JPS6213965B2 - - Google Patents

Info

Publication number
JPS6213965B2
JPS6213965B2 JP15648179A JP15648179A JPS6213965B2 JP S6213965 B2 JPS6213965 B2 JP S6213965B2 JP 15648179 A JP15648179 A JP 15648179A JP 15648179 A JP15648179 A JP 15648179A JP S6213965 B2 JPS6213965 B2 JP S6213965B2
Authority
JP
Japan
Prior art keywords
resin
monomer
reaction
polymerization
methacrylate
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired
Application number
JP15648179A
Other languages
Japanese (ja)
Other versions
JPS5679111A (en
Inventor
Kazuo Tsubushi
Junichiro Hashimoto
Makoto Oogawara
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Ricoh Co Ltd
Original Assignee
Ricoh Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Ricoh Co Ltd filed Critical Ricoh Co Ltd
Priority to JP15648179A priority Critical patent/JPS5679111A/en
Publication of JPS5679111A publication Critical patent/JPS5679111A/en
Publication of JPS6213965B2 publication Critical patent/JPS6213965B2/ja
Granted legal-status Critical Current

Links

Landscapes

  • Addition Polymer Or Copolymer, Post-Treatments, Or Chemical Modifications (AREA)
  • Polymerisation Methods In General (AREA)

Description

【発明の詳細な説明】[Detailed description of the invention]

本発明は塗料、接着剤、静電液体現像剤等に有
用な非水系樹脂分散液の製造方法に関する。 多官能性アクリル酸エステルまたは多官能性メ
タクリル酸エステルが有機過酸化物、熱、紫外線
あるいは放射線等により重合し、三次元構造の硬
化物になることはよく知られている。そしてその
性質を利用して塗料、FRP、接着剤等の無溶剤
化並びに改質、印刷インキ、合板用塗料樹脂等の
光硬化ゴム及びプラスチツクの架橋剤等に用いら
れて来た。 本発明の目的は毒性及び引火性が弱く、かつ顔
料等に対して分散性を向上させ、かつ分散安定性
を有する非水系樹脂分散液を得ることである。 すなわち本発明は石油系脂肪族炭化水素を主成
分とする溶媒中で重合開始剤の存在下に一般式 (ここでRは水素又はメチル基、nは6〜20の
整数を表わす。) で示されるモノマー(以下モノマーAとする)
と、多官能性アクリル酸エステルおよび/または
多官能性メタクリル酸エステル(以下モノマーB
とする)とを重合反応せしめることを特徴とする
非水系樹脂分散液の製造方法を提供するものであ
る。 この重合反応は溶媒の加熱還流下に行なわれ
る。この反応により、モノマーA及びモノマーB
両成分が互いに網状に架橋した立体構造の共重合
体樹脂が得られる。ここでモノマーB自体は重合
前は石油系脂肪族炭化水素又はそのハロゲン化物
溶媒と溶媒和するが、重合後はこの溶媒と溶媒和
しなくなるという性質を持つている。一方、モノ
マーA自体は重合前も重合後も前記溶媒と溶媒和
するという性質を持つている。従つて得られる樹
脂は溶媒中でモノマーB成分とその周囲に前記溶
媒と溶媒和したモノマーA成分が結合した状態で
分散しているものと考えられる。なお樹脂中のモ
ノマーA成分は分散安定性(顔料等の他の物質に
対する分散安定性も含む)及び接着性に寄与する
ものである。またモノマーBのモノマーAに対す
る割合は0.01〜1:1(重量)程度が適当であ
る。 本発明では樹脂分散液の製造工程にシリカ微粒
子や軟化点60〜180℃程度のワツクス又はポリオ
レフインを添加することができる。シリカ微粒子
を用いた場合は樹脂はその網状構造中にシリカ微
粒子を取込んだ状態で得られるものと考えられ
る。ここの場合、シリカ自体は勿論、反応中、溶
解等の物理的変化を受けることはない。いずれに
してもシリカの場合は比重が分散媒である脂肪族
炭化水素又はそのハロゲン化物と近似すること、
及び樹脂のゲル化を防止することにより、分散安
定性を更に向上することができる。一方、ワツク
ス又はポリオレフインを用いた場合はこれらは重
合反応中加熱により反応系に溶存するが、反応後
は冷却により微粒子状に析出する結果、樹脂はこ
れらの微粒子に吸着された状態で得られるものと
考えられる。ここでワツクス又はポリオレフイン
は比重が分散媒と近似すると共に樹脂のゲル化を
防止する上、分子構造も分散媒と類似するので、
分散安定性の向上に役立つばかりでなく、軟化点
が低いので、接着性の向上にも役立つ。なおシリ
カ、ワツクス又はポリオレフインの添加量は樹脂
100重量部に対し5〜50重量部程度が適当であ
る。 次に本発明で使用される素材について説明す
る。 本発明で使用される石油系脂肪族炭化水素又は
そのハロゲン化物としてはリグロイン、n―ヘキ
サン、n―ペンタン、n―ヘプタン、n―オクタ
ン、i―オクタン、i―ドデカン、i―ノナン
(以上の市販品としてはエクソン社製アイソパー
H,G,L,K;ナフサNo.6やシエル石油社製シ
エルゾール等がある)、四塩化炭素、パーフルオ
ロエチレン等が挙げられる。これらの脂肪族炭化
水素はベンゼン、トルエン等の芳香族溶剤よりも
引火点が高く、また毒性も弱い。本発明の樹脂に
対する溶解性も芳香族溶媒に比べて悪いので、重
合反応中又は保存中、樹脂のゲル化や固化は起こ
らないという特長も持つている。なおこれらの石
油系脂肪族炭化水素は高絶縁性(電気抵抗1010
Ω・cm以上)、低誘電率(誘電率3以下)の溶媒
である。またこれらの脂肪族溶媒にはベンゼン、
トルエン等の芳香族溶媒が少量であれば添加され
ていてもよい。 次にモノマーAの具体例としては、ラウリルメ
タクリレート、ラウリルアクリレート、ステアリ
ルメタクリレート、ステアリルアクリレート、2
―エチルヘキシルメタクリレート、2―エチルヘ
キシルアクリレート、ドデシルメタクリレート、
ドデシルアクリレート、ヘキシルメタクリレー
ト、ヘキシルアクリレート、オクチルメタクリレ
ート、オクチルアクリレート、セチルメタクリレ
ート、セチルアクリレート、ビニルラウレート、
ビニルステアレート等がある。 モノマーBの例としては、エチレングリコール
ジアクリレート、エチレングリコールジメタクリ
レート、ジエチレングリコールジアクリレート、
ジエチレングリコールメタクリレート、トリエチ
レングリコールトリアクリレート、トリエチレン
グリコールトリメタクリレート、ブタンジオール
ジアクリレート、ブタンジオールジメタクリレー
ト、1,6―ヘキサンジオールジアクリレート、
1,6―ヘキサンジオールジメタクリレート、ト
リメチロールプロパントリアクリレート、トリメ
チロールプロパントリメタクリレート、テトラメ
チロールメタントリアクリレート、テトラメチロ
ールメタントリメタクリレート、テトラメチロー
ルメタンテトラアクリレート、テトラメチロール
メタンテトラメタクリレート、ジプロピレングリ
コールジアクリレート、ジプロピレングリコール
ジメタクリレート、トリメチロールヘキサントリ
アクリレート、トリメチロールヘキサントリメタ
クリレート、ペンタエリトリツトテトラアクリレ
ート、ペンタエリトリツトテトラメタクリレー
ト、1,3―ブチレングリコールジアクリレー
ト、1,3―ブチレングリコールジメタクリレー
ト、トリメチロールエタントリアクリレート、ト
リメチロールエタンメタクリレート等が挙げられ
る。 重合開始剤としては、過酸化ベンゾイル、t―
ブチルパーベンゾエト、ジアミルパーオキサイ
ド、ジ―t―ブチルパーオキサイド、ラウリルパ
ーオキサイド、アゾビスイソブチロニトリル等が
使用出来る。 またワツクス又はポリオレフインの市販品の具
体例は次の通りである。
The present invention relates to a method for producing a nonaqueous resin dispersion useful for paints, adhesives, electrostatic liquid developers, and the like. It is well known that polyfunctional acrylic esters or polyfunctional methacrylic esters are polymerized by organic peroxides, heat, ultraviolet rays, radiation, etc. to form cured products with a three-dimensional structure. Utilizing its properties, it has been used to make paints, FRP, adhesives, etc. solvent-free and to modify them, printing inks, photocurable rubbers such as plywood coating resins, and crosslinking agents for plastics. An object of the present invention is to obtain a non-aqueous resin dispersion that is low in toxicity and flammability, has improved dispersibility for pigments, and has dispersion stability. That is, the present invention is directed to polymerization of the general formula (Here, R represents hydrogen or a methyl group, and n represents an integer from 6 to 20.) Monomer represented by (hereinafter referred to as monomer A)
and polyfunctional acrylic ester and/or polyfunctional methacrylic ester (hereinafter referred to as monomer B).
The present invention provides a method for producing a non-aqueous resin dispersion, characterized by carrying out a polymerization reaction with This polymerization reaction is carried out while heating the solvent to reflux. Through this reaction, monomer A and monomer B
A copolymer resin having a three-dimensional structure in which both components are crosslinked to each other in a network-like manner is obtained. Here, the monomer B itself has the property that it is solvated with a petroleum aliphatic hydrocarbon or its halide solvent before polymerization, but is not solvated with this solvent after polymerization. On the other hand, monomer A itself has the property of being solvated with the solvent both before and after polymerization. Therefore, it is considered that the resulting resin is dispersed in a solvent in a state where the monomer B component and the monomer A component solvated with the solvent are bonded around the monomer B component. The monomer A component in the resin contributes to dispersion stability (including dispersion stability to other substances such as pigments) and adhesiveness. Further, the ratio of monomer B to monomer A is suitably about 0.01 to 1:1 (by weight). In the present invention, fine silica particles, wax or polyolefin having a softening point of about 60 to 180°C can be added to the resin dispersion manufacturing process. When fine silica particles are used, it is thought that the resin is obtained with the fine silica particles incorporated in its network structure. In this case, the silica itself, of course, does not undergo physical changes such as dissolution during the reaction. In any case, in the case of silica, the specific gravity should be similar to that of the aliphatic hydrocarbon or its halide, which is the dispersion medium;
By preventing gelation of the resin, dispersion stability can be further improved. On the other hand, when wax or polyolefin is used, these are dissolved in the reaction system by heating during the polymerization reaction, but after the reaction, they are precipitated into fine particles by cooling, and the resin is obtained in a state that is adsorbed to these fine particles. it is conceivable that. Here, wax or polyolefin has a specific gravity similar to that of the dispersion medium, prevents the resin from gelling, and has a molecular structure similar to that of the dispersion medium.
It not only helps improve dispersion stability, but also helps improve adhesiveness because it has a low softening point. The amount of silica, wax, or polyolefin added depends on the resin.
Approximately 5 to 50 parts by weight per 100 parts by weight is appropriate. Next, the materials used in the present invention will be explained. The petroleum aliphatic hydrocarbons or their halides used in the present invention include ligroin, n-hexane, n-pentane, n-heptane, n-octane, i-octane, i-dodecane, i-nonane (the above). Commercially available products include Isopar H, G, L, K (Naphtha No. 6 manufactured by Exxon Corporation, Ciel Sol manufactured by Shell Oil Co., etc.), carbon tetrachloride, perfluoroethylene, and the like. These aliphatic hydrocarbons have a higher flash point than aromatic solvents such as benzene and toluene, and are also less toxic. Since the solubility of the resin of the present invention is poorer than that of aromatic solvents, it also has the advantage that the resin does not gel or solidify during the polymerization reaction or during storage. These petroleum-based aliphatic hydrocarbons have high insulating properties (electrical resistance of 10 to 10
It is a solvent with a low dielectric constant (dielectric constant of 3 or less). These aliphatic solvents also include benzene,
A small amount of an aromatic solvent such as toluene may be added. Next, specific examples of monomer A include lauryl methacrylate, lauryl acrylate, stearyl methacrylate, stearyl acrylate, 2
-Ethylhexyl methacrylate, 2-ethylhexyl acrylate, dodecyl methacrylate,
Dodecyl acrylate, hexyl methacrylate, hexyl acrylate, octyl methacrylate, octyl acrylate, cetyl methacrylate, cetyl acrylate, vinyl laurate,
Examples include vinyl stearate. Examples of monomer B include ethylene glycol diacrylate, ethylene glycol dimethacrylate, diethylene glycol diacrylate,
Diethylene glycol methacrylate, triethylene glycol triacrylate, triethylene glycol trimethacrylate, butanediol diacrylate, butanediol dimethacrylate, 1,6-hexanediol diacrylate,
1,6-hexanediol dimethacrylate, trimethylolpropane triacrylate, trimethylolpropane trimethacrylate, tetramethylolmethane triacrylate, tetramethylolmethane trimethacrylate, tetramethylolmethanetetraacrylate, tetramethylolmethanetetramethacrylate, dipropylene glycol diacrylate , dipropylene glycol dimethacrylate, trimethylolhexane triacrylate, trimethylolhexane trimethacrylate, pentaerythritate tetraacrylate, pentaerythritate tetramethacrylate, 1,3-butylene glycol diacrylate, 1,3-butylene glycol dimethacrylate, trimethyl Examples include methylolethane triacrylate and trimethylolethane methacrylate. As a polymerization initiator, benzoyl peroxide, t-
Butyl perbenzoate, diamyl peroxide, di-t-butyl peroxide, lauryl peroxide, azobisisobutyronitrile, etc. can be used. Further, specific examples of commercially available waxes or polyolefins are as follows.

【表】 ツクス
[Table] Tsukusu

【表】 以下に実施例を示す。 実施例 1 撹拌機、温度計及び還流冷却器を備えた2の
フラスコ内にアイソパーG300gを採り、90℃に
加熱した。この中にラウリルメタクリレート170
g、ジエチレングリコールジメタクリレート80g
及び過酸化ベンゾイル3gよりなる溶液を2時間
に亘つて滴下、重合反応せしめ、ついで反応を完
結させるため、95℃で2時間撹拌し、重合率96.2
%で粘度360cpの樹脂分散液が得られた。なおこ
の樹脂の粒径は5〜8μであつた。 実施例 2 実施例1で得られた樹脂分散液250gをポリエ
チレン(ユニオンカーバイド社製DYNF)20gと
フラスコ中で混合し、110℃で3時間加熱溶解
後、冷却して粘度120cpのポリエチレン含有樹脂
分散液を得た。なおこの樹脂の粒径は3〜5μで
あつた。 実施例 3 実施例1と同じ容器にイソオクタン300gを採
り、95℃に加熱した。次にこれにセチルメタクリ
レート170g、ジプロピレングリコールジメタク
リレート50g及びアゾビスイソブチロニトリル5
gよりなる溶液を1時間に亘つて滴下、重合反応
せしめ、更に95℃で3時間加熱して反応を完結し
た。こうして重合率98.5%で粘度290cpの樹脂分
散液が得られた。この樹脂の粒径は3〜5μであ
つた。 実施例 4 実施例3で得られた樹脂分散液250gをフラス
コ中でさらし密ろう18gと混合し、100℃で2時
間加熱撹拌した後、冷却して粘度108cpのさらし
密ろう含有樹脂分散液を調製した。なおこの樹脂
の粒径は2.0〜3.8μであつた。 実施例 5 実施例1と同じ容器にイソオクタン300g及び
粘径0.5〜1μのシリカ粉末10gを採り、95℃に
加熱した。この中に2―エチルヘキシルメタクリ
レート150g、トリメチロールプロパントリアク
リレート50g及びアゾビスイソブチロニトリル5
gよりなる溶液を2時間に亘つて滴下、重合反応
せしめた後、更に95℃で2時間撹拌を行なつて反
応を完結させた。こうして重合率96.5%で粘度
89cpの樹脂分散液が得られた。この樹脂の粒径
は1〜3μであつた。 実施例 6 実施例1と同じフラスコ中にアイソパーL300
g及びポリエチレン(サンワツクス131―P)50
gを入れ、95℃に加熱した。次にこの中にステア
リルメタクリレート150g、テトラメチロールメ
タンテトラメタクリレート21g及びラウリルパー
オキサイド5gよりなる溶液を前記温度で1時間
に亘つて滴下、重合反応させた後、更に同温度で
3時間加熱して反応を完結させた。こうして重合
率95.8%で粘度118cpの樹脂分散液を得た。この
樹脂の粒径は3〜4μであつた。
[Table] Examples are shown below. Example 1 300 g of Isopar G was placed in a second flask equipped with a stirrer, a thermometer, and a reflux condenser, and heated to 90°C. Lauryl methacrylate 170 in this
g, diethylene glycol dimethacrylate 80g
A solution consisting of 3 g of benzoyl peroxide was added dropwise over 2 hours to cause a polymerization reaction, and then to complete the reaction, the mixture was stirred at 95°C for 2 hours to achieve a polymerization rate of 96.2.
%, a resin dispersion with a viscosity of 360 cp was obtained. The particle size of this resin was 5 to 8 microns. Example 2 250 g of the resin dispersion obtained in Example 1 was mixed with 20 g of polyethylene (DYNF manufactured by Union Carbide) in a flask, heated and dissolved at 110°C for 3 hours, and then cooled to obtain a polyethylene-containing resin dispersion with a viscosity of 120 cp. I got the liquid. The particle size of this resin was 3 to 5 microns. Example 3 300 g of isooctane was placed in the same container as in Example 1 and heated to 95°C. Next, add 170 g of cetyl methacrylate, 50 g of dipropylene glycol dimethacrylate and 5 g of azobisisobutyronitrile.
A solution consisting of 10 g was added dropwise over 1 hour to cause a polymerization reaction, and the reaction was further heated at 95° C. for 3 hours to complete the reaction. In this way, a resin dispersion with a polymerization rate of 98.5% and a viscosity of 290 cp was obtained. The particle size of this resin was 3 to 5 microns. Example 4 250 g of the resin dispersion obtained in Example 3 was mixed with 18 g of bleached beeswax in a flask, heated and stirred at 100°C for 2 hours, and then cooled to form a resin dispersion containing bleached beeswax with a viscosity of 108 cp. Prepared. The particle size of this resin was 2.0 to 3.8μ. Example 5 In the same container as in Example 1, 300 g of isooctane and 10 g of silica powder with a viscosity of 0.5 to 1 μm were placed and heated to 95°C. This contains 150 g of 2-ethylhexyl methacrylate, 50 g of trimethylolpropane triacrylate, and 5 g of azobisisobutyronitrile.
A solution consisting of 1.g was added dropwise over 2 hours to cause a polymerization reaction, and the reaction was further stirred at 95° C. for 2 hours to complete the reaction. In this way, the polymerization rate is 96.5% and the viscosity is
A resin dispersion of 89 cp was obtained. The particle size of this resin was 1 to 3 microns. Example 6 Isopar L300 was added to the same flask as in Example 1.
g and polyethylene (Sunwax 131-P) 50
g and heated to 95°C. Next, a solution consisting of 150 g of stearyl methacrylate, 21 g of tetramethylolmethanetetramethacrylate, and 5 g of lauryl peroxide was added dropwise to the solution at the above temperature for 1 hour to cause a polymerization reaction, and then further heated at the same temperature for 3 hours to react. completed. In this way, a resin dispersion with a polymerization rate of 95.8% and a viscosity of 118 cp was obtained. The particle size of this resin was 3 to 4 microns.

Claims (1)

【特許請求の範囲】 1 石油系脂肪族炭化水素を主成分とする溶媒中
で重合開始剤の存在下に一般式 (但しRは水素又はメチル基、nは6〜20の整
数を表わす。) で示されるモノマーAと、多官能性アクリル酸エ
ステルおよび/または多官能性メタクリル酸エス
テルからなるモノマーBとをモノマーB:モノマ
ーA=0.01〜1:1の重量比で重合反応せしめる
ことを特徴とする非水系樹脂分散液の製造方法。
[Scope of Claims] 1. In the presence of a polymerization initiator in a solvent containing a petroleum-based aliphatic hydrocarbon as a main component, the general formula (However, R represents hydrogen or a methyl group, and n represents an integer of 6 to 20.) Monomer A represented by : A method for producing a non-aqueous resin dispersion, characterized by carrying out a polymerization reaction at a weight ratio of monomer A = 0.01 to 1:1.
JP15648179A 1979-12-03 1979-12-03 Preparation of nonaqueous resin dispersion Granted JPS5679111A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP15648179A JPS5679111A (en) 1979-12-03 1979-12-03 Preparation of nonaqueous resin dispersion

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP15648179A JPS5679111A (en) 1979-12-03 1979-12-03 Preparation of nonaqueous resin dispersion

Publications (2)

Publication Number Publication Date
JPS5679111A JPS5679111A (en) 1981-06-29
JPS6213965B2 true JPS6213965B2 (en) 1987-03-30

Family

ID=15628693

Family Applications (1)

Application Number Title Priority Date Filing Date
JP15648179A Granted JPS5679111A (en) 1979-12-03 1979-12-03 Preparation of nonaqueous resin dispersion

Country Status (1)

Country Link
JP (1) JPS5679111A (en)

Families Citing this family (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5998114A (en) * 1982-11-26 1984-06-06 Ricoh Co Ltd Preparation of non-aqueous resin dispersion liquid
JPS59100115A (en) * 1982-11-30 1984-06-09 Ricoh Co Ltd Production of nonaqueous resin dispersion
JPS6241208A (en) * 1985-08-16 1987-02-23 Denki Kagaku Kogyo Kk Production of polymer
JPS6259612A (en) * 1985-09-09 1987-03-16 Denki Kagaku Kogyo Kk Production of polymer
JP2708461B2 (en) * 1988-04-13 1998-02-04 株式会社リコー Non-aqueous resin composition

Also Published As

Publication number Publication date
JPS5679111A (en) 1981-06-29

Similar Documents

Publication Publication Date Title
JP2002541271A (en) Crosslinked microparticles, their production and use
JPS6213965B2 (en)
JPS623859B2 (en)
JPS6247206B2 (en)
JP2708461B2 (en) Non-aqueous resin composition
JPH0124806B2 (en)
JP2634849B2 (en) Non-aqueous resin composition
JPH0618833B2 (en) Method for producing non-aqueous resin dispersion
JP3058476B2 (en) Method for producing microgel
JPH0428710A (en) Production of non-aqueous dispersion of crosslinked acrylic copolymer fine particle
JPH0124808B2 (en)
JPH0334486B2 (en)
JPH0334485B2 (en)
JPH0568505B2 (en)
JPS60248719A (en) Nonaqueous resin dispersion
CN114133499B (en) Micro acrylic capsule resin and preparation method and application thereof
JPS60248718A (en) Nonaqueous resin dispersion
JPH0564162B2 (en)
JPS6160715A (en) Nonaqueous resin and electrostatic photography liquid developer containing same
JP5941318B2 (en) Curing agent and / or curing accelerator encapsulating capsule, and thermosetting resin composition
JPS60248712A (en) Nonaqueous resin dispersion
JPS62250001A (en) Production of fine polymer particle dispersion having high refractive index
JPH066659B2 (en) Non-aqueous resin dispersion
JP3125812B2 (en) Electrophotographic developer
JPH02242808A (en) Production of fluorine-containing polymer