JP2013128009A - Nitride semiconductor device manufacturing method - Google Patents

Nitride semiconductor device manufacturing method Download PDF

Info

Publication number
JP2013128009A
JP2013128009A JP2011276206A JP2011276206A JP2013128009A JP 2013128009 A JP2013128009 A JP 2013128009A JP 2011276206 A JP2011276206 A JP 2011276206A JP 2011276206 A JP2011276206 A JP 2011276206A JP 2013128009 A JP2013128009 A JP 2013128009A
Authority
JP
Japan
Prior art keywords
layer
type
atmosphere
nitride semiconductor
gan
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2011276206A
Other languages
Japanese (ja)
Other versions
JP5977513B2 (en
Inventor
Akira Iwayama
章 岩山
Yasuyuki Shibata
康之 柴田
Ryosuke Kawai
良介 河合
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Stanley Electric Co Ltd
Original Assignee
Stanley Electric Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Stanley Electric Co Ltd filed Critical Stanley Electric Co Ltd
Priority to JP2011276206A priority Critical patent/JP5977513B2/en
Publication of JP2013128009A publication Critical patent/JP2013128009A/en
Application granted granted Critical
Publication of JP5977513B2 publication Critical patent/JP5977513B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Semiconductor Lasers (AREA)
  • Led Devices (AREA)

Abstract

PROBLEM TO BE SOLVED: To provide a manufacturing method of a nitride semiconductor device including a p-type GaN-based nitride semiconductor layer having low resistance in a bulk region and low resistance in a surface.SOLUTION: A nitride semiconductor device manufacturing method comprises: (a) a step of annealing a semiconductor substrate having a p-type GaN-based nitride semiconductor layer doped with a p-type impurity in an oxygen-containing atmosphere to activate the p-type impurity; and (b) a step of irradiating a surface of the p-type GaN-based nitride semiconductor layer with ultraviolet in an atmosphere not containing oxygen to increase a surface carrier concentration.

Description

本発明の実施例は、窒化物半導体装置の製造方法に関する。   Embodiments described herein relate generally to a method for manufacturing a nitride semiconductor device.

GaN系の窒化物半導体は、広いバンドギャップを有し、紫外光、青色光を発光できる特性を有する。III族元素として、Al,Inを添加することによってバンドギャップを調整することができる。AlGaInNをGaN系窒化物半導体ないし窒化物半導体と呼ぶ。   A GaN-based nitride semiconductor has a wide band gap and has characteristics of emitting ultraviolet light and blue light. The band gap can be adjusted by adding Al or In as a group III element. AlGaInN is called a GaN-based nitride semiconductor or nitride semiconductor.

例えば、サファイア基板上にn型層、発光層、p型層の窒化物半導体層を成長し、例えば、p型層と発光層の一部をエッチングしてn型層を露出し、p型層、n型層表面に電極を形成して、GaN系窒化物半導体発光装置を作成することができる。   For example, an n-type layer, a light-emitting layer, and a p-type nitride semiconductor layer are grown on a sapphire substrate. For example, the p-type layer and a part of the light-emitting layer are etched to expose the n-type layer. By forming an electrode on the surface of the n-type layer, a GaN-based nitride semiconductor light emitting device can be produced.

サファイア基板上に窒化物半導体層を成長した後、p型層表面に電極を形成し、その上にSi等の熱伝導性のよい支持基板を結合した後、サファイア基板側からKrF等のエキシマレーザを照射してサファイア基板を除去するレーザリフトオフも行なわれる。Si支持基板は、例えば共晶によりp側電極に接合する。   After growing a nitride semiconductor layer on the sapphire substrate, an electrode is formed on the surface of the p-type layer, and a support substrate having good thermal conductivity such as Si is bonded thereon, and then an excimer laser such as KrF is applied from the sapphire substrate side. Is also performed to remove the sapphire substrate. The Si support substrate is bonded to the p-side electrode by eutectic, for example.

窒化物半導体は、不純物をドープしなくてもn型になる性質がある。n型不純物としてはSiがよく用いられる。窒化物半導体のp型不純物としては、Mg、Zn等がよく知られている。しかし、Mg等のp型不純物は、ドープしたままでは、活性化度が低く、高抵抗の状態となる。   Nitride semiconductors have the property of becoming n-type without being doped with impurities. Si is often used as an n-type impurity. Mg, Zn and the like are well known as p-type impurities in nitride semiconductors. However, a p-type impurity such as Mg has a low degree of activation and a high resistance state as it is doped.

p型不純物を活性化するために、電子線を照射する方法が知られている(例えば特許文献1)。しかし電子線は結晶表面で走査する必要があり、かつ表面近傍にしか効果が及ばない。   In order to activate p-type impurities, a method of irradiating an electron beam is known (for example, Patent Document 1). However, the electron beam needs to be scanned on the crystal surface and is effective only in the vicinity of the surface.

p型不純物の活性化のために、アニールする方法が種々提案されている。例えば、特開平05−183189号は、p型不純物MgをドープしたGaN層を、窒素雰囲気中、400度以上の温度でアニールすることによって、抵抗率を減少できることを開示する。好ましくは、GaNからNが抜けるのを抑制するため、Nを加圧するか、キャップ層を形成し、低抵抗を実現するため、アニール温度は700℃以上とすることを、記載する。 Various methods of annealing have been proposed for activating p-type impurities. For example, Japanese Patent Laid-Open No. 05-183189 discloses that the resistivity can be reduced by annealing a GaN layer doped with p-type impurity Mg in a nitrogen atmosphere at a temperature of 400 ° C. or higher. Preferably, in order to suppress the GaN of N escapes, or pressurize the N 2, to form a cap layer, in order to achieve low resistance, annealing temperature to be 700 ° C. or higher, it is described.

特開2002−57161号は、Mgが添加されたGaN層を大気雰囲気中、200℃〜400℃で100分以上アニールすると、Mgが活性化され、電気抵抗率の低下を図ることができると開示する。雰囲気を酸素雰囲気、酸素ー水素雰囲気、酸素ー水蒸気雰囲気、酸素ー水素ー水蒸気雰囲気、不活性ガス雰囲気などに変更しても、同様の傾向が見られたと記載する。   Japanese Patent Laid-Open No. 2002-57161 discloses that annealing a GaN layer to which Mg is added at 200 ° C. to 400 ° C. for 100 minutes or more in the air atmosphere activates Mg and can lower the electrical resistivity. To do. It is described that the same tendency was observed even when the atmosphere was changed to an oxygen atmosphere, an oxygen-hydrogen atmosphere, an oxygen-water vapor atmosphere, an oxygen-hydrogen-water vapor atmosphere, an inert gas atmosphere, or the like.

アニールと共に、紫外線照射をすることにより、GaN中のp型不純物(Mg)を活性化する提案もされている(例えば、特許文献4〜7)。特開平07−97300号は、N雰囲気中、抵抗加熱でMgドープGaNを650℃に加熱し、Hgランプから波長200nm〜350nmの紫外線を照射することにより、キャリア濃度が4倍になることを記載する。特開平11−126758号は、N雰囲気中、MgドープGaNを300℃〜1000℃に加熱し、Hg−Xeランプからバンドギャップ以上のエネルギの紫外線を照射することを開示する。特開平11−238692号は、水素を含まない雰囲気中でMgドープGaNを200℃以上、好ましくは400℃以上に加熱し、バンドギャップエネルギ以上の紫外線を照射することを開示する。特開2000−31084号は、N雰囲気ないし大気中で熱処理し、バンドギャップエネルギ以上の紫外線を照射することを開示する。N雰囲気中であれば抵抗型の直線的特性が取れるが、大気中の場合直線的特性が取れないと開示する。 There has also been a proposal of activating p-type impurities (Mg) in GaN by irradiating ultraviolet rays together with annealing (for example, Patent Documents 4 to 7). Japanese Patent Application Laid-Open No. 07-97300 states that the carrier concentration is quadrupled by heating the Mg-doped GaN to 650 ° C. by resistance heating in an N 2 atmosphere and irradiating ultraviolet rays having a wavelength of 200 nm to 350 nm from the Hg lamp. Describe. Japanese Patent Application Laid-Open No. 11-126758 discloses that Mg-doped GaN is heated to 300 ° C. to 1000 ° C. in an N 2 atmosphere and irradiated with ultraviolet rays having energy higher than the band gap from an Hg—Xe lamp. Japanese Patent Laid-Open No. 11-238692 discloses that Mg-doped GaN is heated to 200 ° C. or higher, preferably 400 ° C. or higher, and irradiated with ultraviolet rays having a band gap energy or higher in an atmosphere not containing hydrogen. Japanese Patent Application Laid-Open No. 2000-31084 discloses that heat treatment is performed in an N 2 atmosphere or air, and ultraviolet rays having a band gap energy or more are irradiated. It is disclosed that resistance type linear characteristics can be obtained in the N 2 atmosphere, but linear characteristics cannot be obtained in the atmosphere.

特開平03−218625号公報Japanese Patent Laid-Open No. 03-218625 特開平05−183189号公報Japanese Patent Laid-Open No. 05-183189 特開2002−57161号公報JP 2002-57161 A 特開平07−97300号公報Japanese Patent Application Laid-Open No. 07-97300 特開平11−126758号公報JP 11-126758 A 特開平11−238692号公報JP-A-11-238692 特開2000−31084号公報JP 2000-31084 A

実施例の一目的は、バルク領域の抵抗が低く、表面の抵抗も低いp型GaN系窒化物半導体層を含む窒化物半導体装置を製造する方法を提供することである。   An object of the embodiment is to provide a method of manufacturing a nitride semiconductor device including a p-type GaN-based nitride semiconductor layer having a low bulk region resistance and a low surface resistance.

実施例の1形態によれば、(a)p型不純物をドープしたp型GaN系窒化物半導体層を有する半導体基板を、酸素を含む雰囲気中でアニールしてp型不純物を活性化する工程と、(b)酸素を含まない雰囲気中で、p型GaN系窒化物半導体層表面に紫外線を照射し、表面キャリア濃度を増大させる工程と、を含み、工程(b)は、工程(a)の後に行い、工程(a)による影響を回復する窒化物半導体装置の製造方法が提供される。   According to one mode of the embodiment, (a) activating a p-type impurity by annealing a semiconductor substrate having a p-type GaN-based nitride semiconductor layer doped with a p-type impurity in an atmosphere containing oxygen; (B) irradiating the surface of the p-type GaN-based nitride semiconductor layer with ultraviolet light in an oxygen-free atmosphere to increase the surface carrier concentration, and the step (b) includes the step (a) A method of manufacturing a nitride semiconductor device that is performed later and recovers the influence of the step (a) is provided.

図1A,1Ba,1Bbは予備実験の工程を示す断面図、図1Ca,1Cbは得られたGaN系窒化物半導体のp型層のキャリア濃度を深さの関数として示すグラフである。1A, 1Ba, and 1Bb are cross-sectional views showing a preliminary experiment process, and FIGS. 1Ca and 1Cb are graphs showing the carrier concentration of the p-type layer of the obtained GaN-based nitride semiconductor as a function of depth. と、When, 図2A,2B,2Cは実験の工程を示す断面図、図2Dは大気中アニールした時に得られたp型層のキャリア濃度を深さの関数として示すグラフ,2Ea,2Eb,2Ecは更に紫外線照射を行なった時に得られたp型層のキャリア濃度を深さの関数として示すグラフである。2A, 2B, and 2C are cross-sectional views showing the process of the experiment, FIG. 2D is a graph showing the carrier concentration of the p-type layer obtained as a result of annealing in the atmosphere, and 2Ea, 2Eb, and 2Ec are further irradiated with ultraviolet rays. 5 is a graph showing the carrier concentration of the p-type layer obtained as a function of depth. と、When, 図3A−3Fは、実施例によるp型GaN系窒化物半導体層を含む半導体発光装置を製造する方法の主要工程を示す断面図である。3A to 3F are cross-sectional views illustrating main processes of a method for manufacturing a semiconductor light emitting device including a p-type GaN-based nitride semiconductor layer according to an embodiment. 図4A,4Bは、p型GaN系窒化物半導体層を含むレーザの実施例を示す断面図である。4A and 4B are cross-sectional views showing an embodiment of a laser including a p-type GaN-based nitride semiconductor layer.

特開平05−183189号は、GaNからNが脱離するのを抑制し、低抵抗p型領域を実現するためには、p型不純物をドープしたGaNを加圧窒素雰囲気中、700℃以上でアニールすることが好ましいと教示する。特開2002−57161号は、p型不純物をドープしたGaNを大気雰囲気中、200℃〜400℃で100分以上アニールすると抵抗率の低下を図ることができると教示し、さらに雰囲気を酸素、不活性ガス等に変更しても同様の傾向が得られると教示する。これらの教示は、アニール時の雰囲気は窒素雰囲気が好ましいか、アニール時の雰囲気は結果に影響しないことを教示する。本発明者らは、アニール時の雰囲気の影響を調べるために予備実験を行なった。   Japanese Patent Laid-Open No. 05-183189 discloses that in order to suppress the desorption of N from GaN and realize a low resistance p-type region, GaN doped with a p-type impurity is heated at 700 ° C. or higher in a pressurized nitrogen atmosphere. It is taught that it is preferable to anneal. Japanese Patent Laid-Open No. 2002-57161 teaches that the resistivity can be reduced by annealing GaN doped with p-type impurities at 200 ° C. to 400 ° C. for 100 minutes or more in the air atmosphere. It is taught that the same tendency can be obtained even if the active gas is changed. These teachings teach that the atmosphere during annealing is preferably a nitrogen atmosphere or that the atmosphere during annealing does not affect the results. The present inventors conducted a preliminary experiment in order to investigate the influence of the atmosphere during annealing.

図1A−1Cbは、予備実験を説明するための断面図、および得られた結果を示すグラフである。   1A to 1Cb are a cross-sectional view for explaining a preliminary experiment and a graph showing the obtained results.

図1Aは作成したサンプルの構成を示す断面図である。サファイア基板51の上に、有機金属気相成長法(MOCVD)により、ノンドープGaN層等の下地層52を成長し、その上にMgをドープしたp型GaN層53、高濃度にMgをドープしたp型GaN層54を成長したサンプル50を作成した。p型GaN層54を厚く成長すると、結晶性が低下するので、p型GaN層53の表面に薄くp型GaN層54を成長している。p型GaN層53とp型GaN層54を合わせて、p型層と呼ぶことがある。成長したまま(アズグロウン)のp型領域は高抵抗状態である。GaN系窒化物半導体層を成長したサファイア基板を半導体基板と呼ぶことがある。 FIG. 1A is a cross-sectional view showing the configuration of a sample that was created. A base layer 52 such as a non-doped GaN layer is grown on the sapphire substrate 51 by metal organic chemical vapor deposition (MOCVD), and a p-type GaN layer 53 doped with Mg is doped thereon, and Mg is doped at a high concentration. A sample 50 on which a p + -type GaN layer 54 was grown was prepared. When the p + -type GaN layer 54 is grown thickly, the crystallinity is lowered. Therefore, the p + -type GaN layer 54 is grown thinly on the surface of the p-type GaN layer 53. The p-type GaN layer 53 and the p + -type GaN layer 54 may be collectively referred to as a p-type layer. The as-grown p-type region is in a high resistance state. A sapphire substrate on which a GaN-based nitride semiconductor layer is grown may be referred to as a semiconductor substrate.

図1Baは、窒素雰囲気中のアニール工程を示す。アニール装置中にサンプル50を配置し、窒素雰囲気として、700℃、15分間のアニールを行った。   FIG. 1Ba shows an annealing process in a nitrogen atmosphere. Sample 50 was placed in an annealing apparatus, and annealing was performed at 700 ° C. for 15 minutes in a nitrogen atmosphere.

図1Bbは、大気雰囲気中のアニール工程を示す。アニール装置中にサンプル50を配置し、大気雰囲気として、700℃、15分間のアニールを行った。   FIG. 1Bb shows an annealing process in an air atmosphere. Sample 50 was placed in an annealing apparatus, and annealing was performed at 700 ° C. for 15 minutes as an air atmosphere.

各サンプルに対して、液体を接触させ、CV測定からキャリア濃度を算出した。結晶を削りながら測定をすることにより、キャリア濃度の深さ方向分布を測定した。   The liquid was brought into contact with each sample, and the carrier concentration was calculated from the CV measurement. The distribution in the depth direction of the carrier concentration was measured by measuring while cutting the crystal.

図1Caは、窒素雰囲気中のアニールを行なったサンプルのキャリア濃度を深さの関数として示すグラフである。図1Cbは、大気雰囲気中のアニールを行なったサンプルのキャリア濃度を深さの関数として示すグラフである。表面のキャリア濃度が高い領域がp型GaN層54に相当し、それより内部のほぼ一定のキャリア濃度を有する領域がp型GaN層53に相当するであろう。 FIG. 1Ca is a graph showing the carrier concentration of a sample annealed in a nitrogen atmosphere as a function of depth. FIG. 1Cb is a graph showing the carrier concentration of a sample annealed in air as a function of depth. A region having a high carrier concentration on the surface will correspond to the p + -type GaN layer 54, and a region having a substantially constant carrier concentration inside will correspond to the p-type GaN layer 53.

図1Ca,1Cbを比較すると、p型GaN層53に相当すると考えられるバルク中のキャリア濃度は大気雰囲気中のアニールを行なったサンプルの方が高いことが明らかである。大気雰囲気が窒素雰囲気と異なる点は、第1に酸素を含むことであろう。酸素を含む大気雰囲気でキャリア濃度が高くなったことは、酸素を含む雰囲気中のアニールでキャリア濃度を向上できることを示唆する。すなわち、酸素を含む雰囲気中でアニールすることによりキャリア濃度を向上できるであろう。   Comparing FIGS. 1Ca and 1Cb, it is clear that the carrier concentration in the bulk considered to correspond to the p-type GaN layer 53 is higher in the sample annealed in the air atmosphere. The difference between the atmospheric atmosphere and the nitrogen atmosphere is that it first contains oxygen. The increase in the carrier concentration in the atmosphere containing oxygen suggests that the carrier concentration can be improved by annealing in an atmosphere containing oxygen. That is, the carrier concentration can be improved by annealing in an atmosphere containing oxygen.

しかしながら、大気雰囲気中のアニールを行なったサンプルのp型層表面(p型GaN層54)のキャリア濃度は、1.15×1020cm−3と、窒素雰囲気中のアニールを行なったサンプルのp型層表面(p型GaN層54)のキャリア濃度1.51×1020cm−3より低いことも判った。 However, the carrier concentration on the p-type layer surface (p + -type GaN layer 54) of the sample annealed in the air atmosphere is 1.15 × 10 20 cm −3 , which is the sample annealed in the nitrogen atmosphere. It was also found that the carrier concentration of the p-type layer surface (p + -type GaN layer 54) was lower than 1.51 × 10 20 cm −3 .

大気雰囲気中の酸素がバルク内ではキャリア濃度を向上させ、表面ではキャリア濃度を低下させていると考えられる。どのような現象が生じているのかは究明していないが、表面では何らかの化学的変化が生じている可能性がある。そこで、本発明者らは、大気中アニールがp型層表面に与えた影響を回復することを考えた。大気中でアニールを行なった後、表面に高エネルギの紫外線(UV)を照射する実験を行なった。   It is considered that oxygen in the air atmosphere improves the carrier concentration in the bulk and decreases the carrier concentration on the surface. It has not been investigated what kind of phenomenon occurs, but some chemical change may occur on the surface. Therefore, the present inventors considered to recover the influence of atmospheric annealing on the p-type layer surface. After annealing in the atmosphere, an experiment was conducted in which the surface was irradiated with high-energy ultraviolet (UV) light.

図2Aは、作成したサンプルの構成を示す断面図である。基本的に図1Aに示すサンプルと同じ構成である。サファイア基板11の上に、有機金属気相成長法(MOCVD)により、ノンドープGaN層等の下地層12を成長し、その上にMgをドープしたp型GaN層13、高濃度にMgをドープしたp型GaN層14を成長したサンプル10を作成した。成長したまま(アズグロウン)のp型領域は高抵抗状態である。 FIG. 2A is a cross-sectional view showing the configuration of the created sample. The configuration is basically the same as the sample shown in FIG. 1A. A base layer 12 such as a non-doped GaN layer is grown on the sapphire substrate 11 by metal organic chemical vapor deposition (MOCVD), and a p-type GaN layer 13 doped with Mg is doped thereon, and Mg is doped at a high concentration. A sample 10 on which a p + -type GaN layer 14 was grown was prepared. The as-grown p-type region is in a high resistance state.

図2Bは大気中のアニール工程を示す。サンプル10を大気雰囲気中、700℃で15分アニールした。図1Bbと同様の工程である。   FIG. 2B shows an annealing process in the atmosphere. Sample 10 was annealed at 700 ° C. for 15 minutes in an air atmosphere. It is the same process as FIG. 1Bb.

図2Cは、アニール後のサンプル10に対する紫外線照射工程を示す。紫外線光源としては、ピーク波長172nmのXeエキシマランプを用い、放射照度10mW/cmの照射をp型層表面に主として5分間行った。 FIG. 2C shows an ultraviolet irradiation process for the sample 10 after annealing. As an ultraviolet light source, an Xe 2 excimer lamp having a peak wavelength of 172 nm was used, and irradiation with an irradiance of 10 mW / cm 2 was performed mainly on the surface of the p-type layer for 5 minutes.

図2Dは、大気中アニール後のサンプルのキャリア濃度を深さの関数として示すグラフである。図1Cbの特性に対応するが、ロットが異なっており、サンプル10のp型層14、p型層13の厚さは、サンプル50のp型層54、p型層53の厚さと異なる。p型層表面のキャリア濃度は、5×1019cm−3であった。 FIG. 2D is a graph showing the carrier concentration of the sample after annealing in air as a function of depth. Although corresponding to the characteristics of FIG. 1Cb, the lots are different, and the thicknesses of the p + type layer 14 and the p type layer 13 of the sample 10 are different from the thicknesses of the p + type layer 54 and the p type layer 53 of the sample 50. . The carrier concentration on the surface of the p-type layer was 5 × 10 19 cm −3 .

図2Eaは、大気中でアニールしたサンプル10の表面に、窒素雰囲気中で、ピーク波長172nmの紫外線を放射照度10mW/cmで5分照射したサンプルのキャリア濃度を深さの関数として示すグラフである。同じロットを使用した図2Dと比較すると、p型層のバルクのキャリア濃度(抵抗率)はほぼ変わらず、p型層表面のキャリア濃度が、5×1019/cm程度から2×1020/cmへと、大幅に増加している。ピーク波長172nmの紫外線照射が、キャリア濃度を増大する機能を示したと考えられる。波長172nmより短波長の紫外線はより高エネルギであるので、同様の機能を有すると考えられる。 FIG. 2Ea is a graph showing the carrier concentration of a sample irradiated with ultraviolet light having a peak wavelength of 172 nm at a irradiance of 10 mW / cm 2 for 5 minutes as a function of depth on the surface of the sample 10 annealed in the air in a nitrogen atmosphere. is there. Compared with FIG. 2D using the same lot, the bulk carrier concentration (resistivity) of the p-type layer is almost the same, and the carrier concentration on the surface of the p-type layer is about 5 × 10 19 / cm 3 to 2 × 10 20. It greatly increases to / cm 3 . It is considered that ultraviolet irradiation with a peak wavelength of 172 nm showed a function of increasing the carrier concentration. Since ultraviolet rays having a wavelength shorter than 172 nm have higher energy, they are considered to have the same function.

図2Ebは、大気中でアニールしたサンプル10の表面に、真空雰囲気中で、ピーク波長172nmの紫外線を放射照度10mW/cmで5分照射したサンプルのキャリア濃度を深さの関数として示すグラフである。図2Dに示す紫外線照射前と比べると、p型層表面のキャリア濃度は5×1019/cm程度から9.6×1019/cmへと明らかに向上している。但し、向上の程度は、窒素雰囲気中の紫外線照射より低い。 FIG. 2Eb is a graph showing the carrier concentration of a sample irradiated with ultraviolet light having a peak wavelength of 172 nm at a irradiance of 10 mW / cm 2 for 5 minutes in a vacuum atmosphere as a function of depth on the surface of the sample 10 annealed in the air. is there. Compared with before ultraviolet irradiation shown in FIG. 2D, the carrier concentration on the surface of the p-type layer is clearly improved from about 5 × 10 19 / cm 3 to 9.6 × 10 19 / cm 3 . However, the degree of improvement is lower than ultraviolet irradiation in a nitrogen atmosphere.

図2Ecは、大気中でアニールしたサンプル10の表面に、大気中で3分、その後窒素雰囲気中で5分、ピーク波長172nmの紫外線を放射照度10mW/cmで照射したサンプルのキャリア濃度を深さの関数として示すグラフである。図2Dに示す紫外線照射前と比べると、表面のキャリア濃度は5×1019/cm程度から7.4×1019/cmへと明らかに向上している。但し、向上の程度は、窒素雰囲気中の紫外線照射、真空雰囲気中の紫外線照射より低くなっている。酸素雰囲気は、大気中アニールと同様の影響を与える可能性が考えられる。酸素を含む雰囲気中の紫外線照射後、酸素を含まない雰囲気で紫外線照射を行なう場合を含めて酸素を含まない雰囲気中での紫外線照射と呼ぶ。 FIG. 2Ec shows the carrier concentration of the sample 10 irradiated with ultraviolet light having a peak wavelength of 172 nm with an irradiance of 10 mW / cm 2 on the surface of the sample 10 annealed in the air for 3 minutes in the air and then for 5 minutes in the nitrogen atmosphere. It is a graph shown as a function of height. Compared with before ultraviolet irradiation shown in FIG. 2D, the carrier concentration on the surface is clearly improved from about 5 × 10 19 / cm 3 to 7.4 × 10 19 / cm 3 . However, the degree of improvement is lower than ultraviolet irradiation in a nitrogen atmosphere and ultraviolet irradiation in a vacuum atmosphere. There is a possibility that the oxygen atmosphere may have the same effect as annealing in air. This is referred to as ultraviolet irradiation in an oxygen-free atmosphere, including the case where ultraviolet irradiation is performed in an oxygen-free atmosphere after the ultraviolet irradiation in an oxygen-containing atmosphere.

これらの結果から、Mg等のp型不純物をドープしたGaN系半導体を、酸素を含む雰囲気中でアニールし、その後、紫外線照射を行なうと表面キャリア濃度を向上できることが判る。紫外線は、172nmより短い波長の成分を含むことが望ましいであろう。紫外線照射時の雰囲気は、真空より窒素雰囲気が高いキャリア濃度を実現している。酸素を含む雰囲気中の紫外線照射は、真空中の紫外線照射より表面キャリア濃度向上の効果が低くなる。   From these results, it can be seen that the surface carrier concentration can be improved by annealing a GaN-based semiconductor doped with a p-type impurity such as Mg in an atmosphere containing oxygen and then performing ultraviolet irradiation. It may be desirable for the ultraviolet light to contain components with wavelengths shorter than 172 nm. The atmosphere at the time of ultraviolet irradiation realizes a carrier concentration higher in a nitrogen atmosphere than in a vacuum. Ultraviolet irradiation in an atmosphere containing oxygen is less effective in improving the surface carrier concentration than ultraviolet irradiation in a vacuum.

以下、これらの実験結果に基づく実施例を説明する。   Hereinafter, examples based on these experimental results will be described.

図3Aに示すように、c面サファイア基板1をMOCVD装置に投入し、水素雰囲気中で1000℃、10分の加熱(サーマルクリーニング)を行い、約400−500℃で、トリメチルガリウム(TMG)、アンモニアNHを供給してGaN低温バッファ層21を形成し、1000℃まで昇温して30秒間保持することにより低温バッファ層21を結晶化させる。温度1000℃のまま、TMG、NHを供給し、ノンドープGaN層22を約1μm形成する。層21、22をまとめて下地層2と呼ぶことがある。 As shown in FIG. 3A, the c-plane sapphire substrate 1 is put into a MOCVD apparatus, heated at 1000 ° C. for 10 minutes (thermal cleaning) in a hydrogen atmosphere, and at about 400-500 ° C., trimethylgallium (TMG), Ammonia NH 3 is supplied to form the GaN low-temperature buffer layer 21, and the low-temperature buffer layer 21 is crystallized by raising the temperature to 1000 ° C. and holding it for 30 seconds. While maintaining the temperature at 1000 ° C., TMG and NH 3 are supplied to form the non-doped GaN layer 22 with a thickness of about 1 μm. The layers 21 and 22 may be collectively referred to as the foundation layer 2.

温度1000℃でTMG、NH3 、SiH4 を供給し、Siドープのn型GaN層3を約5μm成長させる。温度を約700−800℃に降温し、活性層ALを成長する。活性層として例えば多重量子井戸構造を形成する。 TMG, NH 3 and SiH 4 are supplied at a temperature of 1000 ° C., and the Si-doped n-type GaN layer 3 is grown to about 5 μm. The temperature is lowered to about 700-800 ° C. to grow the active layer AL. For example, a multiple quantum well structure is formed as the active layer.

図3Bに示すように、InGaNのウェル層WL/GaNのバリア層BLを1周期として9周期成長を行う。TMG、トリメチルインジウム(TMI)、NH3 を供給し、例えば膜厚約2.2nmのInGaN井戸層WLを成長し、TMG、NH3 を供給し、例えば膜厚約15nmのGaN障壁層BLを成長する。9周期分繰り返す。 As shown in FIG. 3B, nine-period growth is performed with the InGaN well layer WL / GaN barrier layer BL as one period. TMG, trimethylindium (TMI), and NH 3 are supplied, for example, an InGaN well layer WL having a thickness of about 2.2 nm is grown, and TMG and NH 3 are supplied, for example, a GaN barrier layer BL having a thickness of about 15 nm is grown. To do. Repeat for 9 cycles.

図3Aに戻り、温度を870℃まで上げ、TMG、トリメチルアルミニウム(TMA)、NH3 、CP2Mg(ビスシクロペンタディエルマグネシウム)を供給し、Mgドープのp型Al0.15Ga0.85N電子ブロック(クラッド)層4を約20nmを成長する。同じ温度でTMG、NH3 、CP2Mgを供給しMgドープのp型GaN層5を約85nmを成長し、更に高濃度にMgをドープしたp型GaNコンタクト層6を約5nm成長する。p型層5とp型層6を合わせてp型層と呼ぶことがある。このようにして、発光ダイオード用のGaN系窒化物半導体積層が形成される。 Returning to FIG. 3A, the temperature is increased to 870 ° C., TMG, trimethylaluminum (TMA), NH 3 , CP 2 Mg (biscyclopentadienyl magnesium) is supplied, and Mg-doped p-type Al 0.15 Ga 0.85 N electrons A block (cladding) layer 4 is grown to about 20 nm. TMG, NH 3 and CP2Mg are supplied at the same temperature to grow the Mg-doped p-type GaN layer 5 to about 85 nm, and further, the p + -type GaN contact layer 6 doped with Mg at a high concentration is grown to about 5 nm. The p-type layer 5 and the p + -type layer 6 may be collectively referred to as a p-type layer. In this way, a GaN-based nitride semiconductor multilayer for a light emitting diode is formed.

図3Cに示すように、成長したGaN系窒化物半導体積層を大気雰囲気中、700℃で15分アニールする。バルクp型領域のキャリア濃度向上が期待できる。大気雰囲気に換え、酸素を含む雰囲気を用いることもできる。   As shown in FIG. 3C, the grown GaN-based nitride semiconductor stack is annealed at 700 ° C. for 15 minutes in an air atmosphere. An improvement in carrier concentration in the bulk p-type region can be expected. An atmosphere containing oxygen can be used instead of the air atmosphere.

図3Dに示すように、アニール後のGaN系窒化物半導体積層の表面(p型層側)にピーク波長172nmのXeエキシマランプ光を放射照度10mW/cmで5分照射する。雰囲気は、真空又は窒素が好ましい。但し、短時間酸素を含む雰囲気とし、その後真空又は窒素雰囲気とすることもできる。その後、公知の方法により、n側電極、p側電極を形成する。 As shown in FIG. 3D, the surface (p-type layer side) of the annealed GaN-based nitride semiconductor stack is irradiated with Xe 2 excimer lamp light having a peak wavelength of 172 nm at an irradiance of 10 mW / cm 2 for 5 minutes. The atmosphere is preferably vacuum or nitrogen. However, an atmosphere containing oxygen for a short time may be used, and then a vacuum or nitrogen atmosphere may be used. Thereafter, an n-side electrode and a p-side electrode are formed by a known method.

図3Eに示すように、レジストマスクを用い、n側電極形成領域において、表面側からp型層6、5、電子ブロック層4、活性層ALをエッチングし、n型層3を露出する。n型層3上にTi/Al積層のn側電極7、p型層上にPt/Ag積層のp側電極8を形成する。   As shown in FIG. 3E, using the resist mask, in the n-side electrode formation region, the p-type layers 6 and 5, the electron blocking layer 4 and the active layer AL are etched from the surface side to expose the n-type layer 3. An n-side electrode 7 with a Ti / Al stack is formed on the n-type layer 3, and a p-side electrode 8 with a Pt / Ag stack is formed on the p-type layer.

図3Fに示すように、p型層の上にp側電極8を形成後、Si等の支持基板9をAu−Sn共晶層等を用いて結合し、サファイア基板1をレーザリフトオフなどで剥離し、n型層3を露出し、その上にn側電極7を形成することもできる。   As shown in FIG. 3F, after forming the p-side electrode 8 on the p-type layer, a support substrate 9 such as Si is bonded using an Au—Sn eutectic layer or the like, and the sapphire substrate 1 is peeled off by laser lift-off or the like. Then, the n-type layer 3 is exposed, and the n-side electrode 7 can be formed thereon.

キャリア濃度を向上させたGaN系窒化物半導体のp型層は、レーザに用いることもできる。   The p-type layer of GaN-based nitride semiconductor with improved carrier concentration can also be used for a laser.

図4Aは、端面発光型のGaN系窒化物半導体レーザの構造を示す断面図である。GaN基板31の上に、n型GaNコンタクト層32、n型AlGaNクラッド層33、GaNガイド層34、3つのウェル層を含む多重量子井戸構造の活性層AL,p型AlGaN電子ブロック層36、GaNガイド層37、p型AlGaNクラッド層38、p型GaNコンタクト層39を含む積層が成長され、大気雰囲気乃至酸素を含む雰囲気中のアニールを行い、窒素雰囲気中でピーク波長172nmの紫外線照射を行ない、p型層のキャリア濃度を向上させる。p型GaNコンタクト層39、p型AlGaNクラッド層38の一部厚さがメサ状にエッチングする。メサ構造は例えば幅1.5μm程度、長さは例えば500μm程度である。メサ構造の側面とその両側の切欠き部底面は酸化シリコン等の絶縁膜40で覆う。p型GaN層39表面にPt/Au等のp側電極41を形成し、GaN基板31裏面にTi/Pt/Au等のn側電極42を形成する。その後、両端面を劈開して共振器構造を形成する。   FIG. 4A is a cross-sectional view showing the structure of an edge-emitting GaN-based nitride semiconductor laser. On the GaN substrate 31, an n-type GaN contact layer 32, an n-type AlGaN cladding layer 33, a GaN guide layer 34, an active layer AL having a multiple quantum well structure including three well layers, a p-type AlGaN electron blocking layer 36, GaN A stack including a guide layer 37, a p-type AlGaN cladding layer 38, and a p-type GaN contact layer 39 is grown, annealed in an air atmosphere or an atmosphere containing oxygen, and irradiated with ultraviolet light having a peak wavelength of 172 nm in a nitrogen atmosphere. Improve the carrier concentration of the p-type layer. The p-type GaN contact layer 39 and the p-type AlGaN cladding layer 38 are partially etched in a mesa shape. The mesa structure has a width of about 1.5 μm and a length of about 500 μm, for example. The side surface of the mesa structure and the bottom surface of the notch on both sides thereof are covered with an insulating film 40 such as silicon oxide. A p-side electrode 41 such as Pt / Au is formed on the surface of the p-type GaN layer 39, and an n-side electrode 42 such as Ti / Pt / Au is formed on the back surface of the GaN substrate 31. Thereafter, both end faces are cleaved to form a resonator structure.

図4Bは、面発光型のGaN系窒化物半導体レーザの構造を示す断面図である。Si基板43の上に共晶層44を介してp側電極46、47が接合される。例えばp側電極46はTi/Pt/Au積層であり、p側電極47はITO(インジウム錫酸化物)である。DBRミラー45がp電極46,47と同一平面上に併設される。DBRミラー45は、例えばGaN/AlN繰り返し積層からなる誘電体多層膜ミラーである。DBRミラー45、p側電極47の上に酸化シリコン等の絶縁膜48を介して、p型GaNコンタクト層39、5つのウェル層を含む多重量子井戸構造の活性層AL,n型GaNコンタクト層32、を積層し、n型GaN層32の上にDBRミラー49とTi/Pt/Au等のn側電極42が同一平面上に並設される。   FIG. 4B is a cross-sectional view showing the structure of a surface-emitting GaN-based nitride semiconductor laser. The p-side electrodes 46 and 47 are joined to the Si substrate 43 via the eutectic layer 44. For example, the p-side electrode 46 is a Ti / Pt / Au laminated layer, and the p-side electrode 47 is ITO (indium tin oxide). A DBR mirror 45 is provided on the same plane as the p electrodes 46 and 47. The DBR mirror 45 is a dielectric multilayer mirror made of, for example, a GaN / AlN repetitive stack. A p-type GaN contact layer 39, an active layer AL having a multiple quantum well structure including five well layers, and an n-type GaN contact layer 32 via an insulating film 48 such as silicon oxide on the DBR mirror 45 and the p-side electrode 47. , And a DBR mirror 49 and an n-side electrode 42 such as Ti / Pt / Au are arranged on the same plane on the n-type GaN layer 32.

製造プロセスとしてはサファイア基板上に上側の層から下側の層にエピタキシャル成長を行い、p型層を形成した後、大気雰囲気乃至酸素を含む雰囲気中のアニールを行い、窒素雰囲気中でピーク波長172nmの紫外線照射を行ない、p型層のキャリア濃度を向上させる。光は上下DBR間を往復し、上側DBRミラー46から出射する。   As a manufacturing process, epitaxial growth is performed from an upper layer to a lower layer on a sapphire substrate, a p-type layer is formed, and then annealing in an atmosphere or an atmosphere containing oxygen is performed, and a peak wavelength of 172 nm is achieved in a nitrogen atmosphere. Ultraviolet irradiation is performed to improve the carrier concentration of the p-type layer. The light reciprocates between the upper and lower DBRs and exits from the upper DBR mirror 46.

以上、実施例に沿って本発明を説明したが、本発明はこれらに限定されるものではない。例示された材料、数値は制限的意味を有さない。種々の変更、改良、置換、組み合わせ等が可能なことは当業者に自明であろう。   As mentioned above, although this invention was demonstrated along the Example, this invention is not limited to these. Exemplified materials, numerical values have no limiting meaning. It will be apparent to those skilled in the art that various modifications, improvements, substitutions, combinations, and the like can be made.

10,50 サンプル、
1,11,51 サファイア基板、
12、52 下地層、
13、53 p型GaN層、
14、54 p型GaN層、
10,50 samples,
1,11,51 sapphire substrate,
12, 52 Underlayer,
13, 53 p-type GaN layer,
14, 54 p + type GaN layer,

Claims (3)

(a)p型不純物をドープしたp型GaN系窒化物半導体層を有する半導体基板を、酸素を含む雰囲気中でアニールしてp型不純物を活性化する工程と、
(b)酸素を含まない雰囲気中で、前記p型GaN系窒化物半導体層表面に紫外線を照射し、表面キャリア濃度を増大させる工程と、
を含み、
前記工程(b)は、前記工程(a)の後に行い、前記工程(a)による影響を回復する窒化物半導体装置の製造方法。
(A) activating a p-type impurity by annealing a semiconductor substrate having a p-type GaN-based nitride semiconductor layer doped with a p-type impurity in an atmosphere containing oxygen;
(B) irradiating the surface of the p-type GaN-based nitride semiconductor layer with ultraviolet light in an oxygen-free atmosphere to increase the surface carrier concentration;
Including
The method of manufacturing a nitride semiconductor device, wherein the step (b) is performed after the step (a) and recovers the influence of the step (a).
前記工程(b)の紫外線が、波長172nm以下の成分を含む請求項1に記載の窒化物半導体装置の製造方法。   The method for manufacturing a nitride semiconductor device according to claim 1, wherein the ultraviolet ray in the step (b) includes a component having a wavelength of 172 nm or less. 前記工程(b)の雰囲気が、窒素雰囲気である請求項1又は2に記載の窒化物半導体装置の製造方法。   The method for manufacturing a nitride semiconductor device according to claim 1, wherein the atmosphere in the step (b) is a nitrogen atmosphere.
JP2011276206A 2011-12-16 2011-12-16 Manufacturing method of nitride semiconductor device Active JP5977513B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2011276206A JP5977513B2 (en) 2011-12-16 2011-12-16 Manufacturing method of nitride semiconductor device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2011276206A JP5977513B2 (en) 2011-12-16 2011-12-16 Manufacturing method of nitride semiconductor device

Publications (2)

Publication Number Publication Date
JP2013128009A true JP2013128009A (en) 2013-06-27
JP5977513B2 JP5977513B2 (en) 2016-08-24

Family

ID=48778393

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2011276206A Active JP5977513B2 (en) 2011-12-16 2011-12-16 Manufacturing method of nitride semiconductor device

Country Status (1)

Country Link
JP (1) JP5977513B2 (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN110246753A (en) * 2019-06-20 2019-09-17 江苏能华微电子科技发展有限公司 A kind of preparation method and structure of the epitaxial structure promoting p-type GaN doping concentration
CN113832453A (en) * 2021-11-03 2021-12-24 聚灿光电科技(宿迁)有限公司 MOCVD (Metal organic chemical vapor deposition) gas discharging device and MOCVD device with same
CN116532808A (en) * 2023-05-17 2023-08-04 泰兰特激光技术(武汉)有限公司 Method for locally changing carrier concentration on surface of inorganic nonmetallic material
US11916164B2 (en) 2021-01-19 2024-02-27 Toyoda Gosei Co., Ltd. Method for manufacturing light-emitting element and method for removing hydrogen from light-emitting element

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH11126758A (en) * 1997-10-24 1999-05-11 Pioneer Electron Corp Manufacture of semiconductor element
JP2003051613A (en) * 2002-05-20 2003-02-21 Toyoda Gosei Co Ltd Gallium nitride based compound semiconductor and manufacturing method for element

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH11126758A (en) * 1997-10-24 1999-05-11 Pioneer Electron Corp Manufacture of semiconductor element
JP2003051613A (en) * 2002-05-20 2003-02-21 Toyoda Gosei Co Ltd Gallium nitride based compound semiconductor and manufacturing method for element

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN110246753A (en) * 2019-06-20 2019-09-17 江苏能华微电子科技发展有限公司 A kind of preparation method and structure of the epitaxial structure promoting p-type GaN doping concentration
CN110246753B (en) * 2019-06-20 2021-07-13 江苏能华微电子科技发展有限公司 Preparation method and structure of epitaxial structure for improving p-type GaN doping concentration
US11916164B2 (en) 2021-01-19 2024-02-27 Toyoda Gosei Co., Ltd. Method for manufacturing light-emitting element and method for removing hydrogen from light-emitting element
CN113832453A (en) * 2021-11-03 2021-12-24 聚灿光电科技(宿迁)有限公司 MOCVD (Metal organic chemical vapor deposition) gas discharging device and MOCVD device with same
CN116532808A (en) * 2023-05-17 2023-08-04 泰兰特激光技术(武汉)有限公司 Method for locally changing carrier concentration on surface of inorganic nonmetallic material

Also Published As

Publication number Publication date
JP5977513B2 (en) 2016-08-24

Similar Documents

Publication Publication Date Title
US8329489B2 (en) Method for manufacturing semiconductor light emitting device
KR101408610B1 (en) Nitride semiconductor light-emitting element and method for manufacturing same
KR101399250B1 (en) Nitrogen compound semiconductor light emitting element and manufacturing method thereof
JP4767020B2 (en) Method of manufacturing nitride compound semiconductor device
US10685835B2 (en) III-nitride tunnel junction with modified P-N interface
JP5068020B2 (en) Manufacturing method of nitride semiconductor light emitting device
JP2010021576A (en) Method of manufacturing semiconductor device
JP2015043413A (en) Nitride semiconductor light emitting element
JP5977513B2 (en) Manufacturing method of nitride semiconductor device
JP2018125430A (en) Semiconductor light-emitting element and method for manufacturing the same
US6365923B1 (en) Nitride semiconductor light-emitting element and process for production thereof
JP2002057161A5 (en)
JP2007227832A (en) Nitride semiconductor element
TWI381557B (en) Light emitting diode device and method for fabricating thereof
JP5907210B2 (en) Manufacturing method of semiconductor device
JP4103309B2 (en) Method for manufacturing p-type nitride semiconductor
JP4720519B2 (en) Method for manufacturing p-type nitride semiconductor
JP6453542B2 (en) Semiconductor device and manufacturing method thereof
JP5974980B2 (en) Nitride semiconductor light emitting device
JP2007189028A (en) Manufacturing method of both p-type gallium nitride semiconductor and algainn light emitting device
JP2015032798A (en) Method of manufacturing nitride semiconductor light-emitting element
WO2016072326A1 (en) Semiconductor light-emitting element
JP2011187993A (en) Semiconductor light emitting element and method of manufacturing semiconductor light emitting element
JPH10290048A (en) Formation of compound semiconductor and semiconductor device
JP2005317823A (en) Gallium nitride system light emitting device

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20141204

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20151029

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20151124

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20160628

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20160722

R150 Certificate of patent or registration of utility model

Ref document number: 5977513

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250