JP2013127236A - Impeller for water flow power generation - Google Patents

Impeller for water flow power generation Download PDF

Info

Publication number
JP2013127236A
JP2013127236A JP2011290597A JP2011290597A JP2013127236A JP 2013127236 A JP2013127236 A JP 2013127236A JP 2011290597 A JP2011290597 A JP 2011290597A JP 2011290597 A JP2011290597 A JP 2011290597A JP 2013127236 A JP2013127236 A JP 2013127236A
Authority
JP
Japan
Prior art keywords
impeller
water flow
fan
outer periphery
blades
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2011290597A
Other languages
Japanese (ja)
Inventor
Keiichi Fukushima
敬一 福島
Masakichi Kawahara
勝吉 川原
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
FUKUSHIMA SEKKEI KK
Original Assignee
FUKUSHIMA SEKKEI KK
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by FUKUSHIMA SEKKEI KK filed Critical FUKUSHIMA SEKKEI KK
Priority to JP2011290597A priority Critical patent/JP2013127236A/en
Publication of JP2013127236A publication Critical patent/JP2013127236A/en
Pending legal-status Critical Current

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E10/00Energy generation through renewable energy sources
    • Y02E10/20Hydro energy

Landscapes

  • Hydraulic Turbines (AREA)

Abstract

PROBLEM TO BE SOLVED: To provide an impeller for water flow power generation capable of stably rotating upon receiving water flow and generating a higher torque with a blade having the same diameter.SOLUTION: In the impeller for water flow power generation, a plurality of fan-shaped blades each having a mounting angle relative to an axis perpendicular line and an outer cylindrical body disposed at an outer periphery thereof are fixed to an outer periphery of a coaxial body. Partitioning blades as many as or more than the fan-shaped blades in number, each having the mounting angle relative to the axis perpendicular line are integrated with an outermost cylindrical body at an outer periphery of the partition blades. This remarkably improves a rotational torque by water flow, compared with a structure including the fan-shaped blades having the same diameter and the outer cylindrical body.

Description

この発明は、潮流・黒潮や河川及び人工的な水路にて発電する水車あるいはスクリューやプロペラ(以下、「羽根車」という。)によって流体からエネルギーを効率よく取り出す技術に関するものである。  The present invention relates to a technique for efficiently extracting energy from a fluid using a water turbine or a screw or propeller (hereinafter referred to as “impeller”) that generates power in a tidal current / Kuroshio current, a river, or an artificial waterway.

従来、自然エネルギーを利用して発電する水流発電は燃料が不要で有害な排出物がなく、水の密度が充分大きいためエネルギーが大きく、風力発電とは異なり出力の正確な予想が可能であり、安定した電力供給が行える。  Conventionally, hydroelectric power generation that uses natural energy to generate electricity does not require fuel, has no harmful emissions, has a sufficiently high density of water, and thus has a large energy, unlike wind power generation, it can accurately predict output, Stable power supply can be performed.

このように、水流を利用して発電する羽根車として、軸直角線に対して取付角をもつ複数枚で逆テーパ形の扇形羽根をプロペラ中心部の軸体と外周部の筒体との間に配設し、一体化したものがある(例えば、特許文献1参照)。  In this way, as an impeller that generates electricity using a water flow, a plurality of inverted taper fan blades having a mounting angle with respect to the axis perpendicular to the axis are disposed between the shaft body at the center of the propeller and the cylinder body at the outer periphery. There are some which are arranged in an integrated manner (for example, see Patent Document 1).

特願2011−162549Japanese Patent Application No. 2011-162549

例えば、同じ強さの流体速度なら、より高いトルクを発生させることができる周速の大きい外周部でトルクを稼ぐ方が有利である。  For example, if the fluid velocity has the same strength, it is advantageous to gain torque at the outer peripheral portion having a large peripheral speed that can generate higher torque.

また、羽根車の大形化に伴なう強度上の問題、並びに同じ羽根車径でより高トルクを発生する羽根車はないかと研究を重ねた結果、以下の発明に及んだ。  Further, as a result of repeated research on the problem of strength accompanying the increase in the size of the impeller and whether there is an impeller that generates higher torque with the same impeller diameter, the following invention has been achieved.

以上の課題を達成するために、請求項1の発明は、同心の軸体外周に軸直角線に対して、取付角を有する複数枚の扇形羽根外周に配した外筒体の外周に、前記取付角と同じ、又は設定流速に応じた取付角を有する扇形羽根数以上の仕切り羽根を放射状に配し、該仕切り羽根外周に最外筒体を固着し一体化した羽根車とする。  In order to achieve the above-mentioned problems, the invention of claim 1 is characterized in that the outer periphery of the outer cylinder disposed on the outer periphery of a plurality of fan-shaped blades having a mounting angle with respect to the axis perpendicular to the outer periphery of the concentric shaft body, A partition blade having the same number as the mounting angle or having a mounting angle corresponding to the set flow velocity and having more than the number of fan blades is arranged radially, and the outermost cylindrical body is fixed and integrated on the outer periphery of the partition blade.

そうすることで、外筒体と最外筒体の間を仕切り羽根にて形成される空間内に水流を外部へ逃がすことなく通過せしめることにより、前記仕切り羽根に水流による抗力を発生させ、羽根車外径が同じならば、扇形羽根+外筒体と比較して羽根車の水流による回転トルクを格段に増大せしめるものである。  By doing so, by allowing the water flow to pass through the space formed by the partition blade between the outer cylinder and the outermost cylinder without escaping to the outside, the drag generated by the water flow is generated in the partition blade, and the blade If the vehicle outer diameter is the same, the rotational torque due to the water flow of the impeller is significantly increased as compared with the fan blade + outer cylinder.

また、前記最外筒体の外周へさらに仕切り羽根及び最外筒体、つまり2層以上の仕切り羽根を構成することも可能であり、発生トルク及び製作コスト等の諸条件を勘案して決定すればよい。  Further, it is possible to further form partition blades and outermost cylinders, that is, two or more layers of partition blades, on the outer periphery of the outermost cylinder body, which are determined in consideration of various conditions such as generated torque and manufacturing cost. That's fine.

ここで扇形羽根及び仕切り羽根は、湾曲・ねじりがなく単板又は補強材を内部に配した複合板(以下「平板状」という)としており、例えば、流れ方向が左流れの時左回転とすれば、右流れの場合は右回転となり、左流れ右流れ共、同様の回転数及び回転トルクを発生するものであり、つまり潮の流れ方向が180°変化しても羽根車はそのままの状態でよい。  Here, the fan blades and the partition blades are made of a single plate or a composite plate (hereinafter referred to as “flat plate”) without bending or twisting, and for example, when the flow direction is a left flow, the fan blades and the partition blades are turned to the left. For example, in the case of the right flow, the rotation is right, and both the left flow and the right flow generate the same rotation speed and rotation torque. That is, the impeller remains in the state even if the tide flow direction changes by 180 °. Good.

ここで、請求項2の発明は、水流の乱れを防止するため、扇形羽根及び仕切り羽根の外周にR形状のシール剤接着または整流板を固着する。  Here, in the invention of claim 2, in order to prevent disturbance of the water flow, an R-shaped sealing agent adhesion or a current plate is fixed to the outer periphery of the fan blade and the partition blade.

したがって、本発明によれば羽根車径が同一ならば、扇形羽根+外筒体と比較して水流による回転トルクを格段に増大することができる。  Therefore, according to the present invention, if the impeller diameter is the same, the rotational torque due to the water flow can be remarkably increased as compared with the fan-shaped blade + outer cylinder.

本発明の実施例による羽根車の側面図(a)、(b)は正面図である。  Side views (a) and (b) of an impeller according to an embodiment of the present invention are front views. 図1のA−A矢視図である。  It is an AA arrow line view of FIG. 図2の仕切り羽根部の拡大断面図である。  It is an expanded sectional view of the partition blade | wing part of FIG. 図2の扇形羽根部の拡大断面図である。  It is an expanded sectional view of the fan-shaped blade | wing part of FIG.

図1に示すように、同心にある軸体101の外周へ、軸直角線に対して取付角θaを有する逆テーパ形で複数枚の扇形羽根102を例えば溶接にて固着し、該扇形羽根102の外周にはリング状の外筒体103及び前記、扇形羽根102の外周側にはR形状の整流板104を固着している。  As shown in FIG. 1, a plurality of fan-shaped blades 102 having a reverse taper shape having a mounting angle θa with respect to the axis perpendicular to the outer periphery of a concentric shaft body 101 are fixed by, for example, welding. A ring-shaped outer cylindrical body 103 is fixed to the outer periphery of the fan, and an R-shaped rectifying plate 104 is fixed to the outer peripheral side of the fan-shaped blade 102.

前記、羽根構成は特許文献1と同様であり、例えば、実験機で4枚の扇形羽根102外径170mm、軸体101外径34mm、受面角θb=60°で取付角θaと流速v=0.5m/s〜1.4m/sとした時、羽根車の回転数と発生トルクは概略、下記の結果を得た。  The blade configuration is the same as that of Patent Document 1. For example, in an experimental machine, four fan blades 102 have an outer diameter of 170 mm, a shaft body 101 has an outer diameter of 34 mm, a receiving surface angle θb = 60 °, a mounting angle θa, and a flow velocity v =. When the speed was 0.5 m / s to 1.4 m / s, the rotational speed and generated torque of the impeller were roughly obtained as follows.

概略であるが、
・取付角θa=20°の時、回転数は90〜175rpm、トルクは0.7〜1.8kg・cm
・取付角θa=30°の時、回転数は80〜155rpm、トルクは1.0〜2.6kg・cm
・取付角θa=45°の時、回転数は76〜115rpm、トルクは1.7〜3.1kg・cm
であった。
In summary,
・ When the mounting angle θa = 20 °, the rotation speed is 90 to 175 rpm and the torque is 0.7 to 1.8 kg · cm.
・ When the mounting angle θa = 30 °, the rotational speed is 80 to 155 rpm, and the torque is 1.0 to 2.6 kg · cm.
・ When the mounting angle θa = 45 °, the rotation speed is 76 to 115 rpm, and the torque is 1.7 to 3.1 kg · cm.
Met.

以上の結果、取付角θaは40°〜45°が好ましく、羽根車の起動流速は、いずれも0.25m/s程度であり、流速0.5m/s以上からは例えば、発電機の極数を48極とすると60Hzにて定格回転数は150rpmとなり、本機では発電機前の増速比は3以上で発電可能となり、極数を増やせば増速機(図示せず)は不要である。  As a result, the mounting angle θa is preferably 40 ° to 45 °, and the starting flow velocity of the impeller is about 0.25 m / s. From the flow velocity of 0.5 m / s or more, for example, the number of poles of the generator Is 48 rpm, the rated rotation speed is 150 rpm at 60 Hz, and this machine can generate power with a speed increase ratio of 3 or more before the generator. If the number of poles is increased, a speed increaser (not shown) is unnecessary. .

次に、図1〜図4に示すように、外筒体103の外側に軸直角線に対して取付角θaを有する扇形羽根数以上の仕切り羽根112を配し、該仕切り羽根112の外周に最外筒体113を固着し、前記仕切り羽根112外周にはR形状の整流板114を固着し、軸体101、扇形羽根102と一体化する。  Next, as shown in FIGS. 1 to 4, the partition blades 112 having the number of fan-shaped blades having an attachment angle θa with respect to the axis perpendicular to the axis are arranged outside the outer cylinder 103, and the outer periphery of the partition blades 112 is arranged. An outermost cylindrical body 113 is fixed, and an R-shaped rectifying plate 114 is fixed to the outer periphery of the partition blade 112 to be integrated with the shaft body 101 and the fan-shaped blade 102.

そうすることで、扇形羽根102の水流による抗力の他に、外筒体103、仕切り羽根112と最外筒体113にて形成される空間を水流は外側に逃げることなく通過することにより、仕切り羽根112の水流による抗力にて、より強力な回転トルクを発生する。  By doing so, in addition to the drag due to the water flow of the fan blades 102, the water flow passes through the space formed by the outer cylinder 103, the partition blades 112, and the outermost cylinder 113 without escaping to the outside. A stronger rotational torque is generated by the drag of the water flow of the blades 112.

図1に示すように、扇形羽根102と仕切り羽根112を合体した羽根車10の実験機で例えば、軸体101外径34mm、扇形羽根102外径110mm、仕切り羽根外径170mm、受面角θb=60°とした時、流速v=約0.8m/sの羽根車10の発生トルクは下記の結果を得た。  As shown in FIG. 1, in the experimental machine of the impeller 10 in which the fan blade 102 and the partition blade 112 are combined, for example, the shaft 101 has an outer diameter of 34 mm, the fan blade 102 has an outer diameter of 110 mm, the partition blade has an outer diameter of 170 mm, and the receiving surface angle θb. = 60 °, the generated torque of the impeller 10 with the flow velocity v = about 0.8 m / s obtained the following results.

取付角θa=45°の時、発生トルクは特許文献1と同等である扇形羽根4枚+外筒体方式での約2.6kg・cmに比べて、図1の羽根車では約3.9kg・cmとなり、水流による回転トルクを格段に増大することができる。  When the mounting angle θa = 45 °, the generated torque is about 3.9 kg in the impeller of FIG. 1 compared to about 2.6 kg · cm in the four fan-shaped blades + outer cylinder system, which is equivalent to Patent Document 1. * It becomes cm, and the rotational torque by a water flow can be increased markedly.

ここで、扇形羽根102及び仕切り羽根112は湾曲、ねじりがなく平板状であり、例えば流れ方向が水流1の時、左回転とすれば、水流2の時は右回転となり、羽根車10の回転方向は違うが流速による回転数及び回転トルクは概略同一であり、つまり、潮の流れ方向が180°変化しても羽根車10は180°旋回することなく、そのままの状態で水流発電することができる。  Here, the fan blades 102 and the partition blades 112 are flat and not curved and twisted. For example, if the flow direction is a water flow 1, the rotation is counterclockwise and the water flow 2 is a right rotation, and the impeller 10 rotates. Although the direction is different, the rotational speed and rotational torque due to the flow velocity are almost the same. That is, even if the flow direction of the tide changes by 180 °, the impeller 10 does not turn 180 °, but can generate hydroelectric power as it is. it can.

1 水流
2 水流
10 羽根車
101 軸体
102 扇形羽根
103 外筒体
104 整流板
112 仕切り羽根
113 最外筒体
114 整流板
θa 取付角
θb 受面角
DESCRIPTION OF SYMBOLS 1 Water stream 2 Water stream 10 Impeller 101 Shaft body 102 Fan-shaped blade 103 Outer cylinder body 104 Rectifier plate 112 Partition blade 113 Outermost cylinder body 114 Rectifier plate θa Mounting angle θb Reception surface angle

Claims (2)

同心にある軸体の外周に、軸直角線に対して30°〜45°の取付角を有する平板状で複数枚の扇形羽根を外周にあるリング状の外筒体内面に固着し、且つ、前記外筒体の外周に、軸直角線に対して30°〜45°の取付角を有する平板状で扇形羽根数以上の仕切り羽根を配し、該仕切り羽根を外周の最外筒体内面に固着したことを特徴とする水流発電用の羽根車。On the outer periphery of the concentric shaft body, a plurality of fan-shaped blades having a mounting angle of 30 ° to 45 ° with respect to the axis perpendicular to the axis are fixed to the inner surface of the ring-shaped outer cylindrical body on the outer periphery, and On the outer periphery of the outer cylinder, a flat plate-like partition blade having an attachment angle of 30 ° to 45 ° with respect to the axis perpendicular to the axis is arranged, and the partition blade is disposed on the inner surface of the outermost cylindrical body on the outer periphery. An impeller for hydroelectric power generation characterized by being fixed. 請求項1に記載の羽根車において、扇形羽根及び仕切り羽根の外周にR形状の整流部又は整流板を固着した水流発電用の羽根車。The impeller according to claim 1, wherein an R-shaped rectifying unit or a rectifying plate is fixed to the outer periphery of the fan blade and the partition blade.
JP2011290597A 2011-12-16 2011-12-16 Impeller for water flow power generation Pending JP2013127236A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2011290597A JP2013127236A (en) 2011-12-16 2011-12-16 Impeller for water flow power generation

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2011290597A JP2013127236A (en) 2011-12-16 2011-12-16 Impeller for water flow power generation

Publications (1)

Publication Number Publication Date
JP2013127236A true JP2013127236A (en) 2013-06-27

Family

ID=48777895

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2011290597A Pending JP2013127236A (en) 2011-12-16 2011-12-16 Impeller for water flow power generation

Country Status (1)

Country Link
JP (1) JP2013127236A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN108397337A (en) * 2018-02-06 2018-08-14 深圳市奈士迪技术研发有限公司 A kind of safety-type water generating equipment with speed changing function
CN111133189A (en) * 2017-09-18 2020-05-08 民昺坤 Hydraulic hydro turbine utilizing a cylinder spaced from the axis of rotation and mounted wings and fixed funnels

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN111133189A (en) * 2017-09-18 2020-05-08 民昺坤 Hydraulic hydro turbine utilizing a cylinder spaced from the axis of rotation and mounted wings and fixed funnels
CN111133189B (en) * 2017-09-18 2021-01-08 民昺坤 Water turbine
CN108397337A (en) * 2018-02-06 2018-08-14 深圳市奈士迪技术研发有限公司 A kind of safety-type water generating equipment with speed changing function

Similar Documents

Publication Publication Date Title
AU2008307077A1 (en) Turbine assembly
KR20130060771A (en) Ship power generator for vehicle
JP2011122508A (en) Power generator
US10099761B2 (en) Water turbine propeller
JP2013127236A (en) Impeller for water flow power generation
CN205025686U (en) Series connection birotor trend can hydraulic turbine power generation facility
JP2010196669A (en) Wind turbine generator
JP4892716B1 (en) Wind power generator
US20120100004A1 (en) High efficiency impeller
KR101243970B1 (en) Cross flow water current turbine installed in water channel
CN105508130B (en) Wind collection type wind driven generator
JP2009019532A (en) Phase inversion cross-flow type super-small power generator
KR101325675B1 (en) Cross Flow Turbine Having Flow Stabilizing Device
KR20110063994A (en) Current energy power generation apparatus having simple structure
TW201331467A (en) A small wind turbine
KR20120128458A (en) Wind power generator
KR101196356B1 (en) Magnetism-operation of Vertical axis a Water current Hydraulic turbine
JP6077295B2 (en) Power converter
JP7180057B2 (en) Magnus type thrust generator, wind power generator, hydraulic power generator, tidal power generator using the Magnus type thrust generator, and wind power generator, water power generator, tidal power generator using the Magnus type thrust generator
JP2000087838A (en) Valveless turbine for wave force having air injection port on guide plate
JP5073087B1 (en) Water current generator, tidal current generator and tidal current power generation method using the same
JP7161747B2 (en) Magnus type thrust generator, wind power generator, hydraulic power generator, tidal power generator using the Magnus type thrust generator, and wind power generator, water power generator, tidal power generator using the Magnus type thrust generator
KR101835540B1 (en) Generating Unit of Vertical Axis Hybrid Turbine Having Horizontal Axis Turbine
JP2006291886A (en) Method of producing power from moving fluid with high efficiency
KR20170046985A (en) hydraulic power generator