JP2013126351A - Non-contact power supply device - Google Patents

Non-contact power supply device Download PDF

Info

Publication number
JP2013126351A
JP2013126351A JP2011275503A JP2011275503A JP2013126351A JP 2013126351 A JP2013126351 A JP 2013126351A JP 2011275503 A JP2011275503 A JP 2011275503A JP 2011275503 A JP2011275503 A JP 2011275503A JP 2013126351 A JP2013126351 A JP 2013126351A
Authority
JP
Japan
Prior art keywords
power
power feeding
region
power supply
contact
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2011275503A
Other languages
Japanese (ja)
Inventor
Koichi Hasegawa
浩一 長谷川
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sumitomo Riko Co Ltd
Original Assignee
Sumitomo Riko Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sumitomo Riko Co Ltd filed Critical Sumitomo Riko Co Ltd
Priority to JP2011275503A priority Critical patent/JP2013126351A/en
Priority to PCT/JP2012/082331 priority patent/WO2013089181A1/en
Publication of JP2013126351A publication Critical patent/JP2013126351A/en
Pending legal-status Critical Current

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60MPOWER SUPPLY LINES, AND DEVICES ALONG RAILS, FOR ELECTRICALLY- PROPELLED VEHICLES
    • B60M7/00Power lines or rails specially adapted for electrically-propelled vehicles of special types, e.g. suspension tramway, ropeway, underground railway
    • B60M7/003Power lines or rails specially adapted for electrically-propelled vehicles of special types, e.g. suspension tramway, ropeway, underground railway for vehicles using stored power (e.g. charging stations)
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L53/00Methods of charging batteries, specially adapted for electric vehicles; Charging stations or on-board charging equipment therefor; Exchange of energy storage elements in electric vehicles
    • B60L53/10Methods of charging batteries, specially adapted for electric vehicles; Charging stations or on-board charging equipment therefor; Exchange of energy storage elements in electric vehicles characterised by the energy transfer between the charging station and the vehicle
    • B60L53/12Inductive energy transfer
    • B60L53/126Methods for pairing a vehicle and a charging station, e.g. establishing a one-to-one relation between a wireless power transmitter and a wireless power receiver
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L53/00Methods of charging batteries, specially adapted for electric vehicles; Charging stations or on-board charging equipment therefor; Exchange of energy storage elements in electric vehicles
    • B60L53/30Constructional details of charging stations
    • B60L53/35Means for automatic or assisted adjustment of the relative position of charging devices and vehicles
    • B60L53/36Means for automatic or assisted adjustment of the relative position of charging devices and vehicles by positioning the vehicle
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L53/00Methods of charging batteries, specially adapted for electric vehicles; Charging stations or on-board charging equipment therefor; Exchange of energy storage elements in electric vehicles
    • B60L53/30Constructional details of charging stations
    • B60L53/35Means for automatic or assisted adjustment of the relative position of charging devices and vehicles
    • B60L53/38Means for automatic or assisted adjustment of the relative position of charging devices and vehicles specially adapted for charging by inductive energy transfer
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02JCIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
    • H02J50/00Circuit arrangements or systems for wireless supply or distribution of electric power
    • H02J50/05Circuit arrangements or systems for wireless supply or distribution of electric power using capacitive coupling
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02JCIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
    • H02J50/00Circuit arrangements or systems for wireless supply or distribution of electric power
    • H02J50/10Circuit arrangements or systems for wireless supply or distribution of electric power using inductive coupling
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02JCIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
    • H02J50/00Circuit arrangements or systems for wireless supply or distribution of electric power
    • H02J50/90Circuit arrangements or systems for wireless supply or distribution of electric power involving detection or optimisation of position, e.g. alignment
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L2210/00Converter types
    • B60L2210/30AC to DC converters
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T10/00Road transport of goods or passengers
    • Y02T10/60Other road transportation technologies with climate change mitigation effect
    • Y02T10/70Energy storage systems for electromobility, e.g. batteries
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T10/00Road transport of goods or passengers
    • Y02T10/60Other road transportation technologies with climate change mitigation effect
    • Y02T10/7072Electromobility specific charging systems or methods for batteries, ultracapacitors, supercapacitors or double-layer capacitors
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T10/00Road transport of goods or passengers
    • Y02T10/60Other road transportation technologies with climate change mitigation effect
    • Y02T10/72Electric energy management in electromobility
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T90/00Enabling technologies or technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02T90/10Technologies relating to charging of electric vehicles
    • Y02T90/12Electric charging stations
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T90/00Enabling technologies or technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02T90/10Technologies relating to charging of electric vehicles
    • Y02T90/14Plug-in electric vehicles

Landscapes

  • Engineering & Computer Science (AREA)
  • Power Engineering (AREA)
  • Mechanical Engineering (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Transportation (AREA)
  • Electric Propulsion And Braking For Vehicles (AREA)
  • Charge And Discharge Circuits For Batteries Or The Like (AREA)

Abstract

PROBLEM TO BE SOLVED: To provide a non-contact power supply device which has high versatility and high power transmission efficiency.SOLUTION: A non-contact power supply device 1 comprises: a power supply region R1 which supplies power by coming into contact with a power receiving region R2 of a vehicle 9; a buffer part 2; and a power supply part 3 which is arranged on the buffer part 2 so as to face the power receiving region R2 and has a conductive portion 30 containing an elastomer and a conductive material. The power supply region R1 is deformed along the shape of the power receiving region R2 by deformation of the buffer part 2 and the power supply part 3.

Description

本発明は、例えば静電容量型や電磁誘導型などの無接点給電装置に関する。   The present invention relates to a non-contact power feeding device such as a capacitance type or an electromagnetic induction type.

無接点給電装置の中には、給電側の電極と受電側の電極との間にコンデンサを形成し、静電容量により電力を供給する静電容量型の無接点給電装置がある(例えば特許文献1参照)。また、給電側のコイルと受電側のコイルとの間の電磁誘導を利用して電力を供給する電磁誘導型の無接点給電装置がある(例えば特許文献2〜4参照)。   Among contactless power supply devices, there is a capacitance-type contactless power supply device in which a capacitor is formed between a power supply side electrode and a power reception side electrode and power is supplied by electrostatic capacitance (for example, Patent Documents). 1). In addition, there is an electromagnetic induction type non-contact power supply device that supplies electric power using electromagnetic induction between a coil on a power feeding side and a coil on a power receiving side (see, for example, Patent Documents 2 to 4).

無接点給電装置は、例えば駐車場の路面などに配置されている。無接点給電装置の上面には、給電領域が配置されている。一方、車両の下面には、受電領域が配置されている。   The non-contact power feeding device is disposed on a road surface of a parking lot, for example. A power feeding region is arranged on the upper surface of the non-contact power feeding device. On the other hand, a power receiving area is disposed on the lower surface of the vehicle.

特開2009−89520号公報JP 2009-89520 A 特開平9−213378号公報JP-A-9-213378 特開2009−95072号公報JP 2009-95072 A 特開2011−151351号公報JP 2011-151351 A

一例として、電磁誘導型の無接点給電装置の場合、電力供給時においては、給電領域を受電領域に当接させる。そして、給電側のコイルと受電側のコイルとを電磁結合させて、車両のバッテリ(二次電池)に電力を供給する。   As an example, in the case of an electromagnetic induction type non-contact power feeding device, the power feeding area is brought into contact with the power receiving area when power is supplied. The power supply side coil and the power reception side coil are electromagnetically coupled to supply power to the vehicle battery (secondary battery).

ここで、給電側のコイルと受電側のコイルとが離間していると、送電効率が著しく低下する。このため、給電領域と受電領域とを密着させる必要がある。したがって、給電領域および受電領域を、共に平坦面とする必要がある。こうすると、給電領域と受電領域とを密着させることができる。   Here, if the coil on the power feeding side and the coil on the power receiving side are separated from each other, the power transmission efficiency is significantly reduced. For this reason, it is necessary to bring the power feeding area and the power receiving area into close contact with each other. Therefore, both the power feeding area and the power receiving area need to be flat surfaces. Thus, the power feeding area and the power receiving area can be brought into close contact with each other.

しかしながら、空気抵抗対策、飛び石対策などの観点から、車両の下面に大きな平坦面を確保することは困難である。このため、給電領域と受電領域とを密着させることは困難である。ここで、給電領域と受電領域とを型対称に形成することも考えられる。例えば、無接点給電装置の給電領域を凸形状にし、車両の受電領域を当該凸形状に型対称な凹形状にすることも考えられる。ところが、この場合、受電領域の形状が凹形状ではない車両に電力を供給する際に、やはり送電効率が著しく低下してしまう。すなわち、汎用性に欠ける。   However, it is difficult to secure a large flat surface on the lower surface of the vehicle from the viewpoint of measures against air resistance and stepping stones. For this reason, it is difficult to bring the power feeding region and the power receiving region into close contact with each other. Here, it is conceivable to form the power feeding region and the power receiving region symmetrically. For example, it is also conceivable that the power feeding area of the non-contact power feeding device has a convex shape and the power receiving area of the vehicle has a concave shape that is symmetrical to the convex shape. However, in this case, when power is supplied to a vehicle in which the shape of the power receiving area is not concave, the power transmission efficiency is significantly reduced. That is, it lacks versatility.

この点、特許文献4には、柔軟な給電側コアおよび受電側コアを備える電磁誘導型の無接点給電装置が開示されている。給電側コアおよび受電側コアは、各々、軟磁性体製である。軟磁性体は、ゴムおよび樹脂の少なくとも一方に、軟磁性材料が分散されることにより、形成されている。同文献記載の無接点給電装置によると、給電側コアの上端の平坦面と、受電側コアの下端の平坦面と、が互いに平行でない場合であっても、給電側コアおよび受電側コアが変形することにより、給電側コアと受電側コアとを面接触させることができる。   In this regard, Patent Document 4 discloses an electromagnetic induction type non-contact power supply device including a flexible power supply side core and a power reception side core. The power supply side core and the power reception side core are each made of a soft magnetic material. The soft magnetic material is formed by dispersing a soft magnetic material in at least one of rubber and resin. According to the non-contact power feeding device described in the same document, even if the flat surface at the upper end of the power feeding side core and the flat surface at the lower end of the power receiving side core are not parallel to each other, the power feeding side core and the power receiving side core are deformed. By doing so, the power feeding side core and the power receiving side core can be brought into surface contact.

ところが、特許文献4の無接点給電装置の場合、導電部(給電側コイル、受電側コイル)自体は変形しない。このため、やはり、給電側コイルと受電側コイルとが離間しやすい。したがって、送電効率が低下しやすい。   However, in the case of the non-contact power feeding device of Patent Document 4, the conductive portion (power feeding side coil, power receiving side coil) itself is not deformed. For this reason, the power feeding side coil and the power receiving side coil are easily separated from each other. Therefore, the power transmission efficiency tends to decrease.

本発明の無接点給電装置は、上記課題に鑑みて完成されたものである。本発明は、汎用性が高く、送電効率が高い無接点給電装置を提供することを目的とする。   The non-contact power feeding device of the present invention has been completed in view of the above problems. An object of this invention is to provide the non-contact electric power feeder with high versatility and high power transmission efficiency.

(1)上記課題を解決するため、本発明の無接点給電装置は、車両の受電領域に当接することにより電力を供給する給電領域を備える無接点給電装置であって、緩衝部と、該緩衝部に配置されると共に該受電領域に対向して配置され、エラストマーおよび導電材を含む導電部を有する給電部と、を備え、該緩衝部および該給電部が変形することにより、該給電領域は、該受電領域の形状に倣って変形することを特徴とする。   (1) In order to solve the above-described problem, a contactless power supply device according to the present invention is a contactless power supply device including a power supply region that supplies power by contacting a power receiving region of a vehicle. And a power feeding part that is disposed opposite to the power receiving area and has a conductive part including an elastomer and a conductive material, and the power feeding area is formed by deforming the buffer part and the power feeding part. The power receiving area is deformed following the shape of the power receiving area.

ここで、給電部が「受電領域に対向して配置され」る形態には、給電部の表面に給電領域が配置される場合は、直接、給電部と受電領域とが互いに向かい合っている形態が含まれる。また、別部材の表面に給電領域が配置される場合は、別部材を介して間接的に、給電部と受電領域とが互いに向かい合っている形態が含まれる。   Here, in the form in which the power feeding unit is “arranged opposite to the power receiving area”, when the power feeding area is arranged on the surface of the power feeding part, the form in which the power feeding part and the power receiving area are directly facing each other. included. In addition, when the power feeding region is arranged on the surface of the separate member, a form in which the power feeding unit and the power receiving region face each other indirectly through the separate member is included.

本発明の無接点給電装置によると、給電部の導電部(例えば、電極、コイルなど)がエラストマーを含んでいる。このため、給電部が柔軟である。したがって、給電領域と受電領域とが接触する際、緩衝部および給電部が変形することにより、給電領域を、受電領域の形状に倣って、変形させることができる。   According to the contactless power feeding device of the present invention, the conductive portion (for example, an electrode, a coil, etc.) of the power feeding portion contains an elastomer. For this reason, the power feeding unit is flexible. Therefore, when the power feeding area and the power receiving area are in contact with each other, the buffer section and the power feeding section are deformed, so that the power feeding area can be deformed following the shape of the power receiving area.

本発明の無接点給電装置によると、給電領域と受電領域との界面の接触面積を広くすることができる。このため、送電効率が高くなる。また、柔軟な緩衝部、給電部の付勢力により、給電領域を受電領域に弾接させることができる。このため、電力供給時に給電領域を受電領域に密着させることができる。   According to the non-contact power feeding device of the present invention, the contact area of the interface between the power feeding region and the power receiving region can be widened. For this reason, power transmission efficiency becomes high. Further, the power feeding area can be elastically contacted with the power receiving area by the urging force of the flexible buffer part and the power feeding part. For this reason, the power feeding area can be brought into close contact with the power receiving area when power is supplied.

また、本発明の無接点給電装置によると、給電領域を、受電領域の形状に倣って、自在に変形させることができる。このため、受電領域の形状の設計の自由度が高くなる。また、車種によらず、高い送電効率を確保することができる。すなわち、車種に対する汎用性が高くなる。   Moreover, according to the non-contact power feeding device of the present invention, the power feeding area can be freely deformed following the shape of the power receiving area. For this reason, the freedom degree of design of the shape of a receiving area becomes high. Moreover, high power transmission efficiency can be ensured regardless of the vehicle type. That is, the versatility with respect to a vehicle type becomes high.

(1−1)好ましくは、上記(1)の構成において、前記給電領域は、前記緩衝部の表面および前記給電部の表面のうち、前記受電領域に近い方に配置される構成とする方がよい。本構成によると、緩衝部表面と給電部表面との位置関係に応じて、受電領域に近い方を給電領域に設定することができる。   (1-1) Preferably, in the configuration of (1) above, the power feeding region is arranged closer to the power receiving region among the surface of the buffer portion and the surface of the power feeding portion. Good. According to this configuration, the power supply region closer to the power reception region can be set according to the positional relationship between the buffer portion surface and the power supply portion surface.

(2)好ましくは、上記(1)の構成において、前記緩衝部は、気体入りのエアバッグ部である構成とする方がよい。以下、受電領域と給電領域とが重なる方向を「重複方向」、重複方向に直交する方向を「直交方向」と定義する。液体と比較して、気体は圧縮性が高い。このため、本構成によると、エアバッグ部の受電領域側の壁部が変形する場合であっても、当該変形が、エアバッグ部の他の壁部に与える影響が小さい。したがって、エアバッグ部が、直交方向に変形しにくい。   (2) Preferably, in the configuration of (1) above, the buffer portion is a gas-filled airbag portion. Hereinafter, a direction in which the power receiving region and the power feeding region overlap is defined as an “overlapping direction”, and a direction orthogonal to the overlapping direction is defined as an “orthogonal direction”. Compared to liquid, gas is highly compressible. For this reason, according to this structure, even if it is a case where the wall part by the side of the electric power reception area | region of an airbag part deform | transforms, the influence which the said deformation | transformation has on the other wall part of an airbag part is small. Therefore, the airbag portion is not easily deformed in the orthogonal direction.

また、本構成によると、給電領域と受電領域とが一旦当接した後、車両と無接点給電装置との相対的な位置関係がずれる場合であっても、給電領域と受電領域とがずれにくい。その理由は、エアバッグ部の直交方向の壁部が傾斜することにより、当該位置ずれを吸収することができるからである。このように、本構成によると、給電領域と受電領域とが摺接しにくい。   In addition, according to the present configuration, even if the relative positional relationship between the vehicle and the non-contact power feeding device is shifted after the power feeding region and the power receiving region are in contact with each other, the power feeding region and the power receiving region are not easily displaced. . The reason is that the position shift can be absorbed by the inclination of the wall portion in the orthogonal direction of the airbag portion. Thus, according to this configuration, the power feeding region and the power receiving region are unlikely to be in sliding contact.

(3)好ましくは、上記(1)または(2)の構成において、前記導電部は、コイルまたは電極である構成とする方がよい。本構成は、本発明の無接点給電装置を、電磁誘導型または静電容量型の無接点給電装置として具現化したものである。   (3) Preferably, in the configuration of (1) or (2), the conductive portion is a coil or an electrode. In this configuration, the contactless power supply device of the present invention is embodied as an electromagnetic induction type or electrostatic capacitance type contactless power supply device.

本構成によると、電力供給時において、給電側のコイルと、受電側のコイルと、が離間しにくい。また、電力供給時において、給電側の電極と、受電側の電極と、が離間しにくい。   According to this configuration, at the time of power supply, the power supply side coil and the power reception side coil are not easily separated. In addition, at the time of power supply, the electrode on the power feeding side and the electrode on the power receiving side are not easily separated.

(4)好ましくは、上記(1)ないし(3)のいずれかの構成において、前記受電領域に対して、前記給電領域を離接可能な駆動部を備える構成とする方がよい。本構成によると、受電領域に対して給電領域を動かすことができる。また、受電領域に対する給電領域の弾接力を調整することができる。   (4) Preferably, in any one of the configurations (1) to (3), a drive unit that can connect and disconnect the power feeding region with respect to the power receiving region is better. According to this configuration, the power feeding area can be moved relative to the power receiving area. In addition, the elastic contact force of the power feeding area with respect to the power receiving area can be adjusted.

(5)好ましくは、上記(4)の構成において、前記受電領域と前記給電領域とが重なる方向を重複方向、該重複方向に直交する方向を直交方向として、前記駆動部は、人力が入力される入力部と、該入力部に連結され該給電領域を該重複方向に往復動させるリンク機構部と、を有する構成とする方がよい。   (5) Preferably, in the configuration of the above (4), the direction in which the power receiving region and the power feeding region overlap is defined as the overlapping direction, and the direction orthogonal to the overlapping direction is defined as the orthogonal direction, and the driving unit receives human power. And a link mechanism unit connected to the input unit and reciprocating in the overlapping direction.

本構成によると、人力により給電領域を動かすことができる。このため、電力により給電領域を動かす場合と比較して、無接点給電装置を簡単に設置することができる。したがって、一般家庭などにおいても、無接点給電装置を手軽に使用することができる。また、人力により給電領域を動かすため、無接点給電装置の製造コストを削減することができる。また、無接点給電装置の構造を簡単にすることができる。また、本構成によると、給電領域を重複方向に往復動させることができる。このため、給電領域の軌道に直交方向成分が含まれる場合と比較して、給電領域と受電領域とが摺接しにくい。   According to this configuration, the power feeding area can be moved manually. For this reason, a non-contact electric power feeder can be easily installed compared with the case where an electric power feeding area | region is moved with electric power. Therefore, the non-contact power feeding device can be easily used even in a general home. In addition, since the power feeding area is moved manually, the manufacturing cost of the contactless power feeding device can be reduced. Further, the structure of the non-contact power feeding device can be simplified. Further, according to this configuration, the power feeding area can be reciprocated in the overlapping direction. For this reason, compared with the case where an orthogonal direction component is contained in the track | orbit of an electric power feeding area | region, an electric power feeding area | region and an electric power receiving area | region are hard to slide.

(6)好ましくは、上記(1)ないし(5)のいずれかの構成において、電力供給時に前記給電領域と前記受電領域とが当接するように、前記車両の位置を決める位置決め部を備える構成とする方がよい。本構成によると、給電領域と受電領域との位置合わせを簡単に行うことができる。   (6) Preferably, in any one of the configurations (1) to (5), a configuration is provided that includes a positioning unit that determines the position of the vehicle so that the power feeding region and the power receiving region abut when power is supplied. Better to do. According to this configuration, it is possible to easily align the power feeding area and the power receiving area.

本発明によると、汎用性が高く、送電効率が高い無接点給電装置を提供することができる。   ADVANTAGE OF THE INVENTION According to this invention, a non-contact electric power feeder with high versatility and high power transmission efficiency can be provided.

第一実施形態の無接点給電装置の配置図である。It is an arrangement plan of the non-contact electric power feeder of a first embodiment. 図1の枠II内の拡大図である。It is an enlarged view in the frame II of FIG. 同無接点給電装置の駆動部より上の部分の斜視図である。It is a perspective view of the part above the drive part of the non-contact electric power feeder. 同無接点給電装置のブロック図である。It is a block diagram of the non-contact power feeding device. 同無接点給電装置の当接状態における左面図である。It is a left view in the contact state of the non-contact electric power feeder. 図5の枠VI内の拡大図である。FIG. 6 is an enlarged view in a frame VI of FIG. 5. 同無接点給電装置の、車両と無接点給電装置との相対的な位置関係がずれた場合の、エアバッグ部付近の拡大図である。FIG. 3 is an enlarged view of the vicinity of the airbag unit when the relative positional relationship between the vehicle and the contactless power supply device of the contactless power supply device is shifted. 第二実施形態の無接点給電装置の駆動部より上の部分の左面図である。It is a left view of the part above the drive part of the non-contact electric power feeder of 2nd embodiment. 第三実施形態の無接点給電装置のエアバッグ部の左面図(断面図)である。It is a left view (sectional drawing) of the airbag part of the non-contact electric power feeder of 3rd embodiment. 第四実施形態の無接点給電装置の緩衝部の左面図(断面図)である。It is a left view (sectional drawing) of the buffer part of the non-contact electric power feeder of 4th embodiment. 第五実施形態の無接点給電装置の駆動部より上の部分の斜視図である。It is a perspective view of the part above the drive part of the non-contact electric power feeder of 5th embodiment.

以下、本発明の無接点給電装置の実施の形態について説明する。   Hereinafter, embodiments of the contactless power feeding device of the present invention will be described.

<第一実施形態>
[無接点給電装置の配置]
まず、本実施形態の無接点給電装置の配置について説明する。以下に示す実施形態においては、上下方向が本発明の「重複方向」に相当する。また、水平方向、前後方向、左右方向が、本発明の「直交方向」に相当する。
<First embodiment>
[Arrangement of contactless power supply device]
First, the arrangement of the contactless power supply device of this embodiment will be described. In the embodiments described below, the vertical direction corresponds to the “overlapping direction” of the present invention. Further, the horizontal direction, the front-rear direction, and the left-right direction correspond to the “orthogonal direction” of the present invention.

図1に、本実施形態の無接点給電装置の配置図を示す。図1に示すように、本実施形態の無接点給電装置1は、一般家庭の駐車スペースに配置されている。車両9の前輪91は、無接点給電装置1に乗り上げている。この状態において、車両9のバッテリ(二次電池)の充電が行われる。   FIG. 1 shows a layout diagram of the contactless power supply device of the present embodiment. As shown in FIG. 1, the non-contact electric power feeder 1 of this embodiment is arrange | positioned in the parking space of a general household. A front wheel 91 of the vehicle 9 rides on the contactless power supply device 1. In this state, the battery (secondary battery) of the vehicle 9 is charged.

[無接点給電装置の機械的構成]
次に、本実施形態の無接点給電装置の機械的構成について説明する。図2に、図1の枠II内の拡大図を示す。図1、図2に示すように、無接点給電装置1は、エアバッグ部2と、給電部3と、駆動部4と、ベース5と、給電領域R1と、を備えている。
[Mechanical configuration of contactless power supply]
Next, the mechanical configuration of the contactless power supply device of this embodiment will be described. FIG. 2 shows an enlarged view in the frame II of FIG. As illustrated in FIGS. 1 and 2, the contactless power supply device 1 includes an airbag unit 2, a power supply unit 3, a drive unit 4, a base 5, and a power supply region R <b> 1.

ベース5は、ゴム製であって板状を呈している。ベース5は、駐車スペースに載置されている。ベース5の上面の前部分には、左右一対の位置決め部50が凹設されている。車両の前輪91は、当該位置決め部50に収容されている。すなわち、車両9は、位置決め部50により、位置決めされている。   The base 5 is made of rubber and has a plate shape. The base 5 is placed in the parking space. A pair of left and right positioning portions 50 are recessed in the front portion of the upper surface of the base 5. The front wheel 91 of the vehicle is accommodated in the positioning unit 50. That is, the vehicle 9 is positioned by the positioning unit 50.

図3に、本実施形態の無接点給電装置の駆動部より上の部分の斜視図を示す。図1〜図3に示すように、駆動部4は、入力部40と、リンク機構部41と、を備えている。リンク機構部41は、第一壁部410と、第二壁部411と、五つの第一アーム412と、五つの第二アーム413と、を備えている。   In FIG. 3, the perspective view of the part above the drive part of the non-contact electric power feeder of this embodiment is shown. As shown in FIGS. 1 to 3, the drive unit 4 includes an input unit 40 and a link mechanism unit 41. The link mechanism portion 41 includes a first wall portion 410, a second wall portion 411, five first arms 412, and five second arms 413.

第一壁部410は、金属製であって四角形板状を呈している。第一壁部410は、ベース5の上面に配置されている。第一壁部410の上面には、五つの支持部410aが配置されている。五つの支持部410aは、第一壁部410の四隅および中央に配置されている。   The first wall portion 410 is made of metal and has a rectangular plate shape. The first wall portion 410 is disposed on the upper surface of the base 5. Five support portions 410 a are arranged on the upper surface of the first wall portion 410. The five support portions 410 a are disposed at the four corners and the center of the first wall portion 410.

第二壁部411は、金属製であって四角形板状を呈している。第二壁部411は、第一壁部410の真上に配置されている。第一壁部410および第二壁部411は、各々、水平方向に延在している。第一壁部410と第二壁部411とは、互いに平行である。第二壁部411の下面には、五つの支持部411aが配置されている。五つの支持部411aは、第二壁部411の四隅および中央に配置されている。五つの支持部410aと、五つの支持部411aと、は上下方向に対向している。   The second wall portion 411 is made of metal and has a rectangular plate shape. The second wall portion 411 is disposed immediately above the first wall portion 410. Each of the first wall portion 410 and the second wall portion 411 extends in the horizontal direction. The first wall portion 410 and the second wall portion 411 are parallel to each other. Five support portions 411 a are disposed on the lower surface of the second wall portion 411. The five support portions 411 a are disposed at the four corners and the center of the second wall portion 411. The five support portions 410a and the five support portions 411a face each other in the vertical direction.

第一アーム412は金属製であって梁状を呈している。第一アーム412の下端は、第一壁部410の支持部410aに、揺動可能に取り付けられている。第二アーム413は金属製であって梁状を呈している。第二アーム413の上端は、第二壁部411の支持部411aに、揺動可能に取り付けられている。第一アーム412の上端と、第二アーム413の下端と、は互いに揺動可能に連結されている。   The first arm 412 is made of metal and has a beam shape. The lower end of the first arm 412 is swingably attached to the support portion 410 a of the first wall portion 410. The second arm 413 is made of metal and has a beam shape. The upper end of the second arm 413 is swingably attached to the support part 411a of the second wall part 411. The upper end of the first arm 412 and the lower end of the second arm 413 are connected to each other so as to be swingable.

入力部40は、レバー400と、シャフト401と、を備えている。シャフト401は、金属製であって丸棒状を呈している。シャフト401は、左右方向に延在している。シャフト401の右端は、第一壁部410の中央の支持部410aにおいて、中央の第一アーム412の下端に固定されている。レバー400は、金属製であって梁状を呈している。レバー400は、上下方向に延在している。レバー400の下端は、シャフト401の左端に固定されている。レバー400の上端からは、グリップ400aが突設されている。   The input unit 40 includes a lever 400 and a shaft 401. The shaft 401 is made of metal and has a round bar shape. The shaft 401 extends in the left-right direction. The right end of the shaft 401 is fixed to the lower end of the central first arm 412 in the central support portion 410 a of the first wall portion 410. The lever 400 is made of metal and has a beam shape. The lever 400 extends in the vertical direction. The lower end of the lever 400 is fixed to the left end of the shaft 401. A grip 400 a protrudes from the upper end of the lever 400.

図2に点線で示すように、操作者がグリップ400aを把持してレバー400を下方に揺動させると、シャフト401を介して、中央の第一アーム412が上方に揺動する。ここで、第二壁部411の移動方向は、四隅の第一アーム412および第二アーム413により、上下方向に限定されている。このため、第二壁部411は上方に移動する。レバー400の揺動量により、第二壁部411の移動量を調整することができる。レバー400を逆方向(上方)に揺動させると、第二壁部411は下方に移動する。   As shown by a dotted line in FIG. 2, when the operator holds the grip 400 a and swings the lever 400 downward, the central first arm 412 swings upward via the shaft 401. Here, the moving direction of the second wall portion 411 is limited to the vertical direction by the first arm 412 and the second arm 413 at the four corners. For this reason, the 2nd wall part 411 moves upwards. The movement amount of the second wall portion 411 can be adjusted by the swing amount of the lever 400. When the lever 400 is swung in the reverse direction (upward), the second wall portion 411 moves downward.

エアバッグ部2は、シリコーンゴム製であって袋状(直方体箱状)を呈している。エアバッグ部2は、第二壁部411の上面に配置されている。エアバッグ部2の内部には、所定の空気圧で、空気が充填されている。   The airbag portion 2 is made of silicone rubber and has a bag shape (cuboid box shape). The airbag part 2 is disposed on the upper surface of the second wall part 411. The air bag portion 2 is filled with air at a predetermined air pressure.

図4に、本実施形態の無接点給電装置のブロック図を示す。図1〜図4に示すように、給電部3は、前後一対の電極30と、交流電源31と、カバーフィルム32と、を備えている。電極30は、アミン架橋アクリルゴムおよび銀粒子を含んでいる。アミン架橋アクリルゴムは、本発明の「エラストマー」の概念に含まれる。銀粒子は、本発明の「導電材」の概念に含まれる。銀粒子の含有量は、電極30の体積を100vol%とした場合の38vol%である。電極30は、長方形膜状を呈している。前後一対の電極30は、エアバッグ部2の上方の壁部の上面に配置されている。   In FIG. 4, the block diagram of the non-contact electric power feeder of this embodiment is shown. As shown in FIGS. 1 to 4, the power feeding unit 3 includes a pair of front and rear electrodes 30, an AC power supply 31, and a cover film 32. The electrode 30 includes amine-crosslinked acrylic rubber and silver particles. Amine-crosslinked acrylic rubber is included in the concept of “elastomer” of the present invention. Silver particles are included in the concept of the “conductive material” of the present invention. The silver particle content is 38 vol% when the volume of the electrode 30 is 100 vol%. The electrode 30 has a rectangular film shape. The pair of front and rear electrodes 30 are disposed on the upper surface of the wall portion above the airbag portion 2.

カバーフィルム32は、シリコーンゴム製であって、長方形膜状を呈している。カバーフィルム32は、前後一対の電極30およびエアバッグ部2の上方の壁部の上面を、上方から覆っている。給電領域R1は、カバーフィルム32の上面に設定されている。受電領域R2と、カバーフィルム32(つまり給電部3)と、の位置関係は、本発明における、給電部が「受電領域に対向して配置され」る形態に含まれる。上方または下方から見て、給電領域R1には、前後一対の電極30が含まれている。   The cover film 32 is made of silicone rubber and has a rectangular film shape. The cover film 32 covers the upper surfaces of the upper and lower walls of the pair of front and rear electrodes 30 and the airbag part 2 from above. The power feeding region R <b> 1 is set on the upper surface of the cover film 32. The positional relationship between the power receiving region R2 and the cover film 32 (that is, the power feeding unit 3) is included in the present invention in which the power feeding unit is “disposed facing the power receiving region”. When viewed from above or below, the power feeding region R1 includes a pair of front and rear electrodes 30.

カバーフィルム32の上方には、車両9のアンダーカバー92が配置されている。アンダーカバー92は、波板状を呈している。アンダーカバー92の上面には、前後一対の電極902が配置されている。受電領域R2は、アンダーカバー92の下面に設定されている。上方または下方から見て、受電領域R2には、前後一対の電極902が含まれている。図1に示すように前輪91が位置決め部50に収容された状態において、受電領域R2と給電領域R1とは、上下方向に対向している。並びに、電極902と電極30とは、上下方向に対向している。   An under cover 92 of the vehicle 9 is disposed above the cover film 32. The under cover 92 has a corrugated shape. A pair of front and rear electrodes 902 are disposed on the upper surface of the under cover 92. The power receiving region R <b> 2 is set on the lower surface of the under cover 92. When viewed from above or below, the power receiving region R2 includes a pair of front and rear electrodes 902. As shown in FIG. 1, in a state where the front wheel 91 is accommodated in the positioning unit 50, the power receiving region R2 and the power feeding region R1 face each other in the vertical direction. In addition, the electrode 902 and the electrode 30 face each other in the vertical direction.

[無接点給電装置の電気的構成]
次に、本実施形態の無接点給電装置の電気的構成について説明する。図4に示すように、車両9の受電装置90は、ブリッジ整流回路900と、バッテリ(二次電池)901と、上述した前後一対の電極902と、上述した受電領域R2と、を備えている。
[Electric configuration of contactless power supply device]
Next, the electrical configuration of the contactless power supply device of this embodiment will be described. As shown in FIG. 4, the power receiving device 90 of the vehicle 9 includes a bridge rectifier circuit 900, a battery (secondary battery) 901, the pair of front and rear electrodes 902 described above, and the power receiving region R2 described above. .

ブリッジ整流回路900は、いわゆる全波整流回路である。ブリッジ整流回路900は、四つのダイオード900aを備えている。前後一対の電極902と、バッテリ901とは、ブリッジ整流回路900を介して、電気的に接続されている。このため、後述する電力供給時において、前後一対の電極30の極性が反転しても、バッテリ901に対する電圧印加方向は一定である。   The bridge rectifier circuit 900 is a so-called full-wave rectifier circuit. The bridge rectifier circuit 900 includes four diodes 900a. The pair of front and rear electrodes 902 and the battery 901 are electrically connected via the bridge rectifier circuit 900. For this reason, the voltage application direction to the battery 901 is constant even when the polarity of the pair of front and rear electrodes 30 is reversed during power supply described later.

上下方向に対向する電極902と電極30との間には、上方から下方に向かって、アンダーカバー92とカバーフィルム32とが介装されている。後述する電力供給時においては、これらアンダーカバー92およびカバーフィルム32により、電極902と電極30との間に、誘電層が形成される。   An under cover 92 and a cover film 32 are interposed from the upper side to the lower side between the electrode 902 and the electrode 30 facing in the vertical direction. At the time of power supply to be described later, a dielectric layer is formed between the electrode 902 and the electrode 30 by the under cover 92 and the cover film 32.

[無接点給電装置の離間状態から当接状態への切替時の動き]
次に、本実施形態の無接点給電装置の離間状態から当接状態への切替時の動きについて説明する。図5に、本実施形態の無接点給電装置の当接状態における左面図を示す。なお、図5は、図2(離間状態)に対応している。
[Motion when switching the contactless power supply device from the separated state to the contact state]
Next, the movement at the time of switching from the separated state to the contact state of the contactless power supply device of the present embodiment will be described. In FIG. 5, the left view in the contact state of the non-contact electric power feeder of this embodiment is shown. FIG. 5 corresponds to FIG. 2 (separated state).

まず、図1に示すように、運転者は、車両9でベース5に乗り上げる。そして、前輪91を位置決め部50に入れる。この状態が、図2に示す離間状態である。次に、運転者は、図2、図5に示すように、グリップ400aを把持してレバー400を下方に揺動させることにより、第二壁部411を上方に移動させる。   First, as shown in FIG. 1, the driver gets on the base 5 with the vehicle 9. Then, the front wheel 91 is put into the positioning unit 50. This state is the separated state shown in FIG. Next, as shown in FIGS. 2 and 5, the driver moves the second wall portion 411 upward by gripping the grip 400a and swinging the lever 400 downward.

図6に、図5の枠VI内の拡大図を示す。なお、図6に一点鎖線で示すは、図2の離間状態におけるエアバッグ部2の上方の壁部、前後一対の電極30、カバーフィルム32の形状である。図6に示すように、当接状態においては、エアバッグ部2の上方の壁部、前後一対の電極30、カバーフィルム32は、アンダーカバー92の下面(外面)の形状に倣って、波板状に変形している。このため、給電領域R1と受電領域R2とが全面的に面接触している。図6に矢印で示すように、給電領域R1と受電領域R2との界面には、下方から、エアバッグ部2の空気圧縮に伴う付勢力、第二壁部411の移動による付勢力が、加わっている。このため、給電領域R1と受電領域R2とは密着している。   FIG. 6 shows an enlarged view in the frame VI of FIG. In addition, what is shown with a dashed-dotted line in FIG. 6 is the shape of the wall part above the airbag part 2, the pair of front and rear electrodes 30, and the cover film 32 in the separated state of FIG. As shown in FIG. 6, in the contact state, the upper wall portion of the airbag portion 2, the pair of front and rear electrodes 30, and the cover film 32 follow the shape of the lower surface (outer surface) of the undercover 92 to corrugate Is deformed. For this reason, the power feeding region R1 and the power receiving region R2 are in surface contact with each other. As indicated by arrows in FIG. 6, an urging force due to air compression of the airbag portion 2 and an urging force due to movement of the second wall portion 411 are applied to the interface between the power feeding region R1 and the power receiving region R2 from below. ing. For this reason, the power feeding region R1 and the power receiving region R2 are in close contact with each other.

[無接点給電装置の電力供給時の動き]
次に、本実施形態の無接点給電装置の電力供給時の動きについて説明する。図4に示すように、交流電源31をオンにすると、前方の電極30〜電極902間(コンデンサ)と、後方の電極30〜電極902間(コンデンサ)と、の間の電圧印加方向が周期的に反転する。各々のコンデンサにチャージされた電荷は、ブリッジ整流回路900を介して、バッテリ901に供給される。このようにして、バッテリ901の充電が行われる。バッテリ901充電後は、レバー400を上方に揺動させることにより、第二壁部411つまり給電領域R1を下方に移動させる。
[Movement when supplying power to a non-contact power supply device]
Next, the movement at the time of power supply of the contactless power supply device of the present embodiment will be described. As shown in FIG. 4, when the AC power supply 31 is turned on, the voltage application direction between the front electrode 30 and the electrode 902 (capacitor) and between the rear electrode 30 and the electrode 902 (capacitor) is periodic. Invert. The electric charge charged in each capacitor is supplied to the battery 901 via the bridge rectifier circuit 900. In this way, the battery 901 is charged. After charging the battery 901, the second wall 411, that is, the power feeding region R1 is moved downward by swinging the lever 400 upward.

図7に、本実施形態の無接点給電装置の、車両と無接点給電装置との相対的な位置関係がずれた場合の、エアバッグ部付近の拡大図を示す。なお、図7は、図6に対応している。図7に矢印で示すように、第二壁部411が前方(直交方向)にずれると、エアバッグ部2の前後両壁が、当該ずれを吸収するように、傾斜する。このため、給電領域R1は、受電領域R2に密着したままである。このように、給電領域R1と受電領域R2とは摺動しにくい。   FIG. 7 shows an enlarged view of the vicinity of the airbag unit when the relative positional relationship between the vehicle and the non-contact power supply device of the non-contact power supply device of the present embodiment is shifted. FIG. 7 corresponds to FIG. As indicated by arrows in FIG. 7, when the second wall portion 411 is displaced forward (orthogonal direction), the front and rear walls of the airbag portion 2 are inclined so as to absorb the displacement. For this reason, the power feeding region R1 remains in close contact with the power receiving region R2. Thus, the power feeding region R1 and the power receiving region R2 are difficult to slide.

[作用効果]
次に、本実施形態の無接点給電装置1の作用効果について説明する。本実施形態の無接点給電装置1によると、電極30がエラストマーおよび導電材を含んでいる。また、カバーフィルム32がエラストマー製である。また、エアバッグ部2がエラストマー製である。また、エアバッグ部2には、空気が充填されている。このため、給電部3およびエアバッグ部2が柔軟である。したがって、図6に示すように、給電領域R1と受電領域R2とが接触する際、給電部3およびエアバッグ部2が変形することにより、給電領域R1を、受電領域R2の外面形状に倣って、変形させることができる。
[Function and effect]
Next, the effect of the contactless power supply device 1 of the present embodiment will be described. According to the contactless power supply device 1 of the present embodiment, the electrode 30 includes an elastomer and a conductive material. The cover film 32 is made of an elastomer. The airbag portion 2 is made of an elastomer. The airbag portion 2 is filled with air. For this reason, the electric power feeding part 3 and the airbag part 2 are flexible. Therefore, as shown in FIG. 6, when the power feeding region R1 and the power receiving region R2 come into contact with each other, the power feeding unit 3 and the airbag unit 2 are deformed so that the power feeding region R1 follows the outer surface shape of the power receiving region R2. Can be deformed.

本実施形態の無接点給電装置1によると、給電領域R1と受電領域R2との界面の接触面積を広くすることができる。このため、送電効率が高くなる。また、柔軟な給電部3、エアバッグ部2の付勢力により、給電領域R1を受電領域R2に弾接させることができる。このため、電力供給時に給電領域R1を受電領域R2に密着させることができる。したがって、電力供給時において、給電側の電極30と、受電側の電極902と、が離間しにくい。   According to the contactless power feeding device 1 of the present embodiment, the contact area of the interface between the power feeding region R1 and the power receiving region R2 can be increased. For this reason, power transmission efficiency becomes high. Further, the power feeding region R1 can be elastically contacted with the power receiving region R2 by the urging force of the flexible power feeding unit 3 and the airbag unit 2. For this reason, at the time of electric power supply, electric power feeding area | region R1 can be closely_contact | adhered to electric power receiving area | region R2. Therefore, at the time of power supply, the power supply side electrode 30 and the power reception side electrode 902 are not easily separated.

また、本実施形態の無接点給電装置1によると、給電領域R1を、受電領域R2の外面形状に倣って、自在に変形させることができる。このため、受電領域R2の外面形状の設計の自由度が高くなる。また、車種によらず、高い送電効率を確保することができる。すなわち、車種に対する汎用性が高くなる。   Further, according to the contactless power supply device 1 of the present embodiment, the power supply region R1 can be freely deformed following the outer surface shape of the power receiving region R2. For this reason, the freedom degree of design of the outer surface shape of power receiving area | region R2 becomes high. Moreover, high power transmission efficiency can be ensured regardless of the vehicle type. That is, the versatility with respect to a vehicle type becomes high.

また、本実施形態の無接点給電装置1によると、エアバッグ部2に空気が充填されている。液体と比較して、気体は圧縮性が高い。このため、エアバッグ部2の上方の壁部が変形する場合であっても、当該変形が、エアバッグ部2の下方の壁部や水平方向の壁部に与える影響が小さい。したがって、エアバッグ部2が、水平方向に、変形しにくい。   Moreover, according to the non-contact electric power feeder 1 of this embodiment, the airbag part 2 is filled with air. Compared to liquid, gas is highly compressible. For this reason, even when the upper wall portion of the airbag portion 2 is deformed, the influence of the deformation on the lower wall portion and the horizontal wall portion of the airbag portion 2 is small. Therefore, the airbag portion 2 is not easily deformed in the horizontal direction.

また、本実施形態の無接点給電装置1によると、図7に示すように、給電領域R1と受電領域R2とが一旦当接した後、車両9と無接点給電装置1との相対的な位置関係が水平方向にずれる場合であっても、給電領域R1と受電領域R2とがずれにくい。このため、給電領域R1と受電領域R2とが摺接しにくい。   Further, according to the contactless power supply device 1 of the present embodiment, as shown in FIG. 7, after the power feeding region R1 and the power receiving region R2 once contact each other, the relative position between the vehicle 9 and the contactless power feeding device 1 is determined. Even when the relationship is shifted in the horizontal direction, the power feeding region R1 and the power receiving region R2 are not easily displaced. For this reason, it is difficult for the power feeding region R1 and the power receiving region R2 to be in sliding contact.

また、本実施形態の無接点給電装置1によると、駆動部4が配置されている。このため、図2(離間状態)、図5(当接状態)に示すように、受電領域R2に対して給電領域R1を動かすことができる。また、受電領域R2に対する給電領域R1の弾接力を調整することができる。また、図2に点線で示すように、受電領域R2の高さに応じて、給電領域R1の高さを調整することができる。このため、車種によらず(車両9の受電領域R2の高さによらず)、受電領域R2に給電領域R1を確実に弾接させることができる。   Further, according to the contactless power supply device 1 of the present embodiment, the drive unit 4 is arranged. For this reason, as shown in FIG. 2 (separated state) and FIG. 5 (contact state), the power feeding region R1 can be moved with respect to the power receiving region R2. In addition, the elastic contact force of the power feeding region R1 with respect to the power receiving region R2 can be adjusted. Further, as indicated by a dotted line in FIG. 2, the height of the power feeding region R1 can be adjusted according to the height of the power receiving region R2. For this reason, regardless of the vehicle type (regardless of the height of the power receiving area R2 of the vehicle 9), the power feeding area R1 can be reliably brought into elastic contact with the power receiving area R2.

また、本実施形態の無接点給電装置1によると、駆動部4を介して、給電領域R1を人力で動かすことができる。このため、例えば一般家庭、マンション、店舗などの駐車スペース、駐車場などにおいても、無接点給電装置1を、簡単かつ手軽に設置することができる。また、人力により給電領域R1を動かすため、無接点給電装置1の製造コストを削減することができる。また、無接点給電装置1の構造を簡単にすることができる。また、リンク機構部41によると、給電領域R1を上下方向に往復動させることができる。このため、給電領域R1の軌道に水平方向成分が含まれる場合(例えば給電領域R1が揺動する場合)と比較して、給電領域R1と受電領域R2とが摺接しにくい。また、リンク機構部41によると、第二壁部411の上下方向位置に関係なく、第一壁部410に対して第二壁部411を平行に保つことができる。また、本実施形態の無接点給電装置1は、図1に示すように、位置決め部50を備えている。このため、センサなどを用いずに、給電領域R1と受電領域R2との位置合わせを簡単に行うことができる。   In addition, according to the contactless power supply device 1 of the present embodiment, the power supply region R1 can be moved manually through the drive unit 4. For this reason, the non-contact electric power feeder 1 can be installed easily and easily, for example also in parking spaces, parking lots, etc. of a general household, an apartment, a store, etc. Further, since the power feeding region R1 is moved by human power, the manufacturing cost of the contactless power feeding device 1 can be reduced. Moreover, the structure of the non-contact power feeding device 1 can be simplified. Moreover, according to the link mechanism part 41, electric power feeding area | region R1 can be reciprocated to an up-down direction. For this reason, compared with the case where the horizontal direction component is included in the trajectory of the power feeding region R1 (for example, when the power feeding region R1 swings), the power feeding region R1 and the power receiving region R2 are less likely to slide. Further, according to the link mechanism 41, the second wall 411 can be kept parallel to the first wall 410 regardless of the vertical position of the second wall 411. Moreover, the non-contact electric power feeder 1 of this embodiment is provided with the positioning part 50, as shown in FIG. For this reason, it is possible to easily align the power feeding region R1 and the power receiving region R2 without using a sensor or the like.

<第二実施形態>
本実施形態の無接点給電装置と、第一実施形態の無接点給電装置との相違点は、中央の第二アームに、緩衝部材が配置されている点である。ここでは、相違点についてのみ説明する。
<Second embodiment>
The difference between the contactless power supply device of the present embodiment and the contactless power supply device of the first embodiment is that a buffer member is disposed on the central second arm. Here, only differences will be described.

図8に、本実施形態の無接点給電装置の駆動部より上の部分の左面図を示す。なお、図2と対応する部位については、同じ符号で示す。図8に示すように、中央の第二アーム413は、凹部材413aと凸部材413bとを備えている。凸部材413bの上向きの凸部は、凹部材413aの下向きの凹部に、往復動可能に収容されている。また、凸部が凹部から完全に脱落するのを抑制するために、凸部と凹部との間にはストッパ(図略)が配置されている。凹部材413aと凸部材413bとの間には、コイルばね413cが介装されている。   In FIG. 8, the left view of the part above the drive part of the non-contact electric power feeder of this embodiment is shown. In addition, about the site | part corresponding to FIG. 2, it shows with the same code | symbol. As shown in FIG. 8, the second arm 413 at the center includes a concave member 413a and a convex member 413b. The upward convex portion of the convex member 413b is accommodated in the downward concave portion of the concave member 413a so as to be able to reciprocate. In addition, a stopper (not shown) is disposed between the convex portion and the concave portion in order to prevent the convex portion from completely falling out of the concave portion. A coil spring 413c is interposed between the concave member 413a and the convex member 413b.

本実施形態の無接点給電装置と、第一実施形態の無接点給電装置とは、構成が共通する部分に関しては、同様の作用効果を有する。また、本実施形態の無接点給電装置によると、前出図2に示す離間状態から、前出図5に示す当接状態に切り替える際に、給電領域R1および受電領域R2に加わる衝撃を、コイルばね413cにより、緩和することができる。また、電力供給時に給電領域R1を受電領域R2に密着させることができる。   The contactless power supply device according to the present embodiment and the contactless power supply device according to the first embodiment have the same functions and effects with respect to parts having the same configuration. Further, according to the contactless power feeding device of the present embodiment, when switching from the separated state shown in FIG. 2 to the contact state shown in FIG. 5, the impact applied to the power feeding region R1 and the power receiving region R2 is applied to the coil. It can be relaxed by the spring 413c. In addition, the power supply region R1 can be in close contact with the power receiving region R2 when power is supplied.

<第三実施形態>
本実施形態の無接点給電装置と、第一実施形態の無接点給電装置との相違点は、エアバッグ部の上方の壁部の下面に、電極とカバーフィルムとが配置されている点である。ここでは、相違点についてのみ説明する。
<Third embodiment>
The difference between the contactless power supply device of the present embodiment and the contactless power supply device of the first embodiment is that an electrode and a cover film are arranged on the lower surface of the wall portion above the airbag portion. . Here, only differences will be described.

図9に、本実施形態の無接点給電装置のエアバッグ部の左面図(断面図)を示す。なお、図6と対応する部位については、同じ符号で示す。図9に示すように、エアバッグ部2の上方の壁部の下面には、前後一対の電極30と、カバーフィルム32と、が配置されている。カバーフィルム32は、前後一対の電極30を、下方から覆っている。エアバッグ部2の上方の壁部の上面には、給電領域R1が設定されている。   In FIG. 9, the left view (sectional drawing) of the airbag part of the non-contact electric power feeder of this embodiment is shown. In addition, about the site | part corresponding to FIG. 6, it shows with the same code | symbol. As shown in FIG. 9, a pair of front and rear electrodes 30 and a cover film 32 are disposed on the lower surface of the wall portion above the airbag portion 2. The cover film 32 covers the pair of front and rear electrodes 30 from below. On the upper surface of the wall portion above the airbag portion 2, a power feeding region R1 is set.

受電領域R2と給電部3との間には、エアバッグ部2の上方の壁部が介在している。受電領域R2と給電部3との位置関係は、本発明における、給電部が「受電領域に対向して配置され」る形態に含まれる。   A wall portion above the airbag portion 2 is interposed between the power receiving region R2 and the power feeding portion 3. The positional relationship between the power receiving region R2 and the power feeding unit 3 is included in a form in which the power feeding unit is “disposed facing the power receiving region” in the present invention.

電力供給時においては、アンダーカバー92(図6参照)およびエアバッグ部2の上方の壁部により、電極902(図6参照)と電極30との間に、誘電層が形成される。   During power supply, a dielectric layer is formed between the electrode 902 (see FIG. 6) and the electrode 30 by the under cover 92 (see FIG. 6) and the wall portion above the airbag portion 2.

本実施形態の無接点給電装置と、第一実施形態の無接点給電装置とは、構成が共通する部分に関しては、同様の作用効果を有する。また、本実施形態の無接点給電装置によると、前後一対の電極30と、カバーフィルム32と、がエアバッグ部2の内部に収容されている。このため、前後一対の電極30を外部環境から保護することができる。   The contactless power supply device according to the present embodiment and the contactless power supply device according to the first embodiment have the same functions and effects with respect to parts having the same configuration. Further, according to the contactless power supply device of the present embodiment, the pair of front and rear electrodes 30 and the cover film 32 are accommodated inside the airbag portion 2. For this reason, the pair of front and rear electrodes 30 can be protected from the external environment.

<第四実施形態>
本実施形態の無接点給電装置と、第一実施形態の無接点給電装置との相違点は、エアバッグ部の代わりにウレタン発泡体製の緩衝部が配置されている点である。ここでは、相違点についてのみ説明する。
<Fourth embodiment>
The difference between the contactless power supply device of this embodiment and the contactless power supply device of the first embodiment is that a cushioning portion made of urethane foam is arranged instead of the airbag portion. Here, only differences will be described.

図10に、本実施形態の無接点給電装置の緩衝部の左面図(断面図)を示す。なお、図6と対応する部位については、同じ符号で示す。図10に示すように、緩衝部20は、ウレタン発泡体製である。緩衝部20の上面には、前後一対の電極30と、カバーフィルム32と、が配置されている。カバーフィルム32の上面には、給電領域R1が設定されている。   In FIG. 10, the left view (sectional drawing) of the buffer part of the non-contact electric power feeder of this embodiment is shown. In addition, about the site | part corresponding to FIG. 6, it shows with the same code | symbol. As shown in FIG. 10, the buffer part 20 is made of urethane foam. A pair of front and rear electrodes 30 and a cover film 32 are disposed on the upper surface of the buffer portion 20. On the upper surface of the cover film 32, a power feeding region R1 is set.

本実施形態の無接点給電装置と、第一実施形態の無接点給電装置とは、構成が共通する部分に関しては、同様の作用効果を有する。また、本実施形態の無接点給電装置によると、緩衝部20の構造が簡単になる。   The contactless power supply device according to the present embodiment and the contactless power supply device according to the first embodiment have the same functions and effects with respect to parts having the same configuration. Further, according to the contactless power supply device of the present embodiment, the structure of the buffer portion 20 is simplified.

<第五実施形態>
本実施形態の無接点給電装置と、第一実施形態の無接点給電装置との相違点は、電極の代わりに、コイルが配置されている点である。ここでは、相違点についてのみ説明する。図11に、本実施形態の無接点給電装置の駆動部より上の部分の斜視図を示す。なお、図3と対応する部位については、同じ符号で示す。図11に示すように、コイル33は、アミン架橋アクリルゴムおよび銀粒子を含んでいる。銀粒子の含有量は、電極30の体積を100vol%とした場合の38vol%である。コイル33は、渦巻状かつ薄膜状を呈している。コイル33は、エアバッグ部2の上面に配置されている。カバーフィルム32は、コイル33を、上方から覆っている。カバーフィルム32の上面には、給電領域R1が設定されている。図11に細線で示すように、車両の受電領域R2には、コイル903が配置されている。コイル33とコイル903とは、上下方向に対向している。
<Fifth embodiment>
The difference between the contactless power supply device of the present embodiment and the contactless power supply device of the first embodiment is that a coil is disposed instead of an electrode. Here, only differences will be described. In FIG. 11, the perspective view of the part above the drive part of the non-contact electric power feeder of this embodiment is shown. In addition, about the site | part corresponding to FIG. 3, it shows with the same code | symbol. As shown in FIG. 11, the coil 33 includes amine-crosslinked acrylic rubber and silver particles. The silver particle content is 38 vol% when the volume of the electrode 30 is 100 vol%. The coil 33 has a spiral shape and a thin film shape. The coil 33 is disposed on the upper surface of the airbag unit 2. The cover film 32 covers the coil 33 from above. On the upper surface of the cover film 32, a power feeding region R1 is set. As shown by a thin line in FIG. 11, a coil 903 is disposed in the power receiving region R2 of the vehicle. The coil 33 and the coil 903 are opposed to each other in the vertical direction.

本実施形態の無接点給電装置と、第一実施形態の無接点給電装置とは、構成が共通する部分に関しては、同様の作用効果を有する。また、本実施形態の無接点給電装置によると、給電側のコイル33と受電側のコイル903との間の電磁誘導を利用して、バッテリに電力を供給することができる。   The contactless power supply device according to the present embodiment and the contactless power supply device according to the first embodiment have the same functions and effects with respect to parts having the same configuration. Further, according to the contactless power supply device of the present embodiment, power can be supplied to the battery by using electromagnetic induction between the power supply side coil 33 and the power reception side coil 903.

<その他>
以上、本発明の無接点給電装置の実施の形態について説明した。しかしながら、実施の形態は上記形態に特に限定されるものではない。当業者が行いうる種々の変形的形態、改良的形態で実施することも可能である。
<Others>
The embodiment of the contactless power supply device of the present invention has been described above. However, the embodiment is not particularly limited to the above embodiment. Various modifications and improvements that can be made by those skilled in the art are also possible.

エアバッグ部2に充填する気体の種類は特に限定しない。窒素、希ガスなどであってもよい。また、エアバッグ部2に配管(パイプ、チューブ、ホースなど)を接続し気体を出入り可能にしてもよい。こうすると、エアバッグ部2の内圧を調整することができる。また、エアバッグ部2に圧力計を設定してもよい。こうすると、図2に示す離間状態や、図5に示す当接状態を、圧力変化により検出することができる。また、エアバッグ部2に、液体(水、オイルなど)を入れてもよい。また、エアバッグ部2自体が上下方向に伸縮する(例えば、エアバッグ部2の水平方向の壁部に蛇腹形状を付与する。並びに、エアバッグ部2に配管を接続し気体を出入り可能にする。)ことにより、図2に示す離間状態と、図5に示す当接状態と、を切り替えてもよい。こうすると、駆動部4が不要になる。また、駆動部4の構成は特に限定しない。カム機構、流体シリンダ、ロボットなどを用いてもよい。   The kind of gas with which the airbag part 2 is filled is not particularly limited. Nitrogen, a noble gas, etc. may be sufficient. Moreover, piping (a pipe, a tube, a hose, etc.) may be connected to the airbag part 2 so that gas can enter and exit. If it carries out like this, the internal pressure of the airbag part 2 can be adjusted. Further, a pressure gauge may be set in the airbag portion 2. In this way, the separated state shown in FIG. 2 and the contact state shown in FIG. 5 can be detected by pressure change. Further, a liquid (water, oil, etc.) may be put into the airbag part 2. In addition, the airbag part 2 itself expands and contracts in the vertical direction (for example, a bellows shape is given to the horizontal wall part of the airbag part 2. In addition, a pipe is connected to the airbag part 2 to allow gas to enter and exit. Thus, the separated state shown in FIG. 2 and the contact state shown in FIG. 5 may be switched. In this way, the drive unit 4 becomes unnecessary. Moreover, the structure of the drive part 4 is not specifically limited. A cam mechanism, a fluid cylinder, a robot, or the like may be used.

また、車両9のアンダーカバー92の下面形状、傾斜は特に限定しない。フィンや孔などの凹凸があってもよい。また、平面、曲面などであってもよい。また、車両9における受電領域R2の位置も特に限定しない。フロントバンパ下面、リアバンパ下面、ボディ側面、ボディ上面などであってもよい。   Moreover, the lower surface shape and inclination of the under cover 92 of the vehicle 9 are not particularly limited. There may be irregularities such as fins and holes. Moreover, a plane, a curved surface, etc. may be sufficient. Further, the position of the power receiving region R2 in the vehicle 9 is not particularly limited. It may be a front bumper lower surface, a rear bumper lower surface, a body side surface, a body upper surface, or the like.

また、エアバッグ部2に対する、電極30、コイル33の配置方法は特に限定しない。エアバッグ部2とは別に作製した電極30、コイル33を、エアバッグ部2に貼り付けてもよい。また、エアバッグ部2とカバーフィルム32との間に電極30、コイル33を挟装して、ラミネート加工してもよい。   Moreover, the arrangement | positioning method of the electrode 30 and the coil 33 with respect to the airbag part 2 is not specifically limited. The electrode 30 and the coil 33 produced separately from the airbag unit 2 may be attached to the airbag unit 2. Further, the electrode 30 and the coil 33 may be sandwiched between the airbag portion 2 and the cover film 32 and laminated.

また、エアバッグ部2に塗料を印刷(例えば、スクリーン印刷、インクジェット印刷、フレキソ印刷、グラビア印刷、パッド印刷、リソグラフィーなど)することにより、電極30、コイル33を形成してもよい。また、エアバッグ部2に塗料を塗布(例えば、ディップ法、スプレー法、バーコート法など)することにより、電極30、コイル33を形成してもよい。   Alternatively, the electrode 30 and the coil 33 may be formed by printing paint (for example, screen printing, inkjet printing, flexographic printing, gravure printing, pad printing, lithography, etc.) on the airbag unit 2. Alternatively, the electrode 30 and the coil 33 may be formed by applying a paint to the airbag portion 2 (for example, a dipping method, a spray method, a bar coating method, or the like).

また、電極30、コイル33の配置数、配置面積、形状も特に限定しない。また、電極30の配置数、配置面積、形状と、電極902の配置数、配置面積、形状と、が一致しなくてもでもよい。同様に、コイル33の配置数、配置面積、形状と、コイル903の配置数、配置面積、形状と、が一致しなくてもよい。例えば、電極30の配置数を電極902の配置数よりも多くすると(電極30の配置面積を電極902の配置面積よりも広くすると)、広い範囲において、電極30と電極902とを上下方向に対向させることができる。このため、無接点給電装置1と車両9との緻密な位置合わせが不要になる。   Further, the number, arrangement area, and shape of the electrodes 30 and the coils 33 are not particularly limited. Further, the arrangement number, arrangement area, and shape of the electrodes 30 may not match the arrangement number, arrangement area, and shape of the electrodes 902. Similarly, the arrangement number, arrangement area, and shape of the coil 33 may not match the arrangement number, arrangement area, and shape of the coil 903. For example, when the arrangement number of the electrodes 30 is larger than the arrangement number of the electrodes 902 (when the arrangement area of the electrodes 30 is made larger than the arrangement area of the electrodes 902), the electrodes 30 and the electrodes 902 are opposed in the vertical direction in a wide range. Can be made. For this reason, precise alignment between the contactless power supply device 1 and the vehicle 9 is not necessary.

給電領域R1、受電領域R2の形状、面積も特に限定しない。給電領域R1には、上方または下方から見て、少なくとも電極30、コイル33が配置されていればよい。受電領域R2には、上方または下方から見て、少なくとも電極902、コイル903が配置されていればよい。   The shape and area of the power feeding region R1 and the power receiving region R2 are not particularly limited. It is sufficient that at least the electrode 30 and the coil 33 are disposed in the power supply region R1 when viewed from above or below. It is sufficient that at least the electrode 902 and the coil 903 are disposed in the power receiving region R2 when viewed from above or below.

エアバッグ部2、カバーフィルム32の材質は、特に限定しない。樹脂、エラストマーなどを、単独で、あるいは組み合わせて用いてもよい。エラストマーは、可塑剤、加工助剤、架橋剤、架橋促進剤、架橋助剤、老化防止剤、軟化剤、着色剤等の添加剤を含んでいてもよい。   The material of the airbag part 2 and the cover film 32 is not specifically limited. Resins and elastomers may be used alone or in combination. The elastomer may contain additives such as a plasticizer, a processing aid, a crosslinking agent, a crosslinking accelerator, a crosslinking aid, an antiaging agent, a softening agent, and a coloring agent.

エアバッグ部2、カバーフィルム32に好適なエラストマーとしては、常温下で伸縮性を有するという観点から、アクリルゴム、エチレン−プロピレン共重合ゴム、天然ゴム、スチレン−ブタジエン共重合ゴム、アクリロニトリル−ブタジエン共重合ゴム、エピクロロヒドリンゴム、クロロスルホン化ポリエチレン、塩素化ポリエチレン、ウレタンゴム、フッ素ゴム、クロロプレンゴム、イソブチレンイソプレンゴムなどの架橋ゴム、およびスチレン系、オレフィン系、塩ビ系、ポリエステル系、ポリウレタン系、ポリアミド系などの熱可塑性エラストマーが挙げられる。   As an elastomer suitable for the airbag portion 2 and the cover film 32, acrylic rubber, ethylene-propylene copolymer rubber, natural rubber, styrene-butadiene copolymer rubber, acrylonitrile-butadiene copolymer are used from the viewpoint of elasticity at room temperature. Polymerized rubber, epichlorohydrin rubber, chlorosulfonated polyethylene, chlorinated polyethylene, urethane rubber, fluorine rubber, chloroprene rubber, cross-linked rubber such as isobutylene isoprene rubber, and styrene, olefin, vinyl chloride, polyester, polyurethane, Examples thereof include thermoplastic elastomers such as polyamide.

エアバッグ部2、カバーフィルム32に好適な樹脂としては、ポリエチレンテレフタレート(PET)、ポリエチレンナフタレート(PEN)などのポリエステル樹脂、変性ポリエステル樹脂(ウレタン変性ポリエステル樹脂、エポキシ変性ポリエステル樹脂、アクリル変性ポリエステル樹脂など)、ポリエーテルウレタン樹脂、ポリカーボネートウレタン樹脂、塩化ビニル−酢酸ビニル共重合体、フェノール樹脂、アクリル樹脂、ポリアミドイミド樹脂、ポリアミド樹脂、ニトロセルロース、変性セルロース類(セルロース・アセテート・ブチレート(CAB)、セルロース・アセテート・プロピオネート(CAP)など)が挙げられる。   Suitable resins for the airbag portion 2 and the cover film 32 include polyester resins such as polyethylene terephthalate (PET) and polyethylene naphthalate (PEN), modified polyester resins (urethane modified polyester resins, epoxy modified polyester resins, acrylic modified polyester resins). Etc.), polyether urethane resin, polycarbonate urethane resin, vinyl chloride-vinyl acetate copolymer, phenol resin, acrylic resin, polyamideimide resin, polyamide resin, nitrocellulose, modified celluloses (cellulose, acetate, butyrate (CAB), Cellulose acetate, propionate (CAP), etc.).

また、緩衝部20の材質は特に限定しない。樹脂発泡体またはエラストマー発泡体であればよい。例えば、ポリウレタン系発泡体、ポリスチレン系発泡体、ポリオレフィン系発泡体、フェノール系発泡体、シリコーン系発泡体、ポリイミド系発泡体、ヒドロシリル架橋エチレン−プロピレン−ジエン三元共重合体(EPDM)系発泡体、ポリエステル系発泡体、ポリイミド系発泡体などが挙げられる。   Moreover, the material of the buffer part 20 is not specifically limited. Any resin foam or elastomer foam may be used. For example, polyurethane foam, polystyrene foam, polyolefin foam, phenol foam, silicone foam, polyimide foam, hydrosilyl crosslinked ethylene-propylene-diene terpolymer (EPDM) foam , Polyester foam, polyimide foam and the like.

また、電極30、コイル33の導電材として、金属粒子を用いる場合、金属粒子の酸化および硫化を抑制するという観点から、エラストマーには、硫黄、硫黄化合物、有機過酸化物のいずれも含まれないことが好ましい。この場合、エラストマーとしては、硫黄、硫黄化合物、有機過酸化物を用いずに架橋された架橋ゴム、および熱可塑性エラストマーから選ばれる一種以上を用いることが好ましい。   Further, when metal particles are used as the conductive material of the electrode 30 and the coil 33, the elastomer does not include any of sulfur, sulfur compounds, and organic peroxides from the viewpoint of suppressing oxidation and sulfurization of the metal particles. It is preferable. In this case, as the elastomer, it is preferable to use one or more selected from sulfur, a sulfur compound, a crosslinked rubber crosslinked without using an organic peroxide, and a thermoplastic elastomer.

前者の架橋ゴムは、硫黄を含む加硫剤や加硫促進剤、あるいは過酸化物系架橋剤を用いずに架橋されたゴムであればよい。このような架橋ゴムとしては、例えば、EPDM、アミン架橋アクリルゴム、イソシアネート架橋ウレタンゴム、イソシアネート架橋液状ブタジエンゴムが挙げられる。後者の熱可塑性エラストマーとしては、ポリエステル系熱可塑性エラストマー(TPEE)、ポリウレタン系熱可塑性エラストマー(TPU)、ポリオレフィン系熱可塑性エラストマー(TPO)、ポリアミド系熱可塑性エラストマー、スチレン系ブロックコポリマー系熱可塑性エラストマー(SIS、SBSなど)が挙げられる。   The former crosslinked rubber may be any rubber that is crosslinked without using a sulfur-containing vulcanizing agent, vulcanization accelerator, or peroxide-based crosslinking agent. Examples of such a crosslinked rubber include EPDM, amine-crosslinked acrylic rubber, isocyanate-crosslinked urethane rubber, and isocyanate-crosslinked liquid butadiene rubber. Examples of the latter thermoplastic elastomer include polyester-based thermoplastic elastomer (TPEE), polyurethane-based thermoplastic elastomer (TPU), polyolefin-based thermoplastic elastomer (TPO), polyamide-based thermoplastic elastomer, styrene-based block copolymer-based thermoplastic elastomer ( SIS, SBS, etc.).

電極30、コイル33のエラストマーは、特に限定しない。エアバッグ部2、カバーフィルム32に好適なエラストマーとして列挙した上記エラストマーの中から、適宜選択すればよい。また、導電材の種類は、特に限定しない。金、銅、ニッケル、ロジウム、パラジウム、クロム、チタン、白金、鉄、およびこれらの合金等の金属粉末の一種、あるいは二種以上を用いることができる。また、カーボンブラック、カーボンナノチューブ、グラファイト等の炭素材料を用いてもよい。また、金属以外の粒子の表面を金属で被覆した被覆粒子を使用してもよい。この場合、導電材を金属だけで構成する場合と比較して、導電材の比重を小さくすることができる。よって、塗料化した場合に、導電材の沈降が抑制されて、分散性が向上する。また、粒子を加工することにより、様々な形状の導電材を容易に製造することができる。また、導電材のコストを低減することができる。被覆する金属としては、先に列挙した銀等の金属材料を用いればよい。また、金属以外の粒子としては、カーボンブラック等の炭素材料、炭酸カルシウム、二酸化チタン、酸化アルミニウム、チタン酸バリウム等の金属酸化物、シリカ等の無機物、アクリルやウレタン等の樹脂等を用いればよい。   The elastomer of the electrode 30 and the coil 33 is not particularly limited. What is necessary is just to select suitably from the said elastomer enumerated as an elastomer suitable for the airbag part 2 and the cover film 32. FIG. Moreover, the kind of electrically conductive material is not specifically limited. One or more metal powders such as gold, copper, nickel, rhodium, palladium, chromium, titanium, platinum, iron, and alloys thereof can be used. Carbon materials such as carbon black, carbon nanotubes, and graphite may be used. Moreover, you may use the covering particle | grains which coat | covered the surface of particle | grains other than a metal with the metal. In this case, the specific gravity of the conductive material can be reduced as compared with the case where the conductive material is made of only metal. Therefore, when it is made into a paint, sedimentation of the conductive material is suppressed and dispersibility is improved. Also, by processing the particles, various shapes of conductive materials can be easily manufactured. In addition, the cost of the conductive material can be reduced. As the metal to be coated, metal materials such as silver listed above may be used. Further, as particles other than metal, carbon materials such as carbon black, metal oxides such as calcium carbonate, titanium dioxide, aluminum oxide, and barium titanate, inorganic substances such as silica, resins such as acrylic and urethane, and the like may be used. .

導電材の含有量は、導電性と柔軟性とを両立できるように、適宜決定すればよい。例えば、導電性を確保するという観点から、導電材の含有量は、電極30、コイル33の体積を100vol%とした場合の10vol%以上であることが好ましい。15vol%以上であるとより好適である。一方、導電材の含有量が多くなると柔軟性が低下する。このため、導電材の含有量は、電極30、コイル33の体積を100vol%とした場合の40vol%以下であることが好ましい。25vol%以下であるとより好適である。   What is necessary is just to determine suitably content of a electrically conductive material so that electroconductivity and a softness | flexibility can be made compatible. For example, from the viewpoint of ensuring conductivity, the content of the conductive material is preferably 10 vol% or more when the volume of the electrode 30 and the coil 33 is 100 vol%. It is more preferable that it is 15 vol% or more. On the other hand, when the content of the conductive material increases, the flexibility decreases. For this reason, it is preferable that content of an electrically conductive material is 40 vol% or less when the volume of the electrode 30 and the coil 33 is 100 vol%. It is more preferable that it is 25 vol% or less.

1:無接点給電装置、2:エアバッグ部、3:給電部、4:駆動部、5:ベース、9:車両。
20:緩衝部、30:電極、31:交流電源、32:カバーフィルム、33:コイル、40:入力部、41:リンク機構部、50:位置決め部、90:受電装置、91:前輪、92:アンダーカバー。
400:レバー、400a:グリップ、401:シャフト、410:第一壁部、410a:支持部、411:第二壁部、411a:支持部、412:第一アーム、413:第二アーム、413a:凹部材、413b:凸部材、900:ブリッジ整流回路、900a:ダイオード、901:バッテリ、902:電極、903:コイル。
R1:給電領域、R2:受電領域。
1: contactless power supply device, 2: air bag unit, 3: power supply unit, 4: drive unit, 5: base, 9: vehicle.
20: buffer part, 30: electrode, 31: AC power supply, 32: cover film, 33: coil, 40: input part, 41: link mechanism part, 50: positioning part, 90: power receiving device, 91: front wheel, 92: undercover.
400: lever, 400a: grip, 401: shaft, 410: first wall, 410a: support, 411: second wall, 411a: support, 412: first arm, 413: second arm, 413a: Recess material, 413b: convex member, 900: bridge rectifier circuit, 900a: diode, 901: battery, 902: electrode, 903: coil.
R1: Power feeding area, R2: Power receiving area.

Claims (6)

車両の受電領域に当接することにより電力を供給する給電領域を備える無接点給電装置であって、
緩衝部と、
該緩衝部に配置されると共に該受電領域に対向して配置され、エラストマーおよび導電材を含む導電部を有する給電部と、
を備え、
該緩衝部および該給電部が変形することにより、該給電領域は、該受電領域の形状に倣って変形することを特徴とする無接点給電装置。
A non-contact power feeding device including a power feeding region that supplies power by contacting a power receiving region of a vehicle,
A buffer,
A power feeding unit that is disposed in the buffer unit and is opposed to the power receiving region, and having a conductive unit including an elastomer and a conductive material;
With
The contactless power feeding device according to claim 1, wherein the power feeding region is deformed following the shape of the power receiving region when the buffer portion and the power feeding portion are deformed.
前記緩衝部は、気体入りのエアバッグ部である請求項1に記載の無接点給電装置。   The contactless power supply device according to claim 1, wherein the buffer portion is a gas-filled airbag portion. 前記導電部は、コイルまたは電極である請求項1または請求項2に記載の無接点給電装置。   The contactless power supply device according to claim 1, wherein the conductive portion is a coil or an electrode. 前記受電領域に対して、前記給電領域を離接可能な駆動部を備える請求項1ないし請求項3のいずれかに記載の無接点給電装置。   The non-contact power feeding device according to claim 1, further comprising a drive unit that can connect and disconnect the power feeding region with respect to the power receiving region. 前記受電領域と前記給電領域とが重なる方向を重複方向、該重複方向に直交する方向を直交方向として、
前記駆動部は、人力が入力される入力部と、該入力部に連結され該給電領域を該重複方向に往復動させるリンク機構部と、を有する請求項4に記載の無接点給電装置。
A direction in which the power receiving region and the power feeding region overlap is defined as an overlapping direction, and a direction orthogonal to the overlapping direction is defined as an orthogonal direction.
The non-contact power feeding device according to claim 4, wherein the driving unit includes an input unit to which human power is input and a link mechanism unit that is connected to the input unit and reciprocates the power feeding region in the overlapping direction.
電力供給時に前記給電領域と前記受電領域とが当接するように、前記車両の位置を決める位置決め部を備える請求項1ないし請求項5のいずれかに記載の無接点給電装置。   The non-contact power feeding device according to any one of claims 1 to 5, further comprising a positioning unit that determines a position of the vehicle so that the power feeding region and the power receiving region are in contact with each other when power is supplied.
JP2011275503A 2011-12-16 2011-12-16 Non-contact power supply device Pending JP2013126351A (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
JP2011275503A JP2013126351A (en) 2011-12-16 2011-12-16 Non-contact power supply device
PCT/JP2012/082331 WO2013089181A1 (en) 2011-12-16 2012-12-13 Non-contact power supply apparatus

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2011275503A JP2013126351A (en) 2011-12-16 2011-12-16 Non-contact power supply device

Publications (1)

Publication Number Publication Date
JP2013126351A true JP2013126351A (en) 2013-06-24

Family

ID=48612623

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2011275503A Pending JP2013126351A (en) 2011-12-16 2011-12-16 Non-contact power supply device

Country Status (2)

Country Link
JP (1) JP2013126351A (en)
WO (1) WO2013089181A1 (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2015002128A1 (en) * 2013-07-02 2015-01-08 矢崎総業株式会社 Coil unit
JP2020133380A (en) * 2019-02-26 2020-08-31 三菱重工機械システム株式会社 Parking facility
JP2021027753A (en) * 2019-08-07 2021-02-22 パナソニックIpマネジメント株式会社 Contactless power supply system and contactless power supply device
JP2022550508A (en) * 2019-09-09 2022-12-02 ボンバルディアー プリモーフ ゲゼルシャフト ミット ベシュレンクテル ハフツング Inductive power transfer pad and method for manufacturing inductive power transfer pad

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2000152512A (en) * 1998-11-05 2000-05-30 Densei Lambda Kk Charger
US8749334B2 (en) * 2007-05-10 2014-06-10 Auckland Uniservices Ltd. Multi power sourced electric vehicle
JP5209262B2 (en) * 2007-09-28 2013-06-12 株式会社槌屋 Non-contact power transmission film
JP2011187559A (en) * 2010-03-05 2011-09-22 Tsuchiya Co Ltd Contactless power transmission film
JP2011259649A (en) * 2010-06-11 2011-12-22 Takenaka Komuten Co Ltd Electrode structure for non-contact power supply system, and non-contact power supply system

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2015002128A1 (en) * 2013-07-02 2015-01-08 矢崎総業株式会社 Coil unit
JP2015012764A (en) * 2013-07-02 2015-01-19 矢崎総業株式会社 Coil unit
JP2020133380A (en) * 2019-02-26 2020-08-31 三菱重工機械システム株式会社 Parking facility
JP2021027753A (en) * 2019-08-07 2021-02-22 パナソニックIpマネジメント株式会社 Contactless power supply system and contactless power supply device
JP7340760B2 (en) 2019-08-07 2023-09-08 パナソニックIpマネジメント株式会社 Contactless power supply system and contactless power supply device
JP2022550508A (en) * 2019-09-09 2022-12-02 ボンバルディアー プリモーフ ゲゼルシャフト ミット ベシュレンクテル ハフツング Inductive power transfer pad and method for manufacturing inductive power transfer pad
JP7454654B2 (en) 2019-09-09 2024-03-22 ボンバルディアー プリモーフ ゲゼルシャフト ミット ベシュレンクテル ハフツング Inductive power transfer pad and method for manufacturing inductive power transfer pad
US11999248B2 (en) 2019-09-09 2024-06-04 Enrx Ipt Gmbh Inductive power transfer pad and method for producing an inductive power transfer pad

Also Published As

Publication number Publication date
WO2013089181A1 (en) 2013-06-20

Similar Documents

Publication Publication Date Title
WO2013089181A1 (en) Non-contact power supply apparatus
US9053618B2 (en) Portable terminal having haptic module with a hinge part supporting a touch pad
US20080048521A1 (en) Electric power generator
JP2018109983A (en) Flexible haptic actuator
CN201150635Y (en) Skin care device
JP5954249B2 (en) Cord switch and cord switch mounting structure
JPWO2012060427A1 (en) Bending sensor
JP6828029B2 (en) Actuators for tact interface modules, tact interface modules, and how to generate tactile feedback
JP2016088473A (en) Tire assembly
CN102244452A (en) Linear vibrator
CN104723355A (en) Safe joint apparatus for robot
CN111283657B (en) Robot mechanism
JP2013093973A (en) Holder device for charging type electric apparatus
US11023053B2 (en) Inner-sensor pointing device system
CN110165485A (en) Charging unit and robot system
JP2012107924A (en) Variable resistance type sensor
JP5798471B2 (en) Capacitor-type contactless power transmission device
US11874684B2 (en) Operation input device
CN102101400B (en) Corrugated pipe marking device and corrugated pipe marking method
US20190228926A1 (en) Trigger switch
JP2013205370A (en) Capacitance-type sensor
CN107483673B (en) A kind of mobile phone terminal with touch control screen
JP6920123B2 (en) Power receiving device
JP5975849B2 (en) Ball joint
CN205992213U (en) Active capacitive touch pen