JP2013127389A - Corrosion testing device and corrosion testing method - Google Patents

Corrosion testing device and corrosion testing method Download PDF

Info

Publication number
JP2013127389A
JP2013127389A JP2011276676A JP2011276676A JP2013127389A JP 2013127389 A JP2013127389 A JP 2013127389A JP 2011276676 A JP2011276676 A JP 2011276676A JP 2011276676 A JP2011276676 A JP 2011276676A JP 2013127389 A JP2013127389 A JP 2013127389A
Authority
JP
Japan
Prior art keywords
concentration
dissolved oxygen
water
autoclave
salt water
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2011276676A
Other languages
Japanese (ja)
Inventor
Yohei Sakakibara
洋平 榊原
Hajime Nakayama
元 中山
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
IHI Corp
Original Assignee
IHI Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by IHI Corp filed Critical IHI Corp
Priority to JP2011276676A priority Critical patent/JP2013127389A/en
Publication of JP2013127389A publication Critical patent/JP2013127389A/en
Pending legal-status Critical Current

Links

Images

Landscapes

  • Testing Resistance To Weather, Investigating Materials By Mechanical Methods (AREA)

Abstract

PROBLEM TO BE SOLVED: To provide a corrosion testing device and a corrosion testing method that can conduct a long-time corrosion test even in a high-density-impurity environment.SOLUTION: The corrosion testing device includes: a water storage tank 2 in which high-concentration dissolved oxygen water 3 is reserved; dissolved oxygen concentration adjusting means 14 of adjusting the dissolved oxygen concentration of the high-concentration dissolved oxygen water 3 in the water storage tank; an autoclave 9 in which high-concentration salt water 18 is reserved and a test-piece 19 is dipped in the high-concentration salt water; feed means 17 of feeding the high-concentration dissolved oxygen water into the autoclave; evacuation means 26 of evacuating the interior of the autoclave; dissolved oxygen concentration measuring means 31 of measuring the dissolved oxygen concentration of the high-concentration salt water; and heating means 32 of heating the autoclave.

Description

本発明は、大気圧より高い飽和蒸気圧をもつ温度での高温水環境、例えばボイラ水環境、軽水炉環境に於ける金属の腐食を模擬する為の腐食試験装置及び腐食試験方法に関するものである。   The present invention relates to a corrosion test apparatus and a corrosion test method for simulating metal corrosion in a high-temperature water environment at a temperature having a saturated vapor pressure higher than atmospheric pressure, for example, a boiler water environment and a light water reactor environment.

通常、ボイラ水環境で用いられる材料、若しくは軽水炉環境で用いられる材料の腐食の度合を予測する為、ボイラ内環境若しくは軽水炉内環境を模擬した静水型や循環式の腐食試験装置により試験片を腐食させる腐食試験が為される。   Normally, in order to predict the degree of corrosion of materials used in boiler water environments or materials used in light water reactor environments, the test specimens are corroded with a hydrostatic or circulating corrosion tester that simulates the boiler environment or light water reactor environment. A corrosion test is performed.

静水型の腐食試験装置は、試験槽内の試験水の腐食に関与する溶存酸素濃度、或は溶存水素濃度の定義及び調整を行い、試験中の試験片の腐食反応によって変化する溶存酸素濃度の変化により腐食度合を検出する構造となっており、試験時間が短い場合や腐食反応の速度が遅い場合に使用される。   The hydrostatic corrosion tester defines and adjusts the dissolved oxygen concentration or dissolved hydrogen concentration involved in the corrosion of the test water in the test tank, and adjusts the dissolved oxygen concentration that changes depending on the corrosion reaction of the test piece under test. It has a structure that detects the degree of corrosion by change, and is used when the test time is short or the rate of the corrosion reaction is slow.

又、循環式の腐食試験装置は、溶存酸素濃度、或は溶存水素濃度をコントロールした水を、加圧可能なプランジャポンプやダイヤフラムポンプ等により密閉式の耐圧容器であるオートクレーブ内に流入させることでオートクレーブ内の試験水の溶存酸素濃度を制御し、又オートクレーブ内の試験片に対する腐食反応により溶存酸素濃度が減少した水を供給タンクに戻す構造となっており、試験時間が長い場合や腐食反応の速度が速い場合に使用される。   In addition, the circulation type corrosion test apparatus allows water with controlled dissolved oxygen concentration or dissolved hydrogen concentration to flow into an autoclave, which is a sealed pressure vessel, using a pressurizable plunger pump or diaphragm pump. Controls the dissolved oxygen concentration of the test water in the autoclave, and returns the water whose dissolved oxygen concentration has decreased due to the corrosion reaction to the test pieces in the autoclave to the supply tank. Used when speed is high.

尚、循環式の腐食試験装置では、オートクレーブで加熱された水を冷却する必要がある為、例えば往路の水を用いて復路の水を冷却する熱交換器を有しているが、通常は高純度の水を用い、又不純物を制御して試験を行う場合でもppbオーダーであるので、オートクレーブや熱交換器へのダメージは殆どない。   In addition, since the circulation type corrosion test apparatus needs to cool the water heated in the autoclave, for example, it has a heat exchanger that cools the water in the return path using the water in the forward path. Even when testing is performed using pure water and controlling impurities, there is almost no damage to the autoclave or heat exchanger because it is in the ppb order.

然し乍ら、例えば溶存酸素濃度を制御し、且つ不純物濃度の高い高温水での試験を実施する場合には、オートクレーブ自体はハステロイ(登録商標)やチタン等の高耐食合金が用いられることが多いが、循環ループの配管や熱交換器が高耐食合金で製作されていることは少ない。その結果、加温した高温水を冷却する段階で不純物が濃化し、容易に配管や熱交換器を腐食させるという問題がある。   However, for example, when controlling the dissolved oxygen concentration and performing a test with high-temperature water having a high impurity concentration, the autoclave itself is often made of a highly corrosion-resistant alloy such as Hastelloy (registered trademark) or titanium. Circulation loop piping and heat exchangers are rarely made of highly corrosion-resistant alloys. As a result, there is a problem that impurities are concentrated at the stage of cooling the heated high-temperature water, and the piping and the heat exchanger are easily corroded.

従って、水の不純物濃度が高い場合には、試験前に溶存酸素濃度を制御して静水型の腐食試験装置で試験を行うことが多いが、静水型の腐食試験装置では試験時間が長い場合溶存酸素濃度は時間と共に変化する為、試験環境を一定に保てないという問題があった。   Therefore, when the impurity concentration of water is high, the dissolved oxygen concentration is controlled before the test and the test is often performed with a static water type corrosion tester. Since the oxygen concentration changes with time, there is a problem that the test environment cannot be kept constant.

尚、特許文献1には、試験水貯槽から抜出された試験水が、調整ポンプによって目的とする飽和ガス濃度に対応する所定圧力迄加圧されて溶存ガス調整槽に送給された後、試験水にガス供給源から散気用のガスを供給して試験水の圧力に対応する飽和濃度に達する迄散気用のガスを溶解させ、ヒータにより試験温度迄昇温させ、腐食試験後は試験水を脱塩濾過器を介して前記試験水貯槽に還流させる構成が開示されている。   In Patent Document 1, after the test water extracted from the test water storage tank is pressurized to a predetermined pressure corresponding to the target saturated gas concentration by the adjustment pump and fed to the dissolved gas adjustment tank, Supply the gas for aeration from the gas supply source to the test water, dissolve the gas for aeration until the saturation concentration corresponding to the pressure of the test water is reached, raise the temperature to the test temperature with a heater, and after the corrosion test A configuration is disclosed in which test water is returned to the test water storage tank via a desalting filter.

特開昭63−285445号公報JP-A 63-285445

本発明は斯かる実情に鑑み、高濃度不純物環境下でも長時間の腐食試験が可能な腐食試験装置及び腐食試験方法を提供するものである。   In view of such circumstances, the present invention provides a corrosion test apparatus and a corrosion test method capable of performing a long-time corrosion test even in a high concentration impurity environment.

本発明は、高濃度溶存酸素水が貯溜される貯水槽と、該貯水槽内の前記高濃度溶存酸素水の溶存酸素濃度を調整する溶存酸素濃度調整手段と、高濃度塩水が貯溜されると共に該高濃度塩水に試験片が沈められるオートクレーブと、前記高濃度溶存酸素水を前記オートクレーブ内に送給する送給手段と、前記オートクレーブ内を真空引きする真空排気手段と、前記高濃度塩水の溶存酸素濃度を測定する溶存酸素濃度測定手段と、前記オートクレーブを加熱する加熱手段とを具備する腐食試験装置に係るものである。   The present invention provides a water storage tank for storing high concentration dissolved oxygen water, a dissolved oxygen concentration adjusting means for adjusting the dissolved oxygen concentration of the high concentration dissolved oxygen water in the water storage tank, and high concentration salt water being stored. An autoclave in which a test piece is submerged in the high-concentration salt water, a feeding means for feeding the high-concentration dissolved oxygen water into the autoclave, a vacuum exhaust means for evacuating the autoclave, and a solution of the high-concentration salt water The present invention relates to a corrosion test apparatus including a dissolved oxygen concentration measuring means for measuring an oxygen concentration and a heating means for heating the autoclave.

又本発明は、オートクレーブ内に高濃度塩水を注入すると共に該高濃度塩水内に試験片を沈める工程と、前記オートクレーブ内を真空排気手段により真空引きする工程と、前記オートクレーブを加熱手段により加熱する工程と、貯水槽内の高濃度溶存酸素水の溶存酸素濃度を溶存酸素濃度調整手段により調整する工程と、前記高濃度溶存酸素水を送給手段によりオートクレーブ内に送給する工程と、設定時間経過時に前記高濃度塩水内の溶存酸素濃度が低下した際に前記送給手段が前記高濃度塩水に前記高濃度溶存酸素水を注水する工程とを有する腐食試験方法に係るものである。   The present invention also includes a step of injecting high-concentration salt water into the autoclave and sinking a test piece in the high-concentration salt water, a step of evacuating the autoclave by vacuum evacuation means, and heating the autoclave by heating means. A step, a step of adjusting the dissolved oxygen concentration of the high-concentration dissolved oxygen water in the water tank by the dissolved oxygen concentration adjusting means, a step of feeding the high-concentration dissolved oxygen water into the autoclave by the feeding means, and a set time When the dissolved oxygen concentration in the high-concentration salt water decreases during the lapse of time, the feeding means has a step of pouring the high-concentration dissolved oxygen water into the high-concentration salt water.

本発明によれば、高濃度溶存酸素水が貯溜される貯水槽と、該貯水槽内の前記高濃度溶存酸素水の溶存酸素濃度を調整する溶存酸素濃度調整手段と、高濃度塩水が貯溜されると共に該高濃度塩水に試験片が沈められるオートクレーブと、前記高濃度溶存酸素水を前記オートクレーブ内に送給する送給手段と、前記オートクレーブ内を真空引きする真空排気手段と、前記高濃度塩水の溶存酸素濃度を測定する溶存酸素濃度測定手段と、前記オートクレーブを加熱する加熱手段とを具備するので、前記高濃度塩水を循環させる必要がなく、部品の腐食を防止できると共に、前記高濃度塩水の溶存酸素濃度を制御することで試験環境を一定又は略一定に保て、長時間の腐食試験を行うことができる。   According to the present invention, a water storage tank in which high-concentration dissolved oxygen water is stored, a dissolved oxygen concentration adjusting means for adjusting the dissolved oxygen concentration in the water storage tank, and high-concentration salt water are stored. And an autoclave in which a test piece is submerged in the high-concentration salt water, a feeding means for feeding the high-concentration dissolved oxygen water into the autoclave, a vacuum exhaust means for evacuating the autoclave, and the high-concentration salt water Since the dissolved oxygen concentration measuring means for measuring the dissolved oxygen concentration and the heating means for heating the autoclave are provided, it is not necessary to circulate the high-concentration salt water, and corrosion of parts can be prevented and the high-concentration salt water can be prevented. By controlling the dissolved oxygen concentration, a long-term corrosion test can be performed while keeping the test environment constant or substantially constant.

又本発明によれば、オートクレーブ内に高濃度塩水を注入すると共に該高濃度塩水内に試験片を沈める工程と、前記オートクレーブ内を真空排気手段により真空引きする工程と、前記オートクレーブを加熱手段により加熱する工程と、貯水槽内の高濃度溶存酸素水の溶存酸素濃度を溶存酸素濃度調整手段により調整する工程と、前記高濃度溶存酸素水を送給手段によりオートクレーブ内に送給する工程と、設定時間経過時に前記高濃度塩水内の溶存酸素濃度が低下した際に前記送給手段が前記高濃度塩水に前記高濃度溶存酸素水を注水する工程とを有するので、前記高濃度塩水を循環させることなく部品の腐食を防止できると共に長時間の腐食実験が可能となるという優れた効果を発揮する。   According to the present invention, the step of injecting high-concentration salt water into the autoclave and submerging the test piece in the high-concentration salt water, the step of evacuating the autoclave by a vacuum exhaust means, and the autoclave by the heating means A step of heating, a step of adjusting the dissolved oxygen concentration of the high-concentration dissolved oxygen water in the water tank by a dissolved oxygen concentration adjusting means, a step of feeding the high-concentration dissolved oxygen water into the autoclave by a feeding means, When the dissolved oxygen concentration in the high-concentration salt water decreases when a set time has elapsed, the feeding means has a step of injecting the high-concentration dissolved oxygen water into the high-concentration salt water, so that the high-concentration salt water is circulated. It is possible to prevent the corrosion of parts without losing the effect, and to exhibit an excellent effect that a long-time corrosion experiment is possible.

本発明の実施例に係る腐食試験装置を示す構成図である。It is a block diagram which shows the corrosion test apparatus which concerns on the Example of this invention. 本発明の実施例に係る腐食試験を説明するフローチャートである。It is a flowchart explaining the corrosion test based on the Example of this invention.

以下、図面を参照しつつ本発明の実施例を説明する。   Embodiments of the present invention will be described below with reference to the drawings.

図1に於いて、本発明の実施例に係る腐食試験装置1について説明する。   With reference to FIG. 1, a corrosion test apparatus 1 according to an embodiment of the present invention will be described.

図1中、2は貯水槽を示しており、該貯水槽2内には高濃度溶存酸素水3が貯溜されている。   In FIG. 1, reference numeral 2 denotes a water storage tank, in which high-concentration dissolved oxygen water 3 is stored.

前記貯水槽2は、循環管4、酸素供給管5、窒素供給管6、排気管7と接続されると共に、送給管8を介して後述するオートクレーブ9と接続されている。   The water tank 2 is connected to a circulation pipe 4, an oxygen supply pipe 5, a nitrogen supply pipe 6, and an exhaust pipe 7, and is connected to an autoclave 9 described later via a supply pipe 8.

前記循環管4は一端が前記貯水槽2の下端と接続され、他端が該貯水槽2の天板を貫通し該貯水槽2内に延出し、又気体部に連通している。前記循環管4にはDO meter(溶存酸素濃度測定器)10、DH meter(溶存水素濃度測定器)11、循環ポンプ12が設けられ、前記循環管4と前記溶存酸素濃度測定器10と前記溶存水素濃度測定器11と前記循環ポンプ12とで循環系13が構成される。   One end of the circulation pipe 4 is connected to the lower end of the water tank 2, and the other end passes through the top plate of the water tank 2 and extends into the water tank 2, and communicates with the gas part. The circulation pipe 4 is provided with a DO meter (dissolved oxygen concentration measuring instrument) 10, a DH meter (dissolved hydrogen concentration measuring instrument) 11, and a circulation pump 12. The circulation pipe 4, the dissolved oxygen concentration measuring instrument 10, and the dissolved The hydrogen concentration measuring device 11 and the circulation pump 12 constitute a circulation system 13.

又、前記循環ポンプ12は前記貯水槽2内の前記高濃度溶存酸素水3を、前記循環管4を介して循環させる機能を有している。前記溶存酸素濃度測定器10は前記循環管4を循環する前記高濃度溶存酸素水3内の溶存酸素濃度を測定する機能を有し、前記溶存水素濃度測定器11は前記循環管4を循環する前記高濃度溶存酸素水3内の溶存水素濃度を測定する機能を有している。   The circulation pump 12 has a function of circulating the high-concentration dissolved oxygen water 3 in the water storage tank 2 through the circulation pipe 4. The dissolved oxygen concentration measuring device 10 has a function of measuring the dissolved oxygen concentration in the high concentration dissolved oxygen water 3 circulating through the circulation pipe 4, and the dissolved hydrogen concentration measuring device 11 circulates through the circulation pipe 4. It has a function of measuring the dissolved hydrogen concentration in the high-concentration dissolved oxygen water 3.

前記酸素供給管5は図示しない酸素供給源と接続され、先端が前記貯水槽2の天板を貫通し、前記高濃度溶存酸素水3内に没しており、該高濃度溶存酸素水3内に直接酸素を供給する様になっている。   The oxygen supply pipe 5 is connected to an oxygen supply source (not shown), and the tip penetrates the top plate of the water storage tank 2 and is submerged in the high-concentration dissolved oxygen water 3. It is designed to supply oxygen directly.

前記窒素供給管6は図示しない窒素供給源と接続され、先端が前記貯水槽2の天板を貫通し、前記高濃度溶存酸素水3内に没しており、該高濃度溶存酸素水3内に直接窒素を供給する様になっている。   The nitrogen supply pipe 6 is connected to a nitrogen supply source (not shown), and the tip penetrates the top plate of the water tank 2 and is submerged in the high-concentration dissolved oxygen water 3. Nitrogen is supplied directly to

又、前記排気管7は前記貯水槽2の天板に接続されており、前記高濃度溶存酸素水3内に供給され、溶解仕切れなかった酸素及び窒素を前記貯水槽2外へと排気する様になっている。   The exhaust pipe 7 is connected to the top plate of the water tank 2 so that oxygen and nitrogen that are supplied into the high-concentration dissolved oxygen water 3 and are not separated from the water are exhausted to the outside of the water tank 2. It has become.

尚、前記酸素供給管5と、前記窒素供給管6と、前記排気管7と、前記循環系13とで溶存酸素濃度調整手段14が構成される。   The oxygen supply pipe 5, the nitrogen supply pipe 6, the exhaust pipe 7, and the circulation system 13 constitute a dissolved oxygen concentration adjusting means 14.

前記送給管8には高圧ポンプ15及びバルブ16が設けられ、前記高圧ポンプ15は前記貯水槽2内の前記高濃度溶存酸素水3を前記オートクレーブ9内に送給する様になっている。又、前記バルブ16は前記送給管8を閉塞可能となっている。尚、前記送給管8と前記高圧ポンプ15と前記バルブ16とで送給手段17が構成される。   The feed pipe 8 is provided with a high-pressure pump 15 and a valve 16, and the high-pressure pump 15 feeds the high-concentration dissolved oxygen water 3 in the water storage tank 2 into the autoclave 9. The valve 16 can close the feed pipe 8. The feeding pipe 8, the high pressure pump 15 and the valve 16 constitute a feeding means 17.

前記オートクレーブ9は、所定の厚みを有する高耐食合金製の密閉耐圧容器であり、該オートクレーブ9内には高濃度の不純物が溶解した試験水である高濃度塩水18が貯溜されていると共に、該高濃度塩水18内に金属製の試験片19が沈められている。   The autoclave 9 is a sealed pressure vessel made of a highly corrosion-resistant alloy having a predetermined thickness. The autoclave 9 stores high-concentration salt water 18 as test water in which high-concentration impurities are dissolved, A metal test piece 19 is submerged in the high-concentration salt water 18.

前記オートクレーブ9には、前記高濃度塩水18を排水する為の排水管21が接続され、又前記オートクレーブ9内を真空引きする為の排気管22が接続され、該排気管22にバルブ23及びロータリポンプ24が設けられていると共に、前記オートクレーブ9内の圧力を測定する為の圧力計25が設けられている。尚、前記排気管22と、前記バルブ23と、前記ロータリポンプ24とで真空排気手段26が構成される。   A drain pipe 21 for draining the high-concentration salt water 18 is connected to the autoclave 9, and an exhaust pipe 22 for evacuating the inside of the autoclave 9 is connected to the exhaust pipe 22. A pump 24 is provided, and a pressure gauge 25 for measuring the pressure in the autoclave 9 is provided. The exhaust pipe 22, the valve 23, and the rotary pump 24 constitute a vacuum exhaust means 26.

又、前記オートクレーブ9には、前記高濃度塩水18に浸漬した参照電極27と、カソード側で分極され、前記高濃度塩水18に浸漬した白金電極28,28が設けられ、前記参照電極27及び前記白金電極28,28はPotentiostat(ポテンショスタット)29に電気的に接続されており、該ポテンショスタット29により前記高濃度塩水18内の溶存酸素濃度が測定できる様になっている。尚、前記参照電極27と、前記白金電極28,28と、前記ポテンショスタット29とで溶存酸素濃度測定手段31が構成される。   The autoclave 9 is provided with a reference electrode 27 immersed in the high-concentration salt water 18 and platinum electrodes 28 and 28 polarized on the cathode side and immersed in the high-concentration salt water 18. The platinum electrodes 28, 28 are electrically connected to a potentiostat (potentiostat) 29, so that the dissolved oxygen concentration in the high-concentration salt water 18 can be measured by the potentiostat 29. The reference electrode 27, the platinum electrodes 28 and 28, and the potentiostat 29 constitute a dissolved oxygen concentration measuring means 31.

更に、前記オートクレーブ9の周囲には、該オートクレーブ9を囲繞する加熱手段であるヒータ32が設けられている。   Further, a heater 32 is provided around the autoclave 9 as heating means for surrounding the autoclave 9.

次に、図2のフローチャートを用い、前記腐食試験装置1を用いた腐食試験について説明する。尚、本実施例に於ける腐食試験では、前記溶存水素濃度測定器11は使用されないものとする。   Next, a corrosion test using the corrosion test apparatus 1 will be described using the flowchart of FIG. In the corrosion test in the present embodiment, the dissolved hydrogen concentration measuring instrument 11 is not used.

STEP:01 前記腐食試験装置1を用いて腐食試験を行う際には、先ず前記オートクレーブ9が満杯にならない程度に前記高濃度塩水18を所定量、例えば1L注入し、該高濃度塩水18内に前記試験片19を沈めた後、前記オートクレーブ9を閉塞する。   STEP: 01 When performing a corrosion test using the corrosion test apparatus 1, first, a predetermined amount, for example, 1 L of the high-concentration salt water 18 is injected so that the autoclave 9 does not become full, and the high-concentration salt water 18 is injected into the high-concentration salt water 18. After the test piece 19 is submerged, the autoclave 9 is closed.

STEP:02 該オートクレーブ9が気密に閉塞された後、前記バルブ23を開放すると共に前記ロータリポンプ24を駆動させ、前記オートクレーブ9内の真空引きを行う。   (Step 02) After the autoclave 9 is airtightly closed, the valve 23 is opened and the rotary pump 24 is driven to evacuate the autoclave 9.

STEP:03 該オートクレーブ9内の真空引き後、前記バルブ23を閉塞し、前記ヒータ32により前記オートクレーブ9を加熱する。前記ヒータ32の加熱により、前記オートクレーブ9内は高温飽和状態となり、前記高濃度塩水18の温度が例えば290℃迄上昇すると共に、前記オートクレーブ9内の圧力が例えば7.5MPa迄上昇する。   (Step 03) After evacuating the autoclave 9, the valve 23 is closed and the autoclave 9 is heated by the heater 32. Due to the heating of the heater 32, the inside of the autoclave 9 is saturated at a high temperature, the temperature of the high-concentration salt water 18 rises to, for example, 290 ° C., and the pressure in the autoclave 9 rises to, for example, 7.5 MPa.

尚、STEP:03の該オートクレーブ9の加熱は、時間短縮の為STEP:01或はSTEP:02と並行して行ってもよい。   Note that the heating of the autoclave 9 at STEP: 03 may be performed in parallel with STEP: 01 or STEP: 02 in order to shorten the time.

この時、前記ポテンショスタット29が作動し、該ポテンショスタット29によりカソード電流密度の飽和値が測定されており、カソード電流密度の飽和値が測定されることで酸素の拡散限界電流密度が測定され、前記高濃度塩水18の溶存酸素濃度が測定されている。   At this time, the potentiostat 29 is operated, and the saturation value of the cathode current density is measured by the potentiostat 29, and the saturation value of the cathode current density is measured to measure the diffusion limit current density of oxygen, The dissolved oxygen concentration of the high-concentration salt water 18 is measured.

STEP:04 次に、前記貯水槽2内の前記高濃度溶存酸素水3の溶存酸素濃度調整が行われる。前記酸素供給管5より前記高濃度溶存酸素水3内に酸素が供給されることで該高濃度溶存酸素水3内の溶存酸素濃度が上昇し、又前記窒素供給管6より前記高濃度溶存酸素水3内に窒素が供給されることで該高濃度溶存酸素水3内の溶存酸素濃度が低下する様になっており、前記循環ポンプ12を駆動させて前記溶存酸素濃度測定器10に溶存酸素濃度を測定させつつ、酸素及び窒素を供給することで、前記高濃度溶存酸素水3を所定の溶存酸素濃度、例えば32ppmとする。   (Step 04) Next, the dissolved oxygen concentration of the high-concentration dissolved oxygen water 3 in the water storage tank 2 is adjusted. When oxygen is supplied into the high-concentration dissolved oxygen water 3 from the oxygen supply pipe 5, the dissolved oxygen concentration in the high-concentration dissolved oxygen water 3 increases, and the high-concentration dissolved oxygen from the nitrogen supply pipe 6. By supplying nitrogen into the water 3, the dissolved oxygen concentration in the high-concentration dissolved oxygen water 3 is lowered, and the circulating pump 12 is driven to cause the dissolved oxygen concentration measuring instrument 10 to dissolve oxygen. By supplying oxygen and nitrogen while measuring the concentration, the high-concentration dissolved oxygen water 3 is set to a predetermined dissolved oxygen concentration, for example, 32 ppm.

尚、STEP:04の前記高濃度溶存酸素水3の溶存酸素濃度調整は、時間短縮の為、STEP:01〜STEP:03と並行して行ってもよい。   The adjustment of the dissolved oxygen concentration of the high-concentration dissolved oxygen water 3 in STEP: 04 may be performed in parallel with STEP: 01 to STEP: 03 in order to shorten the time.

STEP:05 該高濃度溶存酸素水3の溶存酸素濃度調整後、前記バルブ16を開放すると共に、前記高圧ポンプ15を駆動させ前記高濃度溶存酸素水3を高温高圧となった前記オートクレーブ9内に送給する。   (Step 05) After adjusting the dissolved oxygen concentration of the high-concentration dissolved oxygen water 3, the valve 16 is opened and the high-pressure pump 15 is driven to bring the high-concentration dissolved oxygen water 3 into the autoclave 9 at high temperature and high pressure. To send.

STEP:06 前記高濃度溶存酸素水3が送給され、前記高濃度塩水18の溶存酸素濃度が腐食試験に於ける設定値、例えば0.2ppmに到達したことを前記ポテンショスタット29にて確認した後、前記バルブ16を閉塞し、前記高圧ポンプ15を停止する。以上により前記試験片19に対する腐食試験の準備が完了し、腐食試験が開始される。尚、腐食試験開始時の前記高濃度塩水18の塩化物濃度は、例えば100ppmである。   STEP: 06 The high-concentration dissolved oxygen water 3 was fed, and it was confirmed by the potentiostat 29 that the dissolved oxygen concentration of the high-concentration salt water 18 reached a set value in a corrosion test, for example, 0.2 ppm. Thereafter, the valve 16 is closed and the high-pressure pump 15 is stopped. Thus, the preparation for the corrosion test on the test piece 19 is completed, and the corrosion test is started. The chloride concentration of the high-concentration brine 18 at the start of the corrosion test is, for example, 100 ppm.

STEP:07 腐食試験開始後、予め設定された設定時間、例えば24時間が経過すると、前記ポテンショスタット29にて現在の前記高濃度塩水18の溶存酸素濃度が測定される。   STEP: 07 When a preset time, for example, 24 hours has elapsed after the start of the corrosion test, the current dissolved oxygen concentration of the high-concentration salt water 18 is measured by the potentiostat 29.

STEP:08 該高濃度塩水18の溶存酸素濃度が測定されると、次に予め設定された腐食試験時間、例えば500時間が経過したかどうかが判断される。   (Step 08) When the dissolved oxygen concentration of the high-concentration salt water 18 is measured, it is then determined whether or not a preset corrosion test time, for example, 500 hours has elapsed.

STEP:09 STEP:08にて腐食試験時間が経過していないと判断されると、次に測定された前記高濃度塩水18の溶存酸素濃度が設定値と一致するかどうか、即ち本実施例に於いては0.2ppmであるかどうかが判断され、測定された前記高濃度塩水18の溶存酸素濃度が設定値と一致した場合には、再度STEP:07の処理が行われる。   STEP: 09 If it is determined that the corrosion test time has not elapsed in STEP 08, whether or not the dissolved oxygen concentration of the high-concentration salt water 18 measured next is equal to the set value, that is, in this example. In this case, it is determined whether or not the concentration is 0.2 ppm. When the measured dissolved oxygen concentration of the high-concentration salt water 18 coincides with the set value, the processing of STEP 07 is performed again.

STEP:10 STEP:09にて前記高濃度塩水18の溶存酸素濃度が設定値と一致しない、即ち測定された前記高濃度塩水18の溶存酸素濃度が例えば0.1ppmであり、0.2ppmを下回っていると判断されると、前記バルブ16を開放し、前記高圧ポンプ15を駆動させ、前記貯水槽2内の前記高濃度溶存酸素水3を前記送給管8を介して前記オートクレーブ9内に所定量、例えば3.1mL注水する。   STEP: 10 The dissolved oxygen concentration of the high-concentration salt water 18 does not match the set value in STEP: 09, that is, the measured dissolved oxygen concentration of the high-concentration salt water 18 is, for example, 0.1 ppm, which is less than 0.2 ppm. When it is determined that the high-pressure pump 15 is driven, the high-concentration dissolved oxygen water 3 in the water storage tank 2 is introduced into the autoclave 9 through the supply pipe 8. A predetermined amount, for example, 3.1 mL of water is injected.

尚、前記高濃度溶存酸素水3の注水により、前記高濃度塩水18の溶存酸素濃度は0.1ppmから0.2ppmに回復するが、1Lの前記高濃度塩水18中に3.1mLの前記高濃度溶存酸素水3を注水するだけであるので、前記高濃度塩水18中の塩化物濃度は100ppmから僅かに99.7ppm迄しか低下せず、塩化物濃度低下による腐食試験への影響は極めて小さい。   The dissolved oxygen concentration of the high-concentration salt water 18 is recovered from 0.1 ppm to 0.2 ppm by pouring the high-concentration dissolved oxygen water 3, but 3.1 mL of the high-concentration salt water 18 is added to 3.1 mL of the high-concentration salt water 18. Since only the concentration of dissolved oxygen water 3 is poured, the chloride concentration in the high-concentration salt water 18 is reduced only from 100 ppm to only 99.7 ppm, and the influence on the corrosion test due to the chloride concentration reduction is extremely small. .

STEP:10にて前記高濃度塩水18中に前記高濃度溶存酸素水3を注水した後、再度STEP:07の処理が行われ、STEP:08にて腐食試験時間が経過したと判断されることで腐食試験が終了する。   After injecting the high-concentration dissolved oxygen water 3 into the high-concentration salt water 18 at STEP: 10, the processing of STEP: 07 is performed again, and it is judged that the corrosion test time has elapsed at STEP: 08. The corrosion test ends.

腐食試験終了後は、前記バルブ23を開放して前記オートクレーブ9内の圧力を低下させ、前記排水管21より前記高濃度塩水18を排水した後、前記オートクレーブ9を開放し、該オートクレーブ9内より前記試験片19が取出される。   After completion of the corrosion test, the valve 23 is opened to reduce the pressure in the autoclave 9, the high-concentration salt water 18 is drained from the drain pipe 21, the autoclave 9 is opened, and the autoclave 9 is opened. The test piece 19 is taken out.

上述の様に、本実施例に於ける前記腐食試験装置1は静水型の腐食試験装置であるので、前記高濃度塩水18は常時前記オートクレーブ9内に貯溜され、前記高濃度塩水18を循環させることにより配管や熱交換器が腐食されるのを防止することができる。   As described above, since the corrosion test apparatus 1 in the present embodiment is a static water type corrosion test apparatus, the high-concentration salt water 18 is always stored in the autoclave 9 and the high-concentration salt water 18 is circulated. Therefore, it is possible to prevent the pipe and the heat exchanger from being corroded.

又、本実施例に於ける前記腐食試験装置1は、腐食試験中の前記高濃度塩水18内に前記高濃度溶存酸素水3を注水可能であるので、腐食試験中の前記高濃度塩水18の溶存酸素濃度を一定又は略一定に保つことができ、長時間の腐食試験を行うことができる。   Further, the corrosion test apparatus 1 in this embodiment can inject the high-concentration dissolved oxygen water 3 into the high-concentration salt water 18 during the corrosion test. The dissolved oxygen concentration can be kept constant or substantially constant, and a long-time corrosion test can be performed.

従って、本実施例の前記腐食試験装置1を用いることで、濃不純物環境下での腐食試験であっても配管等を腐食させることがなく、又試験環境を一定又は略一定に保つことで長時間の腐食試験を行うことができる。   Therefore, by using the corrosion test apparatus 1 of the present embodiment, pipes and the like are not corroded even in a corrosion test under a concentrated impurity environment, and the test environment is kept constant or substantially constant. A time corrosion test can be performed.

1 腐食試験装置
2 貯水槽
3 高濃度溶存酸素水
5 酸素供給管
6 窒素供給管
8 送給管
9 オートクレーブ
13 循環系
14 溶存酸素濃度調整手段
17 送給手段
18 高濃度塩水
19 試験片
26 真空排気手段
31 溶存酸素濃度測定手段
32 ヒータ
DESCRIPTION OF SYMBOLS 1 Corrosion test apparatus 2 Water storage tank 3 High concentration dissolved oxygen water 5 Oxygen supply pipe 6 Nitrogen supply pipe 8 Supply pipe 9 Autoclave 13 Circulation system 14 Dissolved oxygen concentration adjustment means 17 Supply means 18 High concentration salt water 19 Test piece 26 Vacuum exhaust Means 31 Dissolved oxygen concentration measurement means 32 Heater

Claims (2)

高濃度溶存酸素水が貯溜される貯水槽と、該貯水槽内の前記高濃度溶存酸素水の溶存酸素濃度を調整する溶存酸素濃度調整手段と、高濃度塩水が貯溜されると共に該高濃度塩水に試験片が沈められるオートクレーブと、前記高濃度溶存酸素水を前記オートクレーブ内に送給する送給手段と、前記オートクレーブ内を真空引きする真空排気手段と、前記高濃度塩水の溶存酸素濃度を測定する溶存酸素濃度測定手段と、前記オートクレーブを加熱する加熱手段とを具備することを特徴とする腐食試験装置。   A water storage tank for storing high-concentration dissolved oxygen water, a dissolved oxygen concentration adjusting means for adjusting a dissolved oxygen concentration of the high-concentration dissolved oxygen water in the water storage tank, a high-concentration salt water being stored and the high-concentration salt water An autoclave in which a test piece is submerged, a feeding means for feeding the high-concentration dissolved oxygen water into the autoclave, a vacuum exhaust means for evacuating the autoclave, and a dissolved oxygen concentration of the high-concentration salt water are measured. A corrosion test apparatus comprising: a dissolved oxygen concentration measuring means for heating; and a heating means for heating the autoclave. オートクレーブ内に高濃度塩水を注入すると共に該高濃度塩水内に試験片を沈める工程と、前記オートクレーブ内を真空排気手段により真空引きする工程と、前記オートクレーブを加熱手段により加熱する工程と、貯水槽内の高濃度溶存酸素水の溶存酸素濃度を溶存酸素濃度調整手段により調整する工程と、前記高濃度溶存酸素水を送給手段によりオートクレーブ内に送給する工程と、設定時間経過時に前記高濃度塩水内の溶存酸素濃度が低下した際に前記送給手段が前記高濃度塩水に前記高濃度溶存酸素水を注水する工程とを有することを特徴とする腐食試験方法。   Injecting high-concentration salt water into the autoclave and sinking a test piece in the high-concentration salt water; evacuating the autoclave with vacuum evacuation means; heating the autoclave with heating means; A step of adjusting the dissolved oxygen concentration of the high concentration dissolved oxygen water in the autoclave by the dissolved oxygen concentration adjusting means, a step of feeding the high concentration dissolved oxygen water into the autoclave by the feeding means, and the high concentration when the set time elapses. A corrosion test method, comprising: the step of feeding the high-concentration dissolved oxygen water into the high-concentration salt water when the dissolved oxygen concentration in the salt water is lowered.
JP2011276676A 2011-12-19 2011-12-19 Corrosion testing device and corrosion testing method Pending JP2013127389A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2011276676A JP2013127389A (en) 2011-12-19 2011-12-19 Corrosion testing device and corrosion testing method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2011276676A JP2013127389A (en) 2011-12-19 2011-12-19 Corrosion testing device and corrosion testing method

Publications (1)

Publication Number Publication Date
JP2013127389A true JP2013127389A (en) 2013-06-27

Family

ID=48778005

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2011276676A Pending JP2013127389A (en) 2011-12-19 2011-12-19 Corrosion testing device and corrosion testing method

Country Status (1)

Country Link
JP (1) JP2013127389A (en)

Cited By (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103604844A (en) * 2013-10-25 2014-02-26 中国人民解放军装甲兵工程学院 Deep sea corrosion test apparatus capable of measuring and adjusting corrosion liquid oxygen content
CN104215572A (en) * 2014-09-24 2014-12-17 中国石油天然气股份有限公司 Device for testing high-temperature and high-pressure corrosion rate of multi-phase medium
CN104215571A (en) * 2014-09-24 2014-12-17 中国石油天然气股份有限公司 Method for testing high-temperature and high-pressure corrosion rate of multi-phase medium
CN104713768A (en) * 2013-12-16 2015-06-17 恩德莱斯和豪瑟尔测量及调节技术分析仪表两合公司 Digestion reactor and analytical device for determining a digestion parameter of a liquid sample
JP2018138893A (en) * 2017-02-24 2018-09-06 スガ試験機株式会社 Spray corrosion tester
CN108896474A (en) * 2018-08-01 2018-11-27 中国石油天然气集团有限公司 A kind of corrosion evaluating device and method of high temperature real-time monitoring dissolved oxygen concentration
CN113295604A (en) * 2021-05-21 2021-08-24 中国石油化工股份有限公司 Test device and test method for simulating dynamic corrosion of solid waste salt
US11611018B2 (en) 2016-10-24 2023-03-21 Nanosys, Inc. Indium gallium nitride red light emitting diode and method of making thereof
CN117607026A (en) * 2024-01-23 2024-02-27 大唐东北电力试验研究院有限公司 Flow accelerated corrosion test device and test method

Cited By (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103604844A (en) * 2013-10-25 2014-02-26 中国人民解放军装甲兵工程学院 Deep sea corrosion test apparatus capable of measuring and adjusting corrosion liquid oxygen content
CN104713768A (en) * 2013-12-16 2015-06-17 恩德莱斯和豪瑟尔测量及调节技术分析仪表两合公司 Digestion reactor and analytical device for determining a digestion parameter of a liquid sample
CN104215572A (en) * 2014-09-24 2014-12-17 中国石油天然气股份有限公司 Device for testing high-temperature and high-pressure corrosion rate of multi-phase medium
CN104215571A (en) * 2014-09-24 2014-12-17 中国石油天然气股份有限公司 Method for testing high-temperature and high-pressure corrosion rate of multi-phase medium
US11611018B2 (en) 2016-10-24 2023-03-21 Nanosys, Inc. Indium gallium nitride red light emitting diode and method of making thereof
JP2018138893A (en) * 2017-02-24 2018-09-06 スガ試験機株式会社 Spray corrosion tester
CN108896474A (en) * 2018-08-01 2018-11-27 中国石油天然气集团有限公司 A kind of corrosion evaluating device and method of high temperature real-time monitoring dissolved oxygen concentration
CN108896474B (en) * 2018-08-01 2023-07-25 中国石油天然气集团有限公司 Corrosion evaluation device and method for monitoring concentration of dissolved oxygen at high temperature in real time
CN113295604A (en) * 2021-05-21 2021-08-24 中国石油化工股份有限公司 Test device and test method for simulating dynamic corrosion of solid waste salt
CN113295604B (en) * 2021-05-21 2024-02-06 中国石油化工股份有限公司 Test device and test method for simulating dynamic corrosion of solid waste salt
CN117607026A (en) * 2024-01-23 2024-02-27 大唐东北电力试验研究院有限公司 Flow accelerated corrosion test device and test method

Similar Documents

Publication Publication Date Title
JP2013127389A (en) Corrosion testing device and corrosion testing method
JP2006274427A (en) Water treating agent and water treatment method
BRPI0416693B1 (en) METHOD FOR MAINTAINING AN EFFICIENT AMOUNT OF CORROSION OF OXYGEN OR OXYGEN DECONTAMINANTS IN A HOT WATER SYSTEM
CN104090592B (en) The control method of oxygen content in nuclear power station cooling agent circuit
CN103424313A (en) In-situ tensile and hydrogen content monitoring device, and method for monitoring content of hydrogen by using same
US20080257831A1 (en) Water Treating Agent and Water Treatment Method
JP2009031148A (en) Method and device for testing fuel-cladding tube
KR101386698B1 (en) Oxide layer producing system, oxide layer simulating method of a primary nuclear power plant using the same
KR100579385B1 (en) Apparatus and method for molten salt electrolytic bath control
KR200176691Y1 (en) Loop tester for Electr ochem ical Corrosion Potential Monitoring
JP6664410B2 (en) Apparatus and method for performing a tightness test on a fuel rod capsule
TWI599411B (en) Chemical cleaning methods and chemical cleaning device
JP3939630B2 (en) Management method of boiling chemicals
JP2018091816A (en) Leak detection device
JP4735363B2 (en) Operation method of boiler device and boiler device
CN215265597U (en) Dirt deposition test device
KR101796152B1 (en) Spent unclear fuel cooling apparatus
JP3992881B2 (en) Thermal power plant
JP2009191362A (en) Apparatus for molten salt electrolysis and method for producing fluorine gas
JP2017087087A (en) Hydrogen water production apparatus
Novotny et al. Hydrogenation and high temperature oxidation of zirconium claddings
JP2009280438A (en) Activation method for hydrogen storage alloy and activation device for hydrogen storage alloy
JPS5814049A (en) Electrochemical measuring apparatus for high temperature/high pressure solution
US20220223307A1 (en) Pressurized water nuclear power plant and operation method of pressurized water nuclear power plant
JP3553927B2 (en) Fluorine gas generator and electrolytic bath liquid level control method thereof