JPH0334485B2 - - Google Patents

Info

Publication number
JPH0334485B2
JPH0334485B2 JP57207034A JP20703482A JPH0334485B2 JP H0334485 B2 JPH0334485 B2 JP H0334485B2 JP 57207034 A JP57207034 A JP 57207034A JP 20703482 A JP20703482 A JP 20703482A JP H0334485 B2 JPH0334485 B2 JP H0334485B2
Authority
JP
Japan
Prior art keywords
resin
polymerization
monomer
dispersion
methacrylate
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP57207034A
Other languages
Japanese (ja)
Other versions
JPS5998114A (en
Inventor
Kazuo Tsubushi
Junichiro Hashimoto
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Ricoh Co Ltd
Original Assignee
Ricoh Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Ricoh Co Ltd filed Critical Ricoh Co Ltd
Priority to JP57207034A priority Critical patent/JPS5998114A/en
Publication of JPS5998114A publication Critical patent/JPS5998114A/en
Publication of JPH0334485B2 publication Critical patent/JPH0334485B2/ja
Granted legal-status Critical Current

Links

Landscapes

  • Addition Polymer Or Copolymer, Post-Treatments, Or Chemical Modifications (AREA)
  • Liquid Developers In Electrophotography (AREA)
  • Polymerisation Methods In General (AREA)

Description

【発明の詳細な説明】[Detailed description of the invention]

技術分野 本発明は塗料、接着剤、電子写真液体現像剤ト
ナー用等に有用な非水系樹脂分散液の製造方法に
関する。 従来技術 ジエチレングリコールジメタクリレートのよう
な多官能性(メタ)アクリル酸エステルとラウリ
ルアクリレートのような重合性モノマーとをトル
エン、ベンゼン、キシレン等の芳香族炭化水素溶
媒中、重合開始剤の存在下で重合反応させて共重
合体樹脂分散液を製造する方法が知られている。
こうして得られる樹脂は従来より塗料や接着剤用
として広く使用されている。しかしこのような樹
脂分散液の製造方法では芳香族炭化水素溶媒が使
用されるため、樹脂の架橋が進み易く、重合反応
中、樹脂がゲル化したり、保存中、樹脂が固化す
る等の問題があつた。またこの非水系樹脂を塗料
や接着剤用として用いた場合も同様で、保存中の
固化により接着力の低下を来たす。そこでこれら
の問題を解消するため、従来は多価グリコールジ
アクリレート等の多官能性(メタ)アクリル酸エ
ステルの量を3重量%以下に抑える必要があつ
た。またたとえこのようにして以上の問題が解消
されたとしても、樹脂は芳香族溶媒に可溶であ
り、従つて溶解状態で得られるため、そのままで
塗料に用いた場合は顔料への樹脂の吸着量が少な
く、接着力が不足するので、特に電着塗料に用い
る場合は望ましくないものであつた。 更にこの方法で使用される芳香族溶媒は毒性及
び引火性が強く、環境衛生上問題があるばかりで
なく、火災の危険も多いという問題も有する。 そこで本発明者らは以上のような問題を除いた
非水系樹脂分散液の製造方法を特開昭56−79112
号において提案した。この方法は脂肪族炭化水素
又はハロゲン化脂肪族炭化水素を主成分とする溶
媒中重合開始剤の存在下で、前述のような多官能
性(メタ)アクリル酸エステルと、不飽和カルボ
ン酸のような極性モノマー及びラウリルアクリレ
ートのような重合前も重合後も前記溶媒と溶媒和
し得るモノマーとを重合反応させるというもので
ある。しかしこの方法は架橋剤である多官能性
(メタ)アクリル酸エステルの架橋性が高い、即
ち架橋速度が速いため、(1)重合時の反応制御が困
難なので、製品(分散樹脂)のバラツキが生じ易
い、(2)重合が均一に行なわれないので、粒度分布
の広い製品しか得られない、(3)製品の分散安定性
が悪い等の欠点がある他、多官能性(メタ)アク
リル酸モノマーは極性基を持つていないため、(4)
着色剤を分散する能力が低く、たとえ極性モノマ
ーを併用しても共重合性が悪く、均一な重合がで
きないという欠点もある。 目 的 本発明の第一の目的は極性基を有し、且つ適度
な架橋性を持つた架橋剤を用いることにより、バ
ラツキが少なく、分散安定性に優れ、しかも各種
粒度分布の製品が得られる上、着色剤に対する分
散性が良好で、また重合時、他のモノマーと均一
な重合反応を行ない得る非水系樹脂分散液の製造
方法を提供することである。 本発明の第二の目的は毒性及び引火性が弱く、
得られる樹脂に対する溶解性も低く、且つ光化学
的に不活性な脂肪族系溶媒を用いることにより、
保存性に優れ、従つて接着力の低下がなく、しか
も環境衛生上も問題が少なく、火災の危険も少な
い非水系樹脂分散液の製造方法を提供することで
ある。 構 成 本発明の非水系樹脂分散液の製造方法は脂肪族
炭化水素又はハロゲン化脂肪族炭化水素を主成分
とする非水溶媒中、重合開始剤の存在下に一般式 (但しRは−H又は−CH3基、Xはハロゲン、n
は1〜20の整数を表わす。) で示されるモノマーAと重合前も重合後も前記溶
媒と溶媒和し得る一般式
TECHNICAL FIELD The present invention relates to a method for producing a non-aqueous resin dispersion useful for paints, adhesives, electrophotographic liquid developer toners, and the like. Prior art A polyfunctional (meth)acrylic ester such as diethylene glycol dimethacrylate and a polymerizable monomer such as lauryl acrylate are polymerized in an aromatic hydrocarbon solvent such as toluene, benzene, or xylene in the presence of a polymerization initiator. A method of producing a copolymer resin dispersion by reaction is known.
The resins obtained in this way have been widely used for paints and adhesives. However, since aromatic hydrocarbon solvents are used in these resin dispersion manufacturing methods, crosslinking of the resin tends to proceed, resulting in problems such as gelation of the resin during the polymerization reaction and solidification of the resin during storage. It was hot. The same applies when this non-aqueous resin is used for paints or adhesives, and the adhesive strength decreases due to solidification during storage. In order to solve these problems, it has conventionally been necessary to suppress the amount of polyfunctional (meth)acrylic acid ester such as polyvalent glycol diacrylate to 3% by weight or less. Furthermore, even if the above problems are solved in this way, the resin is soluble in aromatic solvents and is therefore obtained in a dissolved state, so if it is used as is in a paint, the adsorption of the resin to the pigment may occur. Since the amount is small and the adhesive strength is insufficient, it is undesirable especially when used in electrodeposition coatings. Furthermore, the aromatic solvent used in this method is highly toxic and flammable, which not only poses problems in terms of environmental health, but also poses a risk of fire. Therefore, the present inventors proposed a method for producing a non-aqueous resin dispersion that eliminates the above-mentioned problems in Japanese Patent Application Laid-Open No. 56-79112.
proposed in the issue. This method involves combining a polyfunctional (meth)acrylic acid ester such as the one described above and an unsaturated carboxylic acid in the presence of a polymerization initiator in a solvent mainly composed of an aliphatic hydrocarbon or a halogenated aliphatic hydrocarbon. In this method, a polar monomer and a monomer, such as lauryl acrylate, which can be solvated with the solvent both before and after polymerization are subjected to a polymerization reaction. However, in this method, the crosslinking agent, polyfunctional (meth)acrylic acid ester, has high crosslinking properties, that is, the crosslinking speed is fast. (2) Because polymerization is not uniform, only a product with a wide particle size distribution can be obtained; (3) The dispersion stability of the product is poor. In addition, polyfunctional (meth)acrylic acid Since the monomer does not have a polar group, (4)
It also has the disadvantage that it has a low ability to disperse colorants, and even if a polar monomer is used in combination, copolymerization is poor and uniform polymerization cannot be achieved. Purpose The first object of the present invention is that by using a crosslinking agent that has a polar group and has appropriate crosslinking properties, it is possible to obtain products with little variation, excellent dispersion stability, and various particle size distributions. Another object of the present invention is to provide a method for producing a non-aqueous resin dispersion that has good dispersibility with respect to a colorant and can undergo a uniform polymerization reaction with other monomers during polymerization. The second object of the present invention is to have low toxicity and flammability.
By using an aliphatic solvent that has low solubility in the resulting resin and is photochemically inert,
It is an object of the present invention to provide a method for producing a non-aqueous resin dispersion that has excellent storage stability, does not cause a decrease in adhesive strength, has few problems in terms of environmental hygiene, and has little risk of fire. Structure The method for producing the non-aqueous resin dispersion of the present invention is to produce a non-aqueous resin dispersion of the general formula (However, R is -H or -CH 3 group, X is halogen, n
represents an integer from 1 to 20. ) A general formula that can be solvated with the monomer A represented by the above solvent both before and after polymerization

【式】 (但し、R1は−H又は−CH3基、Aは−COOCn
H2n+1又は−OCOCnH2n+1、mは6〜20の整数を
表わす。) で示されるモノマーBとを重合反応させることを
特徴とするものである。 この重合反応は溶媒の加熱還流下に行なわれ
る。この反応により、モノマー成分が互いに網状
に適度に架橋した立体構造の共重合体樹脂が得ら
れる。ここでモノマーAは多官能性ハロゲン化
(メタ)アクリル酸エステルよりなる、極性基を
持つた架橋剤で、重合前は脂肪族系溶媒と溶媒和
するが、重合後は溶媒和しなくなるという性質を
有し、樹脂の荷電極性を制御すると共に塗料等へ
本発明方法により得られた樹脂を用いた場合、着
色剤の分散安定性に対して寄与するものである。
またモノマーBは重合後も前記溶媒に溶媒和する
ため樹脂の分散安定性が優れたものとなる。なお
モノマーA:モノマーBの重量比率は0.1〜20:
1〜50程度が適当である。また更に荷電極性や着
色剤に対する分散性を向上するため、以上のモノ
マー成分以外の重合性モノマーとして極性モノマ
ー(以下モノマーCという)や他のモノマーをモ
ノマーBと同重量倍まで混合し、重合させること
も可能である。 また本発明では樹脂の製造工程にシリカ微粒子
や軟化点60〜130℃程度のワツクス又はポリオレ
フインを添加することができる。シリカ微粒子を
用いた場合は樹脂はその網状構造中にシリカ微粒
子を取込んだ状態で得られるものと考えられる。
この場合、シリカ自体は勿論、反応中、溶解等の
物理的変化を受けることはない。いずれにしても
シリカの場合は比重が分散媒である脂肪族炭化水
素又はそのハロゲン化物と近似すること、及び樹
脂のゲル化を防止することにより、分散安定性を
更に向上することができる。一方、ワツクス又は
ポリオレフインを用いた場合はこれらは重合反応
中加熱により反応系に溶存するが、反応後は冷却
により微粒子状に析出する結果、樹脂はこれらの
微粒子に吸着された状態で得られるものと考えら
れる。ここでワツクス又はポリオレフインは比重
が分散媒と近似すると共に樹脂のゲル化を防止す
る上、分子構造も分散媒と類似するので、分散安
定性の向上に役立つばかりでなく、軟化点が低い
ので、接着性の向上にも役立つ。なおシリカ、ワ
ツクス又はポリオレフインの添加量は樹脂100重
量部に対し5〜50重量部程度が適当である。 次に本発明で使用される素材について説明す
る。 本発明で使用される石油系脂肪族炭化水素又
は、ハロゲン化脂肪族炭化水素としてはリグロイ
ン、n−ヘキサン、n−ペンタン、n−ヘプタ
ン、n−オクタン、i−オクタン、i−ドデカ
ン、i−ノナン(以上の市販品としてはエクソン
社製アイソパーH、G、L、K;ナフサNo.6やシ
エル石油社製シエルゾール等がある)、四塩化炭
素、パーフルオロエチレン等が挙げられる。これ
らの脂肪族炭化水素又はハロゲン化脂肪族炭化水
素はベンゼン、トルエン等の芳香族溶剤よりも引
火点が高く、また毒性も弱い。本発明の樹脂に対
する溶解性も芳香族溶媒に比べて低いので、重合
反応中又は保存中、樹脂のゲル化や固化は起こり
難いという特長も持つている。なおこれらの石油
系脂肪族炭化水素又はハロゲン化脂肪族炭化水素
は高絶縁性(電気抵抗1010Ω・cm以上)、低誘電
率(誘電率3以下)の溶媒である。またこれらの
脂肪族溶媒にはベンゼン、トルエン等の芳香族溶
媒を少量であれば添加されていてもよい。 モノマーAは一般にグリシジルメタクリレート
とメタクリル酸とのエステル化反応によつて製造
される。モノマーAの代表例としては下記のもの
が挙げられる。 モノマーBは一般式
[Formula] (However, R 1 is -H or -CH 3 group, A is -COOC n
H 2n+1 or -OCOC n H 2n+1 , m represents an integer from 6 to 20. ) It is characterized by causing a polymerization reaction with monomer B shown in the following. This polymerization reaction is carried out while heating the solvent to reflux. Through this reaction, a copolymer resin having a three-dimensional structure in which the monomer components are moderately crosslinked with each other in the form of a network is obtained. Here, monomer A is a crosslinking agent with a polar group, which is made of a polyfunctional halogenated (meth)acrylic acid ester, and has the property of being solvated with an aliphatic solvent before polymerization, but not solvating after polymerization. When the resin obtained by the method of the present invention is used in paints and the like, it controls the charge polarity of the resin and contributes to the dispersion stability of the colorant.
Furthermore, since monomer B is solvated in the solvent even after polymerization, the resin has excellent dispersion stability. The weight ratio of monomer A:monomer B is 0.1 to 20:
Approximately 1 to 50 is appropriate. Furthermore, in order to further improve charge polarity and dispersibility for colorants, a polar monomer (hereinafter referred to as monomer C) and other monomers are mixed to the same weight as monomer B as polymerizable monomers other than the above monomer components, and polymerized. It is also possible. Further, in the present invention, fine silica particles, wax or polyolefin having a softening point of about 60 to 130°C can be added to the resin manufacturing process. When fine silica particles are used, it is thought that the resin is obtained with the fine silica particles incorporated in its network structure.
In this case, the silica itself does not undergo physical changes such as dissolution during the reaction. In any case, in the case of silica, the dispersion stability can be further improved by making the specific gravity similar to that of the aliphatic hydrocarbon or its halide as the dispersion medium and by preventing gelation of the resin. On the other hand, when wax or polyolefin is used, these are dissolved in the reaction system by heating during the polymerization reaction, but after the reaction, they are precipitated into fine particles by cooling, and the resin is obtained in a state that is adsorbed to these fine particles. it is conceivable that. Here, wax or polyolefin has a specific gravity similar to that of the dispersion medium, prevents gelation of the resin, and has a molecular structure similar to that of the dispersion medium, so it not only helps improve dispersion stability, but also has a low softening point. It also helps improve adhesion. The appropriate amount of silica, wax or polyolefin added is about 5 to 50 parts by weight per 100 parts by weight of the resin. Next, the materials used in the present invention will be explained. The petroleum aliphatic hydrocarbons or halogenated aliphatic hydrocarbons used in the present invention include ligroin, n-hexane, n-pentane, n-heptane, n-octane, i-octane, i-dodecane, i- Nonane (commercially available products include Exxon's Isopar H, G, L, and K; Naphtha No. 6 and Shell Oil Co., Ltd.'s Ciel Sol), carbon tetrachloride, perfluoroethylene, and the like. These aliphatic hydrocarbons or halogenated aliphatic hydrocarbons have a higher flash point than aromatic solvents such as benzene and toluene, and are also less toxic. Since the solubility of the resin of the present invention is lower than that of aromatic solvents, it also has the advantage that the resin is unlikely to gel or solidify during the polymerization reaction or during storage. These petroleum-based aliphatic hydrocarbons or halogenated aliphatic hydrocarbons are solvents with high insulating properties (electrical resistance of 10 10 Ω·cm or more) and low dielectric constants (dielectric constant of 3 or less). Further, aromatic solvents such as benzene and toluene may be added to these aliphatic solvents in small amounts. Monomer A is generally produced by an esterification reaction between glycidyl methacrylate and methacrylic acid. Representative examples of monomer A include the following. Monomer B has the general formula

【式】 (但し、R1は−H又は−CH3基、Aは−COOCn
H2n+1又は−OCOCnH2n+1、mは6〜20の整数を
表わす。) で表わされるモノマーであつて、その具体例とし
てはラウリルメタクリレート、ラウリルアクリレ
ート、ステアリルメタクリレート、ステアリルア
クリレート、2−エチルヘキシルメタクリレー
ト、2−エチルヘキシルアクリレート、ドデシル
メタクリレート、ドデシルアクリレート、ヘキシ
ルメタクリレート、ヘキシルアクリレート、オク
チルアクリレート、オクチルメタクリレート、セ
チルメタクリレート、セチルアクリレート、ビニ
ルラウレート、ビニルステアレート等がある。 モノマーCとしては不飽和カルボン酸、不飽和
カルボン酸無水物、不飽和窒素含有化合物、グリ
シジル基含有不飽和化合物、アクリル酸アルキル
(炭素数1〜5)エステルおよび/またはメタク
リル酸アルキル(炭素数1〜5)エステル等があ
る。ここで不飽和カルボン酸およびその無水物と
しては、アクリル酸、メタクリル酸、イタコン、
フマル酸、マレイン酸、クロトン酸、アコニツト
酸、ケイ皮酸及びこれらの無水物が例示される。
また不飽和窒素含有化合物の例としては、ビニル
ピロリドン、2−ビニルピリジン、4−ビニルピ
リジン、N−ビニルピリジン、N−ビニルイミダ
ゾール、ジメチルアミノエチルアクリレート、ジ
メチルアミノエチルメタクリレート等が例示さ
れ、さらにアクリル酸又はメタクリル酸のアルキ
ル(炭素数1〜5)エステルとしては、メチルア
クリレート、メチルメタクリレート、エチルアク
リレート、エチルメタクリレート、プロピルアク
リレート、プロピルメタクリレート、ブチルアク
リレート、ブチルメタクリレート等が例示され
る。さらにグリシジル基含有不飽和化合物として
は代表的にグリシジルアクリレートおよびグリシ
ジルメタクリレートが例示される。 その他の重合性モノマーとしてはスチレン、ビ
ニルトルエン、酢酸ビニル等が挙げられる。 なおこれらモノマーA、B、C等を重合させる
際用いられる重合開始剤としては、過酸化ベンゾ
イル、t−ブチルパーベンゾエート、ジアミルパ
ーオキサイド、ジ−t−ブチルパーオキサイド、
ラウリルパーオキサイド、アゾビスイソブチロニ
トリルが使用できる。 また軟化点60〜130℃のワツクス又はポリオレ
フインの市販品の具体例は次の通りである。
[Formula] (However, R 1 is -H or -CH 3 group, A is -COOC n
H 2n+1 or -OCOC n H 2n+1 , m represents an integer from 6 to 20. ) Specific examples thereof include lauryl methacrylate, lauryl acrylate, stearyl methacrylate, stearyl acrylate, 2-ethylhexyl methacrylate, 2-ethylhexyl acrylate, dodecyl methacrylate, dodecyl acrylate, hexyl methacrylate, hexyl acrylate, and octyl acrylate. , octyl methacrylate, cetyl methacrylate, cetyl acrylate, vinyl laurate, vinyl stearate, etc. Monomer C includes unsaturated carboxylic acids, unsaturated carboxylic acid anhydrides, unsaturated nitrogen-containing compounds, glycidyl group-containing unsaturated compounds, alkyl acrylates (1 to 5 carbon atoms) esters, and/or alkyl methacrylates (1 to 5 carbon atoms). ~5) There are esters, etc. Here, unsaturated carboxylic acids and their anhydrides include acrylic acid, methacrylic acid, itacone,
Examples include fumaric acid, maleic acid, crotonic acid, aconitic acid, cinnamic acid, and anhydrides thereof.
Examples of unsaturated nitrogen-containing compounds include vinylpyrrolidone, 2-vinylpyridine, 4-vinylpyridine, N-vinylpyridine, N-vinylimidazole, dimethylaminoethyl acrylate, dimethylaminoethyl methacrylate, and acrylic Examples of the alkyl ester (having 1 to 5 carbon atoms) of acid or methacrylic acid include methyl acrylate, methyl methacrylate, ethyl acrylate, ethyl methacrylate, propyl acrylate, propyl methacrylate, butyl acrylate, and butyl methacrylate. Further, typical examples of the unsaturated compound containing a glycidyl group include glycidyl acrylate and glycidyl methacrylate. Other polymerizable monomers include styrene, vinyltoluene, vinyl acetate, and the like. The polymerization initiators used when polymerizing these monomers A, B, C, etc. include benzoyl peroxide, t-butyl perbenzoate, diamyl peroxide, di-t-butyl peroxide,
Lauryl peroxide and azobisisobutyronitrile can be used. Further, specific examples of commercially available waxes or polyolefins having a softening point of 60 to 130°C are as follows.

【表】【table】

【表】【table】

【表】【table】

【表】 効 果 非水系樹脂分散液の製造において、架橋剤とし
て極性基を有する前述のようなモノマーAを用い
ることにより、バラツキが少なく、分散安定性に
優れ、且つ各種粒度分布の分散樹脂製品が得られ
る上、着色剤に対する分散性が良好で、また重合
時、他のモノマーとも均一な重合反応を行なうこ
とができる。また反応溶媒として脂肪族系溶媒を
用いたので、芳香族系溶媒による環境衛生上の問
題等も解消される。 実施例 以下に本発明の実施例を示す。 実施例 1 撹拌機、温度計及び還流冷却器を備えた2の
フラスコ内にアイソパーG300gを採り、90℃に
加熱した。ついで窒素気流中、この中にラウリル
メタクリレート170g、No.(1)の化合物30g及び過
酸化ベンゾイル3gよりなる溶液を2時間に亘つ
て滴下、重合反応せしめ、ついで反応を完結させ
るため、95℃で2時間撹拌し、重合率95.8%で粘
度260cpの樹脂分散液が得られた。なおこの樹脂
の粒径は3〜4μであつた。 比較例 1 実施例1において、No.(1)の化合物に代えて、ジ
エチレングリコールジメタクリレートを用いた他
は同様にして重合を行ない樹脂分散液を得た。こ
のものの重合率は95.8%で粘度290cp、樹脂の粒
径は5〜9μであつた。 比較例 2 実施例1において、No.(1)の化合物30gに代え
て、ポリエチレングリコールジメタクリレート30
gとメタクリル酸10gとの混合物を用いた他は同
様にして重合を行ない樹脂分散液を得た。このも
のの重合率は96.0%で粘度435cp、樹脂の粒径は
4〜7μであつた。 次に、実施例1及び比較例1及び2で得られた
樹脂分散液に対する着色剤の分散安定性の評価試
験を行なつた。 樹脂分散液100gにカーボンブラツク15gを分
散させ、これにアイソパーH100gで希釈した後
更にボールミルで48時間分散した。この着色剤分
散液を直径10mm、高さ300mmの沈降管に入れ、25
℃で30日間放置した後、上澄み液の高さ即ち、液
面から着色面の距離を測定した。
[Table] Effects By using monomer A as described above having a polar group as a crosslinking agent in the production of non-aqueous resin dispersions, dispersion resin products with less variation, excellent dispersion stability, and various particle size distributions can be produced. In addition, it has good dispersibility with respect to colorants, and can perform a uniform polymerization reaction with other monomers during polymerization. Furthermore, since an aliphatic solvent is used as the reaction solvent, environmental hygiene problems caused by aromatic solvents are also solved. Examples Examples of the present invention are shown below. Example 1 300 g of Isopar G was placed in a second flask equipped with a stirrer, a thermometer, and a reflux condenser, and heated to 90°C. Then, in a nitrogen stream, a solution consisting of 170 g of lauryl methacrylate, 30 g of compound No. (1), and 3 g of benzoyl peroxide was added dropwise over 2 hours to cause a polymerization reaction, and then at 95°C to complete the reaction. After stirring for 2 hours, a resin dispersion with a polymerization rate of 95.8% and a viscosity of 260 cp was obtained. The particle size of this resin was 3 to 4 microns. Comparative Example 1 Polymerization was carried out in the same manner as in Example 1 except that diethylene glycol dimethacrylate was used instead of compound No. (1) to obtain a resin dispersion. The polymerization rate of this product was 95.8%, the viscosity was 290 cp, and the particle size of the resin was 5 to 9 μm. Comparative Example 2 In Example 1, instead of 30 g of compound No. (1), 30 g of polyethylene glycol dimethacrylate was used.
Polymerization was carried out in the same manner except that a mixture of 10 g and 10 g of methacrylic acid was used to obtain a resin dispersion. The polymerization rate of this product was 96.0%, the viscosity was 435 cp, and the particle size of the resin was 4 to 7 μm. Next, a colorant dispersion stability evaluation test was conducted on the resin dispersions obtained in Example 1 and Comparative Examples 1 and 2. 15 g of carbon black was dispersed in 100 g of the resin dispersion, diluted with 100 g of Isopar H, and further dispersed in a ball mill for 48 hours. Pour this colorant dispersion into a sedimentation tube with a diameter of 10 mm and a height of 300 mm.
After being left at ℃ for 30 days, the height of the supernatant liquid, that is, the distance from the liquid surface to the colored surface was measured.

【表】 以上の結果から、本発明の樹脂分散液は着色剤
に対する分散安定性が高いことは明らかである。 実施例 2 実施例1で得られた樹脂分散液250gをポリエ
チレン(ユニオンカーバイド社製DYNF)20g
とフラスコ中で混合し、110℃で3時間加熱溶解
後、冷却して粘度100cpのポリエチレン含有樹脂
分散液を得た。なおこの樹脂の粒径は0.5〜2μで
あつた。 実施例 3 実施例1と同じ容器にイソオクタン300gを採
り、90℃に加熱した。次にこれにセチルメタクリ
レート170g、No.(2)の化合物20g、N−ビニルピ
リジン10g及びアゾビスイソブチロニトリル5g
よりなる溶液を1時間に亘つて滴下、重合反応せ
しめ、更に95℃で3時間加熱して反応を完結し
た。こうして重合率96.5%で粘度60cpの樹脂分散
液が得られた。この樹脂の粒径は1〜1.5μであつ
た。 実施例 4 実施例3で得られた樹脂分散液250gをフラス
コ中でさらし密ろう18gと混合し、100℃で2時
間加熱撹拌した後、冷却して粘度200cpのさらし
密ろう含有樹脂分散液を調製した。なおこの樹脂
の粒径は0.3〜0.5μであつた。 実施例 5 実施例1と同じ容器にイソオクタン300g及び
粒径1〜2μのシリカ粉末10gを採り、95℃に加
熱した。この中に2−エチルヘキシルメタクリレ
ート150g、No.(4)の化合物15g、グリシジルメタ
クリレート28g、スチレン25g及びアゾビスイソ
ブチロニトリル5gよりなる溶液を2時間に亘つ
て滴下、重合反応せしめた後、更に95℃で2時間
撹拌を行なつて反応を完結させた。こうして重合
率98.2%で粘度156cpの樹脂分散液が得られた。
この樹脂の粒径は2〜5μであつた。 実施例 6 実施例1と同じフラスコ中にアイソパーL300
g及びポリエチレン(AC−405)30gを入れ、95
℃に加熱した。次にこの中にステアリンメタクリ
レート150g、No.(5)の化合物21g、イタコン酸10
g、メチルメタクリレート30g及びラウリルパー
オキサイド5gよりなる溶液を前記温度で1時間
に亘つて滴下、重合反応させた後、更に同温度で
3時間加熱して反応を完結させた。こうして重合
率96%で粘度120cpの樹脂分散液を得た。この樹
脂の粒径は0.5〜2μであつた。
[Table] From the above results, it is clear that the resin dispersion of the present invention has high dispersion stability with respect to colorants. Example 2 250 g of the resin dispersion obtained in Example 1 was added to 20 g of polyethylene (DYNF manufactured by Union Carbide).
After heating and dissolving at 110° C. for 3 hours, the mixture was cooled to obtain a polyethylene-containing resin dispersion having a viscosity of 100 cp. The particle size of this resin was 0.5 to 2μ. Example 3 300 g of isooctane was placed in the same container as in Example 1 and heated to 90°C. Next, add 170 g of cetyl methacrylate, 20 g of compound No. (2), 10 g of N-vinylpyridine and 5 g of azobisisobutyronitrile.
The above solution was added dropwise over 1 hour to cause a polymerization reaction, and the reaction was completed by further heating at 95°C for 3 hours. In this way, a resin dispersion with a polymerization rate of 96.5% and a viscosity of 60 cp was obtained. The particle size of this resin was 1-1.5 microns. Example 4 250 g of the resin dispersion obtained in Example 3 was mixed with 18 g of bleached beeswax in a flask, heated and stirred at 100°C for 2 hours, and then cooled to form a resin dispersion containing bleached beeswax with a viscosity of 200 cp. Prepared. The particle size of this resin was 0.3 to 0.5μ. Example 5 In the same container as in Example 1, 300 g of isooctane and 10 g of silica powder with a particle size of 1 to 2 μm were placed and heated to 95°C. A solution consisting of 150 g of 2-ethylhexyl methacrylate, 15 g of compound No. (4), 28 g of glycidyl methacrylate, 25 g of styrene and 5 g of azobisisobutyronitrile was added dropwise to this solution over 2 hours to cause a polymerization reaction, and then further The reaction was completed by stirring at 95°C for 2 hours. In this way, a resin dispersion with a polymerization rate of 98.2% and a viscosity of 156 cp was obtained.
The particle size of this resin was 2 to 5 microns. Example 6 Isopar L300 was added to the same flask as in Example 1.
g and polyethylene (AC-405) 30g, 95
heated to ℃. Next, in this, 150 g of stearin methacrylate, 21 g of compound No. (5), and 10 g of itaconic acid.
A solution consisting of 5 g, 30 g of methyl methacrylate, and 5 g of lauryl peroxide was added dropwise at the above temperature for 1 hour to cause a polymerization reaction, and then the reaction was completed by further heating at the same temperature for 3 hours. In this way, a resin dispersion with a polymerization rate of 96% and a viscosity of 120 cp was obtained. The particle size of this resin was 0.5-2μ.

Claims (1)

【特許請求の範囲】 1 脂肪族炭化水素又はハロゲン化脂肪族炭化水
素を主成分とする非水溶媒中、重合開始剤の存在
下に一般式 (但しRは−H又は−CH3基、Xはハロゲン、n
は1〜20の整数を表わす。) で示されるモノマーAと重合前も重合後も前記溶
媒と溶媒和し得る一般式 【式】 (但し、R1は−H又は−CH3基、Aは−COOCn
H2n+1又は−OCOCnH2n+1、mは6〜20の整数を
表わす。) で示されるモノマーBと重合反応させることを特
徴とする非水系樹脂分散液の製造方法。
[Claims] 1. In a non-aqueous solvent containing an aliphatic hydrocarbon or a halogenated aliphatic hydrocarbon as a main component, in the presence of a polymerization initiator, the general formula (However, R is -H or -CH 3 group, X is halogen, n
represents an integer from 1 to 20. ) A general formula that can be solvated with the monomer A represented by the above solvent both before and after polymerization [Formula] (However, R 1 is -H or -CH 3 group, A is -COOC n
H 2n+1 or -OCOC n H 2n+1 , m represents an integer from 6 to 20. ) A method for producing a non-aqueous resin dispersion, characterized by carrying out a polymerization reaction with monomer B represented by:
JP57207034A 1982-11-26 1982-11-26 Preparation of non-aqueous resin dispersion liquid Granted JPS5998114A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP57207034A JPS5998114A (en) 1982-11-26 1982-11-26 Preparation of non-aqueous resin dispersion liquid

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP57207034A JPS5998114A (en) 1982-11-26 1982-11-26 Preparation of non-aqueous resin dispersion liquid

Publications (2)

Publication Number Publication Date
JPS5998114A JPS5998114A (en) 1984-06-06
JPH0334485B2 true JPH0334485B2 (en) 1991-05-22

Family

ID=16533103

Family Applications (1)

Application Number Title Priority Date Filing Date
JP57207034A Granted JPS5998114A (en) 1982-11-26 1982-11-26 Preparation of non-aqueous resin dispersion liquid

Country Status (1)

Country Link
JP (1) JPS5998114A (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0618833B2 (en) * 1984-04-25 1994-03-16 株式会社リコー Method for producing non-aqueous resin dispersion

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5679112A (en) * 1979-12-03 1981-06-29 Ricoh Co Ltd Preparation of nonaqueous resin dispersion
JPS5679111A (en) * 1979-12-03 1981-06-29 Ricoh Co Ltd Preparation of nonaqueous resin dispersion

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5679112A (en) * 1979-12-03 1981-06-29 Ricoh Co Ltd Preparation of nonaqueous resin dispersion
JPS5679111A (en) * 1979-12-03 1981-06-29 Ricoh Co Ltd Preparation of nonaqueous resin dispersion

Also Published As

Publication number Publication date
JPS5998114A (en) 1984-06-06

Similar Documents

Publication Publication Date Title
JPS623859B2 (en)
JPS6247206B2 (en)
JPH0334485B2 (en)
JPH0334486B2 (en)
JPH0618833B2 (en) Method for producing non-aqueous resin dispersion
JPS6213965B2 (en)
JPH0124808B2 (en)
JPS59228665A (en) Preparation of liquid developer having negative charge
JP3058476B2 (en) Method for producing microgel
JPS6218410A (en) Nonaqueous resin dispersion
JP2708461B2 (en) Non-aqueous resin composition
JPH0564162B2 (en)
JPS6160715A (en) Nonaqueous resin and electrostatic photography liquid developer containing same
JPH0568505B2 (en)
JPH0580661B2 (en)
JPH04198351A (en) Nonaqueous resin dispersion and its production
JPS60248719A (en) Nonaqueous resin dispersion
JPH0124806B2 (en)
JP2634849B2 (en) Non-aqueous resin composition
JPS60248718A (en) Nonaqueous resin dispersion
JPS6218574A (en) Liquid developer for electrostatic photography
JPS61112161A (en) Liquid developer for electrostatic photography
JP3763853B2 (en) Method for producing microgel
JPS5840740B2 (en) Liquid developer for electrophotography
JPH0341486B2 (en)