JP2013124648A - Compressor - Google Patents

Compressor Download PDF

Info

Publication number
JP2013124648A
JP2013124648A JP2011275530A JP2011275530A JP2013124648A JP 2013124648 A JP2013124648 A JP 2013124648A JP 2011275530 A JP2011275530 A JP 2011275530A JP 2011275530 A JP2011275530 A JP 2011275530A JP 2013124648 A JP2013124648 A JP 2013124648A
Authority
JP
Japan
Prior art keywords
valve
compressor
discharge
region
valve body
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2011275530A
Other languages
Japanese (ja)
Other versions
JP6010724B2 (en
Inventor
Mitsuya Ono
三也 小野
Minoru Kanaizuka
実 金井塚
Keizo Nako
恵三 名古
Osamu Shirakura
修 白倉
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Valeo Japan Co Ltd
Original Assignee
Valeo Japan Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Valeo Japan Co Ltd filed Critical Valeo Japan Co Ltd
Priority to JP2011275530A priority Critical patent/JP6010724B2/en
Priority to US14/365,583 priority patent/US20140369871A1/en
Priority to EP12857022.3A priority patent/EP2803858A4/en
Priority to PCT/JP2012/007999 priority patent/WO2013088732A1/en
Priority to CN201280062161.2A priority patent/CN104024638B/en
Publication of JP2013124648A publication Critical patent/JP2013124648A/en
Application granted granted Critical
Publication of JP6010724B2 publication Critical patent/JP6010724B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04BPOSITIVE-DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS
    • F04B49/00Control, e.g. of pump delivery, or pump pressure of, or safety measures for, machines, pumps, or pumping installations, not otherwise provided for, or of interest apart from, groups F04B1/00 - F04B47/00
    • F04B49/22Control, e.g. of pump delivery, or pump pressure of, or safety measures for, machines, pumps, or pumping installations, not otherwise provided for, or of interest apart from, groups F04B1/00 - F04B47/00 by means of valves
    • F04B49/24Bypassing
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04BPOSITIVE-DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS
    • F04B27/00Multi-cylinder pumps specially adapted for elastic fluids and characterised by number or arrangement of cylinders
    • F04B27/08Multi-cylinder pumps specially adapted for elastic fluids and characterised by number or arrangement of cylinders having cylinders coaxial with, or parallel or inclined to, main shaft axis
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04BPOSITIVE-DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS
    • F04B27/00Multi-cylinder pumps specially adapted for elastic fluids and characterised by number or arrangement of cylinders
    • F04B27/08Multi-cylinder pumps specially adapted for elastic fluids and characterised by number or arrangement of cylinders having cylinders coaxial with, or parallel or inclined to, main shaft axis
    • F04B27/10Multi-cylinder pumps specially adapted for elastic fluids and characterised by number or arrangement of cylinders having cylinders coaxial with, or parallel or inclined to, main shaft axis having stationary cylinders
    • F04B27/1009Distribution members
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04BPOSITIVE-DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS
    • F04B27/00Multi-cylinder pumps specially adapted for elastic fluids and characterised by number or arrangement of cylinders
    • F04B27/08Multi-cylinder pumps specially adapted for elastic fluids and characterised by number or arrangement of cylinders having cylinders coaxial with, or parallel or inclined to, main shaft axis
    • F04B27/10Multi-cylinder pumps specially adapted for elastic fluids and characterised by number or arrangement of cylinders having cylinders coaxial with, or parallel or inclined to, main shaft axis having stationary cylinders
    • F04B27/1036Component parts, details, e.g. sealings, lubrication
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04BPOSITIVE-DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS
    • F04B27/00Multi-cylinder pumps specially adapted for elastic fluids and characterised by number or arrangement of cylinders
    • F04B27/08Multi-cylinder pumps specially adapted for elastic fluids and characterised by number or arrangement of cylinders having cylinders coaxial with, or parallel or inclined to, main shaft axis
    • F04B27/10Multi-cylinder pumps specially adapted for elastic fluids and characterised by number or arrangement of cylinders having cylinders coaxial with, or parallel or inclined to, main shaft axis having stationary cylinders
    • F04B27/12Multi-cylinder pumps specially adapted for elastic fluids and characterised by number or arrangement of cylinders having cylinders coaxial with, or parallel or inclined to, main shaft axis having stationary cylinders having plural sets of cylinders or pistons
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04BPOSITIVE-DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS
    • F04B39/00Component parts, details, or accessories, of pumps or pumping systems specially adapted for elastic fluids, not otherwise provided for in, or of interest apart from, groups F04B25/00 - F04B37/00
    • F04B39/04Measures to avoid lubricant contaminating the pumped fluid

Landscapes

  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Compressor (AREA)

Abstract

PROBLEM TO BE SOLVED: To suppress flowing out of lubricating oil in the interior of a compressor to the outside of the compressor caused by movement of a refrigerant within a refrigeration cycle due to temperature changes when the compressor operation stops.SOLUTION: A compressor includes a housing, a suction region (passage 31 for suction) and a discharge region (passage 33 for discharge) defined and formed in a housing, a shaft journaled in the housing, and a compression mechanism which, on the basis of rotational motion of the shaft, sucks refrigerant from the suction region and discharges the refrigerant to the discharge region. The compressor further includes a bypass passage 40 for making the suction region communicate with the discharge region, a valve element 41 capable of closing the bypass passage 40 from the discharge-region side, and a spring 42 for biasing the valve element 41 toward the discharge-region side (toward the direction in which the valve is open).

Description

本発明は、車両用空調装置等に用いられる冷凍サイクルの圧縮機に関し、特に圧縮機の停止時に温度変化による冷凍サイクル内の冷媒の移動によって圧縮機内部の潤滑油が圧縮機外へ流出することを抑制する機能を備えた圧縮機に関する。   The present invention relates to a compressor for a refrigeration cycle used in a vehicle air conditioner and the like, and in particular, the lubricating oil inside the compressor flows out of the compressor due to the movement of refrigerant in the refrigeration cycle due to temperature change when the compressor is stopped. The present invention relates to a compressor having a function of suppressing the above.

自動車用空調装置に用いられる冷凍サイクルは、エンジンルーム側と車室側とを仕切る仕切壁(ファイヤフォール)を境に、車室側にエバポレータが配設され、エンジンルーム側にコンデンサや圧縮機等が配設されている。このような冷凍サイクルにおいては、圧縮機が運転を停止している状態において、日中の日射により車両が暖められると、図6に示されるように、日射により暖められ易い車室側に配されるエバポレータAの温度も上昇する一方で、エンジンルーム内に配されるコンデンサBと圧縮機Cは、エバポレータAほど温度が上昇しない。また、熱容量の大きい圧縮機Cは暖められにくいため、冷凍サイクルの中では、最も温度が低い箇所となり、圧縮機内部に冷媒が凝縮することとなる。このため、圧縮機内には、オイル(潤滑油)と液化した冷媒とにより、オイル貯め容量を超えた液体が滞留することとなる。   The refrigeration cycle used in air conditioners for automobiles has an evaporator on the passenger compartment side with a partition wall (fire fall) separating the engine compartment side and the passenger compartment side, and a condenser, compressor, etc. on the engine compartment side Is arranged. In such a refrigeration cycle, when the vehicle is warmed by solar radiation in the daytime when the compressor is not in operation, as shown in FIG. While the temperature of the evaporator A rises, the temperature of the condenser B and the compressor C arranged in the engine room does not rise as much as the evaporator A. In addition, since the compressor C having a large heat capacity is difficult to be heated, the refrigerant becomes condensed in the compressor because the temperature is the lowest in the refrigeration cycle. For this reason, the liquid exceeding the oil storage capacity is retained in the compressor by the oil (lubricating oil) and the liquefied refrigerant.

これに対して、夕刻になり、日射による車両の加熱がなくなると、熱容量の小さいコンデンサの温度は徐々に低下し、エバポレータ、圧縮機、及びコンデンサのそれぞれの温度は次のような関係となる。
エバポレータ温度>圧縮機温度>コンデンサ温度
このため、この温度差により、コンデンサの圧力が冷凍サイクル中で最も低くなってしまい、エバポレータからの圧力によってオイルが溶け込んだ圧縮機内に停留している冷媒がコンデンサ側に押し出されてしまう現象が生じる。
In contrast, when the vehicle is no longer heated by solar radiation in the evening, the temperature of the condenser having a small heat capacity gradually decreases, and the temperatures of the evaporator, the compressor, and the condenser are as follows.
Evaporator temperature> Compressor temperature> Condenser temperature For this reason, this temperature difference causes the condenser pressure to become the lowest in the refrigeration cycle, and the refrigerant staying in the compressor in which the oil is melted by the pressure from the evaporator is the condenser. The phenomenon of being pushed out to the side occurs.

温度変化によるこのような現象が繰り返されると、圧縮機内に保持されていたオイルは圧縮機外へ徐々に運び出されてしまい、圧縮機内に残存するオイルが枯渇することになる。このため、長期間空調装置を使用しない状態が続いた後に空調装置を稼働させると、潤滑不良により圧縮機の焼き付きが生じる懸念がある。   When such a phenomenon due to temperature change is repeated, the oil retained in the compressor is gradually carried out of the compressor, and the oil remaining in the compressor is depleted. For this reason, if the air conditioner is operated after a state where the air conditioner is not used for a long time, the compressor may be seized due to poor lubrication.

このような不都合を解消するために、従来においては、下記する特許文献1に示されるように、冷凍サイクルにおける圧縮機の吸入口に連結される低圧配管と吐出口に連結される高圧配管との間をバイパス管路で連結し、このバイパス管路に低圧配管側(エバポレータ側)の冷媒圧力が高圧配管側(コンデンサ側)の冷媒圧力より高くなった場合に冷媒の流通を許容する逆止弁を設け、圧縮機の運転停止時において、低圧配管側の冷媒圧力が高圧配管側の冷媒圧力より高くなった場合にこの圧力差により逆止弁を開放させ、低圧配管側の冷媒をバイパス管路を介して高圧配管側に流し、圧縮機内に冷媒がほとんど流れないようにして圧縮機からのオイルの流出を防止する構成が提案されている。   In order to eliminate such inconvenience, conventionally, as shown in Patent Document 1 below, a low-pressure pipe connected to a suction port of a compressor and a high-pressure pipe connected to a discharge port in a refrigeration cycle are conventionally used. A check valve that allows refrigerant flow when the refrigerant pressure on the low-pressure piping side (evaporator side) is higher than the refrigerant pressure on the high-pressure piping side (condenser side). If the refrigerant pressure on the low-pressure piping side becomes higher than the refrigerant pressure on the high-pressure piping side when the compressor is stopped, the check valve is opened due to this pressure difference, and the refrigerant on the low-pressure piping side is bypassed. A configuration has been proposed in which the oil flows from the compressor to the high-pressure pipe side so that the refrigerant hardly flows into the compressor.

特開平7−218007号公報Japanese Patent Laid-Open No. 7-218007

しかしながら、上述した特許文献に開示される逆止弁は、これを構成する弁体の高圧配管側に圧縮コイルスプリングが配置され、この圧縮コイルスプリングの付勢力によって弁体を閉鎖方向に付勢するように構成されているので、低圧配管側(エバポレータ側)の冷媒圧力が高圧配管側(コンデンサ側)の冷媒圧力に対して圧縮コイルスプリングのバネ力に相当する分だけ高まらない限り、バイパス通路は開放されないこととなる。このため、低圧配管側(エバポレータ側)の冷媒圧力が高圧配管側(コンデンサ側)の冷媒圧力よりも高いにも拘わらず、圧縮コイルスプリングのバネ力に抗して弁体を押し開く圧力に達しない場合には、この圧力差によって圧縮機内の液冷媒がオイルと共に高圧配管側(コンデンサ側)に押し出されてしまい、依然として圧縮機内のオイルが枯渇する恐れがある。   However, in the check valve disclosed in the above-described patent document, a compression coil spring is disposed on the high-pressure piping side of the valve body constituting the check valve, and the valve body is biased in the closing direction by the biasing force of the compression coil spring. As long as the refrigerant pressure on the low-pressure pipe side (evaporator side) does not increase by the amount corresponding to the spring force of the compression coil spring with respect to the refrigerant pressure on the high-pressure pipe side (capacitor side), the bypass passage is It will not be opened. For this reason, even though the refrigerant pressure on the low pressure pipe side (evaporator side) is higher than the refrigerant pressure on the high pressure pipe side (condenser side), the pressure reaches the pressure that pushes the valve body against the spring force of the compression coil spring. If not, the pressure difference causes the liquid refrigerant in the compressor to be pushed out together with the oil to the high-pressure pipe side (condenser side), and the oil in the compressor may still be exhausted.

本発明は、係る事情に鑑みてなされたものであり、圧縮機の運転が停止している場合において、温度変化による冷凍サイクル内の冷媒の移動によって圧縮機内部の潤滑油が圧縮機外へ流出することを効果的に抑制することが可能な圧縮機を提供することを主たる課題としている。   The present invention has been made in view of such circumstances, and when the operation of the compressor is stopped, the lubricating oil inside the compressor flows out of the compressor due to the movement of the refrigerant in the refrigeration cycle due to temperature change. It is a main subject to provide a compressor that can effectively suppress this.

上記課題を達成するために、本発明に係る圧縮機は、ハウジングと、前記ハウジングに区画形成された吸入領域および吐出領域と、前記ハウジング内に軸支されたシャフトと、前記シャフトの回転運動に基づき、冷媒を前記吸入領域から吸入し、前記吐出領域へ吐出する圧縮機構とを備え、前記吸入領域と前記吐出領域とを連通するバイパス通路と、前記バイパス通路を前記吐出領域側から閉鎖可能とする弁体と、前記弁体を前記吐出領域側に向かって(開弁方向に向かって)付勢するスプリングと、を有することを特徴としている。   In order to achieve the above object, a compressor according to the present invention includes a housing, a suction region and a discharge region defined in the housing, a shaft pivotally supported in the housing, and rotational movement of the shaft. And a compression mechanism that sucks the refrigerant from the suction region and discharges the refrigerant to the discharge region, the bypass passage communicating the suction region and the discharge region, and the bypass passage can be closed from the discharge region side. And a spring that urges the valve body toward the discharge region (toward the valve opening direction).

したがって、上述の構成によれば、圧縮機の停止時において、ハウジングに区画形成された吐出領域(高圧配管側)の冷媒圧力と吸入領域(低圧配管側)の冷媒圧力とがバランスしているときは、バイパス通路は常時開いているので、温度変化により吸入領域側(低圧配管側)の冷媒圧力が吐出領域側(高圧配管側)の冷媒圧力より僅かに高まった場合でも、吸入領域側(低圧配管側)の冷媒圧力をバイパス通路を介して吐出領域側(高圧配管側)に速やかに解放することが可能となり、圧縮機内の残留しているオイルが液冷媒と共に高圧配管側へ持ち出されることが無くなる。   Therefore, according to the above-described configuration, when the compressor is stopped, the refrigerant pressure in the discharge region (high-pressure piping side) partitioned in the housing and the refrigerant pressure in the suction region (low-pressure piping side) are balanced. Since the bypass passage is always open, even if the refrigerant pressure on the suction region side (low pressure piping side) slightly increases than the refrigerant pressure on the discharge region side (high pressure piping side) due to temperature change, the suction region side (low pressure) The refrigerant pressure on the piping side) can be quickly released to the discharge region side (high pressure piping side) through the bypass passage, and the remaining oil in the compressor can be taken out together with the liquid refrigerant to the high pressure piping side. Disappear.

ここで、バイパス通路には、前記弁体の外径よりも小さい径に形成された弁口と、この弁口よりも前記吐出領域側に設けられ前記弁体の外径よりも大きい径に形成された弁収容孔とが直接またはホルダを介して形成されており、前記弁体は、前記弁収容孔内にその軸方向に沿って移動可能に収容されることが好ましい。   Here, in the bypass passage, a valve opening formed to have a diameter smaller than the outer diameter of the valve body, and a diameter larger than the outer diameter of the valve body provided on the discharge region side than the valve opening. Preferably, the valve housing hole is formed directly or via a holder, and the valve body is housed in the valve housing hole so as to be movable along the axial direction thereof.

このような構成によれば、圧縮機が運転を開始すると、弁収容孔内に収容された弁体が速やかに弁収容孔を移動しバイパス通路が弁体によって閉鎖される。この状態は圧縮機が再び停止してスプリングのバネ力により弁体が吐出領域側に向かって(開弁方向に向かって)移動可能な程度に吐出領域と吸入領域との圧力差が小さくなるまで維持されることとなる。   According to such a configuration, when the compressor starts operation, the valve element accommodated in the valve accommodating hole quickly moves through the valve accommodating hole, and the bypass passage is closed by the valve element. In this state, the compressor is stopped again until the pressure difference between the discharge region and the suction region becomes small enough that the spring can be moved toward the discharge region (toward the valve opening direction) by the spring force of the spring. Will be maintained.

圧縮機が運転を開始するときに、仮に、図7に示されるように、弁体Aが吐出領域の開放された空間に位置していたとすると、吐出領域からバイパス通路Bを通って吸入領域に流入しようとする冷媒ガスは、弁体Aの側方を通過せずに弁体Aとバイパス通路Bの開口端周縁との間を抜けて、吸入領域にそのまま流入してしまうことになり、弁体Aがバイパス通路Bを閉鎖せず、吐出領域から吸入領域に冷媒ガスが吹き抜けてしまうという不都合が生じる。
しかし、上述した構成を採用すれば、吐出領域側から吸入領域側に流入しようとする冷媒が弁収容孔内に保持される弁体の側面を通過し、その後に弁口を通って吸入領域に流出するため、冷媒の流れがバネ力に逆らって弁体を弁口側に押すように働くこととなり、この力により弁体が弁口を速やかに閉鎖することとなる。そして、一旦弁体が弁口を塞ぐと、弁体の前後に吐出圧力と吸入圧力が作用し、この圧力差によりスプリングのバネ力に抗して閉鎖状態が維持されることとなる。
When the compressor starts operation, as shown in FIG. 7, if the valve body A is located in a space where the discharge region is opened, the discharge region passes through the bypass passage B to the suction region. The refrigerant gas to be introduced does not pass through the side of the valve element A, passes between the valve element A and the periphery of the opening end of the bypass passage B, and flows into the suction region as it is. The inconvenience that the body A does not close the bypass passage B and the refrigerant gas blows out from the discharge region to the suction region.
However, if the above-described configuration is adopted, the refrigerant that is going to flow from the discharge region side to the suction region side passes through the side surface of the valve body held in the valve housing hole, and then passes through the valve port to the suction region. Since the refrigerant flows out, the flow of the refrigerant works against the spring force so as to push the valve body toward the valve port side, and the valve body quickly closes the valve port by this force. Once the valve body closes the valve opening, the discharge pressure and the suction pressure act on the front and back of the valve body, and this pressure difference maintains the closed state against the spring force of the spring.

また、このような作用をより効果的に得るためには、前記弁体の外周面と前記弁収容孔の内周面との間の通路面積を、前記弁口の面積よりも小さくすることが好ましい。これにより、バイパス通路中における吐出領域から吸入領域に至るまでの圧力降下が、弁口通過前後ではなく、弁体通過前後により優先的に与えられることなり、弁体の上流と下流において確実に圧力差を発生させて弁体を速やかに移動させることができる。   In order to obtain such an action more effectively, the area of the passage between the outer peripheral surface of the valve body and the inner peripheral surface of the valve housing hole may be made smaller than the area of the valve port. preferable. As a result, the pressure drop from the discharge region to the suction region in the bypass passage is preferentially given before and after passage of the valve body, not before and after passage of the valve body, and the pressure is reliably ensured upstream and downstream of the valve body. The valve element can be moved quickly by generating a difference.

また、前記ハウジングがシャフトの軸方向に2分割されたシェル部材により構成され、前記吐出領域と前記吸入領域がそれぞれのシェル部材に区画形成され、前記吐出領域に連通する吐出ポートと前記吸入領域に連通する吸入ポートとが一方のシェル部材に形成される圧縮機においては、前述した温度変化により移動する冷媒を、コンプレッサの内部をできるだけ通過せずに高圧配管側へ流してコンプレッサ内部のオイルの流出を極力無くすために、前記バイパス通路は、吐出ポート及び吸入ポートが設けられた前記一方のシェル部材に設けることが望ましい。   The housing is constituted by a shell member that is divided into two in the axial direction of the shaft, and the discharge region and the suction region are defined by the respective shell members, and the discharge port that communicates with the discharge region and the suction region In the compressor in which the suction port that communicates is formed in one shell member, the refrigerant that moves due to the temperature change described above flows to the high-pressure piping side without passing through the compressor as much as possible, and the oil inside the compressor flows out. In order to eliminate as much as possible, the bypass passage is preferably provided in the one shell member provided with the discharge port and the suction port.

尚、上述した構成は、前記弁体を鋼球で構成し、前記弁口に収容される前記スプリングを圧縮コイルバネで構成し、前記弁口から弁収容孔に移行する部分に、前記弁体が着座する弁座面を備える構成によって実現されるとよい。   In the configuration described above, the valve body is made of a steel ball, the spring housed in the valve mouth is made of a compression coil spring, and the valve body is located at a portion that transitions from the valve mouth to the valve housing hole. It is good to implement | achieve by the structure provided with the valve-seat surface to seat.

以上述べたように、本発明によれば、圧縮機のハウジングに区画形成された吸入領域と吐出領域とをバイパス通路を設けて連通し、このバイパス通路に吐出領域側から閉鎖可能とする弁体と、弁体を吐出領域側に向かって(開弁方向に向かって)付勢するスプリングとを設けたので、吸入領域即ち低圧配管側(エバポレータ側)の冷媒圧力が、吐出領域即ち高圧配管側(コンデンサ側)の冷媒圧力に対しても僅かしか高まらない場合であっても、吸入領域側(低圧配管側)の冷媒圧力をバイパス通路を介して吐出領域側(高圧配管側)に速やかに解放することが可能となり、圧縮機内の停留しているオイルが液冷媒と共に圧縮機外に持ち出される恐れがなくなる。   As described above, according to the present invention, the suction region and the discharge region defined in the housing of the compressor are connected by providing the bypass passage, and the valve body can be closed from the discharge region side to the bypass passage. And a spring for urging the valve body toward the discharge region (toward the valve opening direction), the refrigerant pressure in the suction region, that is, the low-pressure pipe side (evaporator side) Even when the refrigerant pressure on the condenser side is only slightly higher, the refrigerant pressure on the suction area side (low pressure pipe side) is quickly released to the discharge area side (high pressure pipe side) via the bypass passage. Therefore, there is no possibility that the oil that has stopped in the compressor is taken out of the compressor together with the liquid refrigerant.

また、バイパス通路に、弁体の外径よりも小さい径に形成された弁口と、この弁口よりも吐出領域側において弁体の外径よりも大きい径に形成された弁収容孔とを直接またはホルダを介して形成し、スプリングを弁口に保持し、また、弁体を弁収容孔内にその軸方向に沿って移動可能収容するようにすることで、圧縮機が運転を開始した直後にバイパス通路を弁体の側方を介して流れようとする冷媒によって弁体をスプリングのバネ力に抗して移動させ、弁口を速やかに閉鎖させると共にその状態を安定に維持させることが可能となる。   Further, the bypass passage has a valve port formed with a diameter smaller than the outer diameter of the valve body, and a valve housing hole formed with a diameter larger than the outer diameter of the valve body on the discharge region side than the valve port. The compressor started operation by forming it directly or through a holder, holding the spring at the valve opening, and accommodating the valve element in the valve accommodating hole so as to be movable along its axial direction. Immediately after the valve body is moved against the spring force of the spring by the refrigerant that flows through the side of the valve body through the side of the valve body, the valve opening can be quickly closed and the state can be maintained stably. It becomes possible.

この際、弁体の外周面と弁収容孔の内周面との間の通路面積を、弁口の面積よりも小さくすることで、圧縮機が運転を開始した直後にバイパス通路を通って流れようとする冷媒によって弁体をより敏感に反応させることが可能となり、速やか、且つ、確実に弁口を閉鎖することが可能となる。   At this time, the passage area between the outer peripheral surface of the valve body and the inner peripheral surface of the valve housing hole is made smaller than the area of the valve port, so that the compressor flows through the bypass passage immediately after the start of operation. It is possible to cause the valve body to react more sensitively with the refrigerant to be used, and it is possible to close the valve opening quickly and reliably.

また、ハウジングがシャフトの軸方向に2分割されたシェル部材により構成され、吐出領域と吸入領域とがそれぞれのシェル部材に区画形成され、吐出領域に連通する吐出ポートと吸入領域に連通する吸入ポートが一方のシェル部材に形成される圧縮器においては、バイパス通路を吐出ポート及び吸入ポートが設けられた一方のシェル部材に設けることで、バイパス通路をコンプレッサ内に設ける場合でも、冷媒はコンプレッサの内部をできるだけ通過せずにポート付近だけを通過することとなり、オイルの持ち出しを確実に防ぐことが可能となる。   Further, the housing is constituted by a shell member divided into two in the axial direction of the shaft, and a discharge region and a suction region are defined in each shell member, and a discharge port communicating with the discharge region and a suction port communicating with the suction region However, in the compressor formed in one shell member, the bypass passage is provided in the one shell member provided with the discharge port and the suction port, so that the refrigerant is contained in the compressor even when the bypass passage is provided in the compressor. As a result, only the vicinity of the port is passed without passing through as much as possible, and oil can be reliably prevented from being taken out.

図1(a)は、本発明に係るバイパス通路が設けられる圧縮器の例を示す断面図であり、図1(b)は、リアシェル部材を軸方向内側から見た図である。Fig.1 (a) is sectional drawing which shows the example of the compressor provided with the bypass channel which concerns on this invention, FIG.1 (b) is the figure which looked at the rear shell member from the axial direction inner side. 図2は、本発明に係る圧縮機の冷媒の流れを説明する概念図であり、(a)はその側断面図であり、(b)は(a)のB−B線で切断した断面図である。FIG. 2 is a conceptual diagram for explaining the flow of refrigerant in the compressor according to the present invention, wherein (a) is a side sectional view thereof, and (b) is a sectional view taken along line BB in (a). It is. 図3は、リアシェル部材の断面図であり、図1(b)のA−A線で切断した図(バイパス通路が見えるように切断した図)である。FIG. 3 is a cross-sectional view of the rear shell member, which is a view cut along line AA in FIG. 1B (a view cut so that a bypass passage can be seen). 図4は、バイパス通路において弁体とスプリングが設けられた部分を示す拡大断面図であり、(a)は、弁体が弁座面から離反している状態を示す図であり、(b)は、弁体が弁座面に着座している状態を示す図である。FIG. 4 is an enlarged cross-sectional view showing a portion where a valve body and a spring are provided in the bypass passage, (a) is a view showing a state where the valve body is separated from the valve seat surface, and (b) These are figures which show the state in which the valve body is seated on the valve seat surface. 図5は、バイパス通路において弁体とスプリングが設けられた部分を示す拡大断面図であり、バイパス通路を流れる冷媒の流れと弁体の挙動を説明する図である。FIG. 5 is an enlarged cross-sectional view showing a portion where the valve body and the spring are provided in the bypass passage, and is a diagram for explaining the flow of the refrigerant flowing through the bypass passage and the behavior of the valve body. 図6は、車両に搭載した冷凍サイクルのエバポレータ、コンデンサ、圧縮機の温度変化を示すグラフと圧縮機が停止している場合の冷媒及びオイルの流れを説明する模式図とを示した図である。FIG. 6 is a graph showing temperature changes of the evaporator, condenser, and compressor of the refrigeration cycle mounted on the vehicle, and a schematic diagram illustrating the flow of refrigerant and oil when the compressor is stopped. . 図7は、弁体が吐出領域の開放された空間に位置している場合の冷媒の流れと弁体の挙動を説明する図である。FIG. 7 is a diagram for explaining the flow of the refrigerant and the behavior of the valve body when the valve body is located in the space where the discharge region is opened.

以下、この発明の実施形態を添付図面を参照しながら説明する。   Embodiments of the present invention will be described below with reference to the accompanying drawings.

図1及び図2において、圧縮機1は、冷媒を作動流体とする冷凍サイクルに用いられる往復動型のもので、この圧縮機1は、フロント側シリンダブロック2と、このフロント側シリンダブロック2に組み付けられるリア側シリンダブロック4と、フロント側シリンダブロック2のフロント側(図中、左側)にバルブプレート5を介して組み付けられるフロント側シェル部材6と、リア側シリンダブロック4のリア側(図中、右側) にバルブプレート7を介して組み付けられるリア側シェル部材8とを有して構成されているもので、フロント側シェル部材6とリア側シェル部材8は、それぞれ近接したシリンダブロック2,4を覆うように開口端側が延設されて軸方向で互いに嵌合している。そして、これらフロント側シェル部材6、バルブプレート5、フロント側シリンダブロック2、リア側シリンダブロック4 、バルブプレート7、及び、リア側シェル部材8は、締結ボルト9により軸方向に締結され、前記フロント側シェル部材6とリア側シェル部材8とは、軸方向に2分割された圧縮機のハウジングを構成している。   1 and 2, a compressor 1 is a reciprocating type used in a refrigeration cycle using a refrigerant as a working fluid. The compressor 1 includes a front side cylinder block 2 and a front side cylinder block 2. The rear cylinder block 4 to be assembled, the front side shell member 6 assembled to the front side (left side in the figure) of the front side cylinder block 2 via the valve plate 5, and the rear side (in the figure) , Right side) and a rear side shell member 8 assembled through a valve plate 7. The front side shell member 6 and the rear side shell member 8 are respectively connected to adjacent cylinder blocks 2, 4. The opening end side is extended so as to cover and are fitted to each other in the axial direction. The front shell member 6, the valve plate 5, the front cylinder block 2, the rear cylinder block 4, the valve plate 7, and the rear shell member 8 are fastened in the axial direction by fastening bolts 9. The side shell member 6 and the rear side shell member 8 constitute a housing of the compressor that is divided into two in the axial direction.

フロント側シリンダブロック2とリア側シリンダブロック4の内部には、それぞれのシリンダブロック2,4を組み付けることによって画設される斜板収容室10が形成され、この斜板収容室10には、フロント側シリンダブロック2 及びリア側シリンダブロック4に形成されたシャフト支持孔11にラジアル軸受19を介してシャフト12が回転自在に支持されている。このシャフト12は、フロント側シェル部材6から一端が突出しており、このフロント側シェル部材6から突出した部分には、ボルト13によって軸方向に取り付けられた中継部材14が固定されている。また、フロント側シェル部材6には、シャフトを覆うようにフロント側へ延設されたボス部6aが一体に形成され、このボス部6aには、図示しない駆動源とベルトを介して連結されるプーリ16が軸受15を介して回転自在に外嵌されている。このプーリ16は、前記中継部材14を介して回転動力をシャフト12に伝達している。   Inside the front cylinder block 2 and the rear cylinder block 4, there is formed a swash plate storage chamber 10 which is provided by assembling the respective cylinder blocks 2 and 4, and the swash plate storage chamber 10 has a front A shaft 12 is rotatably supported via a radial bearing 19 in shaft support holes 11 formed in the side cylinder block 2 and the rear side cylinder block 4. One end of the shaft 12 protrudes from the front-side shell member 6, and a relay member 14 attached in the axial direction by a bolt 13 is fixed to a portion protruding from the front-side shell member 6. The front shell member 6 is integrally formed with a boss portion 6a extending to the front side so as to cover the shaft. The boss portion 6a is connected to a drive source (not shown) via a belt. A pulley 16 is rotatably fitted via a bearing 15. The pulley 16 transmits rotational power to the shaft 12 via the relay member 14.

それぞれのシリンダブロック2,4には、シャフト支持孔11に対して平行に、且つ、シャフト12を中心とする円周上に等間隔に配された複数のシリンダボア17が形成されている。そして、それぞれのシリンダボア17内には、両端に頭部を有する両頭ピストン18が往復摺動可能に挿入され、この両頭ピストン18とバルブプレート5,7との間に圧縮室25が画成されている。   In each cylinder block 2, 4, a plurality of cylinder bores 17 are formed in parallel to the shaft support hole 11 and at equal intervals on the circumference centered on the shaft 12. A double-ended piston 18 having heads at both ends is inserted into each cylinder bore 17 so as to be reciprocally slidable. A compression chamber 25 is defined between the double-ended piston 18 and the valve plates 5 and 7. Yes.

シャフト12には、斜板収容室10に収容されて、該シャフト12と共に一体に回転する斜板20が固定されている。この斜板20は、フロント側シリンダブロック2及びリア側シリンダブロック4に対してスラスト軸受21を介して回転自在に支持されており、その周縁部分が両頭ピストン18の中央部に形成された係留凹部23に係留された半球体状の一対のシュー22により前後を挟み込むように挟持されている。したがって、シャフト12が回転して斜板20が揺動回転すると、その揺動回転運動がシュー22を介して両頭ピストン18の往復運動に変換され、圧縮室25の容積が変化するようになっている。   A swash plate 20 that is housed in the swash plate housing chamber 10 and rotates together with the shaft 12 is fixed to the shaft 12. The swash plate 20 is rotatably supported with respect to the front cylinder block 2 and the rear cylinder block 4 via a thrust bearing 21, and a mooring concave portion whose peripheral portion is formed at the center of the double-headed piston 18. A pair of hemispherical shoes 22 moored at 23 is sandwiched between the front and rear. Therefore, when the shaft 12 rotates and the swash plate 20 swings and rotates, the swinging and rotating motion is converted into the reciprocating motion of the double-headed piston 18 via the shoe 22, and the volume of the compression chamber 25 changes. Yes.

それぞれのバルブプレート5,7には、シリンダブロック側端面に設けられた図示しない吸入バルブによって開閉される吸入孔26と、シェル部材側端面に設けられた図示しない吐出バルブによって開閉される吐出孔27とがそれぞれのシリンダボア17に対応して形成されている。また、フロント側シェル部材6とリア側シェル部材8には、圧縮室25に供給する冷媒を収容するための吸入室28と、圧縮室25から吐出された冷媒を収容するための吐出室29とがそれぞれ画設されている。   Each of the valve plates 5 and 7 has a suction hole 26 that is opened and closed by a suction valve (not shown) provided on the cylinder block side end face, and a discharge hole 27 that is opened and closed by a discharge valve (not shown) provided on the shell member side end face. Are formed corresponding to each cylinder bore 17. The front-side shell member 6 and the rear-side shell member 8 include a suction chamber 28 for storing the refrigerant supplied to the compression chamber 25, and a discharge chamber 29 for storing the refrigerant discharged from the compression chamber 25. Are set up separately.

各シェル部材6,8に形成された吸入室28は、斜板収容室10に低圧通路3 0を介して接続されており、この斜板収容室10は、これに接続された吸入用通路31を介して、リア側シェル部材8に形成された外部サイクルと接続する吸入ポート32と連通している。   The suction chamber 28 formed in each shell member 6, 8 is connected to the swash plate storage chamber 10 via a low pressure passage 30, and the swash plate storage chamber 10 is connected to the suction passage 31. And communicates with a suction port 32 connected to an external cycle formed in the rear shell member 8.

また、各シェル部材6,8に形成された吐出室29は、吐出用通路33を介してリア側シェル部材8に設けられた吐出ポート34に連通しており、この吐出ポート34を介して外部サイクルと接続している。   Further, the discharge chamber 29 formed in each shell member 6, 8 communicates with a discharge port 34 provided in the rear side shell member 8 through a discharge passage 33, and through this discharge port 34 the outside Connected with cycle.

したがって、両頭ピストン18の往復動に伴い圧縮室25の容積が増大する吸入行程時においては、吸入ポート32から吸入用通路31、斜板収容室10、低圧通路30を介して吸入室28に導かれた冷媒が、吸入孔26を介して圧縮室25に吸入され、圧縮室25の容積が減少する圧縮行程時においては、圧縮室25で圧縮された冷媒が、吐出孔27を介して吐出室29に吐出され、この吐出室29から吐出用通路33を介してリア側シェル部材8に設けられた吐出ポート34へ導かれ、この吐出ポート34から外部サイクルへ圧送される。   Therefore, during the suction stroke in which the volume of the compression chamber 25 increases as the double-headed piston 18 reciprocates, the suction port 32 leads to the suction chamber 28 via the suction passage 31, the swash plate storage chamber 10, and the low pressure passage 30. When the compressed refrigerant is sucked into the compression chamber 25 through the suction hole 26 and the volume of the compression chamber 25 is reduced, the refrigerant compressed in the compression chamber 25 is discharged through the discharge hole 27 into the discharge chamber. The gas is discharged from the discharge chamber 29 through the discharge passage 33 to the discharge port 34 provided in the rear shell member 8, and is pumped from the discharge port 34 to the external cycle.

ところで、リア側シェル部材8には、図3にも示されるように、吸入領域となる吸入用通路31の吸入ポート32の近傍と吐出領域となる吐出用通路33の吐出ポート34の近傍とを連通するバイパス通路40が形成されている。このバイパス通路40は、リア側シェル部材8の吐出用通路33の内面と吸入用通路31の内面から互いに穿設された通路形成用孔40a,40bを、それぞれの先端部を連通させることにより構成されているもので、吐出用通路33から穿設された通路形成用孔40aには、弁体41とスプリング42が収容されている。   By the way, as shown in FIG. 3, the rear shell member 8 has a vicinity of the suction port 32 of the suction passage 31 serving as a suction region and a vicinity of the discharge port 34 of the discharge passage 33 serving as a discharge region. A bypass passage 40 that communicates is formed. The bypass passage 40 is configured by connecting passage-forming holes 40a and 40b that are formed in the inner surface of the discharge passage 33 of the rear shell member 8 and the inner surface of the suction passage 31 to each other. Thus, a valve body 41 and a spring 42 are accommodated in a passage forming hole 40 a formed from the discharge passage 33.

具体的には、図4に示されるように、バイパス通路40の吐出用通路33から穿設された通路形成用孔40aに、弁体41の外径よりも小さい径に形成された弁口43と、この弁口43よりも吐出領域側(吐出用通路33側)において弁体41の外径よりも大きい径に形成された弁収容孔44とが、バイパス通路40の通路形成用孔40aにその軸方向に沿って直接形成され、弁収容孔44から弁口43へ移行する部分には、弁体41が着座する弁座面45が径を徐々小さくしてテーパ状に形成されている。   Specifically, as shown in FIG. 4, a valve opening 43 formed in a passage forming hole 40 a drilled from the discharge passage 33 of the bypass passage 40 with a diameter smaller than the outer diameter of the valve body 41. And a valve housing hole 44 formed with a diameter larger than the outer diameter of the valve body 41 on the discharge region side (discharge passage 33 side) with respect to the valve port 43 in the passage forming hole 40a of the bypass passage 40. A valve seat surface 45 on which the valve element 41 is seated is formed in a tapered shape at a portion formed directly along the axial direction and transitioning from the valve accommodating hole 44 to the valve port 43 with a gradually decreasing diameter.

この例において、弁体41は、鋼球によって構成され、また、スプリング42は、圧縮コイルスプリングによって構成されているもので、スプリング42は弁口43に収容保持され、また、弁体41は弁収容孔44内に収容保持されて、スプリング42によって吐出領域側(吐出用通路33側)へ常時付勢されている。また、弁収容孔44の吐出用通路33に開口する開口端近傍には、弁収容孔44の内周面に開口し、弁収容孔44の軸方向と異なる方向に延設されたストッパ部材取付孔46が形成され、このストッパ部材取付孔46に圧入されたストッパ部材47が弁収容孔44を過ぎるように突設固定されている。したがって、弁体41は、弁収容孔44内に、その軸方向に沿って移動可能であると共に移動範囲がストッパ部材47によって規制された状態で保持されている。   In this example, the valve body 41 is constituted by a steel ball, and the spring 42 is constituted by a compression coil spring. The spring 42 is accommodated and held in the valve port 43. It is accommodated and held in the accommodation hole 44 and is constantly urged by the spring 42 toward the ejection region side (the ejection passage 33 side). In addition, a stopper member is installed in the vicinity of the opening end of the valve housing hole 44 that opens to the discharge passage 33 and opens in the inner peripheral surface of the valve housing hole 44 and extends in a direction different from the axial direction of the valve housing hole 44. A hole 46 is formed, and a stopper member 47 press-fitted into the stopper member mounting hole 46 is protruded and fixed so as to pass through the valve accommodation hole 44. Accordingly, the valve body 41 is held in the valve housing hole 44 in a state where the valve body 41 can move along the axial direction and the movement range is regulated by the stopper member 47.

また、弁体41の外周面と弁収容孔44の内周面との間の通路面積(弁収容孔44の軸線に対して垂直となる面で弁収容孔44の断面積から弁体41の断面積を引いた値)は、弁口43の断面積よりも小さく設定されている。   Further, the passage area between the outer peripheral surface of the valve body 41 and the inner peripheral surface of the valve housing hole 44 (the surface perpendicular to the axis of the valve housing hole 44 and the cross-sectional area of the valve housing hole 44 The value obtained by subtracting the cross-sectional area is set smaller than the cross-sectional area of the valve port 43.

以上の構成において、圧縮機1が運転を停止している状態において、圧縮機の高圧配管側の冷媒圧力と低圧配管側の冷媒圧力とがほぼ等しくなるように均衡している状態においては、吐出領域と吸入領域との間に形成されるバイパス通路40の弁体41の前後で圧力差は殆どなく、弁体41はスプリング42のバネ力により吐出領域側へ押されて弁座面45から離反した状態にある(図4(a)の状態)。   In the above configuration, in a state where the compressor 1 is not in operation, in the state where the refrigerant pressure on the high-pressure piping side and the refrigerant pressure on the low-pressure piping side of the compressor are balanced so as to be substantially equal, There is almost no pressure difference before and after the valve body 41 of the bypass passage 40 formed between the region and the suction region, and the valve body 41 is pushed away from the valve seat surface 45 by being pushed toward the discharge region by the spring force of the spring 42. (The state of FIG. 4A).

この状態において、日射による影響で冷凍サイクル機器の温度が高くなり、その後、日射による車両の加熱がなくなり、エバポレータ、圧縮機、及びコンデンサのそれぞれの温度が、エバポレータ温度>圧縮機温度>コンデンサ温度、の関係になると、エバポレータからの圧力によって低圧配管側から圧縮機1を介して高圧配管側へ冷媒が流れようとするが、バイパス通路40の弁体41は弁座面45から離反された状態にあるため、吸入領域の吸入ポート32の近傍と吐出領域の吐出ポート34の近傍とはバイパス通路40により連通された状態にあり、このバイパス通路40を介して低圧配管側の冷媒が圧縮機の内部を通過することなく高圧配管側へ速やかに流れることとなる。このため、低圧配管側から流れる冷媒が圧縮器内部のオイルを持ち出すことがなくなり、圧縮器内部のオイルの枯渇を防ぐことが可能となる。   In this state, the temperature of the refrigeration cycle equipment increases due to the influence of solar radiation, and then the vehicle is not heated by solar radiation, and the temperatures of the evaporator, the compressor, and the condenser are: evaporator temperature> compressor temperature> condenser temperature In this relationship, the refrigerant tends to flow from the low pressure pipe side to the high pressure pipe side through the compressor 1 by the pressure from the evaporator, but the valve body 41 of the bypass passage 40 is separated from the valve seat surface 45. Therefore, the vicinity of the suction port 32 in the suction region and the vicinity of the discharge port 34 in the discharge region are in communication with each other by the bypass passage 40, and the refrigerant on the low-pressure piping side passes through the bypass passage 40 to the inside of the compressor. It will flow quickly to the high-pressure piping side without passing through. For this reason, the refrigerant flowing from the low-pressure pipe side does not take out the oil inside the compressor, and it becomes possible to prevent the oil inside the compressor from being depleted.

これに対して、圧縮機が運転を開始する直後においては、ピストンにより圧縮されて吐出領域に吐出された冷媒は、圧縮機外に吐出されるとともに、一部がバイパス通路を通って吸入領域に流れようとする。この際、吐出領域側から吸入領域側に流入しようとする冷媒は、図5に示されるように、弁収容孔44に収容される弁体41の側面を通過し、その後、弁口43を通って吸入領域に流出しようとするが、弁体41と弁収容孔44との間の通路面積は弁口43の断面積に比して小さく設定されているので、ここで圧力が大きく降下し、弁体41の上流と下流に確実に圧力差が発生することとなる。このため、冷媒はスプリング42のバネ力に抗して弁体41を弁口43側に押すこととなり、弁体41は、この力により弁座面45に速やかに着座し、弁口43を閉鎖することとなる。そして、一旦弁体41が弁口43を塞ぐと、弁体41の前後に吐出圧力と吸入圧力が作用し、この圧力差によりスプリング42のバネ力に抗して閉鎖状態が安定して維持される。   On the other hand, immediately after the compressor starts operation, the refrigerant compressed by the piston and discharged to the discharge region is discharged outside the compressor and partly passes through the bypass passage to the suction region. Try to flow. At this time, as shown in FIG. 5, the refrigerant that flows from the discharge region side to the suction region side passes through the side surface of the valve body 41 accommodated in the valve accommodating hole 44, and then passes through the valve port 43. However, since the passage area between the valve element 41 and the valve accommodating hole 44 is set smaller than the cross-sectional area of the valve port 43, the pressure drops greatly here. A pressure difference is surely generated between the upstream and downstream of the valve body 41. For this reason, the refrigerant presses the valve element 41 toward the valve opening 43 against the spring force of the spring 42, and the valve element 41 quickly seats on the valve seat surface 45 by this force and closes the valve opening 43. Will be. Once the valve body 41 closes the valve opening 43, the discharge pressure and the suction pressure act before and after the valve body 41, and the closed state is stably maintained against the spring force of the spring 42 by this pressure difference. The

そして、この状態は、圧縮機1が再び停止して吐出領域側と吸入領域側との圧力差が十分小さくなりスプリング42のバネ力により弁体41が吐出領域側に向かって(開弁方向に向かって)移動することとなるまで維持されることとなる。
特に、上述した構成においては、弁体41の外周面と弁収容孔44の内周面との間の通路面積が、弁口43の面積よりも小さく設定されているので、圧縮機1が運転を開始した直後にバイパス通路40を弁体41の側方を介して流れようとする冷媒によって弁体41前後に確実に圧力差が発生し、弁体をより速やか移動させ、確実に弁口43を閉鎖させることが可能となる。
In this state, the compressor 1 is stopped again, the pressure difference between the discharge region side and the suction region side becomes sufficiently small, and the valve element 41 moves toward the discharge region side by the spring force of the spring 42 (in the valve opening direction). It will be maintained until it moves.
In particular, in the above-described configuration, the area of the passage between the outer peripheral surface of the valve body 41 and the inner peripheral surface of the valve housing hole 44 is set to be smaller than the area of the valve port 43, so that the compressor 1 operates. Immediately after starting the operation, the refrigerant that flows through the bypass passage 40 through the side of the valve body 41 surely generates a pressure difference between the front and rear of the valve body 41, thereby moving the valve body more quickly and reliably Can be closed.

尚、上述の構成においては、バイパス通路40の途中に弁口43、弁収容孔44、弁座面45を通路の内壁を加工して一体形成した構成例を示したが、これら弁口43、弁収容孔44、弁座面45が形成されたホルダにスプリング42と弁体41とを収容してカートリッジ状に形成し、これをバイパス通路40の途中に設置するようにしてもよい。
また、上述の例では、圧縮器として、両頭ピストンを利用した往復動式圧縮器の例を示したが、圧縮器はこれに限られるものではなく、他のピストン式圧縮器でも他の形式の圧縮器でも同様の構成を採用することが可能である。
In the above-described configuration, an example in which the valve port 43, the valve accommodating hole 44, and the valve seat surface 45 are integrally formed by processing the inner wall of the passage in the middle of the bypass passage 40 is shown. The spring 42 and the valve element 41 may be accommodated in a holder in which the valve accommodating hole 44 and the valve seat surface 45 are formed to be formed in a cartridge shape, and this may be installed in the middle of the bypass passage 40.
In the above example, an example of a reciprocating compressor using a double-headed piston has been shown as a compressor. However, the compressor is not limited to this, and other piston compressors may be of other types. A similar configuration can be adopted in the compressor.

1 圧縮機
6 フロント側シェル部材
8 リア側シェル部材
12 シャフト
31 吸入用通路
32 吸入ポート
33 吐出用通路
34 吐出ポート
40 バイパス通路
41 弁体
42 スプリング
43 弁口
44 弁収容孔
45 弁座面
DESCRIPTION OF SYMBOLS 1 Compressor 6 Front side shell member 8 Rear side shell member 12 Shaft 31 Suction passage 32 Suction port 33 Discharge passage 34 Discharge port 40 Bypass passage 41 Valve body 42 Spring 43 Valve port 44 Valve accommodation hole 45 Valve seat surface

Claims (5)

ハウジングと、前記ハウジングに区画形成された吸入領域および吐出領域と、前記ハウジング内に軸支されたシャフトと、前記シャフトの回転運動に基づき、冷媒を前記吸入領域から吸入し、前記吐出領域へ吐出する圧縮機構とを備えた圧縮機であって、
前記吸入領域と前記吐出領域とを連通するバイパス通路と、
前記バイパス通路を前記吐出領域側から閉鎖可能とする弁体と、
前記弁体を前記吐出領域側に向かって付勢するスプリングと、
を有することを特徴とする圧縮機。
Based on a housing, a suction region and a discharge region defined in the housing, a shaft pivotally supported in the housing, and a rotational movement of the shaft, refrigerant is sucked from the suction region and discharged to the discharge region. A compressor equipped with a compression mechanism,
A bypass passage communicating the suction region and the discharge region;
A valve body capable of closing the bypass passage from the discharge region side;
A spring for urging the valve body toward the discharge region;
The compressor characterized by having.
前記バイパス通路には、
前記弁体の外径よりも小さい径に形成された弁口と、この弁口よりも前記吐出領域側に設けられ前記弁体の外径よりも大きい径に形成された弁収容孔とが形成されており、
前記弁体は、前記弁収容孔内にその軸方向に沿って移動可能に収容されていることを特徴とする請求項1記載の圧縮機。
In the bypass passage,
A valve port formed with a diameter smaller than the outer diameter of the valve body, and a valve accommodation hole formed on the discharge region side with respect to the valve port and formed with a diameter larger than the outer diameter of the valve body are formed. Has been
The compressor according to claim 1, wherein the valve body is accommodated in the valve accommodation hole so as to be movable along an axial direction thereof.
前記弁体の外周面と前記弁収容孔の内周面との間の通路面積は、前記弁口の面積よりも小さいことを特徴とする請求項2に記載の圧縮機。   The compressor according to claim 2, wherein a passage area between an outer peripheral surface of the valve body and an inner peripheral surface of the valve housing hole is smaller than an area of the valve port. 前記ハウジングは、シャフトの軸方向に2分割されたシェル部材により構成され、前記吐出領域と前記吸入領域は、それぞれのシェル部材に区画形成され、前記吐出領域に連通する吐出ポートと前記吸入領域に連通する吸入ポートは一方のシェル部材に形成され、前記バイパス通路は、前記吐出ポート及び前記吸入ポートが設けられた前記一方のシェル部材に設けられていることを特徴とする請求項1乃至3のいずれかに記載の圧縮機。   The housing is configured by a shell member that is divided into two in the axial direction of the shaft, and the discharge region and the suction region are defined by the respective shell members, and a discharge port that communicates with the discharge region and the suction region. The suction port that communicates is formed in one shell member, and the bypass passage is provided in the one shell member provided with the discharge port and the suction port. The compressor in any one. 前記弁体は鋼球であり、前記弁口から前記弁収容孔に移行する部分には、前記弁体が着座する弁座面が形成されていることを特徴とする請求項1乃至4記載のいずれかに記載の圧縮機。   5. The valve seat according to claim 1, wherein the valve body is a steel ball, and a valve seat surface on which the valve body is seated is formed at a portion that transitions from the valve port to the valve housing hole. The compressor in any one.
JP2011275530A 2011-12-16 2011-12-16 Compressor Active JP6010724B2 (en)

Priority Applications (5)

Application Number Priority Date Filing Date Title
JP2011275530A JP6010724B2 (en) 2011-12-16 2011-12-16 Compressor
US14/365,583 US20140369871A1 (en) 2011-12-16 2012-12-14 Compressor
EP12857022.3A EP2803858A4 (en) 2011-12-16 2012-12-14 Compressor
PCT/JP2012/007999 WO2013088732A1 (en) 2011-12-16 2012-12-14 Compressor
CN201280062161.2A CN104024638B (en) 2011-12-16 2012-12-14 Compressor

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2011275530A JP6010724B2 (en) 2011-12-16 2011-12-16 Compressor

Publications (2)

Publication Number Publication Date
JP2013124648A true JP2013124648A (en) 2013-06-24
JP6010724B2 JP6010724B2 (en) 2016-10-19

Family

ID=48612204

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2011275530A Active JP6010724B2 (en) 2011-12-16 2011-12-16 Compressor

Country Status (5)

Country Link
US (1) US20140369871A1 (en)
EP (1) EP2803858A4 (en)
JP (1) JP6010724B2 (en)
CN (1) CN104024638B (en)
WO (1) WO2013088732A1 (en)

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS4845202U (en) * 1971-09-30 1973-06-13
JPS55143462U (en) * 1979-04-04 1980-10-14
JPS6070792U (en) * 1983-10-24 1985-05-18 ダイキン工業株式会社 Screw compressor oil supply system
JPH07218007A (en) * 1994-01-31 1995-08-18 Nippondenso Co Ltd Protecting apparatus for compressor
JP2004190510A (en) * 2002-12-09 2004-07-08 Calsonic Compressor Seizo Kk Gas compressor

Family Cites Families (14)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US2449740A (en) * 1947-08-14 1948-09-21 Jr Joseph Felser Pressure unloader for compressors
US4026122A (en) * 1974-10-11 1977-05-31 Primore Sales, Inc. Refrigeration system
US4298314A (en) * 1980-01-10 1981-11-03 Westinghouse Electric Corp. Hermetic compressor having a valve to drain liquid accumulations from its cylinder head
JPS56129795A (en) * 1980-03-12 1981-10-12 Nippon Soken Inc Rotary compressor
JPS58191392U (en) * 1982-06-15 1983-12-19 株式会社東芝 Compressors for refrigeration cycles, etc.
JPS6081287U (en) * 1983-11-09 1985-06-05 株式会社日立製作所 Swash plate compressor
JPH0115907Y2 (en) * 1985-11-20 1989-05-11
JPH04124479A (en) * 1990-09-13 1992-04-24 Toyota Autom Loom Works Ltd Compressor
JP2869899B2 (en) * 1990-10-22 1999-03-10 株式会社ゼクセル Noise suppression mechanism for vane compressor
US5387092A (en) * 1994-05-20 1995-02-07 General Motors Corporation A/C compressor with integrally molded housings
US6431844B1 (en) * 2000-08-14 2002-08-13 Devilbiss Air Power Company High pressure pump having integral start valve
JP2004239096A (en) * 2003-02-04 2004-08-26 Sanden Corp Variable displacement compressor
JP4973066B2 (en) * 2006-08-25 2012-07-11 株式会社豊田自動織機 Compressor and operating method of compressor
JP2008133810A (en) * 2006-11-29 2008-06-12 Toyota Industries Corp Compressor

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS4845202U (en) * 1971-09-30 1973-06-13
JPS55143462U (en) * 1979-04-04 1980-10-14
JPS6070792U (en) * 1983-10-24 1985-05-18 ダイキン工業株式会社 Screw compressor oil supply system
JPH07218007A (en) * 1994-01-31 1995-08-18 Nippondenso Co Ltd Protecting apparatus for compressor
JP2004190510A (en) * 2002-12-09 2004-07-08 Calsonic Compressor Seizo Kk Gas compressor

Also Published As

Publication number Publication date
CN104024638A (en) 2014-09-03
JP6010724B2 (en) 2016-10-19
EP2803858A4 (en) 2015-12-09
EP2803858A1 (en) 2014-11-19
US20140369871A1 (en) 2014-12-18
CN104024638B (en) 2017-09-22
WO2013088732A1 (en) 2013-06-20

Similar Documents

Publication Publication Date Title
JP4286175B2 (en) Compressor
JP5408073B2 (en) Compressor
JP6504309B2 (en) Variable displacement swash plate type compressor
JP4806262B2 (en) Compressor
JP2015178820A (en) gas compressor
JP5708570B2 (en) Vane type compressor
JP5140402B2 (en) Swash plate compressor
JP2007232343A (en) Refrigerating circuit and compressor
JP6010724B2 (en) Compressor
JP4117848B2 (en) Compressor
JP2009293386A (en) Compressor
JP2008169810A (en) Gas compressor
JP2013245592A (en) Gas compressor
JP2016003606A (en) Gas compressor
JP5751215B2 (en) Tandem vane compressor
JP2010001835A (en) Gas compressor
JP2007205165A (en) Variable displacement type clutch-less compressor
JP2002005020A (en) Refrigerating compressor
US9810209B2 (en) Compressor
JP2008157174A (en) Variable displacement gas compressor
JP2007192154A (en) Reciprocating fluid machine
WO2013088730A1 (en) Compressor
JP2005226467A (en) Gas compressor
JP2006233810A (en) Scroll compressor
JP2016102438A (en) Gas compressor

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20141118

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20150831

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20160219

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20160517

A911 Transfer to examiner for re-examination before appeal (zenchi)

Free format text: JAPANESE INTERMEDIATE CODE: A911

Effective date: 20160525

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20160713

R150 Certificate of patent or registration of utility model

Ref document number: 6010724

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250