JP2013129026A - Saw wire - Google Patents

Saw wire Download PDF

Info

Publication number
JP2013129026A
JP2013129026A JP2011280696A JP2011280696A JP2013129026A JP 2013129026 A JP2013129026 A JP 2013129026A JP 2011280696 A JP2011280696 A JP 2011280696A JP 2011280696 A JP2011280696 A JP 2011280696A JP 2013129026 A JP2013129026 A JP 2013129026A
Authority
JP
Japan
Prior art keywords
wire
saw wire
saw
hardness
martens hardness
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2011280696A
Other languages
Japanese (ja)
Other versions
JP5759887B2 (en
Inventor
Tomoki Shioya
友規 塩谷
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Tokyo Seiko Co Ltd
Original Assignee
Tokyo Seiko Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Tokyo Seiko Co Ltd filed Critical Tokyo Seiko Co Ltd
Priority to JP2011280696A priority Critical patent/JP5759887B2/en
Publication of JP2013129026A publication Critical patent/JP2013129026A/en
Application granted granted Critical
Publication of JP5759887B2 publication Critical patent/JP5759887B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Abstract

PROBLEM TO BE SOLVED: To provide a saw wire which has satisfactory wear resistance, allows quality of a cut out wafer to be kept satisfactory and furthermore has little risk of wire breaking in use.SOLUTION: In a saw wire 1, brass plating 3 is applied to a surface of a saw wire body 2. The saw wire body 2 has a wire diameter of 0.04 to 0.14 mm and has a Martens hardness of 6,500 N/mmor more in a position at a depth of 8% of a radius from the surface. If a Martens hardness in a position at a depth of 8% of a radius from the surface is 6,500 N/mmor more, a wear amount of the saw wire body 2 is not increased as compared with a conventional one. Further, if a diameter of the saw wire body 2 is in a range of 0.04 to 0.14 mm, wire breaking of the saw wire body 2 is not generated upon cutting of an ingot and a thickness of a wafer cut out from the ingot using the saw wire body 2 becomes uniform.

Description

この発明はソーワイヤに関する。より詳細には,シリコンに代表される半導体インゴットからウェハーを切出すために用いられるソーワイヤに関する。   The present invention relates to a saw wire. More specifically, the present invention relates to a saw wire used for cutting a wafer from a semiconductor ingot typified by silicon.

走行するソーワイヤに砥粒を含む液体(スラリー)を吹き付けながらインゴットを押しつけることで,インゴットから多数枚のウェハーが切出される。インゴットから切出されるウェハーの取れ高の向上,生産効率の向上等のために,近年のソーワイヤは細径化が進んでいる。ソーワイヤの細径化は,ソーワイヤの製造時およびソーワイヤを用いたインゴット切断時の両方において,ソーワイヤの断線のリスクを増大させる。   A large number of wafers are cut from the ingot by pressing the ingot while spraying a liquid (slurry) containing abrasive grains on the traveling saw wire. In recent years, saw wires have been made thinner in order to improve the yield of wafers cut from ingots and improve production efficiency. The reduction in the diameter of the saw wire increases the risk of saw wire breakage both during manufacture of the saw wire and during ingot cutting using the saw wire.

様々なソーワイヤが提案されている。特許文献1に記載のものは線径が0.04〜0.35mmのソーワイヤ(ピアノ線)であって,外周側の最大硬度が内周側の硬度の1.25倍以上のものを開示する。   Various saw wires have been proposed. Patent Document 1 discloses a saw wire (piano wire) having a wire diameter of 0.04 to 0.35 mm and having a maximum outer peripheral hardness of 1.25 times or more of the inner peripheral hardness.

特許文献2は軟質メッキ層の表面から20μmまでの硬度値が中心部の硬度値の1.00〜1.25倍であるソーワイヤを開示する。   Patent Document 2 discloses a saw wire in which the hardness value from the surface of the soft plating layer to 20 μm is 1.00 to 1.25 times the hardness value of the central portion.

特開平10−309627号公報JP 10-309627 A 特開2003−205448号公報JP 2003-205448 A

特許文献1に記載のようにソーワイヤの外周側と内周側の硬度差が大きすぎると,細径のソーワイヤを製造するときのカッピー断線のリスクが増大してしまう。また,ソーワイヤの細径化に伴ってソーワイヤの使用時における耐摩耗性についても従来に比べて慎重に対策を施す必要性が増してきているが,特許文献2に記載のように外周側と内周側の硬度値の大きさの比を考慮するだけではソーワイヤの耐摩耗特性が十分でないケースが生じ始めている。   If the hardness difference between the outer peripheral side and the inner peripheral side of the saw wire is too large as described in Patent Document 1, the risk of a broken cut in manufacturing a thin saw wire is increased. In addition, as the diameter of the saw wire is reduced, it is necessary to carefully take measures against wear resistance when using the saw wire as compared with the conventional technique. Cases are beginning to arise where the wear resistance of the saw wire is not sufficient simply by considering the ratio of the hardness values on the circumferential side.

この発明は,良好な耐摩耗性を有し,切り出されるウェハーの品質を良好に保ちつつ,さらに使用時における断線リスクの少ないソーワイヤを提供する。   The present invention provides a saw wire that has good wear resistance, maintains a good quality of a cut wafer, and has a low risk of disconnection during use.

この発明はさらに製造時の断線リスクの少ないソーワイヤを提供する。   The present invention further provides a saw wire with a low risk of disconnection during production.

この発明によるソーワイヤは,線径が0.04〜0.14mmであり,表面からソーワイヤの半径に対して8%の深さ位置のマルテンス硬度が6,500 N/mm2以上であることを特徴とする。「線径」とはめっき層を除いたソーワイヤの直径を意味する。「表面」もめっき層を除いたソーワイヤの表面を意味する。 The saw wire according to the present invention has a wire diameter of 0.04 to 0.14 mm, and a Martens hardness at a depth position of 8% with respect to the radius of the saw wire from the surface is 6,500 N / mm 2 or more. “Wire diameter” means the diameter of the saw wire excluding the plating layer. “Surface” also means the surface of the saw wire excluding the plating layer.

表面からワイヤ半径に対し8%の深さ位置のマルテンス硬度が6,500 N/mm2 以上であると,ソーワイヤの摩耗量が従来品と比べて大きくなってしまうことがない。また,ソーワイヤの直径が0.04〜0.14mmの範囲にあれば,インゴットの切断時にソーワイヤに断線が生じず,しかもそのソーワイヤを用いてインゴットから切出されるウェハー厚も均一なものとなる。 If the Martens hardness at a depth of 8% of the wire radius from the surface is 6,500 N / mm 2 or more, the wear amount of the saw wire will not increase compared to the conventional product. If the diameter of the saw wire is in the range of 0.04 to 0.14 mm, the saw wire is not broken when the ingot is cut, and the thickness of the wafer cut from the ingot using the saw wire is uniform.

好ましくは,上記ソーワイヤは上記8%深さ位置のマルテンス硬度を中心位置のマルテンス硬度によって除した値が1.25未満であることを特徴とする。ソーワイヤを製造するときの断線のリスクを少なくすることができる。   Preferably, in the saw wire, a value obtained by dividing the Martens hardness at the 8% depth position by the Martens hardness at the center position is less than 1.25. The risk of disconnection when manufacturing a saw wire can be reduced.

ソーワイヤの横断面図であり,表層8%深さ位置のマルテンス硬度の計測箇所を示している。It is a cross-sectional view of a saw wire, and shows a measurement point of Martens hardness at a surface layer 8% depth position.

(硬度指数と伸線断線指数との関係)
表1は,8種類のソーワイヤのそれぞれについて,表層8%の深さ位置のマルテンス硬度および中心位置のマルテンス硬度,硬度指数ならびに伸線断線指数をまとめたものである。
(Relationship between hardness index and wire breakage index)
Table 1 summarizes the Martens hardness at the depth position of the surface layer 8%, the Martens hardness at the center position, the hardness index, and the wire breakage index for each of the eight types of saw wires.

Figure 2013129026
Figure 2013129026

「表層8%」とは,めっき層を除いたソーワイヤ(ソーワイヤ本体)の表面から,ソーワイヤの中心に向かって,ソーワイヤ本体の半径の8%分の深さ位置を意味する(以下,表層8%深さ位置と呼ぶ)。「中心位置」とはソーワイヤの円形断面における中心位置を意味する。表1には8種類のソーワイヤのそれぞれについて,マルテンス硬度試験機を用いて表層8%深さ位置と中心位置とで測定したマルテンス硬度が記載されている。   “Surface 8%” means a depth position corresponding to 8% of the radius of the saw wire body from the surface of the saw wire (saw wire body) excluding the plating layer toward the center of the saw wire (hereinafter referred to as 8% of the surface layer). Called the depth position). The “center position” means the center position in the circular cross section of the saw wire. Table 1 shows the Martens hardness measured for each of the eight types of saw wires using a Martens hardness tester at the surface layer 8% depth position and the center position.

「硬度指数」は,上述の表層8%深さ位置で測定したソーワイヤのマルテンス硬度(以下,表層硬度とも呼ぶ)と,上述の中心位置で測定したソーワイヤのマルテンス硬度(以下,中心硬度とも呼ぶ)の比であり,表層硬度を中心硬度によって除算した値である。伸線工程を経て製造されるソーワイヤはその中心側(内側)の硬度が低く,表層側(外側)に向かうにつれて硬度が高くなり,最表層では再び硬度が低くなる傾向を持つ。このため,8種類のソーワイヤのいずれについても,硬度指数として1以上の値が得られている。なお,表層8%深さ位置のマルテンス硬度を測定するのは,シリコンインゴット等をスライスするメーカ等においてソーワイヤの交換する基準は様々であるが,交換後(使用済)のソーワイヤの摩耗量(使用前のソーワイヤの半径と使用後のソーワイヤの半径の差)を計測すると,使用前のソーワイヤの半径に対しておおよそ8%であるためである。使用前(新品)のソーワイヤの表層8%深さ位置の硬度は,使用後のソーワイヤにおいても残存している硬度と言える。上述したように,伸線工程を経て製造されるソーワイヤは最表層では硬度が低くなる傾向を持つので,表層8%深さ位置よりもさらに表層に近い箇所の硬度は,一般に表層8%深さ位置の硬度よりもわずかに低い。   “Hardness index” refers to the saw wire Martens hardness (hereinafter also referred to as surface hardness) measured at the surface layer 8% depth position and the saw wire Martens hardness (hereinafter also referred to as center hardness) measured at the above center position. This is the ratio of the surface hardness divided by the center hardness. The saw wire manufactured through the wire drawing process has a low hardness on the center side (inner side), the hardness increases toward the surface layer side (outer side), and the hardness tends to decrease again on the outermost layer. For this reason, a value of 1 or more is obtained as the hardness index for any of the eight types of saw wires. In addition, the Martens hardness at the depth of 8% of the surface layer is measured by various manufacturers for slicing silicon ingots, etc., but there are various criteria for exchanging saw wires. This is because the difference between the radius of the saw wire before and the radius of the saw wire after use is approximately 8% of the radius of the saw wire before use. The hardness at the surface layer 8% depth position of the saw wire before use (new product) can be said to be the hardness remaining in the saw wire after use. As described above, since the saw wire manufactured through the wire drawing process tends to have lower hardness at the outermost layer, the hardness of the portion closer to the surface layer than the surface layer 8% depth position is generally 8% depth of the surface layer. Slightly lower than the position hardness.

「伸線断線指数」は伸線工程時の断線しやすさを表す数値であり,その数値が大きいほど伸線加工時に断線しやすいものであることを表している。表1に示す伸線断線指数は,比較例3についての伸線断線率を 100とした相対値で示されている。各ソーワイヤの伸線断線率は,伸線時の断線回数(回)を総伸線量(t) で除した値(すなわち,ソーワイヤ1トンあたりの断線回数)を用いた。   The “drawing index” is a numerical value representing the ease of disconnection during the wire drawing process, and the larger the value, the easier it is to disconnect during the wire drawing process. The wire-drawing index shown in Table 1 is shown as a relative value with the wire-drawing rate for Comparative Example 3 as 100. The wire breakage rate of each saw wire was the value obtained by dividing the number of wire breaks (times) by the total wire draw (t) (ie, the number of wire breaks per ton of saw wire).

表1を参照して,比較例1と実施例1と比べると,線径(直径)が同一でかつ表層8%深さ位置の硬度もほぼ同一であるが,比較例1の中心硬度(5638 N/mm2)は実施例1の中心硬度(6898 N/mm2)に比べて低い。このため,比較例1の硬度指数は1.39と比較的大きく,これに対して実施例1の硬度指数はそれよりも小さい(1.10)。伸線断線指数を見てみると,比較例1の伸線断線指数は 180,実施例1の伸線断線指数は93であり,比較例1は伸線時に断線が生じやすいことが分かる。比較例2と実施例2との対比,比較例3と実施例3との対比,および比較例4と実施例4との対比においても同様のことが言える。硬度指数が1.25を越えると伸線断線指数は悪化する傾向にある。 Referring to Table 1, when compared with Comparative Example 1 and Example 1, the wire diameter (diameter) is the same and the hardness at the surface layer 8% depth position is almost the same. N / mm 2 ) is lower than the center hardness (6898 N / mm 2 ) of Example 1. For this reason, the hardness index of Comparative Example 1 is relatively large at 1.39, whereas the hardness index of Example 1 is smaller (1.10). Looking at the wire-drawing index, it can be seen that the wire-breaking index of Comparative Example 1 is 180, and that the wire-breaking index of Example 1 is 93. The same applies to the comparison between Comparative Example 2 and Example 2, the comparison between Comparative Example 3 and Example 3, and the comparison between Comparative Example 4 and Example 4. When the hardness index exceeds 1.25, the wire drawing index tends to deteriorate.

上述の表1の結果を踏まえると,伸線時の断線のしにくさを考慮すれば硬度指数が1.25未満のソーワイヤを用いるのが好ましい。   In view of the results in Table 1 above, it is preferable to use a saw wire having a hardness index of less than 1.25 in consideration of the difficulty of disconnection during wire drawing.

表2は切断条件Aのもとで,13種類のソーワイヤ(比較例5〜11および実施例5〜10)を用いてシリコン・インゴットを切断したときの試験結果を,表3は切断条件Bのもとで,上述の13種類のソーワイヤを用いてシリコン・インゴットを切断したときの試験結果をそれぞれ示している。表4は上述の切断条件AおよびBの内容を示している。   Table 2 shows the test results when the silicon ingot was cut using 13 types of saw wires (Comparative Examples 5 to 11 and Examples 5 to 10) under the cutting condition A. Table 3 shows the cutting conditions B Originally, the test results when the silicon ingot was cut using the 13 types of saw wires described above are shown. Table 4 shows the contents of the above-described cutting conditions A and B.

Figure 2013129026
Figure 2013129026

Figure 2013129026
Figure 2013129026

Figure 2013129026
Figure 2013129026

表2および表3には,種々の線径(めっき層を除くソーワイヤの直径)およびマルテンス硬度を持つソーワイヤのそれぞれについて,表層8%深さ位置のマルテンス硬度のほかに,表層16%深さ位置(めっき層を除くソーワイヤの表面から,ソーワイヤの中心に向かって,ソーワイヤの半径の16%分の深さ位置)のマルテンス硬度が示されている。表2および表3にはまた,切断時断線評価,ワイヤ摩耗量評価,およびウェハー厚評価のそれぞれについて,後述する評価(○または×,評価できない場合には−)が示されている。   Tables 2 and 3 show that for each of the various wire diameters (the diameter of the saw wire excluding the plating layer) and the Martens hardness, in addition to the Martens hardness at the surface layer 8% depth position, the surface layer 16% depth position Martens hardness is shown (depth position corresponding to 16% of the radius of the saw wire from the surface of the saw wire excluding the plating layer toward the center of the saw wire). Tables 2 and 3 also show the later-described evaluations (◯ or ×, or − when evaluation is impossible) for each of the disconnection evaluation at the time of cutting, the wire wear amount evaluation, and the wafer thickness evaluation.

表2および表3の試験結果の説明に先立ち,表2および表3の試験結果を得るために行った試験内容を説明しておく。   Prior to the description of the test results in Tables 2 and 3, the contents of the tests conducted to obtain the test results in Tables 2 and 3 will be described.

(1)ソーワイヤの製造
JIS G 3502に規定されるSWRS72A 以上に相当する化学成分を含有し,熱間圧延により線径 5.5mmまで圧延され,その後調整冷却により組織調整されたピアノ線材を用意する。このピアノ線材の表面のスケールを酸で除去した後,ボラックス皮膜処理をし,これを乾式伸線する。乾式伸線されたワイヤに熱処理を行う。熱処理工程では約1000℃の加熱炉で均一にオーステナイト化させ,さらに約 550℃のパテンティング炉で金属組織を調整する。乾式伸線と熱処理は必要な回数繰返し行い,その後に銅めっきおよび亜鉛メッキを電気めっきして拡散炉で銅と亜鉛を拡散させてブラスめっきとする。ブラスめっきを行うのは,ワイヤにめっき層を形成することで次の湿式伸線加工時の表層潤滑性を向上させるためである。ブラスめっき後に湿式伸線することで,線径0.03mm〜0.15mmのソーワイヤを製造した。使用するピアノ線材(原材料)の直径,および乾式または湿式伸線回数を増減することによりソーワイヤの線径は調整される。また,使用するピアノ線材(原材料)の直径,熱処理の温度,伸線速度などの調整によりマルテンス硬度は調整される。
(1) Saw wire manufacturing
A piano wire containing a chemical component equivalent to SWRS72A or higher as specified in JIS G 3502, rolled to a wire diameter of 5.5 mm by hot rolling, and then texture-adjusted by adjusting cooling is prepared. After removing the scale on the surface of the piano wire with acid, it is treated with a borax film and dry-drawn. Heat-treat the dry-drawn wire. In the heat treatment process, austenite is uniformly formed in a heating furnace at about 1000 ° C, and the metal structure is adjusted in a patenting furnace at about 550 ° C. Dry wire drawing and heat treatment are repeated as many times as necessary, then copper plating and zinc plating are electroplated, and copper and zinc are diffused in a diffusion furnace to make brass plating. Brass plating is performed in order to improve surface lubricity during the next wet wire drawing by forming a plating layer on the wire. A saw wire with a wire diameter of 0.03mm to 0.15mm was manufactured by wet drawing after brass plating. The wire diameter of the saw wire is adjusted by increasing or decreasing the diameter of the piano wire (raw material) used and the number of dry or wet wire drawing. In addition, the Martens hardness is adjusted by adjusting the diameter of the piano wire (raw material) used, the temperature of the heat treatment, the drawing speed, and the like.

(2)マルテンス硬度の測定
製造したソーワイヤについて,マルテンス硬度試験機を用いて,表層8%深さ位置および表層16%深さ位置のマルテンス硬度を測定した。
(2) Measurement of Martens Hardness With respect to the manufactured saw wire, the Martens hardness at the surface layer 8% depth position and the surface layer 16% depth position was measured using a Martens hardness tester.

図1はソーワイヤ1の断面を示している。完成状態のソーワイヤ1は,上述したように,ソーワイヤ本体2の表面にブラスめっき層3が積層されたものである。図1に三角印で示すのがマルテンス硬度の測定箇所であり,ソーワイヤ本体2の表面からソーワイヤ本体2の半径の8%に相当する深さ位置にある,互いに間隔をあけた4点についてマルテンス硬度を測定し,その平均値を表層8%深さ位置のマルテンス硬度とした。マルテンス硬度の測定には,押込み型マルテンス硬度試験機であるエリオニクス製「ENT-1100a」を用い,測定荷重を20mNとして,10秒かけて次第に20mNまで負荷をかけ,20mNの負荷を1秒間保持し,最後に10秒かけて次第に除荷した。圧子にはダイヤモンド三角錐圧子を用いた。   FIG. 1 shows a cross section of the saw wire 1. As described above, the finished saw wire 1 is obtained by laminating the brass plating layer 3 on the surface of the saw wire body 2. The triangular marks in FIG. 1 indicate the Martens hardness measurement points. The Martens hardness is measured at four points spaced from each other at a depth corresponding to 8% of the radius of the saw wire body 2 from the surface of the saw wire body 2. The average value was defined as the Martens hardness at the surface layer 8% depth position. For the measurement of Martens hardness, an indentation type Martens hardness tester, “ENT-1100a” manufactured by Elionix, was used. The measurement load was 20 mN. Finally, it was gradually unloaded over 10 seconds. A diamond triangular pyramid indenter was used as the indenter.

ダイヤモンド三角錐圧子をソーワイヤ本体2の断面に押込むと,ソーワイヤ本体2の断面に圧痕が生じる。マルテンス硬度(HM)は,試験力(F)を圧子の侵入表面積(As(h))によって除した値と定義される。圧痕の高さをh とすると,マルテンス硬度はたとえば次式によって算出される。   When the diamond triangular pyramid indenter is pushed into the cross section of the saw wire body 2, an impression is generated in the cross section of the saw wire body 2. Martens hardness (HM) is defined as the test force (F) divided by the indentation surface area (As (h)). If the height of the indentation is h, the Martens hardness is calculated, for example, by the following equation.

マルテンス硬度(HM)=F/As(h)=F/(a*h2) Martens hardness (HM) = F / As (h) = F / (a * h 2 )

上記算出式において,aは使用する圧子に固有の係数である。   In the above formula, a is a coefficient specific to the indenter to be used.

表層16%深さ位置のマルテンス硬度についても上述と同様に測定を行った。   The Martens hardness at the surface layer 16% depth position was also measured in the same manner as described above.

金属等の硬さを表す尺度として,マルテンス硬度のほかにビッカース硬度が知られている。ビッカースないしマイクロビッカース硬度試験機では一般にダイヤモンド四角錐圧子を所定の試験力で試料に押しつけ,試料に残る圧痕の対角線の長さを測定するが,一般的なビッカースないしマイクロビッカース硬度試験機の試験力は最低でも 100mN程度であり,表層8%深さ位置,すなわち表層からかなり浅い箇所の試料の硬さを計測するのが難しい。これに対し,マルテンス硬度試験機は比較的小さな試験力のもとで硬度を計測することができ,このため8%深さ位置の硬度の計測に適している。これがこの実施例においてソーワイヤの硬さを表す指標としてマルテンス硬度を用いる理由である。なお,同一試料を測定する場合であればマルテンス硬度とビッカース硬度は相関関係を持ち,ビッカース硬度試験機では測定できない表層位置の硬度を除いて,ソーワイヤの様々な深さ位置でマルテンス硬度およびビッカース硬度を測定すると,いずれについてもソーワイヤの中心側(内側)で低い硬度が測定され,表層側(外側)に向かうにつれて高い硬度が測定される。   In addition to Martens hardness, Vickers hardness is known as a measure for the hardness of metals and the like. A Vickers or micro Vickers hardness tester generally presses a diamond pyramid indenter against a sample with a predetermined test force and measures the diagonal length of the indentation remaining on the sample. The test force of a general Vickers or Micro Vickers hardness tester Is at least about 100 mN, and it is difficult to measure the hardness of the sample at a depth of 8% on the surface layer, that is, at a location that is fairly shallow from the surface layer. On the other hand, the Martens hardness tester can measure the hardness under a relatively small test force, and is therefore suitable for measuring the hardness at the 8% depth position. This is the reason why Martens hardness is used as an index representing the hardness of the saw wire in this embodiment. When measuring the same sample, the Martens hardness and the Vickers hardness have a correlation, and the Martens hardness and the Vickers hardness at various depth positions of the saw wire except for the surface layer hardness that cannot be measured by the Vickers hardness tester. In each case, a low hardness is measured on the center side (inside) of the saw wire, and a high hardness is measured toward the surface layer side (outside).

(3)ソーワイヤを用いたシリコン・インゴットの切断
ソーワイヤを用いたシリコン・インゴットの切断では,一本のソーワイヤを2つのガイドロール間に複数回掛け渡し,ソーワイヤを送り出し側から巻き取り側に走行させる。この2つのガイドロールの間に張られたソーワイヤにシリコン・インゴットが押し付けることでシリコン・インゴットが切断される。ガイドロール間には 500本程度のソーワイヤが等間隔に互いに平行に掛け渡され,1つのシリコン・インゴットから一度に 500枚程度のウェハーが得られる。
(3) Cutting a silicon ingot using a saw wire In cutting a silicon ingot using a saw wire, a single saw wire is passed between two guide rolls several times, and the saw wire is run from the sending side to the winding side. . The silicon ingot is cut by pressing the silicon ingot against the saw wire stretched between the two guide rolls. Between the guide rolls, about 500 saw wires are stretched in parallel with each other at equal intervals, and about 500 wafers can be obtained at one time from one silicon ingot.

この実施例では,切断条件Aおよび切断条件Bの2種類の条件のもとで,製造したソーワイヤを用いて長さ 840mmのシリコン・インゴットを切断した。表4を参照して,「切断条件A」はソーワイヤを一方向に走行させるものである。これに対し「切断条件B」はソーワイヤを所定量分送り出し,次にソーワイヤを所定量分巻き戻し,これを繰り返しながらソーワイヤを少しずつ送り出すものである。切断条件Bにおいて送り出される所定量は,巻き戻される所定量よりも大きい(長い)のは言うまでもない。切断条件Bはソーワイヤ1mあたりのインゴット切断面積が切断条件Aに比べて大きいことが特徴である。このため切断条件Bの方が切断条件Aに比べてソーワイヤにかかる負荷は大きい。切断条件Aおよび切断条件Bの共通項目として,ソーワイヤの走行方向はインゴットの長手方向に対して垂直方向,ソーワイヤ張力は切断荷重の50%とした。また,切断時に切断箇所に吹付けられるスラリーとして,ベース液と砥粒とを重量混合比1:1で混合した液温20℃のSiCスラリーを総量400リットル用い,吹付け流量は140リットル/minとした。   In this example, a silicon ingot having a length of 840 mm was cut using the manufactured saw wire under two conditions of cutting condition A and cutting condition B. Referring to Table 4, “cutting condition A” is to run the saw wire in one direction. On the other hand, the “cutting condition B” is to feed the saw wire by a predetermined amount, then rewind the saw wire by a predetermined amount, and feed the saw wire little by little while repeating this. Needless to say, the predetermined amount sent out in the cutting condition B is larger (longer) than the predetermined amount to be rewound. The cutting condition B is characterized in that the ingot cutting area per 1 m of the saw wire is larger than the cutting condition A. For this reason, the load applied to the saw wire is larger in the cutting condition B than in the cutting condition A. As common items for cutting conditions A and B, the traveling direction of the saw wire was perpendicular to the longitudinal direction of the ingot, and the saw wire tension was 50% of the cutting load. In addition, as slurry to be sprayed at the cutting location at the time of cutting, a total amount of 400 liters of SiC slurry with a liquid temperature of 20 ° C in which the base liquid and abrasive grains are mixed at a weight mixing ratio of 1: 1 is used, and the spraying flow rate is 140 liters / min. It was.

表2および表3を参照して,「切断時断線評価」には,ソーワイヤを用いてシリコン・インゴットを切断している最中に断線しなかったものに○が,断線したものに×がそれぞれ示されている。「ワイヤ摩耗量評価」には,使用前のソーワイヤ(上述のソーワイヤ本体を意味する)の半径と使用後のソーワイヤの半径の差(すなわち摩耗量)が使用前のソーワイヤの半径に対して8%未満であったものに○が,8%以上であったものに×が示されている。「ウェハー厚評価」では,1本のシリコン・インゴットから多数枚切り出されるウェハーのうち,走行するソーワイヤの送り出し側に近い箇所のウェハーを5枚,ソーワイヤの巻き取り側に近い箇所のウェハーを5枚,合計10枚のウェハーを抜き取り,ウェハー1枚につき5箇所の厚さを測定した。合計50箇所のウェハー厚さの測定値のうちの最大値と最小値の差が10μm未満であれば○が,10μm以上であれば×が示されている。上述したように,表2の「切断時断線評価」,「ワイヤ摩耗量評価」および「ウェハー厚評価」には,切断条件Aのもとでシリコン・インゴットを切断したときの評価が示されている。表3には,切断条件Bのもとでシリコン・インゴットを切断したときの評価が示されている。   With reference to Table 2 and Table 3, “cutting disconnection evaluation” indicates that a wire was not disconnected while a silicon ingot was being cut using a saw wire, and a circle was indicated when the wire was broken. It is shown. “Evaluation of the amount of wire wear” includes a difference between the radius of the saw wire before use (meaning the above-mentioned saw wire body) and the radius of the saw wire after use (that is, the amount of wear) is 8% of the radius of the saw wire before use. A mark was shown for those that were less than 0, and a mark for those that were 8% or more. In the “wafer thickness evaluation”, among a plurality of wafers cut out from one silicon ingot, five wafers near the sending side of the traveling saw wire and five wafers near the winding side of the saw wire are taken. A total of 10 wafers were extracted, and the thickness of 5 locations was measured for each wafer. A circle indicates that the difference between the maximum and minimum values of the wafer thickness measurements at a total of 50 locations is less than 10 μm, and a cross indicates that the difference is 10 μm or more. As described above, the “cutting wire breakage evaluation”, “wire wear amount evaluation” and “wafer thickness evaluation” in Table 2 show the evaluation when the silicon ingot is cut under the cutting condition A. Yes. Table 3 shows the evaluation when the silicon ingot was cut under the cutting condition B.

表2を参照して,比較例7〜比較例10はワイヤ摩耗量およびウェハー厚の評価がいずれも×であった。さらに,比較例7および9についてはシリコン・インゴットの切断時にソーワイヤの断線が発生した。さらに比較例11はウエハー厚の評価が×となった。   Referring to Table 2, in Comparative Examples 7 to 10, the wire wear amount and the wafer thickness were both evaluated as x. Further, in Comparative Examples 7 and 9, the saw wire was disconnected when the silicon ingot was cut. Further, in Comparative Example 11, the evaluation of the wafer thickness was x.

同一直径である比較例8と実施例7を比較して,表層16%深さ位置のマルテンス硬度は比較例8が6823 N/mm2,実施例7が6703 N/mm2であり,比較例8の方が約100 N/mm2 高いが,表層8%深さ位置のマルテンス硬度を見てみると,比較例8が6404 N/mm2,実施例7が6654 N/mm2であり,実施例7の方が約250 N/mm2 高い。比較例8はワイヤ摩耗量評価およびウェハー厚評価がいずれも×であり,ワイヤ摩耗量評価およびウェハー厚評価がいずれもが×となった比較例7〜10は,表層8%深さ位置のマルテンス硬度が比較的低いものであったことが共通していることからすると,ソーワイヤの摩耗量,および切出されるウェハーの品質には,表層8%深さ位置のマルテンス硬度が大きな影響を与えていることが分かる。 Comparing Comparative Example 8 and Example 7 having the same diameter, the Martens hardness at the 16% depth position of the surface layer is 6823 N / mm 2 in Comparative Example 8 and 6703 N / mm 2 in Example 7; 8 is about 100 N / mm 2 higher, but looking at the Martens hardness at the depth of 8% in the surface layer, Comparative Example 8 is 6404 N / mm 2 and Example 7 is 6654 N / mm 2 . Example 7 is about 250 N / mm 2 higher. In Comparative Example 8, the wire wear amount evaluation and the wafer thickness evaluation are both x, and in Comparative Examples 7 to 10 in which both the wire wear amount evaluation and the wafer thickness evaluation are x, the Martens at the depth position of the surface layer 8%. Given that the hardness was relatively low, the Martens hardness at the depth of 8% of the surface layer had a great influence on the wear amount of the saw wire and the quality of the cut wafer. I understand that.

ワイヤ摩耗量の評価が×であった比較例7〜比較例10は,いずれも表層8%深さ位置のマルテンス硬度が6500 N/mm2未満である。他方,表層8%深さ位置のマルテンス硬度が6500 N/mm2以上であれば,ワイヤ摩耗量の評価は○となった(比較例5,6および11,実施例5〜10)。ワイヤ摩耗量を従来のソーワイヤと少なくとも同等に保つには,表層8%深さ位置のマルテンス硬度が6500 N/mm2以上である必要があることが分かる。 In each of Comparative Examples 7 to 10 in which the evaluation of the wire wear amount was x, the Martens hardness at the surface layer 8% depth position is less than 6500 N / mm 2 . On the other hand, when the Martens hardness at the depth of the surface layer of 8% was 6500 N / mm 2 or more, the evaluation of the wire wear amount was ○ (Comparative Examples 5, 6 and 11, Examples 5 to 10). It can be seen that the Martens hardness at the depth of 8% of the surface layer must be 6500 N / mm 2 or more in order to keep the wire wear amount at least equivalent to that of the conventional saw wire.

比較例11を参照して,比較例11のソーワイヤは表層8%深さ位置のマルテンス硬度は6500 N/mm2以上であるものの,ソーワイヤの直径が比較的太い(0.15mm)。このとき,ウェハー厚の評価が×となっている。1本のシリコン・インゴットから切り出されるウェハーの厚さのばらつきを抑制し,ウェハーの品質の低下を避けるには,ソーワイヤの直径が0.14mm以下である必要がある。 Referring to Comparative Example 11, although the saw wire of Comparative Example 11 has a Martens hardness of 6500 N / mm 2 or more at the surface layer 8% depth position, the diameter of the saw wire is relatively large (0.15 mm). At this time, the evaluation of the wafer thickness is x. In order to suppress variations in the thickness of a wafer cut from a single silicon ingot and avoid deterioration in wafer quality, the diameter of the saw wire must be 0.14 mm or less.

表2の結果をまとめると,切断時断線評価,ワイヤ摩耗量評価およびウェハー厚評価のいずれもを○とするには,表層8%深さ位置のマルテンス硬度が6500 N/mm2以上であり,かつ線径が0.03mm〜0.14mmのソーワイヤを用いる必要があることが分かった。 To summarize the results in Table 2, the Martens hardness at the depth of 8% of the surface layer is 6500 N / mm 2 or more in order to make all the evaluations of disconnection during cutting, wire wear evaluation and wafer thickness evaluation ○ It was also found that it was necessary to use a saw wire with a wire diameter of 0.03 mm to 0.14 mm.

次に表3を参照して,比較例5および比較例6を除き,切断条件Bのもとでシリコン・インゴットを切断した場合も,切断条件Aのもとでシリコン・インゴットを切断した上記表2と同じ評価が得られた。比較例5および比較例6のソーワイヤはいずれも線径が0.03mmであり,シリコン・インゴットの切断時にソーワイヤの断線が頻発し,ワイヤ摩耗量評価およびウェハー厚評価をいずれも行うことができなかったものである。切断条件Aよりもソーワイヤにかかる負荷の大きい切断条件Bのもとでは,線径の細いソーワイヤはシリコン・インゴットの切断に用いることができないことが分かる。切断条件Bのもとでシリコン・インゴットを切断する場合には,0.04mm以上の線径を持つソーワイヤである必要がある。   Next, referring to Table 3, except for Comparative Example 5 and Comparative Example 6, when the silicon ingot was cut under the cutting condition B, the above table where the silicon ingot was cut under the cutting condition A The same evaluation as 2 was obtained. Both of the saw wires of Comparative Example 5 and Comparative Example 6 had a wire diameter of 0.03 mm, and the saw wire was frequently broken when the silicon ingot was cut, and neither wire wear evaluation nor wafer thickness evaluation could be performed. Is. It can be seen that under the cutting condition B where the load applied to the saw wire is larger than the cutting condition A, the saw wire having a thin wire diameter cannot be used for cutting the silicon ingot. When cutting a silicon ingot under the cutting condition B, it is necessary to use a saw wire having a wire diameter of 0.04 mm or more.

切断条件Aおよび切断条件Bのいずれの切断条件のもとにおいても用いられることが想定されるソーワイヤについて,切断時断線評価,ワイヤ摩耗量評価およびウェハー厚評価のいずれについても○とするには,表層8%深さ位置のマルテンス硬度が6500 N/mm2以上であり,かつ線径が0.04mm〜0.14mmであるソーワイヤを用いる必要があることが分かった。上述したように,伸線時にも断線しにくいものにするには,さらに硬度指数が1.25未満であることが要求される。 For a saw wire that is assumed to be used under any of the cutting conditions A and B, in order to make any of the disconnection evaluation at the time of cutting, the wire wear amount evaluation, and the wafer thickness evaluation ○ It was found that it is necessary to use a saw wire having a Martens hardness of 6500 N / mm 2 or more at a depth of 8% in the surface layer and a wire diameter of 0.04 mm to 0.14 mm. As described above, the hardness index is required to be less than 1.25 in order to make it difficult to break even during wire drawing.

1 ソーワイヤ
2 ソーワイヤ本体
3 めっき層
1 Saw wire 2 Saw wire body 3 Plating layer

Claims (2)

線径が0.04〜0.14mmであり,表面から半径に対して8%の深さ位置のマルテンス硬度が6,500N/mm2以上である,
ソーワイヤ。
The wire diameter is 0.04 to 0.14 mm, and the Martens hardness at a depth of 8% from the surface to the radius is 6,500 N / mm 2 or more.
Saw wire.
上記8%深さ位置のマルテンス硬度を中心位置のマルテンス硬度によって除した値が1.25未満である,請求項1に記載のソーワイヤ。   The saw wire according to claim 1, wherein a value obtained by dividing the Martens hardness at the 8% depth position by the Martens hardness at the center position is less than 1.25.
JP2011280696A 2011-12-22 2011-12-22 Evaluation method of saw wire Expired - Fee Related JP5759887B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2011280696A JP5759887B2 (en) 2011-12-22 2011-12-22 Evaluation method of saw wire

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2011280696A JP5759887B2 (en) 2011-12-22 2011-12-22 Evaluation method of saw wire

Publications (2)

Publication Number Publication Date
JP2013129026A true JP2013129026A (en) 2013-07-04
JP5759887B2 JP5759887B2 (en) 2015-08-05

Family

ID=48907041

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2011280696A Expired - Fee Related JP5759887B2 (en) 2011-12-22 2011-12-22 Evaluation method of saw wire

Country Status (1)

Country Link
JP (1) JP5759887B2 (en)

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2000233356A (en) * 1999-02-16 2000-08-29 Tokyo Seimitsu Co Ltd Cutting method of wire saw and wire
JP2000271807A (en) * 1999-03-24 2000-10-03 Ngk Spark Plug Co Ltd Cutting tool and wear resistant material
JP2001287146A (en) * 2000-04-06 2001-10-16 Marubeni Fine Steel Kk Saw wire and method for manufacturing it
JP2001327636A (en) * 2000-05-23 2001-11-27 Sumitomo Rubber Ind Ltd Golf club head and its manufacturing method
JP2003056848A (en) * 2001-08-13 2003-02-26 Ngk Spark Plug Co Ltd Glow plug
JP2005193332A (en) * 2004-01-07 2005-07-21 Tokyo Seiko Co Ltd Saw wire
JP2011005624A (en) * 2009-05-26 2011-01-13 Kobelco Kaken:Kk Coated saw wire

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2000233356A (en) * 1999-02-16 2000-08-29 Tokyo Seimitsu Co Ltd Cutting method of wire saw and wire
JP2000271807A (en) * 1999-03-24 2000-10-03 Ngk Spark Plug Co Ltd Cutting tool and wear resistant material
JP2001287146A (en) * 2000-04-06 2001-10-16 Marubeni Fine Steel Kk Saw wire and method for manufacturing it
JP2001327636A (en) * 2000-05-23 2001-11-27 Sumitomo Rubber Ind Ltd Golf club head and its manufacturing method
JP2003056848A (en) * 2001-08-13 2003-02-26 Ngk Spark Plug Co Ltd Glow plug
JP2005193332A (en) * 2004-01-07 2005-07-21 Tokyo Seiko Co Ltd Saw wire
JP2011005624A (en) * 2009-05-26 2011-01-13 Kobelco Kaken:Kk Coated saw wire

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
JPN6015005748; 倉本 英哲、伊藤 良子、隠岐 貴史: '(1)鉄鋼材料の超微小硬さ試験' 広島市工業技術センター年報 第26巻, 2012, 第31-38頁 第12式, 広島市工業技術センター *

Also Published As

Publication number Publication date
JP5759887B2 (en) 2015-08-05

Similar Documents

Publication Publication Date Title
JP6943940B2 (en) Copper alloy wire and its manufacturing method
KR100709846B1 (en) High carbon steel wire material having excellent wire drawability and manufacturing process thereof
KR101466143B1 (en) Method for producing magnesium alloy sheet and magnesium alloy coil stock
JP5179331B2 (en) Hot rolled wire rod excellent in wire drawing workability and mechanical descaling property and manufacturing method thereof
CN102764958A (en) Process for manufacturing cold-rolled/cold-drawn precise welded steel pipe
TWI814101B (en) Tungsten Wire and Saw Wire
EP3508285B1 (en) Metal mask material and production method therefor
KR20110119705A (en) Fixed abrasive sawing wire
US20180326519A1 (en) Saw wire and cutting apparatus
JP2010167509A (en) Fixed-abrasive grain saw wire and cutting method
KR101786235B1 (en) Manufacturing method of Fe-Ni based alloy strip
TW201312645A (en) Saw wire, and method for producing iii-nitride crystal substrate using same
JP2013081982A (en) Extra-fine steel wire having excellent delamination-resistance characteristics and method for manufacturing the same
JP5759887B2 (en) Evaluation method of saw wire
JP6807038B2 (en) Material for metal mask and its manufacturing method
JP2007044794A (en) Wire for wire saw
JP5522604B2 (en) Wire tool
JP2005193332A (en) Saw wire
KR101919262B1 (en) High carbon steel plate and manufacturing method therefor
JP2017008420A (en) Manufacturing method of wire for etching cut and cutting method of inorganic brittle material using wire for etching cut obtained by the method
KR100385164B1 (en) Sawing wire and its prodution method
JP5961867B2 (en) Saw wire with excellent cutting ability and method for manufacturing the same
JP2000328188A (en) Steel wire for wire saw
JP2012020306A (en) Mg ALLOY-COILED MATERIAL AND METHOD FOR PRODUCTION THEREOF
JP2017192952A (en) Production method of extra fine steel wire

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20140529

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20150217

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20150219

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20150415

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20150602

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20150608

R150 Certificate of patent or registration of utility model

Ref document number: 5759887

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

LAPS Cancellation because of no payment of annual fees