JP2013128870A - Gas dissolved water producing apparatus and method thereof - Google Patents

Gas dissolved water producing apparatus and method thereof Download PDF

Info

Publication number
JP2013128870A
JP2013128870A JP2011278394A JP2011278394A JP2013128870A JP 2013128870 A JP2013128870 A JP 2013128870A JP 2011278394 A JP2011278394 A JP 2011278394A JP 2011278394 A JP2011278394 A JP 2011278394A JP 2013128870 A JP2013128870 A JP 2013128870A
Authority
JP
Japan
Prior art keywords
gas
water
dissolved
valve
pure water
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2011278394A
Other languages
Japanese (ja)
Other versions
JP6059871B2 (en
Inventor
Koichi Sakuma
浩一 佐久間
Hiroyuki Shinozaki
宏行 篠崎
Mitsuhiko Uenishi
允彦 上西
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nomura Micro Science Co Ltd
Original Assignee
Nomura Micro Science Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nomura Micro Science Co Ltd filed Critical Nomura Micro Science Co Ltd
Priority to JP2011278394A priority Critical patent/JP6059871B2/en
Publication of JP2013128870A publication Critical patent/JP2013128870A/en
Application granted granted Critical
Publication of JP6059871B2 publication Critical patent/JP6059871B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Cleaning Or Drying Semiconductors (AREA)
  • Accessories For Mixers (AREA)

Abstract

PROBLEM TO BE SOLVED: To provide a gas dissolved water producing apparatus in which gas solubility directly after the start of feed, and further, specific resistance value are stable even if an operation is intermittently performed.SOLUTION: The gas dissolved water producing apparatus 1 is provided with: a pure water feed pipe 3 of intermittently feeding pure water by a water feed valve 2; a gas dissolution part 4 connected with the pure water feed pipe 3 and inserted with a gas feed pipe 7; and a gas flow rate regulation apparatus 6 of regulating the feed amount of the gas; wherein the gas is injected into the pure water via the gas feed pipe 7 to produce gas dissolved water in which the gas is dissolved at a fixed concentration. The apparatus includes a controller 11 of stopping the injection of the gas upon the closing of the water feed valve 2, and making the setting of the feed amount of the gas to the setting in which the feed amount of the gas is larger than that in the ordinary case for a fixed time and thereafter making the setting into the setting in which the feed amount is ordinary upon the release of the water feed valve 2.

Description

本発明は、断続運転の際の気体溶解度の変動を解消した気体溶解水製造装置及び気体溶解水製造方法に関する。   The present invention relates to a gas-dissolved water production apparatus and a gas-dissolved water production method that eliminate fluctuations in gas solubility during intermittent operation.

従来から、半導体装置の製造工程において、半導体ウエハの洗浄などには純水が使用されている。例えば、基板の洗浄処理では、基板に対して純水等の洗浄液を噴射することにより基板の表面に付着したパーティクルなどが除去される。   Conventionally, pure water is used for cleaning a semiconductor wafer or the like in a manufacturing process of a semiconductor device. For example, in the substrate cleaning process, particles attached to the surface of the substrate are removed by spraying a cleaning liquid such as pure water onto the substrate.

ところで、純水を高圧で吐出させたり、研磨ブラシを高速で回転させると、純水の比抵抗が高いため、基板表面全体が帯電することが知られている。この基板表面の帯電量が大きくなると、洗浄後にパーティクルが再付着したり、ウエハに作りこまれた半導体素子を形成する酸化膜や金属薄膜が静電気放電により破壊するという問題がある。   By the way, it is known that when pure water is discharged at a high pressure or the polishing brush is rotated at a high speed, the specific surface of the substrate is charged because the specific resistance of pure water is high. When the amount of charge on the substrate surface is increased, there are problems that particles are reattached after cleaning, and an oxide film and a metal thin film forming a semiconductor element formed on the wafer are destroyed by electrostatic discharge.

このような半導体素子の破壊を防止する対策として、純水の電気比抵抗を低下させ、静電気の発生を抑えることが検討されている。   As a measure for preventing such destruction of the semiconductor element, it has been studied to reduce the electrical resistivity of pure water and suppress the generation of static electricity.

例えば、特許文献1には、処理水である超純水に二酸化炭素(CO2)ガスを溶解させることで電気比抵抗を低下させ、基板表面の帯電を防止する方法が開示されている。 For example, Patent Document 1 discloses a method for preventing charging of the substrate surface by reducing the electrical resistivity by dissolving carbon dioxide (CO 2 ) gas in ultrapure water that is treated water.

このように、超純水に二酸化炭素(CO2)ガスを溶解させたいわゆる炭酸水中には炭酸水素イオンが解離溶解しているが、この炭酸水素イオンによって電気比抵抗を低くすることができるので、ウエハ上への静電気の帯電を低下させ、静電気放電による半導体素子の破壊を防止することができる。 In this way, hydrogen carbonate ions are dissociated and dissolved in so-called carbonated water in which carbon dioxide (CO 2 ) gas is dissolved in ultrapure water, but the electrical resistivity can be lowered by the hydrogen carbonate ions. It is possible to reduce the electrostatic charge on the wafer and prevent the semiconductor element from being destroyed by electrostatic discharge.

また、洗浄後の乾燥工程を経た段階では、ウエハ表面では(炭酸水中に溶解していた)炭酸ガスはガスとして消失し、一切不純物残渣の痕跡を残さないという利点もある。   Further, at the stage after the drying process after cleaning, the carbon dioxide gas (dissolved in the carbonated water) disappears as a gas on the wafer surface, and there is an advantage that no trace of impurity residue is left.

さらに、特許文献2には、このような気体溶解水の溶存気体濃度を安定させるために、微小気泡を生成させ、気泡の合体を抑制して水中に溶解させる装置が開示されている。このような装置は、流断面積の異なる液体導入部を円錐形状の結合部により結合した装置であり、気体の気泡が完全に溶解した気体溶解水を生成するようになっている。   Further, Patent Document 2 discloses a device for generating microbubbles and suppressing coalescence of bubbles to dissolve in water in order to stabilize the dissolved gas concentration of such gas-dissolved water. Such an apparatus is an apparatus in which liquid introduction parts having different flow cross-sectional areas are coupled by a conical coupling part, and gas dissolved water in which gas bubbles are completely dissolved is generated.

さらに近年は、炭酸ガス以外の気体、例えば、水素、オゾン、酸素、窒素ガスを溶解させた溶解水も半導体等製造工程において多く利用されている。   In recent years, gases other than carbon dioxide, for example, dissolved water in which hydrogen, ozone, oxygen, and nitrogen gas are dissolved are also widely used in semiconductor manufacturing processes.

特開2008−153322号公報JP 2008-153322 A 特開2003−230824号公報Japanese Patent Laid-Open No. 2003-230824

一般的に、気体溶解水製造においては、溶解度を一定に保つことが必要である。しかし、気体溶解水製造装置の運転開始時においては、溶解度が激しく変動し、またこの溶解度の変動を抑制することが極めて困難であるため、装置の連続運転を余儀なくされていた。このことが運転効率を悪化させるという問題があった。   In general, in the production of dissolved gas water, it is necessary to keep the solubility constant. However, at the start of operation of the gas-dissolved water production apparatus, the solubility fluctuates violently, and it is extremely difficult to suppress the fluctuation of the solubility, and thus the apparatus must be continuously operated. This has a problem of deteriorating operating efficiency.

本発明は、かかる気体溶解水製造装置の気体溶解度の安定した純水の供給を目指して小型の装置を用いて精度の高い実験を行なったところ、かかる気体溶解水製造装置の運転開始時には、一定時間溶解度の低い気体溶解水が製造され、運転停止時には、逆に一定時間気体溶解度の高い気体溶解水が製造されることを見出した。   The present invention conducted a highly accurate experiment using a small device aiming at supplying pure water with stable gas solubility of the gas dissolved water production apparatus. It has been found that gas-dissolved water with low time solubility is produced, and that gas-dissolved water with high gas solubility is produced for a certain period of time when operation is stopped.

本発明者らは、この問題に対処してさらに研究を重ねた結果、この現象は、純水が非圧縮性の流体であるのに対して、溶解させる気体は圧縮性の流体であるため、開閉弁の開閉動作に対する応答性が異なり、運転開始時には、純水の供給開始に対して気体の注入に時間遅れが生じ、逆に運転の停止時には、純水の供給が停止されても、気体の方は、供給管内の残圧により注入され続けることが原因となっていることを確認し、さらに長時間運転を停止した場合には、気体供給管内の気体が純水に溶解し徐々に純水が気体供給管内に浸入することも運転開始時の比抵抗値を変動させることを知見し、本発明を完成するに至った。   As a result of further investigations addressing this problem, the present inventors have found that this phenomenon is because pure water is an incompressible fluid, whereas the dissolved gas is a compressible fluid. The responsiveness to the opening / closing operation of the opening / closing valve is different. At the start of operation, there is a time delay in the gas injection with respect to the start of the supply of pure water. Conversely, even when the supply of pure water is stopped, In this case, it was confirmed that this was caused by the continuous injection due to the residual pressure in the supply pipe, and when the operation was stopped for a long time, the gas in the gas supply pipe was dissolved in pure water and gradually purified. It has been found that the intrusion of water into the gas supply pipe also changes the specific resistance value at the start of operation, and the present invention has been completed.

本発明の気体溶解水製造装置は、給水弁により断続的に純水を供給する純水供給管と、前記純水供給管が接続され気体供給管が挿入された気体溶解部と、前記気体の供給量を調整する気体流量調整装置とを備え、前記気体供給管を介して前記純水に気体を注入し、気体が一定濃度で溶解する気体溶解水を製造する気体溶解水製造装置において、前記給水弁の閉鎖時に前記気体の供給を停止させ、前記給水弁開放時に前記気体の供給量の設定を一定時間通常より多い供給量の設定とさせた後、通常の供給量の設定とさせる制御装置を有することを特徴とする。   A gas-dissolved water production apparatus according to the present invention includes a pure water supply pipe that supplies pure water intermittently by a water supply valve, a gas dissolution section that is connected to the pure water supply pipe and has a gas supply pipe inserted therein, A gas flow rate adjusting device for adjusting a supply amount, injecting a gas into the pure water via the gas supply pipe, and manufacturing a gas dissolved water in which the gas is dissolved at a constant concentration; A control device that stops the supply of the gas when the water supply valve is closed, and sets the supply amount of the gas to a higher supply amount than a normal time for a certain period of time when the water supply valve is opened, and then sets the normal supply amount It is characterized by having.

このように、前記給水弁の開放時に、一定時間、前記気体供給管より供給される気体の流量を通常の流量より多くすることにより、前記気体溶解部への純水の供給開始と気体の供給開始を同時にし、得られる気体溶解水の比抵抗値を一定とすることができる。   Thus, when the water supply valve is opened, the supply of pure water to the gas dissolving part and the supply of gas are increased by increasing the flow rate of the gas supplied from the gas supply pipe from the normal flow rate for a certain period of time. At the same time, the specific resistance value of the obtained gas-dissolved water can be made constant.

また、本発明の気体溶解水製造装置は、前記気体供給管と前記気体流量調整装置の間にブロー弁を有し、前記給水弁閉鎖時に一定時間前記ブロー弁を開放し、前記気体供給管内の気体をブローさせることが好ましい。   Further, the gas dissolved water production apparatus of the present invention has a blow valve between the gas supply pipe and the gas flow control device, and opens the blow valve for a certain time when the water supply valve is closed, It is preferable to blow the gas.

このように、給水弁の閉鎖時に気体供給管内に残留する気体をブローすることにより、給水弁閉鎖中に気体供給管内の気体が残圧によって純水中に注入されることを防ぎ、給水再開時の気体溶解水の比抵抗値を安定させることができる。   In this way, by blowing the gas remaining in the gas supply pipe when the water supply valve is closed, the gas in the gas supply pipe is prevented from being injected into the pure water due to residual pressure while the water supply valve is closed. The specific resistance value of the gas-dissolved water can be stabilized.

さらに具体的には、前記気体溶解部の下流に、前記給水弁閉鎖時に閉鎖し、前記給水弁開放時に開放される停止弁を有することが好ましい。給水弁閉鎖時に、停止弁を閉鎖し、気体供給管内の気体が残圧によって純水中へ流入することを防ぐとともに、給水弁を長期間閉鎖した際に純水が気体供給管内へ逆流することを防ぐこともできる。   More specifically, it is preferable to have a stop valve that is closed when the water supply valve is closed and opened when the water supply valve is opened, downstream of the gas dissolving section. When the water supply valve is closed, the stop valve is closed to prevent the gas in the gas supply pipe from flowing into the pure water due to residual pressure, and the pure water flows back into the gas supply pipe when the water supply valve is closed for a long period of time. Can also be prevented.

また、より具体的には、前記気体溶解部が、前記気体供給管がT型配管の中心部まで挿入され、前記気体の供給方向と前記純水の供給方向が直交するように構成されたT型配管であることが好ましい。   More specifically, the gas dissolving portion is configured such that the gas supply pipe is inserted to the center of the T-shaped pipe, and the gas supply direction and the pure water supply direction are orthogonal to each other. A mold pipe is preferred.

また、前記気体溶解水の流量は、特に限定されないが、0.1〜10L/minであることが好ましい。0.1〜3L/minがより好ましく、0.1〜1L/minがさらに好ましい。   Moreover, the flow rate of the gas-dissolved water is not particularly limited, but is preferably 0.1 to 10 L / min. 0.1-3 L / min is more preferable, and 0.1-1 L / min is further more preferable.

本発明の気体溶解水製造方法は、給水弁により断続的に純水を供給する純水供給管と、前記純水供給管が接続され気体供給管が挿入された気体溶解部と、前記気体の供給量を調整する気体流量調整装置とを備え、前記気体供給管を介して前記純水に気体を注入し、気体が一定濃度で溶解する気体溶解水を製造する気体溶解水製造装置において、前記給水弁の閉鎖時に前記気体の供給を停止させ、前記給水弁開放時に前記気体の供給量の設定を一定時間通常より多い供給量の設定とさせた後、通常の供給量の設定とさせることを特徴とする。   The gas-dissolved water production method of the present invention includes a pure water supply pipe that intermittently supplies pure water by a water supply valve, a gas dissolution part that is connected to the pure water supply pipe and has a gas supply pipe inserted therein, A gas flow rate adjusting device for adjusting a supply amount, injecting a gas into the pure water via the gas supply pipe, and manufacturing a gas dissolved water in which the gas is dissolved at a constant concentration; When the water supply valve is closed, the supply of the gas is stopped, and when the water supply valve is opened, the setting of the supply amount of the gas is set to a setting higher than the normal amount for a certain time, and then the normal supply amount is set. Features.

なお、本発明において「純水」とは、比抵抗が10MΩ・cm以上、TOC(全有機炭素)が0.1mg/L以下の水であり、「超純水」とは、比抵抗が17MΩ・cm以上、TOC(全有機炭素)が10μg/L以下の水をいう。   In the present invention, “pure water” is water having a specific resistance of 10 MΩ · cm or more and TOC (total organic carbon) of 0.1 mg / L or less, and “ultra pure water” has a specific resistance of 17 MΩ. -Water with cm or more and TOC (total organic carbon) of 10 μg / L or less.

給水弁により断続的に純水を供給する純水供給管と、前記純水供給管が接続され気体供給管が挿入された気体溶解部と、前記気体の供給量を調整する気体流量調整装置とを備え、前記気体供給管を介して前記純水に気体を注入し、気体が一定濃度で溶解する気体溶解水を製造する気体溶解水製造装置において、給水の停止及び開始時の溶解度の変動を抑止し、常に比抵抗値の安定した気体溶解水を製造する装置及び方法を提供する。   A pure water supply pipe for supplying pure water intermittently by a water supply valve, a gas dissolving part to which the pure water supply pipe is connected and a gas supply pipe is inserted, and a gas flow rate adjusting device for adjusting the supply amount of the gas; In a gas-dissolved water production apparatus for producing gas-dissolved water in which a gas is injected into the pure water through the gas supply pipe and the gas dissolves at a constant concentration, the solubility of the water supply at the start and stop is changed. Disclosed is an apparatus and a method for producing gas-dissolved water that is suppressed and always has a stable specific resistance value.

図1は本発明の一実施形態の気体溶解水製造装置を示すブロック図である。FIG. 1 is a block diagram showing a gas-dissolved water production apparatus according to an embodiment of the present invention. 図2は本発明の一実施形態の気体溶解水製造装置の気体溶解部を模式的に示す側断面図である。FIG. 2 is a side sectional view schematically showing a gas dissolving part of the gas dissolved water producing apparatus according to one embodiment of the present invention. 図3は本発明の一実施形態の気体溶解水製造装置を用いて製造した気体溶解水の比抵抗値のグラフである。FIG. 3 is a graph of specific resistance values of gas-dissolved water produced using the gas-dissolved water producing apparatus according to one embodiment of the present invention. 図4は本発明の一実施形態の気体溶解水製造装置を用いて製造した気体溶解水の比抵抗値のグラフである。FIG. 4 is a graph of specific resistance values of gas-dissolved water produced using the gas-dissolved water producing apparatus according to one embodiment of the present invention. 図5は本発明の一実施形態の気体溶解水製造装置を用いて製造した気体溶解水の比抵抗値のグラフである。FIG. 5 is a graph of specific resistance values of gas-dissolved water produced using the gas-dissolved water producing apparatus according to one embodiment of the present invention. 図6は本発明の一実施形態の気体溶解水製造装置を用いて製造した気体溶解水の比抵抗値のグラフである。FIG. 6 is a graph of specific resistance values of gas-dissolved water produced using the gas-dissolved water producing apparatus according to one embodiment of the present invention. 図7は本発明の比較例である気体溶解水製造装置を用いて製造した気体溶解水の比抵抗値のグラフである。FIG. 7 is a graph of the specific resistance value of the dissolved gas produced using the dissolved gas production apparatus as a comparative example of the present invention. 図8は本発明の他の比較例である気体溶解水製造装置を用いて製造した気体溶解水の比抵抗値のグラフである。FIG. 8 is a graph of the specific resistance value of the gas dissolved water manufactured using the gas dissolved water manufacturing apparatus which is another comparative example of this invention.

以下、本発明の実施の形態について図面を用いて説明する。   Hereinafter, embodiments of the present invention will be described with reference to the drawings.

図1に示される本発明の一実施形態の気体溶解水製造装置1は、給水弁2の開閉により純水を断続的に供給する純水供給管3、純水供給管3に直立状態で介挿されたT型継手4、開閉弁5、気体供給量を変化させる気体流量調節装置6、気体流量調節装置6とT型継手4の直管部の下部4aとを接続する気体供給管7、気体供給管7に介挿されたブロー弁8、T型継手の上部に接続された純水流出管9、純水流出管9に介挿された停止弁10、及び給水弁2、気体流量調節装置6、ブロー弁8及び停止弁10を開閉、制御する制御装置11を備えている。   A gas-dissolved water production apparatus 1 according to an embodiment of the present invention shown in FIG. 1 includes a pure water supply pipe 3 that intermittently supplies pure water by opening and closing a water supply valve 2, and an upright state of the pure water supply pipe 3. An inserted T-shaped joint 4, an on-off valve 5, a gas flow rate adjusting device 6 that changes the gas supply amount, a gas flow rate adjusting device 6, and a gas supply pipe 7 that connects the lower part 4 a of the straight pipe portion of the T-shaped joint 4; Blow valve 8 inserted in gas supply pipe 7, pure water outflow pipe 9 connected to the top of the T-shaped joint, stop valve 10 inserted in pure water outflow pipe 9, and water supply valve 2, gas flow rate adjustment A control device 11 for opening / closing and controlling the device 6, the blow valve 8 and the stop valve 10 is provided.

気体供給管7から一定流量で供給された気体は、純水供給管3から供給された純水にT型継手4の内部において混合、溶解され、上部の流出口4bから純水流出管9に流出されて使用される。   The gas supplied at a constant flow rate from the gas supply pipe 7 is mixed and dissolved in the pure water supplied from the pure water supply pipe 3 inside the T-shaped joint 4, and is supplied from the upper outlet 4 b to the pure water outflow pipe 9. Used after being drained.

図2は、本実施形態の気体溶解部を模式的に示す側断面図である。気体溶解部としては、T型継手4以外にも、一般的に気液混合に用いられるものが好適である。   FIG. 2 is a side sectional view schematically showing the gas dissolving part of the present embodiment. As the gas dissolving part, in addition to the T-type joint 4, those generally used for gas-liquid mixing are suitable.

また、本実施形態では、T型継手4の下部4aに気体供給管7を、上部4bに純水流出管9を接続しているが、下部4aに純水流出管を、上部4bに気体供給管7を接続してもよい。   In this embodiment, the gas supply pipe 7 is connected to the lower part 4a of the T-shaped joint 4, and the pure water outflow pipe 9 is connected to the upper part 4b, but the pure water outflow pipe is supplied to the lower part 4a and the gas is supplied to the upper part 4b. A tube 7 may be connected.

この装置における、純水供給管3は、例えば、内径φ1〜5mmであり、純水の流量は、0.1〜1L/min、気体供給管7の内径はφ0.1〜0.5mm、開閉弁5から気体供給管7のノズル先端までの内容積は1〜10mL程度である。   In this apparatus, the pure water supply pipe 3 has an inner diameter of φ1 to 5 mm, the flow rate of pure water is 0.1 to 1 L / min, the inner diameter of the gas supply pipe 7 is φ0.1 to 0.5 mm, and is opened and closed. The internal volume from the valve 5 to the nozzle tip of the gas supply pipe 7 is about 1 to 10 mL.

気体供給管7からは、気体流量調節装置6であるマスフローコントローラー(MC−5SCCM、ALICAT社製)などによって気体、例えば二酸化炭素ガスが供給される。供給される二酸化炭素ガスの供給圧は0.15MPa、流量は、0.05〜4mL/min(20℃、1気圧において)等である。また、開閉弁5は逆止弁(SS−2C−1、スウェージロック社製、SUS製)等、給水弁2及び停止弁10は、エアー駆動弁(AMD01−6UP−4、CKD社製、外径6mm、材質PFA)等、ブロー弁8はエアー駆動弁(AMDZ1−6BUS−2、CKD社製、外径6mm、材質PFA)等を用いる。   A gas, for example, carbon dioxide gas is supplied from the gas supply pipe 7 by a mass flow controller (MC-5SCCM, manufactured by ALICAT) as the gas flow rate control device 6. The supply pressure of the supplied carbon dioxide gas is 0.15 MPa, and the flow rate is 0.05 to 4 mL / min (at 20 ° C. and 1 atm). The on-off valve 5 is a check valve (SS-2C-1, manufactured by Swagelok, SUS), and the water supply valve 2 and the stop valve 10 are air driven valves (AMD01-6UP-4, manufactured by CKD, outer diameter). The blow valve 8 is an air driven valve (AMDZ1-6BUS-2, manufactured by CKD, outer diameter 6 mm, material PFA) or the like.

なお、給水弁2、気体流量調節装置6(マスフローコントローラー)、ブロー弁8及び停止弁10は、制御装置11により、所定のタイミングで開閉、操作されるようになっている。   The water supply valve 2, the gas flow rate adjusting device 6 (mass flow controller), the blow valve 8 and the stop valve 10 are opened / closed and operated by the control device 11 at a predetermined timing.

本実施形態の気体溶解水製造装置1では給水停止時には気体流量調節装置6(マスフローコントローラー)の設定を0とし、給水弁2が閉鎖され、ブロー弁8は瞬間的に開放されたのち閉鎖される。そして、運転再開時は、給水弁2の開放と同時に、気体流量調節装置6(マスフローコントローラー)の設定流量を、通常の供給量の設定の2倍〜100倍程度とする。   In the gas dissolved water manufacturing apparatus 1 of the present embodiment, when the water supply is stopped, the setting of the gas flow rate adjusting device 6 (mass flow controller) is set to 0, the water supply valve 2 is closed, and the blow valve 8 is instantaneously opened and then closed. . When the operation is resumed, the set flow rate of the gas flow rate adjusting device 6 (mass flow controller) is set to about 2 to 100 times the normal supply amount setting simultaneously with the opening of the water supply valve 2.

このような操作により、給水弁2の開放時に、T型継手2へ純水と気体を同時に供給して、得られる気体溶解水の濃度を一定に保ち、比抵抗値を安定させることができる。給水弁2の開放時の気体の供給量及び供給時間は、流量調整装置6の特性、気体供給管7の長さや内容積などにより適宜設定することができ、例えば、通常流量の2〜100倍程度の供給量の設定であり、供給時間は1〜10秒が好ましい。   By such an operation, when the water supply valve 2 is opened, pure water and gas can be simultaneously supplied to the T-shaped joint 2 to keep the concentration of the obtained gas dissolved water constant and to stabilize the specific resistance value. The gas supply amount and supply time when the water supply valve 2 is opened can be set as appropriate depending on the characteristics of the flow rate adjusting device 6, the length and internal volume of the gas supply pipe 7, and are, for example, 2 to 100 times the normal flow rate. The supply amount is set to a degree, and the supply time is preferably 1 to 10 seconds.

給水停止時、すなわち給水弁2の閉鎖時には、気体流量調節装置6(マスフローコントローラー)の設定を0とし、ブロー弁8を開放して気体供給管7内の気体をブローさせることが好ましい。この操作により、給水停止後、気体供給管7に残留する気体が一部残圧によってT型継手4に供給され、純水に溶解して、T型継手4内に濃度の高い溶解水が生じることを防ぎ、ひいては、給水開始時にこの滞留する濃度の高い溶解水がT型継手4から純水流出管9へ流出し、得られる気体溶解水の比抵抗値がわずかに低下することを防ぐことができる。また、気体供給管7内が減圧されるため、給水弁2を長期間閉鎖しても、気体供給管7内の気体が純水に次第に溶解して純水が気体供給管7内へ逆流する恐れがない。   When the water supply is stopped, that is, when the water supply valve 2 is closed, the setting of the gas flow rate adjusting device 6 (mass flow controller) is preferably set to 0, and the blow valve 8 is opened to blow the gas in the gas supply pipe 7. By this operation, after the water supply is stopped, a part of the gas remaining in the gas supply pipe 7 is supplied to the T-shaped joint 4 by the residual pressure and is dissolved in pure water, so that dissolved water having a high concentration is generated in the T-shaped joint 4. This prevents the high-concentration dissolved water that stays at the start of water supply from flowing out from the T-shaped joint 4 to the pure water outflow pipe 9, and the specific resistance value of the resulting gas-dissolved water is prevented from slightly decreasing. Can do. Further, since the inside of the gas supply pipe 7 is depressurized, even if the water supply valve 2 is closed for a long time, the gas in the gas supply pipe 7 is gradually dissolved in pure water and the pure water flows back into the gas supply pipe 7. There is no fear.

給水弁2の閉鎖時にブロー弁8が開放される時間は、気体供給管7内を純水の供給圧以下に減圧することができる時間であり、供給される気体の圧力、気体供給管7の内容積などから決定し、適宜設定することができる。ただし、ブロー弁8の開放時間が長すぎる場合には、純水が気体供給管7に逆流する恐れがあり、好ましくない。そのため具体的には、ブロー弁8の開放時間は、例えば、0.01秒〜2秒、好ましくは0.01秒〜1秒などである。   The time during which the blow valve 8 is opened when the water supply valve 2 is closed is the time during which the inside of the gas supply pipe 7 can be depressurized below the supply pressure of pure water. It is determined from the internal volume and can be set as appropriate. However, when the opening time of the blow valve 8 is too long, the pure water may flow back to the gas supply pipe 7, which is not preferable. Therefore, specifically, the opening time of the blow valve 8 is, for example, 0.01 seconds to 2 seconds, preferably 0.01 seconds to 1 second.

また、長時間給水を停止後再開する場合には気体供給管7内の気体が純水中に溶解し、気体供給管7内に純水が浸入する恐れがある。この現象により、給水開始時に、実質的にT型継手4へ気体が供給され始める時間が純水の浸入した分だけ遅れ、気体濃度の低い溶解水が生じるため、T型継手4から流出する溶解水の比抵抗値が一時的に増加する。すなわち、給水停止時にブロー弁8を一時的に開放することで、気体供給管7内を純水供給圧以下に減圧させると、このような気体供給管7内への純水の侵入量をほぼ一定に保つことができ、長時間給水停止の影響による給水開始時の比抵抗値の一時的な増加を防ぐことができるのである。   Further, when the water supply is stopped for a long time and then restarted, the gas in the gas supply pipe 7 may be dissolved in the pure water and the pure water may enter the gas supply pipe 7. Due to this phenomenon, at the start of water supply, the time at which gas starts to be supplied to the T-shaped joint 4 is substantially delayed by the amount of ingress of pure water, resulting in dissolved water having a low gas concentration. The specific resistance value of water temporarily increases. That is, by temporarily opening the blow valve 8 when the water supply is stopped, if the pressure in the gas supply pipe 7 is reduced below the pure water supply pressure, the amount of pure water entering the gas supply pipe 7 is substantially reduced. It can be kept constant, and a temporary increase in specific resistance value at the start of water supply due to the influence of water supply stop for a long time can be prevented.

なお、給水停止時に、ブロー弁8の開閉を行わず、停止弁10を閉鎖することでも、同様の効果が得られる。また、ブロー弁8の開閉と停止弁10の閉鎖を併用しても同様の効果が得られる。
このような給水停止、再開のサイクルは、気体溶解水の利用状況によって、例えば、数秒間〜数日停止再開するなどのように任意に変えることができる。
The same effect can be obtained by closing the stop valve 10 without opening and closing the blow valve 8 when the water supply is stopped. Further, the same effect can be obtained even when the opening and closing of the blow valve 8 and the closing of the stop valve 10 are used in combination.
Such a cycle of stopping and restarting the water supply can be arbitrarily changed, for example, depending on the use status of the dissolved gas, such as restarting for a few seconds to several days.

使用する気体としては、二酸化炭素(炭酸)ガス、窒素ガス、水素ガス、オゾンガス、酸素ガス等が挙げられるが、炭酸ガスが好ましい。   Examples of the gas to be used include carbon dioxide (carbonic acid) gas, nitrogen gas, hydrogen gas, ozone gas, oxygen gas and the like, and carbon dioxide gas is preferable.

本発明の一実施形態である気体溶解水製造装置は、比抵抗値0.1〜2MΩ・cmの二酸化炭素ガス溶解水などを製造する場合に特に好適に用いられる。また、本発明の気体溶解水製造方法により、比抵抗値0.1〜2MΩ・cmの二酸化炭素ガス溶解水などを製造することができる。   The gas-dissolved water producing apparatus according to an embodiment of the present invention is particularly preferably used when producing carbon dioxide gas-dissolved water having a specific resistance value of 0.1 to 2 MΩ · cm. In addition, carbon dioxide gas-dissolved water having a specific resistance value of 0.1 to 2 MΩ · cm can be manufactured by the gas-dissolved water manufacturing method of the present invention.

次に、本発明の実施例について説明する。   Next, examples of the present invention will be described.

この実施例に使用した気体溶解水製造装置1は、図1に示した装置であり、使用した純水及び実験装置は以下のとおりである。   The gas-dissolved water production apparatus 1 used in this example is the apparatus shown in FIG. 1, and the pure water and the experimental apparatus used are as follows.

[純水]比抵抗値 18MΩ・cm
[純水の流量] 0.2L/min
[溶解させる気体] 二酸化炭素ガス
[二酸化炭素ガスの流量] 0.08mL/min(20℃、1気圧において)
[二酸化炭素ガスの供給圧] 0.15MPa
[気体供給管7] 内径 0.13mm、容積 3mL
[水温] 20℃
[気体流量調節装置6] MC−5SCCM、ALICAT社製
[比抵抗測定装置] 株式会社堀場アドバンスドテクノ社製 HE−480R
[Pure water] Specific resistance 18MΩ · cm
[Flow rate of pure water] 0.2L / min
[Gas to be dissolved] Carbon dioxide gas [Flow rate of carbon dioxide gas] 0.08 mL / min (at 20 ° C. and 1 atm)
[Supply pressure of carbon dioxide gas] 0.15 MPa
[Gas supply pipe 7] Inner diameter 0.13 mm, volume 3 mL
[Water temperature] 20 ℃
[Gas flow rate control device 6] MC-5SCCM, manufactured by ALICAT [Resistivity measuring device] HE-480R manufactured by Horiba Advanced Techno Co., Ltd.

(実施例1)
気体溶解水を製造している状態で、気体流量調節装置6(マスフローコントローラー)の設定を0とし、給水弁2を閉鎖し、ブロー弁8を0.1秒間開放して気体供給管7内に残留した二酸化炭素ガスをブローして、運転を停止した。1分後に、給水弁2を再び開放すると同時に、気体流量調整装置6の設定を、3秒間、流量2.4mL/minとした後、通常の設定に戻すことにより、運転を再開した。
この時、給水弁開放後に純水流出管9より流出した二酸化炭素溶解水の比抵抗値を測定し、図3に示した。
Example 1
In the state where the gas dissolved water is manufactured, the setting of the gas flow control device 6 (mass flow controller) is set to 0, the water supply valve 2 is closed, the blow valve 8 is opened for 0.1 second, and the gas supply pipe 7 is opened. The remaining carbon dioxide gas was blown to stop the operation. After 1 minute, the water supply valve 2 was opened again, and at the same time, the setting of the gas flow rate adjusting device 6 was set to a flow rate of 2.4 mL / min for 3 seconds, and then the operation was resumed by returning to the normal setting.
At this time, the specific resistance value of the carbon dioxide dissolved water flowing out from the pure water outflow pipe 9 after the water supply valve was opened was measured and shown in FIG.

(実施例2)
実施例1において運転停止時にブロー弁8を閉鎖したままとした。他は実施例1と同様の操作を行った。
この時、給水弁開放後に純水流出管9より流出した二酸化炭素溶解水の比抵抗値を測定し、図4に示した。
(Example 2)
In Example 1, the blow valve 8 was kept closed when the operation was stopped. The other operations were the same as in Example 1.
At this time, the specific resistance value of the carbon dioxide dissolved water flowing out from the pure water outflow pipe 9 after opening the water supply valve was measured and shown in FIG.

(実施例3)
実施例1において運転停止時に停止弁10を閉鎖し、ブロー弁8を閉鎖したままとした。また、運転再開時には給水弁2と共に停止弁10を開放した。他は実施例1と同様の操作を行った。
この時、給水弁開放後に純水流出管9より流出した二酸化炭素溶解水の比抵抗値を測定し、図5に示した。
(Example 3)
In Example 1, when the operation was stopped, the stop valve 10 was closed and the blow valve 8 was kept closed. Further, the stop valve 10 was opened together with the water supply valve 2 when the operation was resumed. The other operations were the same as in Example 1.
At this time, the specific resistance value of the carbon dioxide-dissolved water flowing out from the pure water outflow pipe 9 after opening the water supply valve was measured and shown in FIG.

(比較例1)
実施例1において、運転停止時にブロー弁8を閉鎖したままとし、運転開始時には気体流量調整装置6の設定を通常のままとした。他は実施例1と同様の操作を行った。
この時、給水弁開放後に純水流出管9より流出した二酸化炭素溶解水の比抵抗値を測定し、図7に示した。
この時、T型配管をガラス製のものにして、内部を観察したところ、給水停止時に、気体供給管7の先端から気泡が少しずつ発生する様子が観察された。また、運連再開から比抵抗値が安定するまでの時間が135秒であった。
(Comparative Example 1)
In Example 1, the blow valve 8 was kept closed when the operation was stopped, and the setting of the gas flow rate adjusting device 6 was kept normal when the operation was started. The other operations were the same as in Example 1.
At this time, the specific resistance value of the carbon dioxide-dissolved water flowing out from the pure water outflow pipe 9 after opening the water supply valve was measured and shown in FIG.
At this time, when the inside of the T-type pipe was made of glass and the inside was observed, it was observed that bubbles were generated little by little from the tip of the gas supply pipe 7 when the water supply was stopped. Moreover, the time from the restart of operation to the stabilization of the specific resistance value was 135 seconds.

(実施例4)
気体溶解水を製造している状態で、気体流量調節装置6(マスフローコントローラー)の設定を0とし、給水弁2及び停止弁10を同時に閉鎖して運転を停止した。ブロー弁8は閉鎖したままであった。運転再開時は給水弁2及び、停止弁10を再び開放すると同時に、気体流量調整装置6の設定を、3秒間、流量2.4mL/minとした後、その後、通常の設定に戻した。最初に3分給水して、それ以降、停止と給水を繰り返した。その際の給水時間は1分、停止時間は、1分、5分、10分、20分と次第に増加させた。
この時、純水流出管9より流出した二酸化炭素溶解水の比抵抗値を測定し、図6に実線で示した。
Example 4
In the state where the gas dissolved water is being manufactured, the setting of the gas flow control device 6 (mass flow controller) was set to 0, and the water supply valve 2 and the stop valve 10 were simultaneously closed to stop the operation. The blow valve 8 remained closed. At the time of restarting operation, the water supply valve 2 and the stop valve 10 were opened again, and at the same time, the gas flow rate adjusting device 6 was set to a flow rate of 2.4 mL / min for 3 seconds, and then returned to the normal setting. First, water was supplied for 3 minutes, and then stop and water supply were repeated. The water supply time at that time was gradually increased to 1 minute, and the stop time was gradually increased to 1, 5, 10, and 20 minutes.
At this time, the specific resistance value of the carbon dioxide-dissolved water flowing out from the pure water outflow pipe 9 was measured and shown by a solid line in FIG.

(比較例2)
運転停止時に、停止弁10を開放したままであること以外は、実施例4と同じ操作をした。
この時、純水流出管9より流出した二酸化炭素溶解水の比抵抗値を測定し、図8に実線で示した。停止時間が長くなると、比抵抗値の変動が大きくなる傾向が確認された。
(Comparative Example 2)
When the operation was stopped, the same operation as in Example 4 was performed except that the stop valve 10 was kept open.
At this time, the specific resistance value of the carbon dioxide-dissolved water flowing out from the pure water outflow pipe 9 was measured and shown by a solid line in FIG. It was confirmed that the specific resistance value tends to fluctuate with an increase in the stop time.

1…気体溶解水製造装置、2…給水弁、3…純水供給管、4…T型継手、4a…T型継手下部(流入口)、4b…T型継手上部(流出口)、5…開閉弁、6…気体流量調節装置、7…気体供給管、8…ブロー弁、9…純水流出管、10…停止弁、11…制御装置   DESCRIPTION OF SYMBOLS 1 ... Gas dissolved water manufacturing apparatus, 2 ... Water supply valve, 3 ... Pure water supply pipe, 4 ... T type joint, 4a ... T type joint lower part (inlet), 4b ... T type joint upper part (outlet), 5 ... Open / close valve, 6 ... gas flow rate adjusting device, 7 ... gas supply pipe, 8 ... blow valve, 9 ... pure water outflow pipe, 10 ... stop valve, 11 ... control device

Claims (6)

給水弁により断続的に純水を供給する純水供給管と、前記純水供給管が接続され気体供給管が挿入された気体溶解部と、前記気体の供給量を調整する気体流量調整装置とを備え、前記気体供給管を介して前記純水に気体を注入し、気体が一定濃度で溶解する気体溶解水を製造する気体溶解水製造装置において、
前記給水弁の閉鎖時に前記気体の供給を停止させ、前記給水弁開放時に前記気体の供給量の設定を一定時間通常より多い供給量の設定とさせた後、通常の供給量の設定とさせる制御装置を有することを特徴とする気体溶解水製造装置。
A pure water supply pipe for supplying pure water intermittently by a water supply valve, a gas dissolving part to which the pure water supply pipe is connected and a gas supply pipe is inserted, and a gas flow rate adjusting device for adjusting the supply amount of the gas; In a gas dissolved water production apparatus for producing gas dissolved water in which gas is injected into the pure water through the gas supply pipe and the gas is dissolved at a constant concentration,
Control that stops the supply of the gas when the water supply valve is closed, and sets the supply amount of the gas to a setting higher than normal for a certain period of time when the water supply valve is opened, and then sets the normal supply amount A gas-dissolved water production apparatus comprising an apparatus.
前記気体供給管と前記気体流量調整装置の間にブロー弁を有し、
前記給水弁閉鎖時に一定時間前記ブロー弁を開放し、前記気体供給管内の気体をブローさせることを特徴とする請求項1記載の気体溶解水製造装置
A blow valve between the gas supply pipe and the gas flow control device;
The gas dissolved water production apparatus according to claim 1, wherein the blow valve is opened for a certain period of time when the water supply valve is closed, and the gas in the gas supply pipe is blown.
前記気体溶解部の下流に、前記給水弁閉鎖時に閉鎖し、前記給水弁開放時に開放される停止弁を有することを特徴とする請求項1又は2記載の気体溶解水製造装置。   The gas dissolved water production apparatus according to claim 1 or 2, further comprising a stop valve that is closed when the water supply valve is closed and opened when the water supply valve is opened, downstream of the gas dissolving portion. 前記気体溶解部が、前記気体供給管がT型配管の中心部まで挿入され、前記気体の供給方向と前記純水の供給方向が直交するように構成されたT型配管であることを特徴とする請求項1乃至3のいずれか1項記載の気体溶解水製造装置。   The gas dissolving part is a T-shaped pipe configured such that the gas supply pipe is inserted to the center of the T-shaped pipe, and the gas supply direction and the pure water supply direction are orthogonal to each other. The gas-dissolved water production apparatus according to any one of claims 1 to 3. 前記気体溶解水の流量が0.1〜10L/minであることを特徴とする、請求項1乃至4のいずれか1項記載の気体溶解水製造装置。   The gas dissolved water production apparatus according to any one of claims 1 to 4, wherein a flow rate of the gas dissolved water is 0.1 to 10 L / min. 給水弁により断続的に純水を供給する純水供給管と、前記純水供給管が接続され気体供給管が挿入された気体溶解部と、前記気体の供給量を調整する気体流量調整装置とを備え、前記気体供給管を介して前記純水に気体を注入し、気体が一定濃度で溶解する気体溶解水を製造する気体溶解水製造装置において、
前記給水弁の閉鎖時に前記気体の供給を停止させ、前記給水弁開放時に前記気体の供給量の設定を一定時間通常より多い供給量の設定とさせた後、通常の供給量の設定とさせることを特徴とする気体溶解水製造方法。
A pure water supply pipe for supplying pure water intermittently by a water supply valve, a gas dissolving part to which the pure water supply pipe is connected and a gas supply pipe is inserted, and a gas flow rate adjusting device for adjusting the supply amount of the gas; In a gas dissolved water production apparatus for producing gas dissolved water in which gas is injected into the pure water through the gas supply pipe and the gas is dissolved at a constant concentration,
When the water supply valve is closed, the gas supply is stopped, and when the water supply valve is opened, the gas supply amount is set to a higher supply amount than normal for a certain period of time, and then the normal supply amount is set. A gas-dissolved water production method characterized by
JP2011278394A 2011-12-20 2011-12-20 Gas dissolved water manufacturing apparatus and gas dissolved water manufacturing method Active JP6059871B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2011278394A JP6059871B2 (en) 2011-12-20 2011-12-20 Gas dissolved water manufacturing apparatus and gas dissolved water manufacturing method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2011278394A JP6059871B2 (en) 2011-12-20 2011-12-20 Gas dissolved water manufacturing apparatus and gas dissolved water manufacturing method

Publications (2)

Publication Number Publication Date
JP2013128870A true JP2013128870A (en) 2013-07-04
JP6059871B2 JP6059871B2 (en) 2017-01-11

Family

ID=48906914

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2011278394A Active JP6059871B2 (en) 2011-12-20 2011-12-20 Gas dissolved water manufacturing apparatus and gas dissolved water manufacturing method

Country Status (1)

Country Link
JP (1) JP6059871B2 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2017170277A (en) * 2016-03-18 2017-09-28 株式会社ノリタケカンパニーリミテド Apparatus for manufacturing bubble-containing liquid and method for using the same
CN113735214A (en) * 2021-09-28 2021-12-03 无锡海拓环保装备科技有限公司 High-efficient microbubble dissolves gas device

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2000223459A (en) * 1999-01-29 2000-08-11 Shibaura Mechatronics Corp Substrate-processing device, device for preventing liquid from dripping down, and etching processing method
JP2002058725A (en) * 2000-08-21 2002-02-26 Mitsubishi Rayon Eng Co Ltd Method for manufacturing carbonated water
JP2003210966A (en) * 2002-01-25 2003-07-29 Sasakura Engineering Co Ltd Ozone water feeding device
JP2003334433A (en) * 2002-05-16 2003-11-25 Kurita Water Ind Ltd Continuous dissolving device, continuous dissolving method and apparatus for supplying gas-dissolved water
JP3139460U (en) * 2007-10-30 2008-02-21 渉 室田 Mass production equipment for gas-dissolved liquid by continuous pressurized flow system
JP2010199124A (en) * 2009-02-23 2010-09-09 Nomura Micro Sci Co Ltd Apparatus for supplying ozone water
JP2011143369A (en) * 2010-01-15 2011-07-28 Toraitekku:Kk Method for regulating specific resistance of ultrapure water and apparatus for treating ultrapure water

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2000223459A (en) * 1999-01-29 2000-08-11 Shibaura Mechatronics Corp Substrate-processing device, device for preventing liquid from dripping down, and etching processing method
JP2002058725A (en) * 2000-08-21 2002-02-26 Mitsubishi Rayon Eng Co Ltd Method for manufacturing carbonated water
JP2003210966A (en) * 2002-01-25 2003-07-29 Sasakura Engineering Co Ltd Ozone water feeding device
JP2003334433A (en) * 2002-05-16 2003-11-25 Kurita Water Ind Ltd Continuous dissolving device, continuous dissolving method and apparatus for supplying gas-dissolved water
JP3139460U (en) * 2007-10-30 2008-02-21 渉 室田 Mass production equipment for gas-dissolved liquid by continuous pressurized flow system
JP2010199124A (en) * 2009-02-23 2010-09-09 Nomura Micro Sci Co Ltd Apparatus for supplying ozone water
JP2011143369A (en) * 2010-01-15 2011-07-28 Toraitekku:Kk Method for regulating specific resistance of ultrapure water and apparatus for treating ultrapure water

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2017170277A (en) * 2016-03-18 2017-09-28 株式会社ノリタケカンパニーリミテド Apparatus for manufacturing bubble-containing liquid and method for using the same
CN113735214A (en) * 2021-09-28 2021-12-03 无锡海拓环保装备科技有限公司 High-efficient microbubble dissolves gas device

Also Published As

Publication number Publication date
JP6059871B2 (en) 2017-01-11

Similar Documents

Publication Publication Date Title
US11229887B2 (en) Ozone water supply method and ozone water supply device
JP2003334433A (en) Continuous dissolving device, continuous dissolving method and apparatus for supplying gas-dissolved water
TWI720302B (en) Washing water supply device
WO2009113682A1 (en) Gas-dissolved water supply system
JP2006223995A (en) Washing method and washing device
WO2012073574A1 (en) Method for removal of photoresist
JP6059871B2 (en) Gas dissolved water manufacturing apparatus and gas dissolved water manufacturing method
KR20190077228A (en) Gas solution manufacturing apparatus
KR102639443B1 (en) Gas dissolution liquid supply device and gas dissolution liquid supply method
EP3978109A1 (en) Gas solution supply device
JP6435385B2 (en) Substrate processing chemical generation method, substrate processing chemical generation unit, substrate processing method, and substrate processing system
KR20170104399A (en) Substrate treatment device and substrate treatment method
JPH0373355B2 (en)
JP2003260341A (en) Ozonized water supplying apparatus
TWI742266B (en) Washing water supply device
JP2003260342A (en) Apparatus and method for mixing ozone
JP2011082495A (en) Liquid processing apparatus for substrate, method for generating processing liquid, and computer readable recording medium recording program for generating processing liquid therein
US20180353911A1 (en) Gas solution production apparatus
JP2009032710A (en) Substrate processing apparatus
JP6738726B2 (en) Diluting liquid manufacturing apparatus and diluting liquid manufacturing method
TWI538877B (en) Ozone water supply device and ozone water supply method
JP2005175183A (en) Liquid-pressurizing mechanism, and apparatus and method for controlling liquid using it
KR20190034068A (en) Substrate treatment method and substrate treatment apparatus
KR20200003473A (en) Ozone and sludge disposal system of plasma generator
JP2009082919A (en) Apparatus for supplying gas-dissolved water

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20141217

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20151203

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20151208

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20160127

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20160628

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20160803

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20161122

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20161212

R150 Certificate of patent or registration of utility model

Ref document number: 6059871

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250