は、「質量部」を指す。
[Example]
The present invention will be described in more detail with reference to examples, but the present invention is not limited to the following examples. In the examples, “part” means “part by mass”.

[実施例1−5]
<金属粒子分散剤の合成例>
表1に、各実施例において、使用した単量体を示す。表1における、単量体1、単量体2は、各々、前述の一般式(I)で示した単量体と、イオン性官能基及び/又は含窒素複素環基を有する単量体と、に対応する。
[Example 1-5]
<Synthesis Example of Metal Particle Dispersant>
Table 1 shows the monomers used in each example. In Table 1, monomer 1 and monomer 2 are each a monomer represented by the above general formula (I) and a monomer having an ionic functional group and / or a nitrogen-containing heterocyclic group. , Corresponding to.

Figure 2013129793
撹拌機、温度計及び還流冷却器を備えた反応容器に、溶媒としてトルエン300部を入れ、70℃に加熱した。この反応容器内に、表1で示したモノマー1、モノマー2及びアゾビスジメチルバレロニトリル1部(重合開始剤)を含む溶液を、1時間に亘って滴下した。その後、70℃に維持したまま5時間攪拌して、反応を終了した。得られた溶液から、トルエンをエバポレーターで蒸発させて、各実施例の高分子(金属粒子分散剤)を得た。
Figure 2013129793
In a reaction vessel equipped with a stirrer, a thermometer and a reflux condenser, 300 parts of toluene as a solvent was placed and heated to 70 ° C. A solution containing monomer 1, monomer 2 and 1 part of azobisdimethylvaleronitrile (polymerization initiator) shown in Table 1 was dropped into the reaction vessel over 1 hour. Thereafter, the reaction was terminated by stirring for 5 hours while maintaining the temperature at 70 ° C. From the resulting solution, toluene was evaporated by an evaporator to obtain a polymer (metal particle dispersant) of each example.

<金属粒子含有インクの調製例>
得られた金属粒子分散剤と、ナノ銅粒子(QSI−Nano Copper Powder;QuantumSphere社製)と、を溶媒に加え、予備分散として10分間超音波分散した。その後、高速ミキサー(フィルミックス;プライミクス社製)を用いて10分間分散した。分散後に得られたスラリーは、1μmのフィルターに通して粗大粒子を除去し、金属粒子含有インクを得た。
<Preparation example of metal particle-containing ink>
The obtained metal particle dispersant and nano copper particles (QSI-Nano Copper Powder; manufactured by QuantumSphere) were added to a solvent and ultrasonically dispersed for 10 minutes as a preliminary dispersion. Thereafter, the mixture was dispersed for 10 minutes using a high-speed mixer (Filmix; manufactured by Primex). The slurry obtained after dispersion was passed through a 1 μm filter to remove coarse particles to obtain a metal particle-containing ink.

金属粒子含有インクの調製例で使用した、溶媒及び、各材料の組成比を、表2に示す。表2には、得られた金属粒子含有インクにおける、金属粒子の平均粒径も示している。   Table 2 shows the solvent and the composition ratio of each material used in the preparation example of the metal particle-containing ink. Table 2 also shows the average particle diameter of the metal particles in the obtained metal particle-containing ink.

Figure 2013129793
<熱焼成による焼成例>
得られたインクをガラス基板上にスピンコートし、120℃のホットプレートで溶媒を蒸発させた。その後、窒素フローした電気炉で、300℃、1時間加熱することにより、焼成体を形成した。
Figure 2013129793
<Baking example by thermal baking>
The obtained ink was spin-coated on a glass substrate, and the solvent was evaporated on a hot plate at 120 ° C. Then, the sintered compact was formed by heating at 300 degreeC for 1 hour with the electric furnace which carried out the nitrogen flow.

得られた焼成体の電気抵抗及び膜厚を測定し、体積抵抗率を算出した。算出した体積抵抗率を、表3に示す。   The electrical resistance and film thickness of the obtained fired body were measured, and the volume resistivity was calculated. Table 3 shows the calculated volume resistivity.

Figure 2013129793
[実施例6〜10]
実施例1〜5における<熱焼成による焼成例>を、各々、下記の<光焼成による焼成例>に変更した以外は、実施例1〜5と同様の方法により、実施例6〜10の焼成体を形成した。
Figure 2013129793
[Examples 6 to 10]
Baking of Examples 6 to 10 was carried out in the same manner as in Examples 1 to 5, except that <Baking example by thermal baking> in Examples 1 to 5 was changed to <Baking example by light baking> below. Formed body.

<光焼成による焼成例>
得られたインクをPETフィルム上にスピンコートし、120℃のホットプレートで溶媒を蒸発させた。その後、キセノンランプを1時間照射することにより、焼成体を形成した。
<Baking example by light baking>
The obtained ink was spin-coated on a PET film, and the solvent was evaporated on a hot plate at 120 ° C. Then, the fired body was formed by irradiating with a xenon lamp for 1 hour.

得られた焼成体の電気抵抗及び膜厚を測定し、体積抵抗率を算出した。算出した体積抵抗率を、表4に示す。   The electrical resistance and film thickness of the obtained fired body were measured, and the volume resistivity was calculated. Table 4 shows the calculated volume resistivity.

Figure 2013129793
以上、詳細かつ具体的な説明から明らかであるように、本発明は一般式(I)で示した分散剤を使用することにより、体積抵抗率が低い金属粒子含有インクを提供することができる。また、本発明の金属粒子含有インクを使用した、インクジェット印刷法などの印刷法により、電気的特性に優れた導電性パターンを提供することができる。
Figure 2013129793
As described above, as is clear from the detailed and specific description, the present invention can provide a metal particle-containing ink having a low volume resistivity by using the dispersant represented by the general formula (I). Moreover, the electroconductive pattern excellent in the electrical property can be provided by printing methods, such as an inkjet printing method, using the metal particle containing ink of this invention.

特開2010−528428号公報JP 2010-528428 A

Claims (6)

金属粒子と、金属粒子分散剤と、溶媒と、を含み、
前記金属粒子分散剤は、下記一般式(I)で示す単量体を重合した高分子化合物である、
金属粒子含有インク。
Figure 2013129793
(一般式(I)中、Rは水素原子又はメチル基であり、R1'は水素原子又は炭素数1〜4のアルキル基であり、nは自然数であり、xは1〜3の整数を表す。)
Metal particles, a metal particle dispersant, and a solvent,
The metal particle dispersant is a polymer compound obtained by polymerizing a monomer represented by the following general formula (I).
Metal particle-containing ink.
Figure 2013129793
(In general formula (I), R 1 is a hydrogen atom or a methyl group, R 1 ′ is a hydrogen atom or an alkyl group having 1 to 4 carbon atoms, n is a natural number, and x is an integer of 1 to 3) Represents.)
前記金属粒子分散剤は、前記一般式(I)で示した単量体と、イオン性官能基を有する単量体と、を共重合した高分子化合物である、
請求項1に記載の金属粒子含有インク。
The metal particle dispersant is a polymer compound obtained by copolymerizing the monomer represented by the general formula (I) and a monomer having an ionic functional group.
The metal particle-containing ink according to claim 1.
前記イオン性官能基は、アミノ基、カルボキシル基、スルホ基及びホスホ基の群から選択された、少なくとも1つの官能基を含む、請求項1又は2に記載の金属粒子含有インク。   3. The metal particle-containing ink according to claim 1, wherein the ionic functional group includes at least one functional group selected from the group of an amino group, a carboxyl group, a sulfo group, and a phospho group. 請求項1乃至3のいずれか一項に記載の金属粒子含有インクを基材に塗布する、塗布工程と、
前記金属粒子含有インクに導電性を発現させるために、前記金属粒子含有インクを焼成する、焼成工程と、
を有する、導電性パターンの形成方法。
An application step of applying the metal particle-containing ink according to any one of claims 1 to 3 to a substrate;
A firing step of firing the metal particle-containing ink in order to develop conductivity in the metal particle-containing ink;
A method for forming a conductive pattern.
前記焼成工程は、前記金属粒子含有インクを光焼成する工程を含む、請求項4に記載の導電性パターンの形成方法。   The said baking process is a formation method of the electroconductive pattern of Claim 4 including the process of carrying out the light baking of the said metal particle containing ink. 前記焼成工程は、前記金属粒子含有インクを、無酸素雰囲気下で熱焼成する工程を含む、請求項4に記載の導電性パターンの形成方法。   The conductive pattern forming method according to claim 4, wherein the firing step includes a step of thermally firing the metal particle-containing ink in an oxygen-free atmosphere.
JP2011281950A 2011-12-22 2011-12-22 Ink and conductive pattern forming method Expired - Fee Related JP5978621B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2011281950A JP5978621B2 (en) 2011-12-22 2011-12-22 Ink and conductive pattern forming method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2011281950A JP5978621B2 (en) 2011-12-22 2011-12-22 Ink and conductive pattern forming method

Publications (2)

Publication Number Publication Date
JP2013129793A true JP2013129793A (en) 2013-07-04
JP5978621B2 JP5978621B2 (en) 2016-08-24

Family

ID=48907616

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2011281950A Expired - Fee Related JP5978621B2 (en) 2011-12-22 2011-12-22 Ink and conductive pattern forming method

Country Status (1)

Country Link
JP (1) JP5978621B2 (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2014061556A1 (en) * 2012-10-15 2014-04-24 大日本印刷株式会社 Metal particle dispersion for conductive substrate, production method therefor, and production method for conductive substrate
JP2014177600A (en) * 2013-03-15 2014-09-25 Ricoh Co Ltd Dispersing agent, and method for manufacturing the same
JP2018119024A (en) * 2017-01-23 2018-08-02 株式会社リコー Copper particle-containing ink, method for producing copper particle-containing ink, method for printing conductive printed matter, and method for forming conductive wiring
US10293627B2 (en) 2016-08-24 2019-05-21 Ricoh Company, Ltd. Printed matter, printing method, and printing device

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002256133A (en) * 2001-03-02 2002-09-11 Ricoh Co Ltd Dispersion
JP2006317567A (en) * 2005-05-11 2006-11-24 Seiko Epson Corp Film pattern, method for forming same, device, electro-optic device, electronic apparatus, and method for manufacturing active matrix substrate
JP2007150258A (en) * 2005-10-27 2007-06-14 Seiko Epson Corp Pattern forming method, film structure, electro-optic device, and electronic apparatus
JP2008263129A (en) * 2007-04-13 2008-10-30 Asahi Glass Co Ltd Manufacturing method of printed wiring board
JP2010235948A (en) * 2010-05-07 2010-10-21 Ricoh Co Ltd Dispersion liquid

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002256133A (en) * 2001-03-02 2002-09-11 Ricoh Co Ltd Dispersion
JP2006317567A (en) * 2005-05-11 2006-11-24 Seiko Epson Corp Film pattern, method for forming same, device, electro-optic device, electronic apparatus, and method for manufacturing active matrix substrate
JP2007150258A (en) * 2005-10-27 2007-06-14 Seiko Epson Corp Pattern forming method, film structure, electro-optic device, and electronic apparatus
JP2008263129A (en) * 2007-04-13 2008-10-30 Asahi Glass Co Ltd Manufacturing method of printed wiring board
JP2010235948A (en) * 2010-05-07 2010-10-21 Ricoh Co Ltd Dispersion liquid

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2014061556A1 (en) * 2012-10-15 2014-04-24 大日本印刷株式会社 Metal particle dispersion for conductive substrate, production method therefor, and production method for conductive substrate
JPWO2014061556A1 (en) * 2012-10-15 2016-09-05 大日本印刷株式会社 Metal particle dispersion for conductive substrate, method for producing the same, and method for producing conductive substrate
US9972413B2 (en) 2012-10-15 2018-05-15 Dai Nippon Printing Co., Ltd. Metal particle dispersion for electroconductive substrates, method for producing the same, and method for producing an electroconductive substrate
JP2014177600A (en) * 2013-03-15 2014-09-25 Ricoh Co Ltd Dispersing agent, and method for manufacturing the same
US10293627B2 (en) 2016-08-24 2019-05-21 Ricoh Company, Ltd. Printed matter, printing method, and printing device
JP2018119024A (en) * 2017-01-23 2018-08-02 株式会社リコー Copper particle-containing ink, method for producing copper particle-containing ink, method for printing conductive printed matter, and method for forming conductive wiring

Also Published As

Publication number Publication date
JP5978621B2 (en) 2016-08-24

Similar Documents

Publication Publication Date Title
JP5978621B2 (en) Ink and conductive pattern forming method
US7850870B2 (en) Conductive curable compositions
US7928174B2 (en) Organosilicon functional boron amine catalyst complexes and curable compositions made therefrom
CN1384123A (en) Synthesis of polymer and film of the polymer
JP2014088550A5 (en)
WO2020209263A1 (en) Copolymer, dispersant and resin composition
JP5949104B2 (en) Metal particle dispersant, metal particle dispersed ink, and conductive pattern forming method
JP2015166452A (en) Silver nanoparticle inks with gelling agent for gravure printing and flexographic printing
JP6566950B2 (en) Ion transfer material, electrolyte membrane including the same, and method for producing the same
Pyun et al. Synthesis and surface attachment of ABC triblock copolymers containing glassy and rubbery segments
JP2014177600A (en) Dispersing agent, and method for manufacturing the same
JP2012243655A (en) Copper particulate for paste for firing and method for forming fired copper film
JP6984131B2 (en) Copper particle-containing ink, method for producing copper particle-containing ink, method for printing conductive printed matter, and method for forming conductive wiring.
JP6719859B2 (en) Polymer fine particles, conductive fine particles and anisotropic conductive materials
Gan et al. Thermal property of polyacrylate copolymers and their application in multilayer ceramic capacitor
JP6459261B2 (en) Ink and method for forming conductive pattern
JPH05255443A (en) Silicon-containing polymer and its production
JPS6213965B2 (en)
JPS6247206B2 (en)
JP3957041B2 (en) Hydrocarbon solvent dispersion
JP6497129B2 (en) Dispersant and method for producing the same, ink, and method for forming conductive pattern
JP6451099B2 (en) Dispersant for ink, method for producing the same, ink, and method for forming conductive pattern
JP5201168B2 (en) Dispersion
JPS60226513A (en) Preparation of nonaqueous based resin dispersion
JP2708461B2 (en) Non-aqueous resin composition

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20141118

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20150909

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20151027

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20151113

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20160329

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20160510

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20160628

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20160711

R151 Written notification of patent or utility model registration

Ref document number: 5978621

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R151

LAPS Cancellation because of no payment of annual fees