JP2013128062A - Semiconductor device manufacturing method - Google Patents

Semiconductor device manufacturing method Download PDF

Info

Publication number
JP2013128062A
JP2013128062A JP2011277346A JP2011277346A JP2013128062A JP 2013128062 A JP2013128062 A JP 2013128062A JP 2011277346 A JP2011277346 A JP 2011277346A JP 2011277346 A JP2011277346 A JP 2011277346A JP 2013128062 A JP2013128062 A JP 2013128062A
Authority
JP
Japan
Prior art keywords
film
titanium nitride
nitride film
titanium
via hole
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Withdrawn
Application number
JP2011277346A
Other languages
Japanese (ja)
Inventor
Katsuhiko Tanaka
克彦 田中
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Micron Memory Japan Ltd
Original Assignee
Elpida Memory Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Elpida Memory Inc filed Critical Elpida Memory Inc
Priority to JP2011277346A priority Critical patent/JP2013128062A/en
Priority to US13/669,670 priority patent/US9076793B2/en
Publication of JP2013128062A publication Critical patent/JP2013128062A/en
Withdrawn legal-status Critical Current

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L23/00Details of semiconductor or other solid state devices
    • H01L23/52Arrangements for conducting electric current within the device in operation from one component to another, i.e. interconnections, e.g. wires, lead frames
    • H01L23/522Arrangements for conducting electric current within the device in operation from one component to another, i.e. interconnections, e.g. wires, lead frames including external interconnections consisting of a multilayer structure of conductive and insulating layers inseparably formed on the semiconductor body
    • H01L23/532Arrangements for conducting electric current within the device in operation from one component to another, i.e. interconnections, e.g. wires, lead frames including external interconnections consisting of a multilayer structure of conductive and insulating layers inseparably formed on the semiconductor body characterised by the materials
    • H01L23/53204Conductive materials
    • H01L23/53209Conductive materials based on metals, e.g. alloys, metal silicides
    • H01L23/53257Conductive materials based on metals, e.g. alloys, metal silicides the principal metal being a refractory metal
    • H01L23/53266Additional layers associated with refractory-metal layers, e.g. adhesion, barrier, cladding layers
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/04Manufacture or treatment of semiconductor devices or of parts thereof the devices having potential barriers, e.g. a PN junction, depletion layer or carrier concentration layer
    • H01L21/18Manufacture or treatment of semiconductor devices or of parts thereof the devices having potential barriers, e.g. a PN junction, depletion layer or carrier concentration layer the devices having semiconductor bodies comprising elements of Group IV of the Periodic Table or AIIIBV compounds with or without impurities, e.g. doping materials
    • H01L21/28Manufacture of electrodes on semiconductor bodies using processes or apparatus not provided for in groups H01L21/20 - H01L21/268
    • H01L21/283Deposition of conductive or insulating materials for electrodes conducting electric current
    • H01L21/285Deposition of conductive or insulating materials for electrodes conducting electric current from a gas or vapour, e.g. condensation
    • H01L21/28506Deposition of conductive or insulating materials for electrodes conducting electric current from a gas or vapour, e.g. condensation of conductive layers
    • H01L21/28512Deposition of conductive or insulating materials for electrodes conducting electric current from a gas or vapour, e.g. condensation of conductive layers on semiconductor bodies comprising elements of Group IV of the Periodic Table
    • H01L21/2855Deposition of conductive or insulating materials for electrodes conducting electric current from a gas or vapour, e.g. condensation of conductive layers on semiconductor bodies comprising elements of Group IV of the Periodic Table by physical means, e.g. sputtering, evaporation
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/70Manufacture or treatment of devices consisting of a plurality of solid state components formed in or on a common substrate or of parts thereof; Manufacture of integrated circuit devices or of parts thereof
    • H01L21/71Manufacture of specific parts of devices defined in group H01L21/70
    • H01L21/768Applying interconnections to be used for carrying current between separate components within a device comprising conductors and dielectrics
    • H01L21/76838Applying interconnections to be used for carrying current between separate components within a device comprising conductors and dielectrics characterised by the formation and the after-treatment of the conductors
    • H01L21/76841Barrier, adhesion or liner layers
    • H01L21/76843Barrier, adhesion or liner layers formed in openings in a dielectric
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L23/00Details of semiconductor or other solid state devices
    • H01L23/52Arrangements for conducting electric current within the device in operation from one component to another, i.e. interconnections, e.g. wires, lead frames
    • H01L23/522Arrangements for conducting electric current within the device in operation from one component to another, i.e. interconnections, e.g. wires, lead frames including external interconnections consisting of a multilayer structure of conductive and insulating layers inseparably formed on the semiconductor body
    • H01L23/5226Via connections in a multilevel interconnection structure
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/0001Technical content checked by a classifier
    • H01L2924/0002Not covered by any one of groups H01L24/00, H01L24/00 and H01L2224/00

Landscapes

  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • General Physics & Mathematics (AREA)
  • Computer Hardware Design (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Power Engineering (AREA)
  • Manufacturing & Machinery (AREA)
  • Internal Circuitry In Semiconductor Integrated Circuit Devices (AREA)

Abstract

PROBLEM TO BE SOLVED: To provide a semiconductor device manufacturing method which enables a tungsten film to be successfully buried in a via hole via a barrier layer and which can reduce in-plane variation of contact resistance between copper wiring and a plug in a semiconductor substrate to obtain favorable contact resistance.SOLUTION: A semiconductor device manufacturing method comprises: forming a via hole 18 in an interlayer insulation layer 17 covering copper wiring 15 on a semiconductor substrate 11; subsequently, forming a titanium film 21 on a bottom face 18a of the via hole 18 and on a top face 17a of the interlayer insulation layer 17 in a sputter chamber having strong directivity; subsequently, forming a first titanium nitride film on the titanium film 21 in the sputter chamber having strong directivity; subsequently, forming a second titanium nitride film 24 on the first titanium nitride film 22 in the sputter chamber having strong directivity; and subsequently, forming a tungsten film 27 to be buried in the via hole 18.

Description

本発明は、半導体装置の製造方法に関する。   The present invention relates to a method for manufacturing a semiconductor device.

従来、半導体基板(例えば、シリコン基板)やアルミニウム配線(アルミニウム膜)とコンタクトプラグとの接触抵抗を低減する目的で、コンタクトプラグのうち、半導体基板及びアルミニウム配線と接触する部分にチタン膜(Ti膜)が用いられている。   Conventionally, in order to reduce contact resistance between a semiconductor substrate (for example, a silicon substrate) or an aluminum wiring (aluminum film) and a contact plug, a titanium film (Ti film) is formed on a portion of the contact plug in contact with the semiconductor substrate and the aluminum wiring. ) Is used.

また、コンタクトプラグを構成するタングステン膜の成膜反応を安定させ、かつ下地層間絶縁層との密着性を確保するために、コンタクトプラグに構成要素の1つとして窒化チタン膜(TiN膜)が用いられている。   In addition, a titanium nitride film (TiN film) is used as one of the constituent elements in the contact plug in order to stabilize the film formation reaction of the tungsten film constituting the contact plug and to secure the adhesion with the underlying interlayer insulating layer. It has been.

また、タングステン膜を形成する際に用いるWFガスは、チタン(Ti)やシリコン(Si)或いはアルミニウム(Al)と反応して膜はがれを生じさせるため、これらの材料を窒化チタン膜(TiN膜)で覆い保護する必要がある。 Further, since the WF 6 gas used for forming the tungsten film reacts with titanium (Ti), silicon (Si), or aluminum (Al) to cause film peeling, these materials are used as titanium nitride films (TiN films). ) Must be covered and protected.

特許文献1には、コンタクト孔内にバリアメタルを介してタングステン膜を埋め込む際に、バリアメタル膜の膜剥がれを抑制する半導体装置の製造方法として、コンタクト孔を含む基板上面にチタン膜をスパッタ形成し、次いで、チタン膜上に窒素雰囲気中で高温のArガスで加熱しながら第1のチタンナイトライド膜をスパッタ形成し、次いで、第1のチタンナイトライド膜を被覆するように100%の窒素雰囲気中で第2のチタンナイトライド膜をスパッタ形成し、その後、チタン膜、第1のチタンナイトライド膜、及び第2のチタンナイトライド膜の積層膜からなるバリアメタル膜を介して、コンタクト孔をタングステン膜で埋め込むことが開示されている。   In Patent Document 1, as a method for manufacturing a semiconductor device that suppresses film peeling of a barrier metal film when a tungsten film is embedded in a contact hole through a barrier metal, a titanium film is formed by sputtering on the upper surface of the substrate including the contact hole. Then, a first titanium nitride film is sputter-formed on the titanium film while heating with a high-temperature Ar gas in a nitrogen atmosphere, and then 100% nitrogen so as to cover the first titanium nitride film. A second titanium nitride film is formed by sputtering in an atmosphere, and then contact holes are formed through a barrier metal film composed of a laminated film of a titanium film, a first titanium nitride film, and a second titanium nitride film. Is buried with a tungsten film.

特許文献2には、TiN膜上に良質なタングステン膜を成膜可能な製造方法として、シリコン基板上にシリコン酸化膜上を形成し、次いで、コンタクトホールの形状にパターニングして下地基板を作成し、次いで、露出したシリコン基板上、及びシリコン酸化膜上にスパッタ法により、膜厚30nmのTi膜を形成し、次いで、温度400℃、気圧1Torr、電力300Wの条件で、60秒間の窒素プラズマ処理を行い、Ti膜表面を窒化し、次いで、スパッタ法により膜厚50nmのTiN膜を成膜し、その後、CVD法により、TiN膜上に膜厚350nmのタングステン膜を成膜することが開示されている。   In Patent Document 2, as a manufacturing method capable of forming a high-quality tungsten film on a TiN film, a silicon oxide film is formed on a silicon substrate, and then patterned into a contact hole shape to form a base substrate. Next, a 30 nm-thick Ti film is formed on the exposed silicon substrate and silicon oxide film by sputtering, and then a nitrogen plasma treatment for 60 seconds under the conditions of a temperature of 400 ° C., an atmospheric pressure of 1 Torr, and a power of 300 W. And nitriding the surface of the Ti film, then forming a 50 nm thick TiN film by sputtering, and then forming a 350 nm thick tungsten film on the TiN film by CVD. ing.

また、特許文献2には、スパッタ法により、膜厚800nmのAl膜を形成し、該Al膜上に、スパッタ法により、膜厚30nmのTi膜(チタン膜)を形成し、次いで、温度400℃、気圧1Torr、電力300Wの条件で、60秒間の窒素プラズマ処理を行い、Ti膜表面を窒化し、次いで、スパッタ法により、膜厚100nmのTiN膜(窒化チタン膜)を形成し、次いで、TiN膜上に、プラズマCVD法により、シリコン酸化膜を形成し、コンタクトホールの形状にパターニングし、次いで、露出したTiN膜上、及びシリコン酸化膜上にスパッタ法により膜厚50nmのTiNを形成し、その後、CVD法により、TiN膜上に膜厚800nmのタングステン膜を成膜することが開示されている。   In Patent Document 2, an Al film having a thickness of 800 nm is formed by a sputtering method, and a Ti film (titanium film) having a thickness of 30 nm is formed on the Al film by a sputtering method. Nitrogen plasma treatment is performed for 60 seconds under the conditions of ° C., atmospheric pressure 1 Torr, and power 300 W, the Ti film surface is nitrided, and then a 100 nm thick TiN film (titanium nitride film) is formed by sputtering, A silicon oxide film is formed on the TiN film by a plasma CVD method and patterned into the shape of a contact hole, and then a 50 nm-thick TiN film is formed on the exposed TiN film and the silicon oxide film by a sputtering method. Thereafter, it is disclosed that a tungsten film having a thickness of 800 nm is formed on the TiN film by a CVD method.

特開2001−168057号公報JP 2001-168057 A 特開平11−87272号公報JP-A-11-87272

しかしながら、特許文献1,2に記載の加熱処理を行わないと、シリコン上またはアルミニウム配線上に形成されたチタン膜を覆うチタンナイトライド膜の膜厚が不十分な箇所がある場合には、タングステン膜の膜はがれやWFと反応してボルケーノが生じる恐れがあった。 However, if the heat treatment described in Patent Documents 1 and 2 is not performed, if there is a portion where the thickness of the titanium nitride film covering the titanium film formed on silicon or aluminum wiring is insufficient, tungsten there is a possibility that Volcano occurs react with membrane peeling and WF 6 of the membrane.

また、本発明者が鋭意検討を行ったところ、銅配線(Cu膜)上に、チタン膜(Ti膜)を接触させた状態で加熱処理(つまり、特許文献1,2の半導体装置の製造方法を適用すると)を行うと、Cu膜とTi膜との接触が不安定となるため、Ti膜を構成要素の1つとするプラグ(コンタクトプラグやビアプラグ等)と銅配線との間の接触抵抗が上昇し、半導体基板面内において該接触抵抗がばらついてしまうことが分かった。   In addition, when the present inventors diligently studied, heat treatment was performed in a state where a titanium film (Ti film) was in contact with a copper wiring (Cu film) (that is, a method for manufacturing a semiconductor device in Patent Documents 1 and 2). Is applied, the contact between the Cu film and the Ti film becomes unstable, so that the contact resistance between the plug (contact plug, via plug, etc.) having the Ti film as one of the constituent elements and the copper wiring is reduced. It has been found that the contact resistance varies within the surface of the semiconductor substrate.

また、窒化チタン膜(TiN膜)を銅配線(Cu膜)上に形成後、加熱処理を行うと、窒化チタン膜(TiN膜)のCuに対するバリア性が低下して、銅原子が拡散し易くなった。
これにより、プラグの底部のエレクトロマイグレーション(EM)耐性が低下すると共に、窒化チタン膜(TiN膜)表面におけるタングステン膜(プラグの母材)の核形成反応が不安定となり、タングステン膜の異常成長の要因となることが分かった。
Further, when a heat treatment is performed after the titanium nitride film (TiN film) is formed on the copper wiring (Cu film), the barrier property against Cu of the titanium nitride film (TiN film) is lowered, and copper atoms are easily diffused. became.
As a result, the electromigration (EM) resistance at the bottom of the plug is lowered, and the nucleation reaction of the tungsten film (plug base material) on the surface of the titanium nitride film (TiN film) becomes unstable, resulting in abnormal growth of the tungsten film. It turned out to be a factor.

本発明の一観点によれば、配線を覆う層間絶縁層にビアホールを形成し、該ビアホールにバリア層を介してプラグを形成する半導体装置の製造方法であって、前記バリア層を、第1の窒化チタン膜と、該第1の窒化チタン膜上に第2の窒化チタン膜と、順次積層させることで形成し、前記第2の窒化チタン膜は、前記第1の窒化チタン膜を形成する時よりも弱い指向性で形成することを特徴とする半導体装置の製造方法が提供される。   According to one aspect of the present invention, there is provided a semiconductor device manufacturing method in which a via hole is formed in an interlayer insulating layer covering a wiring, and a plug is formed in the via hole through a barrier layer. A titanium nitride film and a second titanium nitride film are sequentially stacked on the first titanium nitride film, and the second titanium nitride film is formed when the first titanium nitride film is formed. A method for manufacturing a semiconductor device is provided, which is formed with a weaker directivity.

本発明の半導体装置の製造方法によれば、配線を覆う層間絶縁層にビアホールを形成し、ビアホール内に、第1の窒化チタン膜を形成し、次いで、該第1の窒化チタン膜上に第1の窒化チタン膜を形成する時よりも弱い指向性をもって第2の窒化チタン膜を形成することで、第1及び第2の窒化チタン膜の形成に加熱処理を行うことなく、第1及び第2の窒化チタン膜を介して、ビアホールを埋め込むように、タングステン膜を埋め込んだ際、エレクトロマイグレーション(EM)耐性を確保した上で、タングステン膜の成膜に起因するボルケーノの発生を抑制可能となる。   According to the method for manufacturing a semiconductor device of the present invention, a via hole is formed in an interlayer insulating layer covering a wiring, a first titanium nitride film is formed in the via hole, and then a first titanium nitride film is formed on the first titanium nitride film. By forming the second titanium nitride film with a weaker directivity than when forming the first titanium nitride film, the first and second titanium nitride films can be formed without performing heat treatment on the first and second titanium nitride films. When a tungsten film is embedded so as to embed a via hole through the titanium nitride film 2, it is possible to suppress the occurrence of volcano caused by the formation of the tungsten film while ensuring the electromigration (EM) resistance. .

これにより、ビアホール内をタングステン膜で良好に埋め込むことができると共に、配線とプラグとの間の接触抵抗の半導体基板面内のばらつきを小さくでき、かつ良好な接触抵抗を得ることができる。   Thereby, the inside of the via hole can be satisfactorily filled with the tungsten film, variation in the contact resistance between the wiring and the plug can be reduced in the semiconductor substrate surface, and a good contact resistance can be obtained.

なお、ここでの「指向性が弱い」とは、スパッタ装置のターゲットと半導体基板との距離が近いことをいう。   Note that “weak directivity” here means that the distance between the target of the sputtering apparatus and the semiconductor substrate is short.

本発明の実施の形態に係る半導体装置の製造工程を説明するための断面図(その1)である。It is sectional drawing (the 1) for demonstrating the manufacturing process of the semiconductor device which concerns on embodiment of this invention. 本発明の実施の形態に係る半導体装置の製造工程を説明するための断面図(その2)である。It is sectional drawing (the 2) for demonstrating the manufacturing process of the semiconductor device which concerns on embodiment of this invention. 本発明の実施の形態に係る半導体装置の製造工程を説明するための断面図(その3)である。It is sectional drawing (the 3) for demonstrating the manufacturing process of the semiconductor device which concerns on embodiment of this invention. 本発明の実施の形態に係る半導体装置の製造工程を説明するための断面図(その4)である。It is sectional drawing (the 4) for demonstrating the manufacturing process of the semiconductor device which concerns on embodiment of this invention. 本発明の実施の形態に係る半導体装置の製造工程を説明するための断面図(その5)である。It is sectional drawing (the 5) for demonstrating the manufacturing process of the semiconductor device which concerns on embodiment of this invention.

以下、図面を参照して本発明を適用した実施の形態について詳細に説明する。なお、以下の説明で用いる図面は、本発明の実施形態の構成を説明するためのものであり、図示される各部の大きさや厚さや寸法等は、実際の半導体装置の寸法関係とは異なる場合がある。   Embodiments to which the present invention is applied will be described below in detail with reference to the drawings. Note that the drawings used in the following description are for explaining the configuration of the embodiment of the present invention, and the size, thickness, dimensions, and the like of each part shown in the drawings are different from the dimensional relationship of an actual semiconductor device. There is.

(実施の形態)
図1〜図5は、本発明の実施の形態に係る半導体装置の製造工程を示す断面図である。
図1〜図5を参照して、本実施の形態の半導体装置10(図5参照)の製造方法(具体的には、プラグ31の形成方法)について説明する。
(Embodiment)
1-5 is sectional drawing which shows the manufacturing process of the semiconductor device based on Embodiment of this invention.
With reference to FIGS. 1-5, the manufacturing method (specifically, the formation method of the plug 31) of the semiconductor device 10 (refer FIG. 5) of this Embodiment is demonstrated.

始めに、図1に示す工程では、周知の手法により、半導体基板11(例えば、単結晶シリコン基板)の主面11a(表面)に下地絶縁膜12(例えば、酸化シリコン膜(SiO膜))を形成する。次いで、フォトリソグラフィ技術及びドライエッチング技術により、下地絶縁膜12に溝14を形成する。 First, in the process shown in FIG. 1, a base insulating film 12 (for example, a silicon oxide film (SiO 2 film)) is formed on a main surface 11a (front surface) of a semiconductor substrate 11 (for example, a single crystal silicon substrate) by a known method. Form. Next, a trench 14 is formed in the base insulating film 12 by photolithography technology and dry etching technology.

次いで、周知の手法(ダマシン法)により、溝14を埋め込む銅配線15を形成する。次いで、周知の手法(例えば、CVD法)により、下地絶縁膜12の上面12a及び銅配線15の上面15aを覆う層間絶縁層17を形成する。
次いで、銅配線15上に位置する層間絶縁層17に、フォトリソグラフィ技術及びドライエッチング技術により銅配線15の一部を露出するビアホール18を形成(開口)する。
Next, a copper wiring 15 that fills the groove 14 is formed by a known method (damascene method). Next, an interlayer insulating layer 17 that covers the upper surface 12a of the base insulating film 12 and the upper surface 15a of the copper wiring 15 is formed by a known method (for example, CVD method).
Next, a via hole 18 exposing a part of the copper wiring 15 is formed (opened) in the interlayer insulating layer 17 located on the copper wiring 15 by a photolithography technique and a dry etching technique.

次いで、後述する図2に示すチタン膜21を形成する前に、ビアホール18に露出された銅配線15の表面に形成された酸化物を除去する。具体的には、図1に示す構造体を水素雰囲気中にて還元処理するか、或いは、Arを用いたスパッタエッチングにより該酸化物を除去する。   Next, before forming a titanium film 21 shown in FIG. 2 described later, the oxide formed on the surface of the copper wiring 15 exposed in the via hole 18 is removed. Specifically, the structure shown in FIG. 1 is reduced in a hydrogen atmosphere, or the oxide is removed by sputter etching using Ar.

次いで、図2に示す工程では、銅配線15の一部を実質的に完全に覆う部分を少なくとも有するようにチタン膜21を形成する。
具体的には、少なくともビアホール18の底面18a及び層間絶縁層17の上面17a(上表面)に指向性の強いスパッタチャンバー内でチタン膜21を形成する。ここでの「指向性が強いスパッタチャンバー」とは、スパッタ装置のTiターゲットと半導体基板11との距離が遠いスパッタチャンバーのことをいう。
Next, in the process shown in FIG. 2, the titanium film 21 is formed so as to have at least a part that covers a part of the copper wiring 15 substantially completely.
Specifically, the titanium film 21 is formed at least on the bottom surface 18 a of the via hole 18 and the upper surface 17 a (upper surface) of the interlayer insulating layer 17 in a highly directional sputtering chamber. Here, the “sputter chamber with strong directivity” refers to a sputter chamber in which the distance between the Ti target of the sputtering apparatus and the semiconductor substrate 11 is long.

上記チタン膜21を形成する際には、基板バイアスが100ワット乃至400ワットとされたロングスロースパッタ法を用いる。基板バイアスが高すぎると(400ワットよりも大きいと)銅配線15とチタン膜21との接触抵抗が増加するため好ましくない。   When the titanium film 21 is formed, a long throw sputtering method with a substrate bias of 100 watts to 400 watts is used. If the substrate bias is too high (greater than 400 watts), the contact resistance between the copper wiring 15 and the titanium film 21 increases, which is not preferable.

また、上記チタン膜21は、ビアホール18の底面18a(言い換えれば、ビアホール18に露出された銅配線15の表面)に形成される厚さが2nm乃至7.5nmとなるように形成するとよい。
また、チタン膜21は、少なくともビアホール18に露出された銅配線15の表面に形成されておればよく、ビアホール18の側壁面18bには成膜されない方がよい。
なお、図2では、一例として、ビアホール18の側壁面18bにチタン膜21が成膜されていない場合を図示している。
The titanium film 21 is preferably formed so that the thickness formed on the bottom surface 18a of the via hole 18 (in other words, the surface of the copper wiring 15 exposed in the via hole 18) is 2 nm to 7.5 nm.
The titanium film 21 only needs to be formed on at least the surface of the copper wiring 15 exposed in the via hole 18 and should not be formed on the side wall surface 18 b of the via hole 18.
In FIG. 2, as an example, a case where the titanium film 21 is not formed on the side wall surface 18 b of the via hole 18 is illustrated.

このように、基板バイアスが100ワット乃至400ワットとされたロングスロースパッタ法を用いて、ビアホール18の底面18aに形成される厚さが2nm乃至7.5nmとなるようにチタン膜21を形成することで、銅配線15とチタン膜21との間の接触抵抗を低くすることができると共に、半導体基板11面内における該接触抵抗のばらつきを小さくすることができる。   As described above, the titanium film 21 is formed using the long throw sputtering method in which the substrate bias is set to 100 watts to 400 watts so that the thickness formed on the bottom surface 18a of the via hole 18 is 2 nm to 7.5 nm. As a result, the contact resistance between the copper wiring 15 and the titanium film 21 can be reduced, and variations in the contact resistance in the surface of the semiconductor substrate 11 can be reduced.

次いで、指向性の強いスパッタチャンバー内で、ビアホール18の底面18aに形成されたチタン膜21(言い換えれば、チタン膜21のうち、銅配線15の一部(ビアホール18に露出された部分)を実質的に完全に覆う部分)上から、ビアホール18を区画する層間絶縁層17の側面17b(言い換えれば、ビアホール18の側壁面18b)を経由して層間絶縁層17の上面17a(表面)に延在する第1窒化チタン膜22を形成する。   Next, the titanium film 21 formed on the bottom surface 18a of the via hole 18 (in other words, a part of the copper wiring 15 in the titanium film 21 (the portion exposed to the via hole 18) is substantially formed in the sputtering chamber having strong directivity. Part of the interlayer insulating layer 17 that divides the via hole 18 (in other words, the side wall surface 18b of the via hole 18) that extends to the upper surface 17a (front surface) of the interlayer insulating layer 17 from above. A first titanium nitride film 22 is formed.

これにより、ビアホール18の底面18a及び層間絶縁層17の上面17aに形成されたチタン膜21と、チタン膜21が形成されていないビアホール18の側壁面18bと、が第1窒化チタン膜22で覆われる。   As a result, the titanium film 21 formed on the bottom surface 18 a of the via hole 18 and the upper surface 17 a of the interlayer insulating layer 17 and the side wall surface 18 b of the via hole 18 where the titanium film 21 is not formed are covered with the first titanium nitride film 22. Is called.

具体的には、ロングスロースパッタ法により、窒素雰囲気中の反応性スパッタを利用して、第1窒化チタン膜22を形成する。このときの基板バイアスとしては、400ワット乃至1000ワットを印加する。
第1窒化チタン膜22を形成する際に使用する上記基板バイアスでは、下層に形成されたチタン膜21よりも指向性が強くなるが、膜厚を厚くすることでビアホール18の底面18aに形成されたチタン膜21を覆うことができる。
Specifically, the first titanium nitride film 22 is formed by reactive sputtering in a nitrogen atmosphere by a long throw sputtering method. As the substrate bias at this time, 400 watts to 1000 watts are applied.
The substrate bias used when forming the first titanium nitride film 22 has higher directivity than the titanium film 21 formed in the lower layer, but is formed on the bottom surface 18a of the via hole 18 by increasing the film thickness. The titanium film 21 can be covered.

また、第1窒化チタン膜22は、ビアホール18の底面18aに配置されたチタン膜21上において、その厚さが15nm乃至30nmとなるように形成するとよい。
さらに、第1窒化チタン膜22を構成するチタンと窒素の組成比が1:1に近くなるように、第1窒化チタン膜22を形成するとよい。
The first titanium nitride film 22 is preferably formed on the titanium film 21 disposed on the bottom surface 18a of the via hole 18 so that the thickness thereof is 15 nm to 30 nm.
Further, the first titanium nitride film 22 is preferably formed so that the composition ratio of titanium and nitrogen constituting the first titanium nitride film 22 is close to 1: 1.

このように、基板バイアスとして400ワット乃至1000ワットを用い、ロングスロースパッタ法により、ビアホール18の底面18aに配置されたチタン膜21上において、厚さが15nm乃至30nmとなるように第1窒化チタン膜22を形成することで、ビアホール18の底面18aにおける第1窒化チタン膜22の被覆範囲を調整することができる。   As described above, the first titanium nitride is used so as to have a thickness of 15 nm to 30 nm on the titanium film 21 disposed on the bottom surface 18a of the via hole 18 by long throw sputtering using 400 to 1000 watts as the substrate bias. By forming the film 22, the coverage of the first titanium nitride film 22 on the bottom surface 18 a of the via hole 18 can be adjusted.

次いで、図3に示す工程では、第1窒化チタン膜22上に、第1窒化チタン膜22の形成に使用したスパッタチャンバーと比較して、指向性の弱いスパッタチャンバー(第1窒化チタン膜22の形成に使用したチャンバーとは別のチャンバー)内で第2窒化チタン膜24を形成する。
ここでの「指向性の弱いスパッタチャンバー」とは、スパッタ装置のTiターゲットと半導体基板11との距離が近い通常のチャンバーのことをいう。
Next, in the process shown in FIG. 3, a sputter chamber having a low directivity (of the first titanium nitride film 22 is formed on the first titanium nitride film 22 as compared with the sputter chamber used for forming the first titanium nitride film 22. The second titanium nitride film 24 is formed in a chamber different from the chamber used for the formation.
The “sputter chamber with low directivity” here refers to a normal chamber in which the distance between the Ti target of the sputtering apparatus and the semiconductor substrate 11 is short.

具体的には、図3に示す工程では、ロングスロースパッタ法ではなく、通常のスパッタ法(具体的には、窒素ガスを用いた反応性スパッタ)により、層間絶縁層17の側面17b(ビアホール18の側壁面18b)から層間絶縁層17の表面17aに至る肩の部分17cに対応する第1窒化チタン膜22の部分を当該部分よりも厚い厚さを持って少なくとも覆うように、第2窒化チタン膜24を形成する。   Specifically, in the step shown in FIG. 3, the side surface 17b (via hole 18) of the interlayer insulating layer 17 is not formed by a long throw sputtering method but by a normal sputtering method (specifically, reactive sputtering using nitrogen gas). The second titanium nitride so as to cover at least the portion of the first titanium nitride film 22 corresponding to the shoulder portion 17c extending from the side wall surface 18b) to the surface 17a of the interlayer insulating layer 17 with a thickness greater than that portion. A film 24 is formed.

これにより、ビアホール18内に、チタン膜21、第1窒化チタン膜22、及び第2窒化チタン膜24を有し、かつ第1窒化チタン膜22と、第2窒化チタン膜24と、がこの順で積層されたバリア層25が形成される。   Thus, the via hole 18 has the titanium film 21, the first titanium nitride film 22, and the second titanium nitride film 24, and the first titanium nitride film 22 and the second titanium nitride film 24 are in this order. Thus, the barrier layer 25 laminated with is formed.

なお、指向性の強いスパッタチャンバーにおけるTiターゲットと半導体基板11の距離は、指向性の弱いスパッタチャンバーにおけるTiターゲットと半導体基板11の距離よりも遠い。   Note that the distance between the Ti target and the semiconductor substrate 11 in the sputtering chamber with high directivity is longer than the distance between the Ti target and the semiconductor substrate 11 in the sputtering chamber with low directivity.

図3に示す工程では、層間絶縁層17の上面17a及び肩の部分17cに形成された第2窒化チタン膜24の厚さが10nm乃至40nmとなるように、第2窒化チタン膜24を形成する。
また、第2窒化チタン膜24を構成するチタンと窒素の組成比が1:1に近くなるように、第2窒化チタン膜24を形成するとよい。
In the step shown in FIG. 3, the second titanium nitride film 24 is formed so that the thickness of the second titanium nitride film 24 formed on the upper surface 17a and the shoulder portion 17c of the interlayer insulating layer 17 is 10 nm to 40 nm. .
Further, the second titanium nitride film 24 is preferably formed so that the composition ratio of titanium and nitrogen constituting the second titanium nitride film 24 is close to 1: 1.

上記第2窒化チタン膜24は、後述する図4に示す工程において、タングステン膜27を形成する際に使用するプロセスガスであるWFから層間絶縁層17の肩の部分17cから層間絶縁層17の上面17aに形成されたチタン膜21(言い換えれば、ビアホール18の上端部近傍から層間絶縁層17の表面に形成されたチタン膜21)を保護する機能を有する。
なお、第2窒化チタン膜24は、一定の膜厚で形成すればよく、一般的なスパッタ条件により形成できる。
The second titanium nitride film 24 is formed from the shoulder gas 17c of the interlayer insulating layer 17 from the WF 6 which is a process gas used when forming the tungsten film 27 in the step shown in FIG. It has a function of protecting the titanium film 21 formed on the upper surface 17a (in other words, the titanium film 21 formed on the surface of the interlayer insulating layer 17 from the vicinity of the upper end portion of the via hole 18).
The second titanium nitride film 24 may be formed with a constant film thickness, and can be formed under general sputtering conditions.

次いで、図4に示す工程では、プロセスガスとしてWFを用いたCVD法により、チタン膜21、第1窒化チタン膜22、及び第2窒化チタン膜24を介して、ビアホール18を埋め込むタングステン膜27を形成する。
このとき、層間絶縁層17の上面17aの上方に形成された第2窒化チタン膜24を覆うように、タングステン膜27が形成される。
Next, in the step shown in FIG. 4, the tungsten film 27 that fills the via hole 18 through the titanium film 21, the first titanium nitride film 22, and the second titanium nitride film 24 by a CVD method using WF 6 as a process gas. Form.
At this time, the tungsten film 27 is formed so as to cover the second titanium nitride film 24 formed above the upper surface 17 a of the interlayer insulating layer 17.

次いで、図5に示す工程では、CMP法により、層間絶縁層17の上面17aに形成された不要なチタン膜21、第1窒化チタン膜22、及び第2窒化チタン膜24を除去して、研磨後のタングステン膜27の上面27aを層間絶縁層17の上面17aに対して位置にする。   Next, in the step shown in FIG. 5, unnecessary titanium film 21, first titanium nitride film 22, and second titanium nitride film 24 formed on upper surface 17a of interlayer insulating layer 17 are removed by CMP and polished. The upper surface 27 a of the later tungsten film 27 is positioned with respect to the upper surface 17 a of the interlayer insulating layer 17.

これにより、層間絶縁層17の上面17aが露出されると共に、チタン膜21、第1窒化チタン膜22、第2窒化チタン膜24、及びタングステン膜27により構成され、かつビアホール18を埋め込むプラグ31が形成される。プラグ31は、銅配線15と電気的に接続されている。   As a result, the upper surface 17a of the interlayer insulating layer 17 is exposed, and the plug 31 composed of the titanium film 21, the first titanium nitride film 22, the second titanium nitride film 24, and the tungsten film 27 and burying the via hole 18 is formed. It is formed. The plug 31 is electrically connected to the copper wiring 15.

本実施の形態の半導体装置の製造方法によれば、下地絶縁膜12に形成された銅配線15を覆う層間絶縁層17にビアホール18を形成し、次いで、少なくともビアホール18の底面18a及び層間絶縁層17の上面17aに指向性の強いスパッタチャンバー内でチタン膜21を形成し、次いで、チタン膜21上に指向性の強いスパッタチャンバー内で第1窒化チタン膜22を形成し、次いで、第1窒化チタン膜22上に指向性の弱いスパッタチャンバー内で第2窒化チタン膜24を形成し、その後、チタン膜21、第1窒化チタン膜22、及び第2窒化チタン膜24を介して、ビアホール18を埋め込むタングステン膜27を形成して、ビアホール18内にチタン膜21、第1窒化チタン膜22、第2窒化チタン膜24、及びタングステン膜27よりなるプラグ31を形成することで、チタン膜21、第1窒化チタン膜22、及び第2窒化チタン膜24の形成に加熱処理を行うことなく、エレクトロマイグレーション(EM)耐性を確保した上で、タングステン膜27の成膜に起因するボルケーノの発生を抑制可能となる。   According to the method of manufacturing a semiconductor device of the present embodiment, via holes 18 are formed in the interlayer insulating layer 17 covering the copper wiring 15 formed in the base insulating film 12, and then at least the bottom surface 18a of the via hole 18 and the interlayer insulating layer. The titanium film 21 is formed on the upper surface 17a of the substrate 17 in a highly directional sputtering chamber, and then the first titanium nitride film 22 is formed on the titanium film 21 in the directional sputtering chamber. A second titanium nitride film 24 is formed on the titanium film 22 in a sputtering chamber with low directivity, and then the via hole 18 is formed via the titanium film 21, the first titanium nitride film 22, and the second titanium nitride film 24. A buried tungsten film 27 is formed, and a titanium film 21, a first titanium nitride film 22, a second titanium nitride film 24, and tungsten are formed in the via hole 18. By forming the plug 31 made of 27, the electromigration (EM) resistance is ensured without performing heat treatment for the formation of the titanium film 21, the first titanium nitride film 22, and the second titanium nitride film 24. Further, it is possible to suppress the generation of volcano caused by the formation of the tungsten film 27.

これにより、ビアホール18内をタングステン膜27で良好に埋め込むことができると共に、銅配線15とプラグ31との間の接触抵抗の半導体基板11面内のばらつきを小さくでき、かつ良好な接触抵抗を得ることができる。   As a result, the inside of the via hole 18 can be satisfactorily filled with the tungsten film 27, variation in the contact resistance between the copper wiring 15 and the plug 31 can be reduced in the semiconductor substrate 11, and a good contact resistance can be obtained. be able to.

なお、本発明においては、先に指向性の強い条件で第1窒化チタン膜22を形成し、その後、指向性の弱い条件で第2窒化チタン膜24を形成することが非常に重要である。   In the present invention, it is very important to first form the first titanium nitride film 22 under conditions with high directivity, and then form the second titanium nitride film 24 under conditions with low directivity.

ところで、指向性の弱い条件を用いて第1の窒化チタン膜を形成すると、ビアホール18の上端近傍で第1の窒化チタン膜によりオーバーハング形状が形成されてしまう。
このように、オーバーハング形状とされた第1の窒化チタン膜を形成後に、指向性の強い条件で第2の窒化チタン膜を成膜すると、ビアホール18の底面18aのパターン端部でのカバレージが悪くなり、膜はがれを誘発してしまう。
By the way, when the first titanium nitride film is formed using conditions with low directivity, an overhang shape is formed by the first titanium nitride film in the vicinity of the upper end of the via hole 18.
As described above, when the second titanium nitride film is formed under a highly directional condition after the first titanium nitride film having an overhang shape is formed, the coverage at the pattern end of the bottom surface 18a of the via hole 18 is reduced. It worsens and triggers film peeling.

したがって、半導体基板11面内のばらつきが少なく、かつ良好なプラグ31の抵抗値を得るためには、先に指向性の強い条件で第1窒化チタン膜22を形成し、その後、指向性の弱い条件で第2窒化チタン膜24を形成することが非常に重要である。   Therefore, in order to obtain a favorable resistance value of the plug 31 with little variation in the surface of the semiconductor substrate 11, the first titanium nitride film 22 is first formed under the condition of strong directivity, and then the directivity is weak. It is very important to form the second titanium nitride film 24 under conditions.

なお、本実施の形態では、プラグ31の下端が接続される配線の一例として、銅配線15を例に挙げて説明したが、銅配線15に替えてアルミニウム配線(図示せず)を形成し、次いで、アルミニウム配線を覆う層間絶縁層17を形成後、フォトリソグラフィ技術及びドライエッチング技術によりアルミニウム配線の一部を露出するビアホール18を形成(開口)し、その後、図2〜図5に示す工程を順次行うことで、アルミニウム配線上にプラグ31を形成してもよい。   In the present embodiment, the copper wiring 15 has been described as an example of the wiring to which the lower end of the plug 31 is connected. However, an aluminum wiring (not shown) is formed instead of the copper wiring 15, Next, after forming an interlayer insulating layer 17 covering the aluminum wiring, a via hole 18 exposing a part of the aluminum wiring is formed (opened) by photolithography technique and dry etching technique, and then the steps shown in FIGS. The plug 31 may be formed on the aluminum wiring by performing sequentially.

この場合、特許文献1,2では必要であった加熱処理を行うことなく、タングステン膜27の膜はがれやWFと反応してボルケーノが生じることを抑制可能となる。
これにより、ビアホール18内をタングステン膜27で良好に埋め込むことができると共に、アルミニウム配線とプラグ31との間の接触抵抗の半導体基板11面内のばらつきを小さくでき、かつ良好な接触抵抗を得ることができる。
In this case, it is possible to prevent volcano from reacting with the peeling or WF 6 of the tungsten film 27 without performing the heat treatment required in Patent Documents 1 and 2.
Thereby, the inside of the via hole 18 can be satisfactorily filled with the tungsten film 27, the variation in the contact resistance between the aluminum wiring and the plug 31 can be reduced in the surface of the semiconductor substrate 11, and a good contact resistance can be obtained. Can do.

また、図示していないシリコン上(具体的には、ドープドポリシリコン膜上やイオン注入方により単結晶シリコン基板に形成された不純物拡散領域上)に、本実施の形態のプラグ31の形成方法と同様な手法により、プラグ31を形成してもよい。   Also, the method for forming plug 31 of the present embodiment on silicon (not shown) (specifically, on a doped polysilicon film or an impurity diffusion region formed in a single crystal silicon substrate by ion implantation) The plug 31 may be formed by the same method as described above.

この場合、特許文献1,2では必要であった加熱処理を行うことなく、タングステン膜27の膜はがれやWFと反応してボルケーノが生じることを抑制可能となる。
これにより、ビアホール18内をタングステン膜27で良好に埋め込むことができると共に、シリコンとプラグ31との間の接触抵抗の半導体基板11面内のばらつきを小さくでき、かつ良好な接触抵抗を得ることができる。
In this case, it is possible to prevent volcano from reacting with the peeling or WF 6 of the tungsten film 27 without performing the heat treatment required in Patent Documents 1 and 2.
Thereby, the inside of the via hole 18 can be satisfactorily filled with the tungsten film 27, the variation in the contact resistance between the silicon and the plug 31 in the surface of the semiconductor substrate 11 can be reduced, and a good contact resistance can be obtained. it can.

以上、本発明の好ましい実施の形態について詳述したが、本発明はかかる特定の実施の形態に限定されるものではなく、特許請求の範囲内に記載された本発明の要旨の範囲内において、種々の変形・変更が可能である。   The preferred embodiments of the present invention have been described in detail above, but the present invention is not limited to such specific embodiments, and within the scope of the present invention described in the claims, Various modifications and changes are possible.

例えば、本実施の形態では、銅配線15と接触する金属膜としてチタン膜21を例に挙げて説明したが、チタン膜21の替わりに、指向性の強いスパッタチャンバー内で、Ta膜、W膜、Ru膜、Co膜、Mo膜、Zr膜、V膜、Nb膜、Cr膜、Sn膜のうち、少なくとも1種よりなる膜を形成してもよい。この場合、本実施の形態と同様な効果を得ることができる。また、バリア層25は、窒化物、酸化物、ホウ化物、炭化物を含有してもよい。   For example, in the present embodiment, the titanium film 21 is described as an example of the metal film in contact with the copper wiring 15, but instead of the titanium film 21, a Ta film and a W film are used in a highly directional sputtering chamber. A film made of at least one of Ru film, Co film, Mo film, Zr film, V film, Nb film, Cr film, and Sn film may be formed. In this case, the same effect as this embodiment can be obtained. The barrier layer 25 may contain nitride, oxide, boride, and carbide.

本発明は、半導体装置の製造方法に適用可能である。   The present invention is applicable to a method for manufacturing a semiconductor device.

10…半導体装置、11…半導体基板、11a…主面、12…下地絶縁膜、12a,15a,17a,27a…上面、15…銅配線、17…層間絶縁層、17b…側面、17c…肩の部分、18…ビアホール、18a…底面、18b…側壁面、21…チタン膜、22…第1窒化チタン膜、24…第2窒化チタン膜、25…バリア層、27…タングステン膜、31…プラグ   DESCRIPTION OF SYMBOLS 10 ... Semiconductor device, 11 ... Semiconductor substrate, 11a ... Main surface, 12 ... Base insulating film, 12a, 15a, 17a, 27a ... Upper surface, 15 ... Copper wiring, 17 ... Interlayer insulating layer, 17b ... Side surface, 17c ... Shoulder Portion 18, via hole 18 a bottom surface 18 b side wall surface 21 titanium film 22 first titanium nitride film 24 second titanium nitride film 25 barrier layer 27 tungsten film 31 plug

Claims (6)

配線を覆う層間絶縁層にビアホールを形成し、該ビアホールにバリア層を介してプラグを形成する半導体装置の製造方法であって、
前記バリア層を、第1の窒化チタン膜と、該第1の窒化チタン膜上に第2の窒化チタン膜と、順次積層させることで形成し、
前記第2の窒化チタン膜は、前記第1の窒化チタン膜を形成する時よりも弱い指向性で形成することを特徴とする半導体装置の製造方法。
A method of manufacturing a semiconductor device, wherein a via hole is formed in an interlayer insulating layer covering a wiring, and a plug is formed in the via hole via a barrier layer,
The barrier layer is formed by sequentially laminating a first titanium nitride film and a second titanium nitride film on the first titanium nitride film,
The method of manufacturing a semiconductor device, wherein the second titanium nitride film is formed with a weaker directivity than when the first titanium nitride film is formed.
配線を覆う層間絶縁層にビアホールを形成して該配線の一部を露出する工程と、
前記配線の一部を実質的に完全に覆う部分を少なくとも有するチタン膜を形成する工程と、
前記チタン膜の前記部分上から、前記ビアホールを区画する前記層間絶縁層の側面を経由して前記層間絶縁層の表面に延在する第1窒化チタン膜を形成する工程と、
前記層間絶縁層の前記側面から前記表面に至る肩の部分に対応する前記第1窒化チタン膜の部分を当該部分よりも厚い厚さを持って少なくとも覆う第2窒化チタン膜を形成する工程と、
前記チタン膜ならびに前記第1及び第2窒化チタン膜を介して前記ビアホールを導電体で埋める工程と、
を有することを特徴とする半導体装置の製造方法。
Forming a via hole in an interlayer insulating layer covering the wiring to expose a part of the wiring;
Forming a titanium film having at least a portion that substantially completely covers a part of the wiring;
Forming a first titanium nitride film extending from the portion of the titanium film to the surface of the interlayer insulating layer via a side surface of the interlayer insulating layer defining the via hole;
Forming a second titanium nitride film covering at least a portion of the first titanium nitride film corresponding to a shoulder portion from the side surface to the surface of the interlayer insulating layer with a thickness greater than that portion;
Filling the via hole with a conductor via the titanium film and the first and second titanium nitride films;
A method for manufacturing a semiconductor device, comprising:
半導体基板上の銅配線を覆う層間絶縁層にビアホールを開口する工程と、
少なくとも前記ビアホールの底面および前記層間絶縁層の表面に指向性の強いスパッタチャンバー内でチタン膜を形成する工程と、
チタン膜上に前記指向性の強いスパッタチャンバー内で第1窒化チタン膜を形成する工程と、
前記第1窒化チタン膜上に指向性の弱いスパッタチャンバー内で第2窒化チタン膜を形成する工程と、
前記第2窒化チタン膜上にタングステン膜を形成する工程と、
を有することを特徴とする半導体装置の製造方法。
Opening a via hole in an interlayer insulating layer covering the copper wiring on the semiconductor substrate;
Forming a titanium film in a highly directional sputtering chamber at least on the bottom surface of the via hole and the surface of the interlayer insulating layer;
Forming a first titanium nitride film on the titanium film in the highly directional sputtering chamber;
Forming a second titanium nitride film on the first titanium nitride film in a low directivity sputtering chamber;
Forming a tungsten film on the second titanium nitride film;
A method for manufacturing a semiconductor device, comprising:
前記指向性の強いスパッタチャンバーにおけるターゲットと前記半導体基板の距離は、前記指向性の弱いスパッタチャンバーにおけるターゲットと前記半導体基板の距離よりも遠いことを特徴とする請求項3に記載の半導体装置の製造方法。   4. The manufacturing method of a semiconductor device according to claim 3, wherein a distance between the target in the sputtering chamber with high directivity and the semiconductor substrate is longer than a distance between the target in the sputtering chamber with low directivity and the semiconductor substrate. Method. 前記チタン膜を100ワット乃至400ワットの基板バイアスを印加して形成し、前記第1窒化チタン膜を400ワット乃至1000ワットの基板バイアスを印加して形成することを特徴とする請求項3または4に記載の半導体装置の製造方法。   5. The titanium film is formed by applying a substrate bias of 100 watts to 400 watts, and the first titanium nitride film is formed by applying a substrate bias of 400 watts to 1000 watts. The manufacturing method of the semiconductor device as described in any one of Claims 1-3. 前記チタン膜を前記銅配線の表面上で2nm乃至7.5nmの膜厚で形成し、前記第1窒化チタン膜を前記チタン膜上で15nm乃至30nmの膜厚で形成し、前記第2窒化チタン膜を前記ビアホール以外の領域で10nm乃至40nmの膜厚で形成することを特徴とする請求項3ないし5のうち、いずれか1項に記載の半導体装置の製造方法。   The titanium film is formed with a thickness of 2 nm to 7.5 nm on the surface of the copper wiring, the first titanium nitride film is formed with a thickness of 15 nm to 30 nm on the titanium film, and the second titanium nitride is formed. 6. The method of manufacturing a semiconductor device according to claim 3, wherein the film is formed with a film thickness of 10 nm to 40 nm in a region other than the via hole.
JP2011277346A 2011-12-19 2011-12-19 Semiconductor device manufacturing method Withdrawn JP2013128062A (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
JP2011277346A JP2013128062A (en) 2011-12-19 2011-12-19 Semiconductor device manufacturing method
US13/669,670 US9076793B2 (en) 2011-12-19 2012-11-06 Semiconductor device and manufacturing method thereof

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2011277346A JP2013128062A (en) 2011-12-19 2011-12-19 Semiconductor device manufacturing method

Publications (1)

Publication Number Publication Date
JP2013128062A true JP2013128062A (en) 2013-06-27

Family

ID=48609291

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2011277346A Withdrawn JP2013128062A (en) 2011-12-19 2011-12-19 Semiconductor device manufacturing method

Country Status (2)

Country Link
US (1) US9076793B2 (en)
JP (1) JP2013128062A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN106133878A (en) * 2014-04-11 2016-11-16 应用材料公司 Forming method for the organometallic tungsten that circuit stage casing (MOL) applies

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP6277693B2 (en) * 2013-11-29 2018-02-14 三菱電機株式会社 Semiconductor device
JP2022143319A (en) * 2021-03-17 2022-10-03 キオクシア株式会社 Semiconductor device and method for manufacturing the same

Family Cites Families (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5391517A (en) * 1993-09-13 1995-02-21 Motorola Inc. Process for forming copper interconnect structure
JP3399798B2 (en) 1997-09-04 2003-04-21 富士通株式会社 Method for manufacturing semiconductor device
US6091148A (en) * 1997-09-10 2000-07-18 Micron Technology Inc Electrical connection for a semiconductor structure
JP4165977B2 (en) 1999-12-09 2008-10-15 三洋電機株式会社 Semiconductor device and manufacturing method thereof
US6569751B1 (en) * 2000-07-17 2003-05-27 Lsi Logic Corporation Low via resistance system
US6362012B1 (en) * 2001-03-05 2002-03-26 Taiwan Semiconductor Manufacturing Company Structure of merged vertical capacitor inside spiral conductor for RF and mixed-signal applications
US7170174B2 (en) * 2004-08-24 2007-01-30 Micron Technology, Inc. Contact structure and contact liner process
US7407875B2 (en) * 2006-09-06 2008-08-05 International Business Machines Corporation Low resistance contact structure and fabrication thereof
US7713866B2 (en) * 2006-11-21 2010-05-11 Infineon Technologies Ag Semiconductor devices and methods of manufacture thereof

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN106133878A (en) * 2014-04-11 2016-11-16 应用材料公司 Forming method for the organometallic tungsten that circuit stage casing (MOL) applies

Also Published As

Publication number Publication date
US9076793B2 (en) 2015-07-07
US20130154096A1 (en) 2013-06-20

Similar Documents

Publication Publication Date Title
US5893752A (en) Process for forming a semiconductor device
US7858519B2 (en) Integrated circuit and manufacturing method of copper germanide and copper silicide as copper capping layer
US5918149A (en) Deposition of a conductor in a via hole or trench
US7470612B2 (en) Method of forming metal wiring layer of semiconductor device
TWI374482B (en)
TWI302016B (en) Method for fabricating low resistivity barrier for copper interconnect
TW200952119A (en) Semiconductor device and method of manufacturing same
JP5481989B2 (en) Manufacturing method of semiconductor device
JP2002025944A (en) Manufacture of semiconductor element
US10373867B2 (en) Cobalt contact and interconnect structures
TW518709B (en) Barrier layer for copper metallization in integrated circuit fabrication
JP2010199349A (en) Method for fabricating semiconductor device
JP2013128062A (en) Semiconductor device manufacturing method
US7531902B2 (en) Multi-layered metal line of semiconductor device having excellent diffusion barrier and method for forming the same
JP2005005383A (en) Semiconductor device and method of manufacturing the same
JP2012028696A (en) Semiconductor device manufacturing method
US20080157375A1 (en) Semiconductor device having a metal interconnection and method of fabricating the same
JP4084201B2 (en) Aluminum metal wiring formation method
US20050250321A1 (en) Method for fabricating semiconductor device having diffusion barrier layer
KR100784099B1 (en) Method for forming wiring in semiconductor device
JP3890722B2 (en) Copper wiring of semiconductor devices
US20070037378A1 (en) Method for forming metal pad in semiconductor device
JP5428151B2 (en) Manufacturing method of semiconductor device
JP4457884B2 (en) Semiconductor device
JP2007067360A (en) Metal wiring of semiconductor element and its manufacturing method

Legal Events

Date Code Title Description
A711 Notification of change in applicant

Free format text: JAPANESE INTERMEDIATE CODE: A711

Effective date: 20130731

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A821

Effective date: 20130801

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20130905

RD02 Notification of acceptance of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7422

Effective date: 20131108

RD04 Notification of resignation of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7424

Effective date: 20131219

A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20141208

A761 Written withdrawal of application

Free format text: JAPANESE INTERMEDIATE CODE: A761

Effective date: 20150105